苏科版初二数学上册知识点
- 格式:docx
- 大小:24.33 KB
- 文档页数:11
知识点总结第一章三角形全等一、全等三角形的定义1、全等三角形:能够完全重合的两个三角形叫做全等三角形。
2、理解:(1)全等三角形形状与大小完全相等,与位置无关;(2)一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等;(3)三角形全等不因位置发生变化而改变。
二、全等三角形的性质1、全等三角形的对应边相等、对应角相等。
理解:(1)长边对长边,短边对短边;最大角对最大角,最小角对最小角;(2)对应角的对边为对应边,对应边对的角为对应角。
2、全等三角形的周长相等、面积相等。
3、全等三角形的对应边上的对应中线、角平分线、高线分别相等。
三、全等三角形的判定1、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。
2、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等。
3、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。
4、边边边公理(SSS) 有三边对应相等的两个三角形全等。
5、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等。
四、证明两个三角形全等的基本思路1、已知两边:(1)找第三边(SSS);(2)找夹角(SAS);(3)找是否有直角(HL)。
2、已知一边一角:(1)找一角(AAS或ASA);(2)找夹边(SAS)。
3、已知两角:(1)找夹边(ASA);(2)找其它边(AAS)。
第二章轴对称一、轴对称图形相对一个图形的对称而言;轴对称是关于直线对称的两个图形而言。
二、轴对称的性质1、轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。
2、如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线。
三、线段的垂直平分线1、性质定理:线段垂直平分线上的点到线段两个端点的距离相等。
2、判定定理:到线段两个端点距离相等的点在这条线段的垂直平分线上。
3、拓展:三角形三条边的垂直平分线的交点到三个顶点的距离相等。
四、角的角平分线1、性质定理:角平分线上的点到角两边的距离相等。
第一章全等三角形1、全等图形的定义能够完全重合的图形叫做全等图形。
两个图形全等,它们的形状、大小相同。
2、全等三角形的定义两个能完全重合的三角形叫做全等三角形。
3、全等三角形的性质全等三角形的对应边相等,对应角相等。
4、全等三角形的判定(1)两边及其夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”)。
(2)两角及其夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)。
(3)两角分别相等且其中一组等角的对边相等的两个三角形全等(可以简写成“角角边”或“AAS”)。
(4)三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”)。
(5)斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)。
5、五种基本的尺规作图(1)作已知线段的相等线段;(2)作已知角的相等角;(3)作已知线段的垂直平分线;(4)作已知角的角平分线;(5)过一点作已知直线的垂线。
第二章轴对称图形1、轴对称的定义把一个图形沿着某一条直线翻折,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴。
2、轴对称图形的定义把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线是对称轴。
3、轴对称的性质(1)成轴对称的两个图形全等;(2)成轴对称的两个图形中,对应点的连线被对称轴垂直平分。
4、线段的轴对称性线段是轴对称图形,线段的垂直平分线是它的对称轴。
5、垂直平分线的性质线段垂直平分线上的点到线段两端的距离相等。
符号语言:∵点C在线段AB垂直平分线上∴AC=BC6、垂直平分线的判定到线段两个端点距离相等的点在线段的垂直平分线上。
符号语言:∵AC=BC∴点C在线段AB垂直平分线上7、角的轴对称性角是轴对称图形,角平分线所在的直线是它的对称轴。
8、角平分线的性质角平分线上的点到角两边的距离相等。
A.1个B.2个C.3个D.4个误点2 不能正确找出轴对称图形的对称轴,导致出现错误例2:下列美丽的图案中,对称轴最多的是()A B C D2.2轴对称的性质【知识点梳理】一、线段垂直平分线的概念垂直并平分一条线段的直线,叫作这条直线的垂直平分线.二、轴对称的性质成轴对称的两个图形中,对应点的连线被对称轴垂直平分.三、利用轴对称的性质作轴对称图形画一个图形关于一条直线对称的图形,关键是确定某些点关于这条直线的对称轴.往往按照下面的步骤.1.画轴对称图形,首先应确定对称轴,然后找出对称点.2.画已知线段关于某条直线的对称线段,或画已知三角形(四边形)关于某条直线对称的三角形(四边形),关键在于画出已知线段的各端点或已知三角形(四边形)的各顶点关于这条直线的对称点.【误区警示】误点1 不能灵活运用轴对称的性质,导致出现错误例1:如图a是一张长方形纸带,∠20°,将纸带沿折叠(如图b),再沿折叠(如图c)则图中∠的度数是例1图例2图误点2 画图漏解,导致出现错误例2:如图①,在3×3的正方形网格中,已有两个小正方形被涂色,再将图中其余的任意一个小正方形涂色,使整个图案构成一个轴对称图形的方法有种.2.3线段、角的轴对称性【知识点梳理】一、线段垂直平分线的性质1、线段是轴对称图形,线段的垂直平分线是它的对称轴2、线段垂直平分线上的点到线段两端的距离相等3、到线段两端距离相等的点在这条线段的垂直平分线上二、角平分线的性质1、角是轴对称图形,角平分线所在直线是它的对称轴2、角平分线上的点到角两边距离相等3、角的内部到角两边距离相等的点在这个角的平分线上三、线段的垂直平分线的画法1的长为半径画弧,两弧相1、用尺规画此线段的垂直平分线的方法:(1)分别以点A、B为圆心,大于2交于点C、D;(2)过点C、D;两点作直线.直线就是线段的垂直平分线.如图2.4.1所示.2、利用网格线画线段的垂直平分线:现在网格上找出两点,使它们到线段两端的距离相等,再过这两点作直线3、折叠法画线段的垂直平分线:先对折,再沿折痕画直线,即可得到其对称轴,也就是垂直平分线. 【误区警示】误点1 不能正确掌握线段垂直平分线的性质,导致出现错误例1:如图,在△中,,是的垂直平方线,△的周长为14,6,则的长为误点2 不能正确掌握角平方线的性质,导致出现错误例2:如图,平分∠,⊥,⊥,垂足分别为A、B.下列结论中,不一定成立的是()A. B.平分∠ C. D.垂直平分2.5等腰三角形的轴对称性【知识点梳理】一、等腰三角形的对称性等腰三角形是轴对称图形,顶角平分线所在直线、底边上的中线所在直线、底边上的高所在直线都是它的对称轴.二、等腰三角形的性质1、等要三角形的两底角相等(等边对等角)2、等腰三角形底边上的高线、中线及顶角的平分线重合(三线合一)三、等腰三角形的判定方法1、有两条边相等的三角形是等腰三角形2、有两个角相等的三角形是等腰三角形(等角对等边)四、等边三角形的概念和性质1、三边相等的三角形是等边三角形或正三角形2、等边三角形是轴对称图形,有三条对称轴3、等边三角形的各内角等于60°五、等边三角形的判定1、三边相等的三角形叫做等边三角形或正三角形2、三个角都相等的三角形是等边三角形3、有一个角是60°的等腰三角形是等边三角形【误区警示】误点1 不能正确识别图中的等腰三角形,导致错误例1:如图,在△中,,∠36°,、分别是△、△的角平分线,则图中的等腰三角形一共有( )A.5个B.4个C.3个D.2个误点2 不能正确把握等腰三角形的性质,导致出现错误例2:如图,,,若∠40°,则∠的度数为( )A.20°B.30°C.35°D.40°第三章勾股定理一、勾股定理直角三角形两条直角边的平方和等于斜边的平方.