用表格表示的变量间关系
- 格式:pdf
- 大小:3.61 MB
- 文档页数:25
3.1 用表格表示的变量间关系基础训练1.某人要在规定时间内加工100个零件,则工作效率y与时间t之间的关系中,下列说法正确的是( )A.y,t和100都是变量B.100和y都是常量C.y和t是变量D.100和t都是常量2.下表是某报纸公布的世界人口数情况:上表中的变量是( )A.仅有一个,是年份B.仅有一个,是人口数C.有两个变量,一个是人口数,另一个是年份D.一个变量也没有3.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,填写下表.在这个问题中,___________是常量; __________是变量.4.王老师开车去加油站加油,发现加油表如图所示.加油时,单价其数值固定不变,表示“数量”、“金额”的量一直在变化,在数量(升)金额(元)单价元/升)这三个量中, 是常量, 是自变量, 是因变量.5.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是( )A.太阳光强弱B.水的温度C.所晒时间D.热水器6.一个圆柱的高h为10 cm,当圆柱的底面半径r由小到大变化时,圆柱的体积V也发生了变化,在这个变化过程中( )A.r是因变量,V是自变量B.r是自变量,V是因变量C.r是自变量,h是因变量D.h是自变量,V是因变量7.声音在空气中传播的速度y(m/s)(简称声速)与气温x(℃)的关系如下表所示.上表中___________是自变量, __________是因变量.照此规律可以发现,当气温x为__________℃时,声速y达到346 m/s.8.弹簧挂上物体后会伸长,测得一弹簧的长度 y(cm)与所挂的物体的质量x(kg)间有下面的关系:下列说法不正确的是( )A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.在弹性限度内,物体质量每增加1 kg,弹簧长度y增加0.5 cmD.在弹性限度内,所挂物体质量为7 kg时,弹簧长度为13.5 cm9.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:设烤鸭的质量为x kg,烤制时间为t min,估计当x=3.2时,t的值为( )A.140B.138C.148D.16010.赵先生手中有一张记录他从出生到24岁期间的身高情况表(如下表所示):对于赵先生从出生到24岁期间身高情况下列说法错误的是( )A.赵先生的身高增长速度总体上先快后慢B.赵先生的身高在21岁以后基本不长了C.赵先生的身高从0岁到21岁平均每年约增高5.8 cmD.赵先生的身高从0岁到24岁平均每年增高7.1 cm提升训练11.父亲告诉小明:“距离地面越高,气温越低.”并给小明出示了下面的表格:根据上表,父亲还给小明出了下面几个问题,你和小明一起回答.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t 是怎么变化的?(3)你知道距离地面6 km的高空气温是多少吗?12.在烧水时,水温达到100 ℃就会沸腾,下表是某同学做“观察水的沸腾”试验时记录的数据:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)水的温度是如何随着时间的变化而变化的?(3)时间每推移2 min,水的温度如何变化?(4)时间为8 min时,水的温度为多少?你能得出时间为9 min时水的温度吗?(5)根据表格,你认为时间为16 min和18 min时水的温度分别为多少?(6)为了节约能源,你认为应在什么时间停止烧水?13.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:min)之间有如下关系(其中0≤x≤20):(注:接受能力值越大,说明学生的接受能力越强)(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当提出概念所用时间是10 min时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念所用时间为多少时,学生的接受能力最强?(4)从表格中可知,当提出概念所用时间x在什么范围内时,学生的接受能力逐步增强?当提出概念所用时间x在什么范围内时,学生的接受能力逐步降低?参考答案1.【答案】C2.【答案】C3.【答案】0.4;0.8;1.2;1.6;0.4;x,y4.【答案】单价;数量;金额5.【答案】B解:所晒时间和水的温度都是变量,但水的温度随所晒时间的变化而变化,所以所晒时间是自变量,水的温度是因变量.6.【答案】B7.【答案】气温;声速;25解:气温是自变量,声速是因变量,气温每上升5 ℃,声速增加3 m/s,而x=20时,y=343,所以当x=25时,y=346.8.【答案】B9.【答案】C10.【答案】D解:(170.4-48)÷24=5.1(cm),从0岁到24岁平均每年增高7.1 cm是错误的.11.解:(1)反映了距离地面高度与气温之间的关系.距离地面高度是自变量,气温是因变量.(2)随着h的升高,t逐渐降低.(3)观察表格,可得距离地面高度每上升1 km,气温下降6 ℃.当距离地面 5 km时,气温为-10 ℃,故当距离地面 6 km时,气温为-16 ℃.12.解:(1)上表反映了水的温度与时间的关系,时间是自变量,水的温度是因变量.(2)水的温度随着时间的增加而增加,到100 ℃时恒定.(3)时间每推移2 min,水的温度增加14 ℃,到10 min时恒定.(4)时间为8 min时,水的温度是86 ℃,时间为9 min时,水的温度是93 ℃.(5)根据表格,时间为16 min和18 min时水的温度均为100 ℃.(6)为了节约能源,应在第10 min后停止烧水.13.解:(1)反映了提出概念所用的时间x和对概念的接受能力y两个变量之间的关系;其中x是自变量,y是因变量.(2)由表格可知,当提出概念所用时间是10 min时,学生的接受能力是59.(3)由表格可知提出概念所用时间为13 min时,学生的接受能力最强.(4)当x在2至13的范围内,学生的接受能力逐步增强;当x在13至20的范围内,学生的接受能力逐步降低.。
