人教版七年级上册数学 压轴题 期末复习试卷及答案

  • 格式:doc
  • 大小:867.00 KB
  • 文档页数:20

下载文档原格式

  / 20
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级上册数学压轴题期末复习试卷及答案.docdoc

一、压轴题

1.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.

(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=,AC =,BE=;

(2)当线段CE运动到点A在C、E之间时,

①设AF长为x,用含x的代数式表示BE=(结果需化简

.....);

②求BE与CF的数量关系;

(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),求t为何值时,P、Q 两点间的距离为1个单位长度.

2.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.

特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和

∠BOD相等.

(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中

∠MON的度数为°.

发现感悟

解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:

小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.

小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.

(2)请你根据他们的谈话内容,求出图1中∠MON的度数.

类比拓展

受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出

∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.

(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.

3.如图1,已知面积为12的长方形ABCD,一边AB在数轴上。点A表示的数为—2,点B 表示的数为1,动点P从点B出发,以每秒1个单位长度的速度沿数轴向左匀速运动,设点P运动时间为t(t>0)秒.

(1)长方形的边AD长为单位长度;

(2)当三角形ADP面积为3时,求P点在数轴上表示的数是多少;

(3)如图2,若动点Q以每秒3个单位长度的速度,从点A沿数轴向右匀速运动,与P

点出发时间相同。那么当三角形BDQ,三角形BPC两者面积之差为1

2

时,直接写出运动时

间t 的值.

4.已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c-10)2=0;动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.

(1)求a、b、c的值;

(2)若点P到A点距离是到B点距离的2倍,求点P的对应的数;

(3)当点P运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q点到达C点后.再立即以同样的速度返回,运动到终点A,在点Q开始运动后第几秒时,P、Q两点之间的距离为8?请说明理由.

5.如图1,线段AB的长为a.

(1)尺规作图:延长线段AB到C,使BC=2AB;延长线段BA到D,使AD=AC.(先用尺规画图,再用签字笔把笔迹涂黑.)

(2)在(1)的条件下,以线段AB所在的直线画数轴,以点A为原点,若点B对应的数恰好为10,请在数轴上标出点C,D两点,并直接写出C,D两点表示的有理数,若点M 是BC的中点,点N是AD的中点,请求线段MN的长.

(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D处开始,在点C,D之间进行往返运动;乙从点N开始,在N,M之间进行往返运动,甲、乙同时开始运动,当乙从M点第一次回到点N时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.

6.如图,数轴上点A表示的数为4

-,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度向

左匀速运动.设运动时间为t秒(t0)

>.

()1A,B两点间的距离等于______,线段AB的中点表示的数为______;

()2用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;()3求当t为何值时,1

PQ AB

2

=?

()4若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.

7.结合数轴与绝对值的知识解决下列问题:

探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是

____;

结论:一般地,数轴上表示数m和数n的两点之间的距离等于∣m-n∣.

直接应用:表示数a和2的两点之间的距离等于____,表示数a和-4的两点之间的距离等于____;

灵活应用:

(1)如果∣a+1∣=3,那么a=____;

(2)若数轴上表示数a的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____;

(3)若∣a-2∣+∣a+4∣=10,则a =______;