若把直角三角形的两条直角边和斜边分别记为c b a 、、(如图3.1.1),则222c b a =+三、勾股定理的验证勾股定理的推导方法有很多种,到目前为止,能够验证勾股定理的方法有近500种.课本上是利用图形的“截、割、补、拼”来说明表示相同图形面积的代数式之间的恒等关系,既具有严密性,又具有直观性.例:如图,分别以边长分别为c b a 、、(c 为斜边)的直角三角形的3边为边向外作三个正方形拼成如图所示的图形,是利用面积知识验证勾股定理.四、勾股定理的应用勾股定理揭示了直角三角形中三条边之间的数量关系,只要知道直角三角形中任意两条边的长度就可以求出第三条边的长度.【误区警示】误点1 不能用图形面积表示代数式之间的数量关系,导致出现错误例1:如图是由四个相同的直角三角尺拼接成的图形,设三角尺的直角边长分别为)(b a b a >、,则这两个图形能验证的等式是( )A .()2-()2=4B .(a 22)-()2=2C .()2-222D .()()22误点2 不能正确把握勾股定理的内涵,导致出现错误例2:已知△的两边长为3、4,求第三边长的平方.3.2勾股定理的逆定理【知识点总结】一、勾股定理的逆定理如果三角形的三边长分别为c b a 、、,且222c b a =+,那么这个三角形是直角三角形.二、勾股数满足关系222c b a =+的3个正整数c b a 、、称为勾股数.利用勾股数可以构造直角三角形.【误区警示】误点1 不能正确理解勾股定理的逆定理,导致出现错误例1:已知一个三角形的三边长为5,13,12,这个三角形是直角三角形吗?误点2 思维定势误判直角,导致出现错误例2:在△中,∠A 、∠C 、∠C 的对边分别是a 、b 、c ,且2))((c b a b a =-+,则( )A.∠A 为直角B.∠C 为直角C.∠C 为直角D.不是直角三角形3.3勾股定理的简单应用【知识点总结】一、运用勾股定理解决实际问题在运用勾股定理解决实际问题时,应该构造直角三角形,然后把直角三角形的某些边表示出来,最后利用勾股定理解决实际问题运用勾股定理的逆定理解决实际问题如果三角形的三边长为c b a 、、满足222c b a =+,那么这个三角形是直角三角形,这是根据三角形 三边长之间的数量关系来判定一个三角形是直角三角形的方法.【误区警示】误点 不能运用恰当的数学模型解决问题,导致出现错误例 如图,有两棵树,一棵高6米。
第一章——全等三角形1. 全等三角形的定义: . 2.全等三角形的性质: . 3.一般三角形全等的判别方法: . 直角三角形全等的判别方法: . 4.三角形全等的条件思路:5.三个角对应相等的两个三角形全等吗?两边和其中一边的对角对应相等的两个三角形全等吗? 6.角平分线做法是什么?(课本P25)如何过直线外一点做该直线的垂线?(课本P26)第二章——轴对称图形1、线段的对称轴有 条,是2、线段垂直平分线上的点到 的 距离相等 ∵ ∴3、到 距离相等的点在线段的垂直平分线上 ∵∴ ∵∴∴例1:如图,在△ABC 中,DE 是AC 的垂直平分线.(1)若AC =6,△ABD 的周长是13,则△ABC 的周长是_______; (2)若△ABC 的周长是30,△ABD 的周长是25,则AC =_______. 4、角的对称轴有 条,是 5、角平分线上的点到 的距离相等 ∵又∵∴6、角的内部到 距离相等F E P B AC的点在角的平分线上 ∵ 又∵ ∴例2:如图,在△ABC 中,∠C=90°,AD 平分∠BAC. (1)若CD=5,则点D 到AB 的距离为 .(2) 若BD :DC=3:2,点D 到AB 的距离为6,则BC 的长是 .例3:如图,OP 平分∠AOB ,PA ⊥OA ,PB⊥OB ,垂足分别为A 、B . 下列结论中,不一定成立的是 () A .PA=PB B .PO 平分∠APB C .OA=OB D .AB 垂直平分OP补充:①三角形的三条边的垂直平分线的交点到 的距离相等②三角形的三条角平分线的交点到 的距离相等7、等边对等角 8、等角对等边 ∵ ∵ ∴ ∴9、等腰三角形 、 、 重合(三线合一) (有 条对称轴) 例5:(1)等腰三角形的一边长为5,另一边长为11,则该等腰三角形的周长为(2)等腰三角形的两边长分别为4、5.则该等腰三角形的周长为(3)已知等腰三角形的一个外角为100°,则这个等腰三角形的顶角为__________. (4)等腰△ABC 中,若∠A =30°,则∠B = . 10、(1)等边三角形的性质:等边三角形的三条边 ,三个角都是 ,每条边上都有三线合一,有 条对称轴 (2)等边三角形的3个判定方法:三条边都 的三角形是等边三角形 三个角都 的三角形是等边三角形有一个角是 的 三角形是等边三角形第三章——勾股定理1、勾股定理:在直角三角形中,两条直角边的平方和等于斜边的平方∵ ∴ 2、勾股定理的逆定理:一个三角形中,如果两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形∵ ∴3、勾股数: 常见勾股数有:3、 、 ;5、 、 ;6、 、 ;7、、;8、、;9、、;B。
苏科版八年级上册数学知识点归纳总结1 全等三角形的对应边、对应角相等2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等5 边边边公理(SSS) 有三边对应相等的两个三角形全等6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等7 定理1 在角的平分线上的点到这个角的两边的距离相等8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上9 角的平分线是到角的两边距离相等的所有点的集合10 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合23 推论3 等边三角形的各角都相等,并且每一个角都等于60°24 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)25 推论1 三个角都相等的三角形是等边三角形26 推论 2 有一个角等于60°的等腰三角形是等边三角形27 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半28 直角三角形斜边上的中线等于斜边上的一半29 定理线段垂直平分线上的点和这条线段两个端点的距离相等30 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上31 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合32 定理1 关于某条直线对称的两个图形是全等形33 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线34定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上35逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称36勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^237勾股定理的逆定理如果三角形的三边长a、b、c相关系a^2+b^2=c^2 ,那么这个三角形是直角三角形38定理四边形的内角和等于360°39四边形的外角和等于360°40多边形内角和定理 n边形的内角的和等于(n-2)×180°41推论任意多边的外角和等于360°42平行四边形性质定理1 平行四边形的对角相等43平行四边形性质定理2 平行四边形的对边相等44推论夹在两条平行线间的平行线段相等45平行四边形性质定理3 平行四边形的对角线互相平分46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形47平行四边形判定定理2 两组对边分别相等的四边形是平行四边形。