专题08 用表格、关系式表示的变量间关系知识网络重难突破知识点一用表格表示的变量间关系1、常量与变量在某个变化过程中,保持同一数值的量叫常量,可以取不同数值的量叫变量.2、自变量与因变量一般地,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一的值与之对应,那么我们就说x是自变量,y是因变量.注意:区别:自变量是先发生变化或主动发生变化的量;因变量是后发生变化或随着自变量的变化而变化的量;联系:两者都是某一变化过程中的变量;两者因研究的侧重点或先后顺序不同可以相互转化.3、从表格中寻找变化规律(1)弄清表中所列的是哪两个量,即分清哪一个是自变量,哪一个是因变量;(2)结合现实情景理解两个变量之间的关系,是增加还是减少还是呈规律性的起伏变化.典例1(2018春•金牛区期末)小邢到单位附近的加油站加油,如图是小邢所用的加油机上的数据显示牌,则数据中的变量是()A.金额B.数量C.单价D.金额和数量【解答】解:常量是固定不变的量,变量是变化的量,单价是不变的量,而金额是随着数量的变化而变化,故选:D.典例2(2018春•成华区期末)在弹性限度内,弹簧挂上物体后会伸长,测得弹簧的长度()y cm与所挂物体的质量()x kg之间有如下表关系:x kg01234⋯()y cm1010.51111.512⋯()下列说法不正确的是()A.y随x的增大而增大B.所挂物体质量每增加1kg弹簧长度增加0.5cmC.所挂物体为7kg时,弹簧长度为13.5cmD.不挂重物时弹簧的长度为0cm【解答】解:A、y随x的增大而增大,正确;B、所挂物体质量每增加1kg弹簧长度增加0.5cm,正确;C、所挂物体为7kg时,弹簧长度为13.5cm,正确;D、不挂重物时,弹簧的长度为10cm,错误;故选:D.知识点二用关系式表示变量间关系1、用关系式表示两个变量间的关系表示自变量与因变量之间关系的数学式子叫作关系式.关系式是表示变量之间关系的另一种方法.注意:(1)关系式一般是用含自变量的代数式表示因变量的等式;(2)实际问题中,有的变量之间的关系不一定能用关系式表示出来;(3)有些问题中,自变量是有范围的,列关系式时要注明自变量的取值范围.2、利用关系式求值根据关系式求值实际上就是求代数式的值.注意:已知自变量的值利用关系式求因变量的值实质是求代数式的值,已知因变量的值利用关系式求自变量的值实质是解方程.典例1(2019春•锦江区期末)有一辆汽车储油50升,从某地出发后,每行驶1千米耗油0.12升,如果设剩余油量为y(升),行驶的路程为x(千米),则y与x的关系式为.【解答】解:如果设剩余油量为y(升),行驶的路程为x(千米),则y与x的关系式为500.12=-,y x故答案为:500.12=-.y x典例2(2018秋•成都期中)已知y与x的部分对应关系如下表:则可得y与x的一个关系式.【解答】解:由题可得,y的值等于x的值的3-倍,∴=-,3y x故答案为:3y x=-.典例3(2019春•郫都区期中)观察图象,解答问题:(1)把这样的2个圆环扣在一起并拉紧(如图2),长度为多少?(2)若用x个这样的圆环相扣并拉紧,长度为y厘米,求y与x之间的关系式.【解答】解:(1)由图可知,把这样的2个圆环扣在一起并拉紧(如图2),长度为:8(812)8614+-⨯=+=(厘米),即把这样的2个圆环扣在一起并拉紧(如图2),长度为14厘米;(2)由题意可得,y x x=+-=+,86(1)62即y与x的函数关系式为62=+.y x巩固训练一、单选题(共5小题)1.(2019春•罗湖区期中)一本笔记本5元,买x本共付y元,则5和y分别是() A.常量,常量B.变量,变量C.常量,变量D.变量,常量【解答】解:一本笔记本5元,买x本共付y元,则5和y分别是常量,变量.故选:C.2.(2019春•通川区期末)弹簧挂上物体后会伸长,测得一弹簧的长度()x kg之y cm与所挂的物体的质量()间有下面的关系:/x kg012345/y cm1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD .所挂物体质量为7 kg 时,弹簧长度为13.5 cm【解答】解:A 、y 随x 的增加而增加,x 是自变量,y 是因变量,故A 选项正确;B 、弹簧不挂重物时的长度为10cm ,故B 选项错误;C 、物体质量每增加1kg ,弹簧长度y 增加0.5cm ,故C 选项正确;D 、由C 知,100.5y x =+,则当7x =时,13.5y =,即所挂物体质量为7kg 时,弹簧长度为13.5cm ,故D选项正确; 故选:B .3.(2019春•太原期末)一种手持烟花,这种烟花每隔0.5秒发射一发花弹,每一发花弹的飞行路径,爆炸时的高度均相同.皮皮小朋友发射出的第一发花弹的飞行高度h (米)随飞行时间t (秒)变化的规律如下表所示.下列这一变化的过程说法正确的是( )A .飞行时间t 每增加0.5秒,飞行高度h 就增加5.5米B .飞行时间t 每增加0.5秒,飞行高度h 就减少5.5米C .估计飞行时间t 为5秒时,飞行高度h 为11.8米 D .只要飞行时间t 超过1.5秒后该花弹爆炸,就视为合格【解答】解:从表格可以看到0秒到3秒的过程中,随着飞行时间的增加,飞行高度增加; 从3秒以后,随着飞行时间的增加,飞行高度减小; 因此,A 与B 选项不正确;从表格看到飞行高度在3秒左右是对称的,所以C 选项正确; 从已知中没有涉及合格的标准,所以D 不正确; 故选:C .4.声音在空气中传播的速度与气温的关系如下表,根据表格分析下列说法错误的是( )A .在这个变化过程中,气温是自变量,声速是因变量B .声速随气温的升高而增大C .声速v 与气温T 的关系式为330v T =+D .气温每升高10C ︒,声速增加6/m s【解答】解:A 、在这个变化过程中,气温是自变量,声速是因变量,正确,不合题意;B 、声速随气温的升高而增大,正确,不合题意;C 、声速v 与气温T 的关系式为33305v T =+,故此选项错误,符合题意;D 、气温每升高10C ︒,声速增加6/m s ,正确,不合题意.故选:C .5.(2017春•温江区期末)如表列出了一项实验的统计数据:它表示皮球从一定高度落下时,下落高度y 与弹跳高度x 的关系,能表示变量y 与x 之间的关系式为( ) A .210y x =-B .2y x =C .25y x =+D .5y x =+【解答】解:根据题意,设函数关系式为y kx b =+, 则30504580k b k b +=⎧⎨+=⎩ 解得:210k b =⎧⎨=-⎩,则210y x =-. 故选:A .二、填空题(共5小题)6.(2018春•成华区期末)某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中 是自变量, 是因变量.【解答】解:根据题意知,公司的销售收入随销售量的变化而变化, 所以销售量是自变量,收入数为因变量. 故答案为:销售量,销售收入.7.(2018春•太原期中)地表以下岩层的温度(C)y ︒随着所处深度()x km 的变化而变化,在某个地点y 与x 之间有如下关系:/x km1 2 3 4 /C y ︒5590125160根据表格,估计地表以下岩层的温度为230C ︒时,岩层所处的深度为 km . 【解答】解:设Y kx b =+, 则把(1,55),(2,90)代入得: 55290k b k b +=⎧⎨+=⎩, 解得:3520k b =⎧⎨=⎩,故3520Y k =+,则当230Y =时,2303520x =+, 解得:6x =, 故答案为:6. 故答案为:6y x =.8.(2018秋•新密市校级期中)米店买米,数量x (千克)与售价y (元)之间的关系如下表: /x 千克0.5 1 1.5 2⋯ /y 元 1.30.1+ 2.60.1+ 3.90.1+ 5.20.1+⋯则售价y 与数量x 之间的关系式是 .