二阶常系数非齐次线性微分方程解法及例题
- 格式:ppt
- 大小:222.50 KB
- 文档页数:11
二阶常系数非齐次微分
二阶常系数非齐次微分方程指的是形如:
$$\frac{{d^2y}}{{dx^2}}+a\frac{{dy}}{{dx}}+by=f(x)$$
其中$a$和$b$为常数,$f(x)$为已知函数。
求解这样的微分方程一般可以采用特解叠加原理。
首先求解齐次微分方程:
$$\frac{{d^2y_h}}{{dx^2}}+a\frac{{dy_h}}{{dx}}+by_h=0$$ 假设齐次微分方程的解为$y_h=e^{rx}$,其中$r$是待定的复数。
将$y_h$代入齐次微分方程,得到特征方程:
$$r^2+ar+b=0$$
特征方程的解决定了齐次微分方程的解的形式。
如果特征方程的根为$r_1$和$r_2$,那么齐次微分方程的通解为:
$$y_h=c_1e^{r_1x}+c_2e^{r_2x}$$
其中$c_1$和$c_2$为任意常数。
接下来求特解。
根据非齐次微分方程的结构,可以猜测特解的形式为:
$$y_p=u(x)e^{rx}$$
将$y_p$代入非齐次微分方程,可以得到关于$u(x)$的线性微分方程。
解这个线性微分方程,可以得到特解$y_p$。
将特解$y_p$与齐次解$y_h$相加,即可得到非齐次微分方程的通解:
$$y=c_1e^{r_1x}+c_2e^{r_2x}+y_p$$
其中$c_1$和$c_2$为任意常数。
2015考研数学一真题解析:二阶常系数非齐次微分方程解的结构来源:文都教育二阶常系数非齐次微分方程是考研数学重要考点,命题形式包括二阶常系数非齐次微分方程求通解、解得结构定理及已知通解求微分方程,2015考研数学考查了本知识点,题目和解析如下: 设211()23=+-x x y e x e 是二阶常系数非齐次线性微分方程'''++=x y ay by ce 的一个特解,则 ( )A. 3,2,1=-==-a b cB. 3,2,1===-a b cC. 3,2,1=-==a b cD. 3,2,1===a b c【答案】A【分析】此题考查二阶常系数非齐次线性微分方程的逆问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解 【解析】由题意可知,212x e 、13xe -为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32x y y y ce '''-+=,再将特解x y xe =代入得1c =-.故选(A )二阶常系数非齐次线性微分方程解的结构与通解此知识点方法和公式固定,大家只需按解得结构原理和求通解公式按部就班解答就可以了,下面文都考研数学老师帮大家复习一下此知识点。
1.二阶常系数非齐次微分方程定义—形如)(x f qy y p y =+'+''(其中q p ,为常数)的方程。
2.通解的结构—)(x f qy y p y =+'+''的通解为0=+'+''qy y p y 的通解与其本身一个特解之和。
3.特解求法:情形一:)()(x P e x f m x λ= 设方程的特解结构为:()x y e Q x λ*= ①当λ不是特征根时,)()(x Q x Q m =; ②当λ是特征单根时, )()(x xQ x Q m =;③当λ是特征重根时,)()(2x Q x x Q m =. 情形二:]sin )(cos )([)(x x R x x P e x f n L x ωωλ+= 设特解结构为 :[()cos ()sin ]k x m m y x e R x x S x x λωω*=+,其中},{n L Max m =, ①当i ωλ+不是特征方程的根时,0=k ;②当i ωλ+是特征方程的根时,1=k ; 代入原方程求出多项式(),()m m R x S x 的系数即可.。
微分算子法求解二阶常系数非齐次线性微分方程的特解李绍刚段复建徐安农(桂林电子科技大学,计算科学与数学系,广西桂林,541004)摘要:木文主要介绍了二阶微分算子的性质及其它在一些求解二阶常系数非齐次线性微分方程的常见运算公式,并对其中的大部分重要公式给出了详细的较为简单的证明,并通过具体而翔实的例子加以说明它在解题中的具体应用,大大简化了二阶常系数非齐次线性微分方程的特解的求法。
关犍词:线性微分算子非齐次微分方程特解中图分类号:0175.1 引言对于微分方程,尤其是常系数非齐次线性微分方程,算了法求其特解一肓是研究的热点问题,见参考文献[3・9],有一些是针对一般高阶的常系数非齐次线性微分方程[3-61,文献⑹ 研究了高阶的变系数非齐次线性微分方程的算子特解算法,而[7]是针对二阶的常系数非齐次线性微分方程的算子特解解法,但是理论不是很完善,而微分级数法以及复常系数非齐次线性微分方程在一般教科书很少出现,针对性不够强。
因为在高等数学中,二阶非齐次常系数线性微分方程特解的求法在微分方程屮占有很重要的地位,也是学习的重点和难点,人多高数教材采用待定系数法来求其特解,根据不同情况记忆特解的设法对人多数学生而言述是很有难度的,而且有些题目计算过程非常复朵,本文就针对微分算子法在求解二阶常系数非齐次线性微分方程特解方而的应用做一些讨论,给出理论的详细证明,并通过例子说明理论的的一些具体应用。
我们考虑如下的二阶常系数非齐次线性微分方程的一般形式y"+py'+q = f(x)其中p,q 为常数。