苏科版数学八年级上册知识点总结一、全等三角形全等三角形是指能够完全重合的两个三角形。
全等三角形的形状和大小完全相等,与位置无关。
一个三角形经过平移、翻折、旋转可以得到它的全等形。
全等三角形的对应边相等、对应角相等。
长边对长边,短边对短边;最大角对最大角,最小角对最小角。
对应角的对边为对应边,对应边对的角为对应角。
全等三角形的周长相等、面积相等。
全等三角形的对应边上的对应中线、角平分线、高线分别相等。
全等三角形的判定有边边边、边角边、角边角、角角边和斜边直角边。
二、角的平分线角的平分线是指从一个角的顶点得出一条射线把这个角分成两个相等的角。
这条射线称为这个角的平分线。
角的平分线上的点到角的两边的距离相等。
判定角的内部到角的两边的距离相等的点在角的平分线上。
三、研究全等三角形应注意以下几个问题在研究全等三角形时,需要正确区分“对应边”与“对边”、“对应角”与“对角”的不同含义。
表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上。
有三个角对应相等或有两边及其中一边的对角对应相等的两个三角形不一定全等。
时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”。
可以使用截长补短法证明三角形全等。
一、轴对称图形轴对称图形是指把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图形关于这条直线对称。
这条直线叫做对称轴。
折叠后重合的点是对应点,叫做对称点。
轴对称图形的性质包括关于某直线对称的两个图形是全等形,如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
只有一个数有自己本身作为平方根,那就是1.负数没有平方根。
一般来说,如果一个数的立方等于a,那么这个数就叫做a的立方根,也称为三次方根。
苏科版初二数学上册知识点三篇人生应该如蜡烛一样,从顶燃到底,一直都是光明的。
初二数学上册知识点1第一章勾股定理定义:如果直角三角形两条直角边分别为a,b,斜边为c,即直角三角形两直角边的平方和等于斜边的平方。
判定:如果三角形的三边长a,b,c满足a +b = c ,那么这个三角形是直角三角形。
定义:满足a +b =c 的三个正整数,称为勾股数。
第二章实数定义:任何有限小数或无限循环小数都是有理数。
无限不循环小数叫做无理数(有理数总可以用有限小数或无限循环小数表示)一般地,如果一个正数x的平方等于a,那么这个正数x 就叫做a的算术平方根。
特别地,我们规定0的算术平方根是0。
一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根)一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。
求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。
一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。
正数的立方根是正数;0的立方根是0;负数的立方根是负数。
求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。
有理数和无理数统称为实数,即实数可以分为有理数和无理数。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。
即实数和数轴上的点是一一对应的。
在数轴上,右边的点表示的数比左边的点表示的数大。
第三章图形的平移与旋转定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
平移不改变图形的形状和大小。
经过平移,对应点所连的线段平行也相等;对应线段平行且相等,对应角相等。
在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称旋转中心,转动的角称为旋转角。
旋转不改变图形的大小和形状。
任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
第四章、三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
苏科版八年级上册数学知识点重视数学公式。
有很多人数学学不好就是因为对概念和公式不够重视,表现为对数学概念的理解只是停留在表明,不去理解消化,对数学概念的特殊情况不明白。
下面是整理的苏科版八年级上册数学知识点,仅供参考希望能够帮助到大家。
苏科版八年级上册数学知识点一次函数一次函数的概念1.一般地,解析式形如ykxb(kb是常数,k0)的函数叫做一次函数;一次函数的定义域是一切实数2.一般地,我们把函数yc(c为常数)叫做常值函数一次函数的图像1.列表、描点、连线2.一条直线与y轴的交点的纵坐标叫做这条直线在y轴上的截距,简称直线的截距3.一般地,直线ykxb(kb是常数,k0)与y轴的交点坐标是(0,b),直线的截距是b4.一次函数ykxb(b≠0)的图像可以由正比例函数ykx的图像平移得到当b0时,向上平移b个单位,当b0时,向下平移b的绝对值个单位5.一元一次不等式与一次函数之间的关系(看图)一次函数的性质1.一次函数ykxb(kb是常数,k0)具有以下性质:当k0时,函数值y随自变量x的值增大而增大当k0时,函数值y随自变量x的值增大而减小①如图所示,当k0,b0时,直线经过第一、二、三象限(直线不经过第四象限);②如图所示,当k0,b﹥O时,直线经过第一、三、四象限(直线不经过第二象限);③如图所示,当k﹤O,b0时,直线经过第一、二、四象限(直线不经过第三象限);④如图所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).20.4一次函数的应用1.利用一次函数及图像解决实际问题四边形多边形1.由平面内不在同一直线上的一些线段收尾顺次联结所组成的封闭图形骄傲做多边形2.组成多边形每一条线段叫做多边形的边;相邻的两条线段的公共端点叫做多边形的顶点3.多边形相邻两边所成的角叫做多边形的内角4.对于一个多边形,画出它的任意一边所在的直线,如果其余个边都在这条直线的一侧,那么这个多边形叫做凸多边形;否则叫做凹多边形5.多边形的内角和定理:n边形的内角和等于(n-2)×180°6.多边形的一个内角的邻补角叫做多边形的外角7.对多边形的每一个内角,从与它相邻的两个外角中取一个,这样取得的所有的外角的和叫做多边形的外角和8.多边形的外角和等于360°平行四边形1.两组对边分别平行的四边形叫做平行四边形;用符号2.