【解答】解:售价y 与数量x 之间的关系式是 2.60.1y x =+, 故答案为: 2.60.1y x =+.9.(2018春•和平区校级期中)如图所示,一边靠校园院墙,另外三边用50m 长的篱笆,围起一个长方形场地,设垂直墙的边长为()x m ,则长方形场地面积2()y m 与x 的关系式为 .【解答】解:由题意可得:(502)y x x =-, 即2250y x x =-+, 故答案为:2250y x x =-+.10.(2018春•铁西区校级期中)为了美化校园,学校计划修建6个完全相同的长方形花坛.如果每个花坛的一条边长为10米,另一条边长为x ,花坛总面积为S 平方米,那么S 与x 之间的关系式可表示为 . 【解答】解:由题意,得 10660S x x ==,所以S 与x 之间的关系式可表示为60S x =. 故答案为:60S x =.三、解答题(共3小题)11.(2019春•昌图县期末)为了解某品牌轿车以80/km h 匀速行驶的耗油情况,进行了试验:该轿车油箱加满后,以80/km h 的速度匀速行驶,数据记录如下表:(1)上表反映了哪两个变量之间的关系?自变量、因变量各是什么?(2)油箱剩余油量Q (升)与轿车行驶的路程s (千米)之间的关系式是什么?(3)若小明将油箱加满后,驾驶该轿车以80/km h 的速度匀速从A 地驶往B 地,到达B 地时油箱剩余油量为5升,求两地之间的距离.【解答】解:(1)上表反映了轿车行驶的路程s (千米)和油箱剩余油量Q (升)之间的关系,其中轿车行驶的路程s (千米)是自变量,油箱剩余油量Q (升)是因变量; (2)由题可得,950100Q s =-; (3)将5Q =代入得,9550100s =-, 解得500s =,即两地之间相隔500千米.12.(2019春•大邑县期中)大坪山合作社向外地运送一批李子,由铁路运输每千克需运费0.6元;由公路运输,每千克需运费0.25元,运完这批李子还需其他费用800元.(1)该合作社运输的这批李子为xkg ,选择铁路运输时,所需费用为1y 元,选择公路运输时,所需费用为2y 元.请分别写出1y ,2y 与x 之间的关系式.(2)若合作社只支出运费1500元,则选用哪种运输方式运送的李子重量多? 【解答】解:(1)由题意可得, 10.6y x =, 20.25800y x =+;(2)当1500y =时,15000.6x =,解得2500x =,即选择铁路运输时,运送的李子重量为2500千克; 15000.25800x =+,解得2800x =,即选择公路运输时,运送的李子重量为2800千克.所以选择公路运输运送的李子重量多.13.(2019春•济南期中)为了解某品牌轿车的耗油情况,将油箱加满后进行了耗油试验,得到如表数据:(1)该轿车油箱的容量为 L ,行驶150km 时,油箱剩余油量为 L ; (2)根据上表的数据,写出油箱剩余油量()Q L 与轿车行驶的路程()s km 之间的表达式;(3)某人将油箱加满后,驾驶该轿车从A 地前往B 地,到达B 地时邮箱剩余油量为26L ,求A ,B 两地之间的距离.【解答】解:(1)由表格中的数据可知,该轿车油箱的容量为50L ,行驶150km 时,油箱剩余油量为:15050838()100L -⨯=. 故答案是:50;38;(2)由表格可知,开始油箱中的油为50L ,每行驶100km ,油量减少8L ,据此可得Q 与s 的关系式为500.08Q s =-;故答案是:500.08Q s =-;(3)令26Q =,得300s =.答:A,B两地之间的距离为300km.。
《用表格表示的变量间关系》教案一、教学目标1. 让学生理解什么是变量,能够识别常量和变量。
2. 让学生掌握表格表示变量间关系的方法。
3. 培养学生运用表格解决实际问题的能力。
二、教学重点与难点1. 教学重点:识别变量和常量。
运用表格表示变量间的关系。
2. 教学难点:理解变量间关系的表达方式。
将实际问题转化为表格表示。
三、教学方法1. 采用问题驱动的教学方法,引导学生通过观察、思考、操作、交流等活动,发现变量间的关系。
2. 利用实例讲解,让学生在实际问题中体验变量间关系的表达方法。
3. 组织小组讨论,培养学生合作学习的能力。
四、教学准备1. 教学课件或黑板。
2. 实例材料。
3. 纸张、笔等学习用具。
五、教学过程1. 导入新课利用生活中的实例,如身高、体重等,引导学生认识变量。
讲解常量和变量的概念。
2. 讲解变量间关系通过实例,讲解变量间的关系,如身高与体重之间的关系。
引导学生观察、分析实例,发现变量间的规律。
3. 学习用表格表示变量间关系讲解如何用表格表示变量间的关系。
示例:以身高和体重为例,制作一个表格,展示身高和体重之间的对应关系。
4. 实践操作让学生分组,每组选择一个实际问题,如“某班级学生的身高和体重数据”,用表格表示变量间的关系。
学生分组讨论、操作,教师巡回指导。
5. 总结与拓展对学生进行总结,巩固所学知识。
提出拓展问题,激发学生思考,如“如何用表格表示复杂的多变量关系?”6. 布置作业让学生完成课后练习,运用表格表示变量间关系。
选择一个实际问题,制作表格,并分析变量间的关系。
六、教学评价1. 评价内容:学生对变量和常量的理解程度。
学生运用表格表示变量间关系的能力。
学生解决实际问题的能力。
2. 评价方法:课堂提问,检查学生对概念的理解。
作业批改,评估学生的实际操作能力。
小组讨论,观察学生的合作和问题解决能力。
七、教学反思1. 教师在课后应对本节课的教学效果进行反思,包括:学生对课堂内容的掌握情况。
第三章变量之间的关系第一节用表格表示的变量间关系一、学生知识状况分析本节课是本章的起始课,与后面三个课时合起来分别呈现的是表示变量之间关系的三种方式——表格法、解析式法和图象法。
本章作为研究变量和函数的起始章节,重在让学生感受和体会生活中的“变量”。
同时,在第一课时还要教给学生用表格呈现实验中变量的数据的方法。
但“数量推理所得到的结果远比那些单纯用数刻画的事实更具威力,这种数量推理稳固地根植于数和有关计算的一般模式之中。
(James Fey)”所以,依据变量之间关系的数学表示(表格、解析式和图象)进行预测或推测已知中没有给出的量,也是研究变量之间关系的重要目标之一。
知识基础:本节课是学生在七年级上册教材中学习了探索规律,从统计图中获取信息的基础上,通过表格形式来理解变量、自变量、因变量这些概念。
我们生活在变化的世界中,变量与变量的关系,在生活生产中无处不在,通过对实际问题的理解,在表格信息中发现两个变化的量,通过了解哪一个是主动变化的,哪一个是随着变化的,来识别自变量和因变量,这对今后学习函数知识是非常重要的。
活动经验基础:在以前的学习中,学生已经经历了分组学习、合作交流等形式,可以解决一些实际问题,具备了合作学习的能力。
二、教学任务分析在学生现有的知识基础上,本节的教学及学习任务是鼓励学生用表格整理数据并充分地从表格中获取信息,运用自己的语言进行描述,与同伴进行交流,提高学生合作交流的意识。
学生通过对表格中数据的分析,进一步体会变量之间的关系,明确自变量与因变量,并能通过资料分析进行预测。
