一般常用求导公式
- 格式:doc
- 大小:260.50 KB
- 文档页数:7
(1)0)(='C
(2)1
)(-='μμμx x
(3)x x cos )(sin ='
(4)x x sin )(cos -='
(5)
x x 2
sec )(tan =' (6)
x x 2
csc )(cot -=' (7)x x x tan sec )(sec =' (8)x x x cot csc )(csc -='
(9)
a a a x x ln )(=' (10)(e )e x
x '=
(11)
a x x a ln 1
)(log =
' (12)
x x 1
)(ln =
',
(13)
211
)(arcsin x x -=
' (14)
211
)(arccos x x --
=' (15)
21
(arctan )1x x '=
+ (16)
21
(arccot )1x x '=-
+ 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则
(1)v u v u '±'='±)( (2)u C Cu '=')((C 是常数)
(3)v u v u uv '+'=')(
(4)2v v u v u v u '-'='
⎪⎭⎫ ⎝⎛
反函数求导法则
若函数)(y x ϕ=在某区间y I 内可导、单调且0)(≠'y ϕ,则它的反函数)(x f y =在对应区间
x
I 内也可导,且
)(1)(y x f ϕ'=
'或dy dx dx dy 1
=
复合函数求导法则
设)(u f y =,而)(x u ϕ=且)(u f 及)(x ϕ都可导,则复合函数)]([x f y ϕ=的导数为
dy dy du dx du dx =
或()()y f u x ϕ'''=
上述表中所列公式与法则是求导运算的依据,请读者熟记. 2.双曲函数与反双曲函数的导数
双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出 可以推出下表列出的公式:
(sh )ch x x '= (ch )sh x x '=
21(th )ch x x '=
(arsh )x '=
(arch )x '=
21
(arth )1x x '=
-
积分公式
含ax+b 的积分
含有ax+b的积分公式只要有以下几类:[3]
含√(a+bx)的积分
含有√(a+bx)的积分公式只要包含有以下几类:[4]
含有x^2±α^2的积分
[2]
含有ax^2+b(a>0)的积分
[4]含有√(a^2+x^2)(a>0)的积分被积函数中含有√(a^2+x^2) (a>0)的积分有[2]:
含有√(a^2-x^2)(a>0)的积分被积函数中含有√(a^2-x^2) (a>0)的积分有:[3]
对于a2>x2有:
含有√(|a|x^2+bx+c)(a≠0)的积分
被积函数中含有√(|a|x^2+bx+c) (a≠0)的积分有[2-4]
含有三角函数的积分
被积函数中含有三角函数的积分公式有:[4]含有反三角函数的积分
被积函数当中含有反三角函数的积分公式有[2]:
含有指数函数的积分
被积函数当中包含有指数函数的积分公式[3]:
含有对数函数的积分
被积函数当中包含有对数函数的积分公式[4]:
含有双曲函数的积分
被积函数当中包含有双曲函数的积分公式有[2]:
3定积分公式
定积分公式有以下几种[1][3]