(1)性质定理1:如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等简述为:平行四边形的对边相等(2)性质定理2:如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等简述为:平行四边形的对角相等(3)夹在平行线间的平行线段相等(4)性质定理3:如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分(5)性质定理4:平行四边形是中心对称图形,对称中心是两条对角线的交点3.(1)判定定理1:如果一个四边形两组对边分别相等,那么这个四边形是平行四边形简述为:两组对边分别相等的四边形是平行四边形(2)判定定理2:如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形简述为:一组对边平行且相等的四边形是平行四边形(3)判定定理3:如果一个四边形的两条对角线互相平分,那么这个四边形是平行四边形简述为:对角线互相平分的四边形是平行四边形(4)判定定理4:如果一个四边形的两组对角分别相等,那么这个四边形是平行四边形简述为:两组对角分别相等的四边形是平行四边形特殊的平行四边形1.有一个内角是直角的平行四边形叫做矩形2.有一组邻边相等的平行四边形叫做菱形3.矩形的性质定理1:矩形的四个角都是直角2:矩形的两条对角线相等菱形的性质定理1:菱形的四条边都相等2:菱形的对角线互相垂直,并且每一条对角线平分一组对角4.矩形的判定定理1:有三个内角是直角的四边形是矩形2:对角线相等的平行四边形是矩形菱形的判定定理1:四条边都相等的四边形是菱形2.:对角线互相垂直的平行四边形是菱形5.有一组邻边相等并且有一个内角是直角的平行四边形叫做正方形6.正方形的判定定理1:有一组邻边相等的矩形是正方形2:有一个内角是直角的菱形是正方形7.正方形的性质定理1:正方形的四个角都是直角,四条边都相等2:正方形的两条对角线相等,并互相垂直,每条对角线平分一组对角22.4梯形1.一组对边平行而另一组对边不平行的四边形叫做梯形2.梯形中,平行的两边叫做梯形的底(短—上底;长—下底);不平行的两边叫做梯形的腰;两底之间的距离叫做梯形的高3.有一个角是直角的梯形叫做等腰梯形4.两腰相等的梯形叫做等腰梯形等腰梯形1.等腰梯形性质定理1:等腰梯形在同一底商的两个内角相等2.性质定理2.:等腰梯形的两条对角线相等3.等腰梯形判定定理1:在同一底边上的两个内角相等的梯形是等腰梯形4.判定定理2:对角线相等的梯形是等腰梯形三角形、梯形的中位线1.联结三角形两边中点的线段叫做三角形的中位线2.三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半3.联结梯形两腰中点的线段叫做梯形的中位线4.梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半平面向量1.规定了方向的线段叫做有向线段,有向线段的方向是从一点到另一点的指向,这时线段的两个端点有顺序,我们把前一点叫做起点,另一点叫做终点,画图时在终点处画上箭头表示它的方向2.既有大小。
苏教版八年级数学上册全书知识点归纳汇总大全第1章全等三角形一、全等三角形概念:能够完全重合的两个三角形叫做全等三角形。
两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角。
一个三角形经过平移、翻折、旋转可以得到它的全等形。
2、全等三角形的表示全等用符号“≌”表示,读作“全等于”。
如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。
注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。
3、全等三角形有哪些性质(1):全等三角形的对应边相等、对应角相等。
(2):全等三角形的周长相等、面积相等。
(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。
4、学习全等三角形应注意以下几个问题:(1):要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3):“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4):时刻注意图形中的隐含条件,如“公共角” 、“公共边”、“对顶角”5、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)6、全等变换只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。
全等变换包括一下三种:(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。
苏科版初二数学上册知识点苏科版初二数学上册知识点在日复一日的学习中,相信大家一定都接触过知识点吧!知识点有时候特指教科书上或考试的知识。
还在苦恼没有知识点总结吗?以下是店铺帮大家整理的苏科版初二数学上册知识点,仅供参考,大家一起来看看吧。
苏科版初二数学上册知识点1(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式1.平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)×(a+b).学好数学的关键就在于要适时适量地进行总结归类,接下来店铺就为大家整理了这篇人教版八年级数学全等三角形知识点讲解,希望可以对大家有所帮助。
一、代数1.一元一次方程-解一元一次方程的方法-类比法解一元一次方程-方程背后的实际问题2.一元一次方程组-解一元一次方程组的几何解释-列方程解一元一次方程组-微章合作求解方程组-方程组的实际问题3.相等关系式-相等关系式的运算-运用相等关系式解一元一次方程4.数组及其应用-数组的读写-作图与分析5.图像与定点-图像的平移-图像的旋转-确定一个几何图形的位置二、几何1.平面直角坐标系与坐标表示-极坐标系与坐标表示2.图形的相似-一种固定角度的相似-一种固定位置的相似-一种固定比例的相似-一种固定比例的包含关系与相似关系3.角的平分线-角的平分线-角平分线的判定-角平分线的性质-角平分线的应用4.圆的面积和弧长-圆的面积-弧长-圆盘的切割5.反比例函数-反比例函数与图像-反比例函数的应用三、数据与概率1.统计量的选择-表示数据的统计量的选择2.数据的比例与比例画-比例与图-图形与比例3.一套样本推测总体-统计推断的意义-总体与样本-一般实验与一套样本4.随机事件的度量-随机试验与样本空间-随机事件的发生-随机事件的概率-概率与深化理解总结:数学八年级上册的主要知识点包括代数、几何和数据与概率三个方面。
在代数部分,主要包括一元一次方程及其解法、一元一次方程组及其解法、相等关系式、数组及其应用以及图像与定点等内容。
几何部分主要包括平面直角坐标系与坐标表示、图形的相似、角的平分线、圆的面积和弧长以及反比例函数等内容。
数据与概率部分主要包括统计量的选择、数据的比例与比例画、一套样本推测总体以及随机事件的度量等内容。
通过对这些知识点的学习,学生可以掌握数学的基础概念和解题方法,为深入学习数学打下坚实的基础。