教学目标:1.经历探索具体情境中两个变量之间关系的过程,获得探索变量之间关系的体验,进一步发展符号感。
2.在具体情境中理解什么是变量、自变量、因变量,并能举出反映变量之间关系的例子。
3.学会用表格整理试验得出的数据,能从表格中获得变量之间关系的信息,并根据表格中的资料尝试对变化趋势进行初步的预测。
三、教学过程设计本节课设计了九个教学环节:情景导入,探究篇,认知篇,升级探究篇,闯关篇,生活链接篇,课堂小结、课堂检测、布置作业。
3.1用表格表示的变量间关系题型1:常量和变量的辨识1.一本笔记本5元,买x本共付y元,则5和x分别是()A.常量,变量B.变量,变量C.常量,常量D.变量,常量【变式1-2】分析并指出下列关系中的变量与常量:(1)球的表面积S cm2与球的半径R cm的关系式是S=4πR2;(2)以固定的速度v0米/秒向上抛一个小球,小球的高度h米与小球运动的时间t秒之间的关系式是h=v0t﹣4.9t2;(3)一物体自高处自由落下,这个物体运动的距离h m与它下落的时间t s的关系式是h=gt2(其中g取9.8m/s2);(4)已知橙子每千克的售价是1.8元,则购买数量W千克与所付款x元之间的关系式是x=1.8W.自变量和因变量一般地,在某个变化过程中,如果有两个变量x,y并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是因变量.自变量与因变量的联系与区别(1)联系∶二者都是某一变化过程中的变量,因研究的侧重点或先后顺序不同可以互相转化,如当路程一定时,若时间随速度的变化而变化,这时速度是自变量,时间是因变量;当速度一定时,若路程随时间的变化而变化,这时时间是自变量,路程是因变量.(2)区别∶自变量是在一定范围内主动发生变化的量,因变量是随着自变量的变化而被动发生变化的量. 题型2:自变量和因变量的辨识2.正方形边长为5厘米,若边长减少x,则面积减少y.下列说法正确的是()A.边长x是自变量,面积减少量y是因变量B.边长是自变量,面积是因变量C.上述关系式为y=(5﹣x)2D.上述关系式为y=52﹣(5﹣x)2【变式2-1】世纪花园居民小区收取电费的标准是0.6元/千瓦时,当用电量为x(单位:千瓦时)时,收取电费为y(单位:元).在这个问题中,下列说法中正确的是()A.x是自变量,0.6元/千瓦时是因变量B.0.6元/千瓦时是自变量,y是因变量C.y是自变量,x是因变量D.x是自变量,y是因变量,0.6元/千瓦时是常量【变式2-2】圆的周长公式C=2πR中,下列说法正确的是()A.π、R是自变量,2是常量B.C是因变量,R是自变量,2π为常量C.R为自变量,2π、C为常量D.C是自变量,R为因变量,2π为常量用表格表示变量间的关系1.借助表格,我们可以表示因变量随自变量的变化而变化的情况.2.用表格表示两个变量之间关系的步骤(1)确定各行、各列的栏目(一般有两行,第一行表示自变量,第二行表示因变量);(2)写出栏目名称并根据问题内容写上单位;(3)在第一行列出自变量的各个变化取值,在第二行对应列出因变量的各个变化取值.一般情况下,自变量的取值从左到右应按由小到大的顺序排列,这样便于反映因变量随自变量变化的趋势. 3. 用表格表示两个变量之间关系的优缺点(1)优点∶直观,可以直接从表格中找出自变量和因变量的对应值;(2)缺点∶具有局限性,只能部分反映两个变量之间的关系,因此要从这部分数据中得出两个变量之间的关系时,需要对表格中的数据进行分析.题型3:利用表格获取变量的值3.对于气温,有的地方用摄氏温度表示,有的地方用华氏温度表示,从温度计上可以看出,摄氏温度x(℃)与华氏温度y(℉)有如下对应的关系.下列说法不正确的是()x/℃…﹣100102030…Y/℉…1432506886…A.摄氏温度x(℃)与华氏温度y(℉)都是变量,且摄氏温度(℃)是自变量,华氏温度(℉)是因变量B.随着摄氏温度x的逐渐升高,华氏温度y也逐渐升高C.摄氏温度每升高10℃,华氏温度升高18℉D.当摄氏温度为40℃,华氏温度为102℉题型4:利用表格分析变量的关系4.研究表明,当每公顷钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施用量有如下关系:上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当氮肥的施用量是101kg/hm2(hm2是单位“公顷”的符号)时,土豆的产量是多少?如果不施氮肥呢?(3)根据表格中的数据,你认为氮肥的施用量是多少时比较适宜?说说你的理由.(4)粗略说一说氮肥的施用量对土豆产量的影响.【变式4-1】植物呼吸作用受温度影响很大,观察如图,回答问题:(1)此图反映的自变量和因变量分别是什么?(2)温度在什么范围内时豌豆苗的呼吸强度逐渐变强?在什么范围内逐渐减弱?(3)要使豌豆呼吸作用最强,应控制在什么温度左右?要抑制豌豆的呼吸应控制在什么温度左右?.【变式4-2】已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与铝用量有如下关系:上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当易拉罐底面半径为2.4cm时,易拉罐需要的用铝量是多少?(3)根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说说你的理由.(4)粗略说一说易拉罐底面半径对所需铝质量的影响.题型5:利用表格进行规律探究5.一种手持烟花,这种烟花每隔0.5秒发射一发花弹,每一发花弹的飞行路径,爆炸时的高度均相同.皮皮小朋友发射出的第一发花弹的飞行高度h(米)随飞行时间t(秒)变化的规律如下表所示.下列这一变化的过程说法正确的是()A.飞行时间t每增加0.5秒,飞行高度h就增加5.5米B.飞行时间t每增加0.5秒,飞行高度h就减少5.5米C.估计飞行时间t为5秒时,飞行高度h为11.8米D.只要飞行时间t超过1.5秒后该花弹爆炸,就视为合格。