(1)2 2引入微分算子—= D,^ = D2,则有:y=型二Dydx dx" dx dx~于是(1)式可化为:D’y + pDy + qy = f(x) 即:(D2 + pD + q)y = f(x) (2)令F(D) = D24-pD + q 称其为算子多项式。
则(2)式即为:F(D)y = f(x) 其特解为:y = ^—f(x),在这里我们称为逆算子。
二阶常系数非齐次线性微分方程解法及例题大家好,今天我们来聊聊二阶常系数非齐次线性微分方程的解法及一些例题。
我们要明确什么是二阶常系数非齐次线性微分方程。
简单来说,就是一个未知函数y关于自变量x的非线性微分方程,形式如下:dy/dt = a * y^2 + b * x * dy/dx + c * x^2其中a、b、c是已知的常数,t表示时间,x和y分别表示自变量和因变量。
接下来,我们来探讨一下如何求解这个方程。
我们需要将这个方程转化为一个标准的线性微分方程。
为了做到这一点,我们需要引入两个辅助函数:P(t, y)和Q(t, y)。
P(t, y)是一个一阶线性微分方程,表示y关于t的导数;Q(t, y)是一个二阶线性微分方程,表示y关于y的导数。
我们有:dy/dt = P(t, y)dP(t, y)/dt = Q(t, y)将这两个方程联立起来,我们可以得到一个关于y的齐次线性微分方程:dy/dt = (P(t, y) a * y^2 / b) * dt + (c * x^2 * Q(t, y)) / b这是一个标准的线性微分方程,可以使用常系数线性初值问题的方法来求解。
具体来说,我们可以将y表示为一个积分形式:y = Y(t) = int[a * y^2 / b * dt + c * x^2 * Q(t, y)] + C1(t)其中C1(t)是y的一个初始条件。
接下来,我们可以通过求解这个积分方程来得到y 的通解。
我们需要将通解代入原方程中,解出x的表达式。
下面我们来看一个具体的例题。
假设我们要求解以下二阶常系数非齐次线性微分方程:dy/dt = 2 * exp(-t) * y^2 + 3 * x * dy/dx + x^2我们首先引入两个辅助函数P(t, y)和Q(t, y):P(t, y) = dy/dt = 2 * exp(-t) * y^2 + 3 * x * dy/dxQ(t, y) = dP(t, y)/dt = 6 * x * dy/dx + 2 * exp(-t) * dx然后我们将这两个方程联立起来,得到一个关于y的齐次线性微分方程:dy/dt = (P(t, y) a * y^2 / b) * dt + (c * x^2 * Q(t, y)) / b将已知的参数代入这个方程,我们可以得到:dy/dt = (2 * exp(-t) * y^2 + 3 * x * dy/dx 2 * exp(-t) * x^2 / b) * dt + (c * x^2 * Q(t, y)) / b整理得:dy/dt = [exp(-t)(by^2 + cxy^2) cxy] dt + [by^3 + cxy^3] dt + C1(t)现在我们可以将y表示为一个积分形式:y = Y(t) = int[exp(-t)(by^2 + cxy^2) cxy] dt + int[by^3 + cxy^3] dt + C1(t)通过求解这个积分方程,我们可以得到y的通解。
二阶常系数非齐次线性微分方程解法及例题大家好,今天我们来探讨一下二阶常系数非齐次线性微分方程的解法及一些例题。
我们要明白什么是二阶常系数非齐次线性微分方程。
简单来说,就是一个未知函数y与其导数y关于t的关系式,形式如下:dy/dt + A*y = B*exp(ct)其中,A、B、c是已知常数,t是自变量。
这个方程的解法有很多种,但是我们今天主要讨论两种方法:一种是分离变量法,另一种是特征线法。
我们来看一下分离变量法。
分离变量法的基本思想是把未知函数y看作两个函数的和,一个是指数函数e^(ct),另一个是线性函数y(t)。
这样一来,我们就可以用积分的方法求解这个方程了。
具体步骤如下:1. 把方程改写为:e^(ct) = y(t) B/A*ln|y(t)|2. 对两边取对数:ln|y(t)| = ct ln|y(t)| ln(B/A)3. 对上式两边求积分:∫[0,∞] ln|y(t)| dt = ∫[0,∞] (ct ln|y(t)| ln(B/A)) dt4. 根据积分公式和性质,我们可以得到:y(t) * e^(-bt) = B/A * e^(-bt) * |y(t)|^n + C,其中n是一个待定常数5. 通过比较系数,我们可以得到:y(t) = (B/A)^n * |y(t)|^n6. 这样我们就得到了二阶常系数非齐次线性微分方程的一个特解。
接下来,我们可以通过凑特解的方法得到原方程的通解。
下面我们来看一下特征线法。
特征线法的基本思想是找到一个特征线,使得它与原方程有相同的极值点。
具体步骤如下:1. 对于特征线l:y = x + c,代入原方程得:x + c = x + A*y B*exp(ct) => A*y =B*exp(ct) + c => y = (B/A)*exp(ct) + c/A2. 由于特征线l与原方程有相同的极值点,所以我们可以得到原方程的通解为:y = (B/A)^n * exp(ct) + c/A * (x x0)^n3. 其中,x0是特征线的交点的横坐标,n是待定常数。