苏科版数学八年级上册重点知识点汇总第一章全等三角形知识导图重点知识点要点一、全等三角形的判定与性质要点二、全等三角形的证明思路SAS HL SSS AAS SAS ASA AAS ASA AAS ⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边要点三、角平分线的性质1.角的平分线的性质定理角的平分线上的点到这个角的两边的距离相等.2.角的平分线的判定定理角的内部到角的两边距离相等的点在角的平分线上.3.三角形的角平分线三角形角平分线交于一点,且到三边的距离相等.一般三角形直角三角形判定边角边(SAS)角边角(ASA)角角边(AAS)边边边(SSS)两直角边对应相等一边一锐角对应相等斜边、直角边定理(HL)性质对应边相等,对应角相等(其他对应元素也相等,如对应边上的高相等)备注判定三角形全等必须有一组对应边相等4.与角平分线有关的辅助线在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段.要点四、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1.证明线段相等的方法:(1)证明两条线段所在的两个三角形全等.(2)利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3)等式性质.2.证明角相等的方法:(1)利用平行线的性质进行证明.(2)证明两个角所在的两个三角形全等.(3)利用角平分线的判定进行证明.(4)同角(等角)的余角(补角)相等.(5)对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明. 4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5.证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.第二章轴对称图形知识导图重点知识点要点一、轴对称1.轴对称图形和轴对称(1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.(2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.(3)轴对称图形与轴对称的区别和联系区别:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.2.线段的垂直平分线垂直并且平分一条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.3.作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.4.用坐标表示轴对称点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);点(x,y)关于原点对称的点的坐标为(-x,-y).要点二、线段、角的轴对称性1.线段的轴对称性(1)线段是轴对称图形,线段的垂直平分线是它的对称轴.(2)线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等;(3)线段垂直平分线的性质定理的逆定理:到线段两个端距离相等的点在线段的垂直平分线2.角的轴对称性(1)角是轴对称图形,角的平分线所在的直线是它的对称轴.(2)角平分线上的点到角两边的距离相等.(3)角的内部到角两边距离相等的点在角的平分线上.要点三、等腰三角形1.等腰三角形(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).2.等边三角形(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.(3)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角为60°的等腰三角形是等边三角形.3.直角三角形的性质定理:直角三角形斜边上的中线等于斜边的一半.第三章勾股定理知识导图重点知识点要点一、勾股定理1.勾股定理:直角三角形两直角边a b 、的平方和等于斜边c 的平方.(即:222a b c +=)2.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题;(3)解决与勾股定理有关的面积计算;(4)勾股定理在实际生活中的应用.要点二、勾股定理的逆定理1.勾股定理的逆定理如果三角形的三边长a b c 、、,满足222a b c +=,那么这个三角形是直角三角形.要点诠释:应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤:(1)首先确定最大边,不妨设最大边长为c ;(2)验证:22a b +与2c 是否具有相等关系:若222a b c +=,则△ABC 是以∠C 为90°的直角三角形;若222a b c +>时,△ABC 是锐角三角形;若222a b c +<时,△ABC 是钝角三角形.2.勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.要点诠释:常见的勾股数:①3、4、5;②5、12、13;③8、15、17;④7、24、25;⑤9、40、41.如果(a b c 、、)是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形.观察上面的①、②、④、⑤四组勾股数,它们具有以下特征:1.较小的直角边为连续奇数;2.较长的直角边与对应斜边相差1.3.假设三个数分别为a b c 、、,且a b c <<,那么存在2a b c =+成立.(例如④中存在27=24+25、29=40+41等)要点三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关.第四章实数知识导图重点知识点要点一:平方根和立方根类型项目平方根立方根被开方数非负数任意实数符号表示a±3a性质一个正数有两个平方根,且互为相反数;零的平方根为零;负数没有平方根;一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零;重要结论⎩⎨⎧<-≥==≥=)0()0()0()(22a a a a a a a aa 333333)(aa a a aa -=-==要点二:实数有理数和无理数统称为实数.1.实数的分类①按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数②按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数与数轴上的点一一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.三类具有非负性的实数在实数范围内,正数和零统称为非负数.我们已经学习过的非负数有如下三种形式:(1)任何一个实数a 的绝对值是非负数,即|a |≥0;(2)任何一个实数a 的平方是非负数,即2a ≥0;0≥(0a ≥).非负数具有以下性质:(1)非负数有最小值——零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0.4.实数的运算数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.5.实数的大小的比较有理数大小的比较法则在实数范围内仍然成立.(1)实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数大;(2)正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;(3)两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法.要点三、近似数及精确度1.近似数接近准确值而不等于准确值的数,叫做这个精确数的近似数或近似值.一般采用四舍五入法取近似数,只要看要保留位数的下一位是舍还是入.2.精确度近似数中,四舍五入到哪一位,就称这个数精确到哪一位,精确到的这一位也叫做这个近似数的精确度.要点诠释:(1)精确度是指近似数与准确数的接近程度.(2)精确度一般用“精确到哪一位”的形式的来表示,一般来说精确到哪一位表示误差绝对值的大小,例如精确到0.1米,说明结果与实际数相差不超过0.05米.