班级小组姓名成绩满分(120)一、用表格表示的变量间关系(一)变量、自变量和因变量的定义(共4小题,每题3分,题组共计12分)例1.小明的妈妈自小明出生时起每隔一段时间就给小明称一下体重,得到下面的数据:从表中可以得到:小明体重的变化是随小明的的变化而变化的,这两个变量中,是自变量,是因变量,虽然随着年龄的增大,小明的体重,但体重增加的速度越来越.例1.变式1.据国家统计局统计,新中国成立以来至2000年我国各项税收收入合计如下表:从表中可以得出:新中国成立以来我国的税收收入总体趋势是,其中,年与5年前相比,增长百分数最大,年与5年前相比增长百分数最小,算一算,2000年与1950年相比,税收收入增长了倍.(保留一位小数)例1.变式2.某电动车厂2014年各月份生产电动车的数量情况如下表:(1)为什么称电动车的月产量y为因变量?它是谁的因变量?(2)哪个月份电动车的产量最高?哪个月份电动车的产量最低?(3)哪两个月份之间产量相差最大?根据这两个月的产量,电动车厂的厂长应该怎么做?例1.变式3.某中学为筹备校庆活动,准备印制一批校庆纪念册.该纪念册每册需要10张8K大小的纸,其中4张为彩页,6张为黑白页.印制该纪念册的总费用由制版费和印刷费两部分组成,制版费与印数无关,价格为:彩页300元/张,黑白页50元/张;印刷费与印数的关系见下表.(1)找出题目中的自变量和因变量.(2)印制一本纪念册的制版费为多少元?(3)若印制2千册,则共需多少费用?(二)用表格表示的变量间关系(共4小题,每题3分,题组共计12分)cm的长方形,其长为x cm,宽为y cm,在这一变化过程中,常量与变量例2.要画一个面积为202分别为()A.常量为20,变量为,x yB.常量为20,y,变量为xC.常量为20,x变量为yD.常量为x,y,变量为20例2.变式1.赵先生手中有一张记录他从出生到24岁期间的身高情况表:下列说法错误的是()A.赵先生的身高增长速度总体上先快后慢B.赵先生的身高在21岁以后基本不长了C.赵先生的身高从0岁到24岁平均每年增高7.1cmD.赵先生的身高从0岁到24岁平均每年增高5.1cm例2.变式2.2002年1~12月某地大米的平均价格如下表表示:(1)表中反映了哪两个变量之间的关系?哪个是自变量,哪个是因变量?(2)自变量是什么值时,因变量的值最小?自变量是什么值时,因变量的值最大?(3)该地哪一段时间大米的平均价格在上涨?哪一段时间大米的平均价格在下落?(4)从表中可以得到该地大米的平均价格变化方面的哪些信息?平均价格比年初降低了,还是上涨了?例2.变式3.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下面是测得的弹簧的长度y (cm)与所挂物体的质量x (kg)的一组对应值:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂重物为3kg 时,弹簧多长?不挂重物呢?(3)若所挂重物为6kg 时(在弹簧的允许范围内)你能说出此时弹簧的长度吗?二、用关系式表示的变量间关系(一)用关系式表示两个变量之间的关系(共4小题,每题3分,题组共计12分)例3.我国政府为解决老百姓看病难的问题,决定大幅度下调药品价格.某种药品在2009年涨价30%,2013年降价70%至a ,那么这种药品在2009年涨价前的价格为.例3.变式1.如图,ABC ∆的底边BC 的长是10cm ,当顶点A 在BC 的垂线PD 上由点D 向上移动时,三角形的面积随之发生了变化.(1)在这个变化的过程中,自变量是,因变量是.(2)如果AD 长为x (cm ),面积为y (2cm ),则y =.(3)当AD BC =时,ABC ∆的面积为.例3.变式2.如图,圆柱的底面半径为2cm ,当圆柱的高由小到大变化时,圆柱的体积也随之发生了变化.(1)在这个变化过程中,自变量是,因变量是.(2)如果圆柱的高为x (cm ),圆柱的体积V (3cm )与x 的关系式为.(3)当圆柱的高由2cm 变化到4cm 时,圆柱的体积由3cm 变化到3cm .(4)当圆柱的高每增加1cm 时,它的体积增加3cm .例3.变式3.烧一壶水,假设冷水的水温为20℃,烧水时每分钟可使水温升高8℃,烧了x 分钟后的水温为y ℃,当水烧开时就不再烧了.(1)y 与x 的关系式为,其中自变量是,它应在范围内变化.(2)1x =时,y =;5x =时,y =.(3)x =时,48y =;x =时,80y =.(二)列关系式并求值(共4小题,每题3分,题组共计12分)例4.学校为优胜班级买篮球作为奖品,若一个篮球30元,总价y 元随篮球个数x 的变化而变化,写出y 与x 的关系式:,其中自变量是,因变量是.当篮球个数为10时,总价为.例4.变式1.齿轮每分钟转120转,如果n (转)表示转数,t (分)表示转动时间,那么n 与t 之间的关系式是,其中为变量,为常量.当10t =时,n=.例4.变式2.一个梯形,它的下底比上底长2cm ,它的高为3cm ,设它的上底长为x cm ,它的面积为y 2cm .(1)写出y 与x 之间的关系式,并指出哪个变量是自变量,哪个变量是因变量.(2)当x 由5变到7时,y 如何变化?(3)用表格表示当x 从3变到10时(每次增加1),y 的相应值.(4)当x 每增加1时,y 如何变化?说明你的理由.(5)这个梯形的面积能等于92cm 吗?能等于22cm 吗?为什么?例4.变式3.ABC ∆的底边BC 为8cm ,当BC 边上的高从小到大变化时,ABC ∆的面积也随之变化.(1)在这个变化过程中,自变量和因变量各是什么?(2)ABC ∆的面积y 2cm 与高x cm 之间的关系式是什么?(3)当x 增加1cm 时,y 如何变化?(三)关系式的综合应用(共4小题,每题3分,题组共计12分)例5.根据如图所示的程序计算y 值,若输入的x 值为1-,则输出的结果为()A.72B.94C.1D.92例5.变式1.在关系式35y x =+中,下列说法:①x 是自变量,y 是因变量;②x 的数值可以任意选择;③y 是自变量,它的值与x 的值无关;④y 与x 的关系不能用表格表示;⑤y 与x 的关系可以用表格表示。
题组练习:A 、某河受暴雨袭击,某天此河水的水位记录为下表:时间/小时0 4 8 12 16 20 24水位/米 2 2.5 3 4 5 6 8 依据此表回答下列问题:(1)上表反映了哪两个变量之间的关系?(2)12时,水位是多少?(3)哪一时段水位上升最快?B、(p165)研究表明,当钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施用量有如下关系:氮肥施用量(千克/公顷)0 34 67 101 135 202 259 336 404 471土豆产量(吨/公顷)15.1821.3625.7232.2934.0339.4543.1543.4640.8330.75依据此表回答下列问题:(1)此表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当氮肥的施用量是101千克/公顷时,土豆的产量是多少?如果不施氮肥呢?(3)根据表格中的数据,你认为氮肥的施用量是多少时比较适宜?说一说你的理由。
(4)粗略说一说氮肥的施用量对土豆产量的影响。
C、某婴儿在6个月、1周岁、2周岁时体重分别大约是出生时的2倍、3倍、4倍,5周岁、10周岁时的体重分别大约是1周岁时的2倍、3倍。
(1)上述哪两个量在变化?自变量和因变量各是什么?(2)某婴儿在出生时的体重是3.5千克,请把他在发育过程中的体重情况填入下表:年龄刚出生6个月1周岁2周岁5周岁10周岁体重/千克(3)根据表格中的数据,说一说儿童从出生到10周岁之间体重是怎样随年龄增长而变化的。