第五章平面直角坐标系知识导图重点知识点要点一、有序数对把一对数按某种特定意义,规定了顺序并放在一起就形成了有序数对,人们在生产生活中经常以有序数对为工具表达一个确定的意思,如某人记录某个月不确定周期的零散收入,可用(13,2000),(17,190),(21,330)…,表示,其中前一数表示日期,后一数表示收入,但更多的人们还是用它来进行空间定位,如:(4,5),(20,12),(13,2),…,用来表示电影院的座位,其中前一数表示排数,后一数表示座位号.要点二、平面直角坐标系平面内两条互相垂直的数轴构成平面直角坐标系,简称直角坐标系.水平的数轴称为x 轴或横轴,向右为正方向;铅直方向的数轴称为y 轴或纵轴,向上为正方向,两轴的交点O 是原点.如下图:要点诠释:(1)两条坐标轴将平面分成4个区域:第一象限、第二象限、第三象限、第四象限,x 轴与y 轴上的点(包括原点)不属于任何一个象限.(2)在平面上建立平面直角坐标系后,坐标平面上的点与有序数对(x,y)之间建立了一一对应关系,这样就将‘形’与‘数’联系起来,从而实现了代数问题与几何问题的转化.(3)要熟记坐标系中一些特殊点的坐标及特征:①x 轴上的点纵坐标为零;y 轴上的点横坐标为零.②平行于x 轴直线上的点横坐标不相等,纵坐标相等;平行于y 轴直线上的点横坐标相等,纵坐标不相等.③关于x 轴对称的点横坐标相等,纵坐标互为相反数;关于y 轴对称的点纵坐标相等,横坐标互为相反数;关于原点对称的点横、纵坐标分别互为相反数.④象限角平分线上的点的坐标特征:一、三象限角平分线上的点横、纵坐标相等;二、四象限角平分线上的点横、纵坐标互为相反数.注:反之亦成立.(4)理解坐标系中用坐标表示距离的方法和结论:①坐标平面内点P(x,y)到x 轴的距离为|y|,到y 轴的距离为|x|.②x 轴上两点A(x 1,0)、B(x 2,0)的距离为AB=|x 1-x 2|;y 轴上两点C(0,y 1)、D(0,y 2)的距离为CD=|y 1-y 2|.③平行于x 轴的直线上两点A(x 1,y)、B(x 2,y)的距离为AB=|x 1-x 2|;平行于y 轴的直线上两点C(x,y 1)、D(x,y 2)的距离为CD=|y 1-y 2|.(5)利用坐标系求一些知道关键点坐标的几何图形的面积常用方法:切割、拼补.要点三、坐标方法的简单应用1.用坐标表示地理位置(1)建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.要点诠释:(1)我们习惯选取向东、向北分别为x 轴、y 轴的正方向,建立坐标系的关键是确定原点的位置.(2)确定比例尺是画平面示意图的重要环节,要结合比例尺来确定坐标轴上的单位长度.2.用坐标表示平移(1)点的平移点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a 个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b 个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).要点诠释:上述结论反之亦成立,即点的坐标的上述变化引起的点的平移变换.(2)图形的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.要点诠释:平移是图形的整体运动,某一个点的坐标发生变化,其他点的坐标也进行了相应的变化,反过来点的坐标发生了相应的变化,也就意味着点的位置也发生了变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”.第六章一次函数知识导图重点知识点变化的世界函数建立数学模型应用概念选择方案概念再认识表示方法图象性质一次函数(正比例函数)一元一次方程一元一次不等式二元一次方程组与数学问题的综合与实际问题的综合列表法解析法图象法要点一、函数的相关概念一般地,在一个变化过程中.如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数.y 是x 的函数,如果当x =a 时y =b ,那么b 叫做当自变量为a 时的函数值.函数的表示方法有三种:解析式法,列表法,图象法.要点二、一次函数的相关概念一次函数的一般形式为y kx b =+,其中k 、b 是常数,k ≠0.特别地,当b =0时,一次函数y kx b =+即y kx =(k ≠0),是正比例函数.要点三、一次函数的图象及性质1、函数的图象如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.要点诠释:直线y kx b =+可以看作由直线y kx =平移|b |个单位长度而得到(当b >0时,向上平移;当b <0时,向下平移).说明通过平移,函数y kx b =+与函数y kx =的图象之间可以相互转化.2、一次函数性质及图象特征掌握一次函数的图象及性质(对比正比例函数的图象和性质)要点诠释:理解k 、b 对一次函数y kx b =+的图象和性质的影响:(1)k 决定直线y kx b =+从左向右的趋势(及倾斜角α的大小——倾斜程度),b 决定它与y 轴交点的位置,k 、b 一起决定直线y kx b =+经过的象限.(2)两条直线1l :11y k x b =+和2l :22y k x b =+的位置关系可由其系数确定:12k k ≠⇔1l 与2l 相交;12k k =,且12b b ≠⇔1l 与2l 平行;12k k =,且12b b =⇔1l 与2l 重合;(3)直线与一次函数图象的联系与区别一次函数的图象是一条直线;特殊的直线x a =、直线y b =不是一次函数的图象.要点四、用函数的观点看方程、方程组、不等式方程(组)、不等式问题函数问题从“数”的角度看从“形”的角度看求关于x 、y 的一元一次方程ax b +=0(a ≠0)的解x 为何值时,函数y ax b =+的值为0?确定直线y ax b =+与x 轴(即直线y =0)交点的横坐标求关于x 、y 的二元一次方程组1122=+⎧⎨=+⎩,.y a x b y a x b 的解.x 为何值时,函数11y a x b =+与函数22y a x b =+的值相等?确定直线11y a x b =+与直线22y a x b =+的交点的坐标求关于x 的一元一次不等式ax b +>0(a ≠0)的解集x 为何值时,函数y ax b =+的值大于0?确定直线y ax b =+在x 轴(即直线y =0)上方部分的所有点的横坐标的范围。
初二数学(上)期末复习各章知识点第一章轴对称图形(知识点)一、轴对称与轴对称图形1.什么叫轴对称:如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。
2.什么叫轴对称图形:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
3.轴对称与轴对称图形的区别与联系:区别:①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。
②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。
联系:①两部分都完全重合,都有对称轴,都有对称点②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。
常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形、角、线段、相交的两条直线等。
4.线段的垂直平分线:垂直并且平分一条线段的直线,叫做这条线段的垂直平分 ------------- J--------(也称线段的中垂线)5.轴对称的性质:⑴成轴对称的两个图形全等。
⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。
6.怎样画轴对称图形:画轴对称图形时,应先确定对称轴,再找出对称点。
二、线段、角的轴对称性1.线段的轴对称性:①线段是轴对称图形,对称轴有两条;一条是线段所在的直线,另一条是这条线段的垂直平分线。
② 线段的垂直平分线上的点到线段两端的距离相等。
DI p ,C③ 到线段两端距离相等的点,在这条线段的垂直平分线上。
E结论:线段的垂直平分线是到线段两端距离相等的点的集合。
2. 角的轴对称性:① 角是轴对称图形,对称轴是角平分线所在的直线。
② 角平分线上的点到角的两边距离相等。
③ 到角的两边距离相等的点,在这个角的平分线上。
初二数学知识点上册苏科版八年级数学知识点四边形平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。
平行四边形的对角线互相平分。
平行四边形的判定1.两组对边分别相等的四边形是平行四边形2.对角线互相平分的四边形是平行四边形;3.两组对角分别相等的四边形是平行四边形;4.一组对边平行且相等的四边形是平行四边形。
三角形的中位线平行于三角形的第三边,且等于第三边的一半。
直角三角形斜边上的中线等于斜边的一半。
矩形的定义:有一个角是直角的平行四边形。
矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。
AC=BD矩形判定定理:1.有一个角是直角的平行四边形叫做矩形。
2.对角线相等的平行四边形是矩形。
3.有三个角是直角的四边形是矩形。
菱形的定义:邻边相等的平行四边形。
菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
菱形的判定定理:1.一组邻边相等的平行四边形是菱形。
2.对角线互相垂直的平行四边形是菱形。
3.四条边相等的四边形是菱形。
S菱形=1/2×ab(a、b为两条对角线)正方形定义:一个角是直角的菱形或邻边相等的矩形。
正方形的性质:四条边都相等,四个角都是直角。
正方形既是矩形,又是菱形。
数学知识点八年级统计的初步认识1、折线统计图的特点:能获取数据变化情况的信息,并进行简单的预测。
2、折线统计图的方法:在方格纸中,根据所给出的数据把点标出来,再用线将点连接起来,要顺次连接。
3、能够看出折线统计图所提供的信息,并回答相关的问题。
补充内容:1、条形统计图与折线统计图的不同:条形统计图用直条表示数量的多少,折线统计图用折线表示数量的增减变化情况。
2、初步了解复式折线统计图,能够从中获得相应的信息,回答提出的问题。
课后练习1.统计学的基本涵义是(D)。
A.统计资料B.统计数字C.统计活动D.是一门处理数据的方法和技术的科学,也可以说统计学是一门研究“数据”的科学,任务是如何有效地收集、整理和分析这些数据,探索数据内在的数量规律性,对所观察的现象做出推断或预测,直到为采取决策提供依据。
苏科版初二数学上册知识点苏科版初二数学上册知识点1(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式1.平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)某(a+b).全等三角形的性质:全等三角形对应边相等、对应角相等。
八年级数学上册知识点总结(苏教版)第一章轴对称图形第二章勾股定理与平方根一.勾股定理1、勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即2、勾股定理的逆定理如果三角形的三边长a,b,c有关系,那么这个三角形是直角三角形。
3、勾股数:满足的三个正整数,称为勾股数。
二、实数的概念及分类1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。
特别地,0的算术平方根是0。
表示方法:记作“”,读作根号a。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。
表示方法:正数a的平方根记做“”,读作“正、负根号a”。
性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
开平方:求一个数a的平方根的运算,叫做开平方。
注意的双重非负性:3、立方根一般地,如果一个数x的立方等于a,即x3=a那么这个数x就叫做a 的立方根(或三次方根)。
表示方法:记作性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:,这说明三次根号内的负号可以移到根号外面。
四、实数大小的比较1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
初二数学知识点上册苏科版2024知识点一:有理数有理数包括整数、分数以及它们的相反数和零,记作Q,其中整数是分母为1的分数。
有理数的加减法运算:1.同号两数相加:数值相加,符号不变。
2.异号两数相加:绝对值相减,符号由大数决定。
3.同号两数相减:绝对值相减,符号由被减数决定。
4.异号两数相减:绝对值相加,符号由被减数决定。
有理数的乘法运算:1.同号两数相乘,积为正数。
2.异号两数相乘,积为负数。
有理数的除法运算:将除数乘以被除数的倒数即可。
知识点二:代数式与同类项合并与化简代数式指由字母和数与运算符号构成的式子。
同类项合并,就是将同类项合并在一起,以便化简代数式。
同类项指变量相同,指数相同的项。
代数式的化简要求我们利用数学性质进行简化:1.分配律:a(b+c)=ab+ac2.结合律:(a+b)+c=a+(b+c)3.同类项合并:ax+bx=(a+b)x4.因式分解:ax+bx=x(a+b)代数式的展开就是根据代数式的性质进行运算,从而求出代数式的值。
知识点三:方程及其解法方程式是带有未知数的等式,左右两边应用同种运算法则进行计算,得到一个关于未知数的式子。
方程的解可以通过移项、通分、合并同类项、配方法等方法进行求解。
其中常见的方程类型有:1.一元一次方程,形如ax+b=0,可采用变形法解。
2.一元二次方程,形如ax2+bx+c=0,可以通过配方法或公式法来求解。
3.一元高次方程,形如f(x)=0,通常需要通过初等函数或其他数学工具来解决。
知识点四:平面图形的初步认识平面图形是指不在同一平面上的有限个点的集合和连接这些点的线段或线的集合。
常见的平面图形有:1.直线2.射线3.线段4.角5.三角形6.四边形7.圆及圆相关的概念平面图形的性质和差异是我们学习的重点,其中也包括了各种图形的形状、边数及角度等属性。
知识点五:比例与比例关系的应用比例是用来表示两个数或两个相同类别的量之间的大小关系的一种方法。
苏科版初二数学上册知识点苏科版初二数学上册知识点(4篇)上学的时候,大家最熟悉的就是知识点吧?知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。
还在苦恼没有知识点总结吗?下面是店铺精心整理的苏科版初二数学上册知识点,希望对大家有所帮助。
苏科版初二数学上册知识点1在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.(1)多边形的一些要素:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n 个内角。
外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。