目标检测:一、训练平台1、一个专卖香蕉的水果小贩,每千克香蕉卖3、5元,某日他忘了带计算器,给算账带来不便,于是他通过笔算在硬纸板上作了一个表格,使他在算账时只需作简单的加法就可以了,表格如下:重量/千克0、05 0、1 0、15 0、2 0、25 0、3 0、35 0、4 0、45 0、5价格/元0、18 0、35 0、53 0、7 0、88 1、05 1、23 1、4 1、58 1、75(1)当买香蕉0、5千克时,价格是多少?(2)如果用x表示质量,y表示价格,那么x随着的变化,y的变化趋势时什么?(3)请你估计当x=3千克时,y的值是多少?2、爷爷告诉小强:“距离地面越高,温度越低”,并给小强出示了下面的表格:距离地面高度/千米0 1 2 3 4 5温度/摄氏度20 14 8 2 —4 —10 根据上表,爷爷还给小强出了下面几个问题,请你和小强一起来回答。
《用表格表示的变量间关系》典型例题例1下表是橘子的卖钱额随橘子卖出质量变化表.(1) 在这个表中反映哪两个变量之间的关系哪个是自变量哪个是因变量?(2)当橘子卖出5千克时,卖钱额是多少?(3)如果用x表示橘子的卖出质量,y表示卖钱额,按表中给出的关系,用一个式子把x和y之间的关系表示出来;(4)当橘子卖出50千克时,卖钱额是多少?例2指出下列实例中自变量与因变量(1)随着时间的推移,汽车在行驶中的耗油量减少.(2)门票价格不变,中山公园的收入状况.(3)若中山公园限制人口数量,而门票价格可以浮动则中山公园的收入.例3下表是SARS过后某旅游胜地一周内旅馆的入住率情况(1)上表反映了哪两个变量之间的关系?哪是自变量?哪是因变量?(2)依据上表数据,你能估计一下周六旅馆的入住率吗?例4某电信公司最近推出了如下的话费业务:基本月租费24元,每次电话前3分钟共计0. 3元,每过一分钟再收费0. 11元(不足1分钟按1分钟计),现小明妈妈因有事打了10分钟电话.(1)上述过程中哪些量发生了变化(2)请完成下表(月租费不计)时间/分前3分钟4 6 8 10例5菜市人剧院地面的一部分为扇形,观众席的座位按下列方式设置:(1)上述哪些量发生变化?自变量和因变量各是什么?(2)第五排、第六排各有多少个座位?(3)第n排有多少个座位?解(1)时参考答案例1分析:从表格中可以发现(1)卖钱额随卖出数量变化而变化,所以橘子的卖出质量和卖钱额都是变量,而橘子卖出质量是自变量,卖钱额是因变量;(2)当橘子卖出5千克时,卖钱额是10元;(3)对照表格中的每一对数,可以发现:y=2x ;( 4)由y=2x可以求出当x二50时,八2 50 =100,即卖钱额是100 兀.解:(1)橘子的卖出质量和卖钱额都是变量,表格反映的是这两个变量之间的关系,其中橘子的卖出质量是自变量,卖钱额是因变量;(2)当当橘子卖出5千克时,卖钱额是10元;(3)八2x ;(4)由y =2x,得y =2 50 =100即橘子卖出50千克时,卖钱额是100元.说明:自变量和因变量是相对的,有时还可以相互转化.例2分析:注意自变量与因变量不是一成不变的.(2)收入是因变量;人数是自变量.(3)收入是因变量;门票价格是自变量.例3分析:变量及入住率之间关系较为明显,容易说出,而估测值只要在大于75%以上即可,也可能大于100%,因为周末的原因.解:(1)上表反映了旅馆入住率随时间变化情况;时间是自变量,旅馆入住率是因变量.(2)答案可以是75%以上的任何值.例4分析:本题来自于现实生活,不难理解.解:(1)通话时间与计费;自变量是通话时间,因变量是计费.(2)依次是0. 3 0.41 0. 63 0. 85 1.07例5分析:(1)不难看出排数,座位数都在变化,且座位数随排数而变化,所以排数是自变量,座位数是因变量;(2)由表中的变化规律和后排总比前排多3个座,故第五排是62个座,第六排是65个座;(3)由表可以发现:排数分别是1, 2, 3, 4…对应的座位数是50, 50+ 3, 50+ 2X3, 50 + 3X3,所以第n 排有50 3(n -1).解:(1)排数•座位数都在变化,其中排数是自变量,座位数是因变量;(2)第五,第六排的座位数分别是62和65;(3)第n 排有50 3(n— 1).说明:在研究自变量和因变量这间的变化规律时,要注意进行归纳.。
§3.1 用表格表示的变量间关系(教案)授课人:黄少锋一、教学目标1、在具体情境中了解变量、自变量、因变量等概念,理解反映变量之间关系的实例;能够从表格中获得有关变量之间关系的信息;2、经历探索具体情境中两个变量之间关系的过程,体验变量之间的辩证关系;3、在探索的过程中,培养学生参与数学活动的积极性,培养学生良好的学习态度。
二、教学重点与难点重点: 能从表格中分清什么是变量、自变量与因变量,理解因变量随自变量的变化的规律。
难点:理解两个变量之间的依赖关系。
三、教学方法:实验法、引导法四、教学准备:flash课件五、教学过程:(一)创设情境、导入新课1、课件上出现北京08年奥运圣火传递在三亚传递视频片断。
提问:在圣火传递的过程中,出现了哪些量?什么量在发生变化?(学生自由回答)2、课件上出现一个人的成长过程。
提问:在你成长的过程中,出现了哪些量?什么量在发生变化?(学生自由回答)教师指出:在圣火传递的过程中,时间和路程、速度都在变化的,在你成长的过程中,年龄与身高、体重都在变化,这些变化的量,我们称为变量。
今天我们就开始从数学的角度研究变化的量,讨论它们之间的关系,将有帮于我们更好地了解自己、认识世界和预测未来。
先从小车下滑的时间开始。
(揭示课题)(二)探究新知一、体会概念1、实验:小车下滑的时间。
实验内容:利用同一块木板,测量小车从不同的高度下滑的时间,然后将得到的数据填入表1:实验要求:四位同学上台共同完成,一位操作车、一位接车、一位按表、读表、一位记录,其他同学观察。
(实验得到的数据可能是:支撑物高度20厘米,时间1.47秒;支撑物高度30厘米,时间1.10秒;支撑物高度40厘米,时间0.91秒;支撑物高度50厘米,时间0.78秒;支撑物高度60厘米,时间0.71秒;支撑物高度70厘米,时间0.65秒。
) 实验完成后提问:(1)这个实验过程中,有哪些量是变量?(学生自由回答)(2)在这个实验中,哪个变量随哪个变量的变化而变化?(学生思考后回答,教师结合学生的回答,指出自变量与因变量的概念、因变量与自变量的依赖关系) (教师引导学生观察支撑物高度每增加10厘米,下车下滑的时间的变化情况相同吗?提问(3)当支撑物高度80厘米时,小车下滑时间大约是多少呢?(学生回答有理即可)二、应用新知、目标深化为了帮助学生进一步理解变量等概念,以及两个变量之间的依赖关系,组织学生进行形式多样的活动,活动1学生大胆回答,理解变量、自变量与因变量等概念,活动2、3以分组必答的比赛形式进行,活动4以抢答的形式进行,活跃课堂,鼓励学生积极参与。
北师大版数学七年级下册第三章3.1用表格表示的变量间关系课时练习一、选择题(共15小题)1.在利用太阳能热水器来加热水的过程中,热水器里的水温会随着太阳照射时间的长短而变化,这个问题中因变量是()A.水的温度B.太阳光强弱C.太阳照射时间D.热水器的容积答案:A解析:解答:根据函数的定义可知,水温是随着所晒时间的长短而变化,可知水温是因变量,所晒时间为自变量.故选:A分析:函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,那么称y是x的函数,x叫自变量.函数关系式中,某特定的数会随另一个(或另几个)会变动的数的变动而变动,就称为因变量.2.对于圆的周长公式C=2πR,下列说法错误的是()A.π是变量B.R、C是变量C.R是自变量D.C是因变量答案:A解析:解答:A.是一个常数,是常量,故选项符合题意;B.R、C是变量,故选项不符合题意;C.R是自变量,故选项不符合题意;D.C是因变量,故选项不符合题意;故选:A.分析:根据函数以及常量、变量的定义即可判断.3.如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2),周长为p (m),一边长为a(m),那么S,p,a中是变量的是()A.S和p B.S和a C.p和a D.S,p,a答案:B解析:解答:∵篱笆的总长为60米,∴周长P是定值,而面积S和一边长a是变量,故选B.分析:根据篱笆的总长确定,即可得到周长、一边长及面积中的变量.4.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b 与下降高度d 的关系,下面能表示这种关系的式子是( ) d 50 80 100 150 b 254050 75A .b =d 2B .b =2dC .b =2d D .b =d +25 答案:C 解析:解答:由统计数据可知: d 是b 的2倍, 所以,b =21d . 故选:C .分析:这是一个用图表表示的函数,可以看出d 是b 的2倍,即可得关系式.5.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm )与所挂的物体的质量x (kg )间有下面的关系: x 0 1 2 3 4 5 y1010.51111.51212.5A .x 与y 都是变量,且x 是自变量,y 是因变量B .所挂物体质量为4kg 时,弹簧长度为12cmC .弹簧不挂重物时的长度为0cmD .物体质量每增加1kg ,弹簧长度y 增加0.5cm 答案:D 解析:解答:A .x 与y 都是变量,且x 是自变量,y 是因变量,故A 正确; B .所挂物体质量为4kg 时,弹簧长度为12cm ,故B 正确; C .弹簧不挂重物时的长度为10cm ,故C 错误;D .物体质量每增加1kg ,弹簧长度y 增加0.5cm ,故D 正确. 故选:D .分析:根据给出的表格中的数据进行分析,可以确定自变量和因变量以及弹簧伸长的长度,得到答案.6.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据: 鸭的质量/千克0.5 11.5 22.5 33.5 4烤制时间/分4060 80100 120 140 160 180) A .140 B .138 C .148 D .160 答案:C 解析:解答:从表中可以看出,烤鸭的质量每增加0.5千克,烤制的时间增加20分钟,由此可知烤制时间是烤鸭质量的一次函数.设烤制时间为t 分钟,烤鸭的质量为x 千克,t 与x 的一次函数关系式为:t =kx +b ,则⎩⎨⎧=+=+100260b k b k ,解得⎩⎨⎧==2040b k所以t =40x +20.当x =3.2千克时,t =40×3.2+20=148. 故选C .分析:观察表格可知,烤鸭的质量每增加0.5千克,烤制时间增加20分钟,由此可判断烤制时间是烤鸭质量的一次函数,设烤制时间为t 分钟,烤鸭的质量为x 千克,t 与x 的一次函数关系式为:t =kx +b ,取(1,60),(2,100)代入,运用待定系数法求出函数关系式,再将x =3.2千克代入即可求出烤制时间t .7.在某次实验中,测得两个变量m 和v 之间的4组对应数据如下表:则m 与v 之间的关系最接近于下列各关系式中的( ) m 1 2 3 4 v0.012.98.0315.1答案:B 解析:解答:当m =4时, A .v =2m ﹣2=6; B .v =m 2﹣1=15; C .v =3m ﹣3=9; D .v =m +1=5. 故选:B .分析:一般情况下是把最大的一对数据代入函数关系式后通过比较得出最接近的关系式. 8.下面说法中正确的是( )A .两个变量间的关系只能用关系式表示B .图象不能直观的表示两个变量间的数量关系C .借助表格可以表示出因变量随自变量的变化情况D .以上说法都不对 答案:C 解析:解答:A .两个变量间的关系只能用关系式表示,还能用列表法和图象法表示,故错误; B .图象能直观的表示两个变量间的数量关系,故错误; C .借助表格可以表示出因变量随自变量的变化情况,正确; D .以上说法都不对,错误; 故选C .分析:表示函数的方法有三种:解析法、列表法和图象法.9.一个学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如下数据: 支撑物高度h (cm ) 10 20 30 40 50 60 70 80 小车下滑时间t (s ) 4.23 3.002.452.131.891.711.591.50A .当h =50cm 时,t =1.89sB .随着h 逐渐升高,t 逐渐变小C .h 每增加10cm ,t 减小1.23sD .随着h 逐渐升高,小车的速度逐渐加快 答案:C 解析:解答:A .当h =50cm 时,t =1.89s ,故A 正确; B .随着h 逐渐升高,t 逐渐变小,故B 正确; C .h 每增加10cm ,t 减小的值不一定,故C 错;D .随着h 逐渐升高,小车的时间减少,小车的速度逐渐加快,故D 正确; 故选:C .分析:根据函数的表示方法,可得答案. 10.在三角形面积公式S =21ah ,a =2cm 中,下列说法正确的是( ) A .S ,a 是变量,21h 是常量 B .S ,h 是变量,21是常量 C .S ,h 是变量,21a 是常量 D .S ,h ,a 是变量,21是常量解析:解答:在三角形面积公式S =21ah ,a =2cm 中,21a 是常数,h 和S 是变量. 故选C .分析:根据函数的定义:对于函数中的每个值x ,变量y 按照一定的法则有一个确定的值y 与之对应;来解答即可.11.当前,雾霾严重,治理雾霾方法之一是将已生产的PM 2.5吸纳降解,研究表明:雾霾的程度随城市中心区立体绿化面积的增大而减小,在这个问题中,自变量是( ) A .雾霾程度 B .PM 2.5 C .雾霾 D .城市中心区立体绿化面积 答案:D 解析:解答:雾霾的程度随城市中心区立体绿化面积的增大而减小,雾霾的程度是城市中心区立体绿化面积的函数,城市中心区立体绿化面积是自变量,故选:D . 分析:根据函数的关系,可得答案.12.以21m /s 的速度向上抛一个小球,小球的高度h (m )与小球运动的时间t (s )之间的关系是h =21t ﹣4.9t 2.下列说法正确的是( ) A .4.9是常量,21,t ,h 是变量 B .21,4.9是常量,t ,h 是变量 C .t ,h 是常量,21,4.9是变量 D .t ,h 是常量,4.9是变量答案:B 解析:解答:A .21是常量,故A 错误;B .21,4.9是常量,t ,h 是变量,故B 是正确;C 、D .t 、h 是变量,21,4.9是常量,故C 、D 错误; 故选:B .