(2)在定义中应注意:①一些线段(多边形的边数是大于等于3的正整数);②首尾顺次相连,二者缺一不可;③理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间苏科版初二数学上册知识点2第一章勾股定理定义:如果直角三角形两条直角边分别为a,b,斜边为c,即直角三角形两直角边的平方和等于斜边的平方。
判定:如果三角形的三边长a,b,c满足a +b = c,那么这个三角形是直角三角形。
定义:满足a +b =c的三个正整数,称为勾股数。
第二章实数定义:任何有限小数或无限循环小数都是有理数。
无限不循环小数叫做无理数(有理数总可以用有限小数或无限循环小数表示)一般地,如果一个正数x的平方等于a,那么这个正数x就叫做a 的算术平方根。
特别地,我们规定0的算术平方根是0。
一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根)一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。
求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。
一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。
正数的立方根是正数;0的立方根是0;负数的立方根是负数。
求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。
有理数和无理数统称为实数,即实数可以分为有理数和无理数。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。
即实数和数轴上的点是一一对应的。
在数轴上,右边的点表示的数比左边的点表示的数大。
第三章图形的平移与旋转定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
平移不改变图形的形状和大小。
经过平移,对应点所连的线段平行也相等;对应线段平行且相等,对应角相等。
在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称旋转中心,转动的角称为旋转角。
旋转不改变图形的大小和形状。
任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
第四章、三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
8.多边形的内角:多边形相邻两边组成的角叫做它的内角。
9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。
12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做多边形覆盖平面(平面镶嵌)。
镶嵌的条件:当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个时,就能拼成一个平面图形。
13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
⑶多边形内角和公式:边形的内角和等于·180°⑷多边形的外角和:多边形的外角和为360°。
⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形.②边形共有条对角线。
第五章:轴对称1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。
⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。
⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。
⑸等边三角形:三条边都相等的三角形叫做等边三角形。
2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线。
②对称的图形都全等。
⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等。
②与一条线段两个端点距离相等的点在这条线段的垂直平分线上。
⑶关于坐标轴对称的点的坐标性质⑷等腰三角形的性质:①等腰三角形两腰相等。
②等腰三角形两底角相等(等边对等角)。
③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合。
④等腰三角形是轴对称图形,对称轴是三线合一(1条)。
⑸等边三角形的性质:①等边三角形三边都相等。
②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一。
④等边三角形是轴对称图形,对称轴是三线合一(3条)。
3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形。
②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。
⑵等边三角形的判定:①三条边都相等的三角形是等边三角形。
②三个角都相等的三角形是等边三角形。
③有一个角是60°的等腰三角形是等边三角形。
4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线。
⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短。
苏科版初二数学上册知识点3勾股定理:直角三角形两直角边的平方和等于斜边的平方,即如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2(勾股定理公式)直角三角形性质定理:1.直角三角形两直角边a,b的平方和等于斜边c的平方。
即a2+b2=c2。
2.在直角三角形中,两个锐角互余。
3.在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
4.直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
5.在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
其逆定理也成立,即在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。
7.直角三角形直角上的角平分线与斜边的交点 D 则BD:DC=AB:AC苏科版初二数学上册知识点4(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式1.平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的`2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)×(a+b).学好数学的关键就在于要适时适量地进行总结归类,接下来店铺就为大家整理了这篇人教版八年级数学全等三角形知识点讲解,希望可以对大家有所帮助。
全等三角形的性质:全等三角形对应边相等、对应角相等。
全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL)。
角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。
证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).人教版八年级数学全等三角形知识点讲解就为大家介绍到这里了,希望大家都能养成善于总结的好习惯。