分析:根据在变化过程中,数值发生变化的量是变量,数值始终不变的量是常量,可得答案. 13.笔记本每本a 元,买3本笔记本共支出y 元,在这个问题中: ①a 是常量时,y 是变量; ②a 是变量时,y 是常量; ③a 是变量时,y 也是变量; ④a ,y 可以都是常量或都是变量. 上述判断正确的有( )A .1个B .2个C .3个D .4个答案:B解答:由题意得:y=3a,此问题中a、y都是变量,3是常量,或a,y都是常量,则③④,故选:B.分析:根据题意列出函数解析式,再根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量可得答案.14.学校计划买100个乒乓球,买的乒乓球的总费用w(元)与单价n(元/个)的关系式w=100n中()A.100是常量,w、n是变量B.100、w是常量,n是变量C.100、n是常量,w是变量D.无法确定答案:A解析:解答:∵买的乒乓球的总费用W(元)与单价n(元/个)的关系式W=100n,∴100是常量,在此式中W、n是变量,故选A.分析:根据函数的定义:对于函数中的每个值x,变量y按照一定的法则有一个确定的值y 与之对应;来解答即可.15.小明给在北京的姑姑打电话,电话费随时间的变化而变化,在这个问题中,因变量是()A.时间B.电话费C.电话D.距离答案:B解析:解答:根据函数的定义,电话费随时间的变化而变化,则电话费是因变量.故选B.分析:函数的定义:设x和y是两个变量,对于x的每一个值,y都有唯一确定的值和它对应,则x是自变量,y是x的函数,也叫因变量.二、填空题(共5小题)16.水中涟漪(圆形水波)不断扩大,记它的半径为r,圆周长为C,圆周率(圆周长与直径的比)为π,指出其中的变量为.答案:圆的半径r和圆的周长C解析:解答:自变量是圆的半径r,因变量是圆的周长C.分析:根据函数的定义:函数中的每个值x,变量y按照一定的法则有一个确定的值y与之对应来解答.17.表示变量之间关系的常用方法有,,.答案:解析式|表格法|图象法解析:解答:表示变量之间关系的常用方法有 解析式,表格法,图象法. 分析:18.已知方程x ﹣3y =12,用含x 的代数式表示y 是 . 答案:y =31x ﹣4 解析:解答:移项得:﹣3y =12﹣x , 系数化为1得:y =31x ﹣4. 故答案为:y =31x ﹣4. 分析:要用含x 的代数式表示y ,就要将二元一次方程变形,用一个未知数表示另一个未知数.先移项,再将系数化为1即可.19.圆的面积S 与半径R 之间的关系式是S =πR 2,其中自变量是 . 答案:R 解析:解答:根据函数的定义:对于函数中的每个值R ,变量S 按照一定的法则有一个确定的值S 与之对应可知R 是自变量,π是常量,故答案为:R . 分析:根据函数的定义来判断自变量、函数和常量.20.在一个过程中,固定不变的量称为 ,可以取不同的值的量称为 . 答案:常量|变量 解析:解答:在一个过程中,固定不变的量称为常量,可以取不同的值的量称为变量, 故答案为:常量,变量.分析:根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,即可答题.三、解答题(共5小题)21.齿轮每分钟120转,如果n 表示转数,t 表示转动时间. ①用n 的代数式表示t ; 答案:解答:由题意得: 120t =n , t =120n; ②说出其中的变量与常量.答案:变量:t,n常量:120.解析:分析:①根据题意可得:转数=每分钟120转×时间;②根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量可得x、y是变量.22.按如图方式摆放餐桌和椅子.用x来表示餐桌的张数,用y来表示可坐人数.①题中有几个变量?答案:解答:观察图形:x=1时,y=6,x=2时,y=10;x=3时,y=14;…可见每增加一张桌子,便增加4个座位,因此x张餐桌共有6+4(x﹣1)=4x+2个座位.故可坐人数y=4x+2,故答案为:有2个变量;②你能写出两个变量之间的关系吗?答案:解答:能,由①分析可得:函数关系式可以为y=4x+2.解析:分析:由图形可知,第一张餐桌上可以摆放6把椅子,进一步观察发现:多一张餐桌,多放4把椅子.x张餐桌共有6+4(x﹣1)=4x+2.23.在一次实验中,小明把一根弹簧的上端固定、在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值.所挂物体质量x/kg 0 1 2 3 4 5弹簧长度y/cm 18 20 22 24 26 28答案:解答:上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;②当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?答案:解答:当所挂物体重量为3千克时,弹簧长24厘米;当不挂重物时,弹簧长18厘米;③若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?答案:解答:根据上表可知所挂重物为7千克时(在允许范围内)时的弹簧长度=18+2×7=32厘米.解析:分析:①因为表中的数据主要涉及到弹簧的长度和所挂物体的质量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;②由表可知,当物体的质量为3kg时,弹簧的长度是24cm;不挂重物时,弹簧的长度是18cm;③由表中的数据可知,x=0时,y=18,并且每增加1千克的质量,长度增加2cm,依此可求所挂重物为7千克时(在允许范围内)时的弹簧长度.24.某中学为筹备校庆活动,准备印制一批校庆纪念册.该纪念册每册需要10张8K大小的纸,其中4张为彩页,6张为黑白页.印制该纪念册的总费用由制版费和印刷费两部分组成,制版费与印数无关,价格为:彩页300元/张,黑白页50元/张;印刷费与印数的关系见下表.印数a (单位:千册)1≤a<5 5≤a<10彩色(单位:元/张)2.2 2.0黑白(单位:元/张)0.7 0.6①印制一本纪念册的制版费为元;答案:解答:4×300+6×50=1500(元);②若印制2千册,则共需多少费用?答案:解答:若印制2千册,则印刷费为:(2.2×4+0.7×6)×2 000=26000(元),∴总费用为:26000+1500=27500(元).解析:分析:彩页和黑白页的制版费的和;制版费加上印刷费就是总费用.25.秋天到来了,小明家的苹果获得了丰收,他主动帮助妈妈到集市上去卖刚刚采摘下的苹果.已知销售数量x(千克)与售价y(元)的关系如下表所示:数量x(千克) 1 2 3 4 5售价y(元)2.1 4.2 6.3 8.4 10.5答案:解答:销售量每增加1千克,售价就增加2.1元.②求当x=15时,y的值是多少?答案:解答:当x=15时,y=2.1×15=31.5(元).解析:分析:①根据表可以得到:销售量每增加1千克,售价就增加2.1元;②当x=15时,y的值是2.1元的15倍,据此即可求解.。