锐角三角函数的运用
- 格式:doc
- 大小:453.00 KB
- 文档页数:3
锐角三角函数有哪些实际应用场景锐角三角函数在咱们的日常生活中那可是有着超级多的实际应用场景呢,简直无处不在!先来说说建筑领域吧。
你知道吗,建筑工人在盖房子的时候,可离不开锐角三角函数的知识。
比如说,要建造一个有特定倾斜角度的屋顶,这就需要计算出屋顶的角度以及所需材料的长度和数量。
想象一下,工人们站在高高的脚手架上,拿着测量工具,认真地计算着角度和长度。
他们的眼神专注,手中的工具就像是神奇的魔法棒,通过锐角三角函数,把一堆堆的建筑材料变成了坚固又美观的房子。
再讲讲导航和地图。
当我们使用手机导航去一个陌生的地方时,导航软件会根据我们的位置和目的地,计算出最佳的路线。
这背后可就有锐角三角函数的功劳啦!它帮助确定我们与目的地之间的直线距离和实际行走的路程。
就像有一次我自己出门旅行,在一个完全陌生的城市里,靠着导航找到了一家特别棒的小吃店。
那个时候我就在想,要是没有这些数学知识的支撑,我可能还在街头瞎转悠,找不到美食的方向呢。
还有测量山峰的高度。
测量人员没办法直接爬到山顶去测量,那怎么办呢?这时候就轮到锐角三角函数登场啦!他们在山脚下选好测量点,测量出观测点与山顶的角度,再结合测量点与山底的距离,就能算出山峰的高度。
这就像是解开了一个神秘的谜题,让人充满了成就感。
在航海中,锐角三角函数也发挥着重要作用。
船员们需要根据星星的位置和角度来确定船只的方向和位置。
想象一下,在浩瀚的大海上,满天繁星闪烁,船员们依靠着锐角三角函数的知识,勇敢地驶向目的地,是不是特别酷?在日常生活中,我们装修房子的时候,如果想要在墙上挂一幅画,而且要保证画是水平的,那就得用到锐角三角函数来测量和计算。
又比如,我们要搭建一个秋千,要确定秋千的绳子长度和角度,让秋千荡起来既安全又有趣,这也需要锐角三角函数的帮忙。
甚至在体育比赛中也有它的身影。
比如滑雪运动员在从山坡上滑下来的时候,他们需要根据山坡的角度和自己的速度来调整姿势和控制方向,以确保安全和取得好成绩。
锐角三角函数及应用
锐角三角函数是指在直角三角形中,角度小于90度的三角函数,包括正弦函数、余弦函数和正切函数。
这些函数在数学、物理、工程等领域中都有广泛的应用。
正弦函数是指一个角的对边与斜边的比值,即sinθ=对边/斜边。
在三角函数中,正弦函数是最基本的函数之一,它在三角形的计算中有着重要的作用。
例如,在测量高度时,可以利用正弦函数计算出物体的高度。
余弦函数是指一个角的邻边与斜边的比值,即cosθ=邻边/斜边。
余弦函数也是三角函数中的基本函数之一,它在计算角度时有着重要的作用。
例如,在计算机图形学中,可以利用余弦函数计算出两个向量之间的夹角。
正切函数是指一个角的对边与邻边的比值,即tanθ=对边/邻边。
正切函数在三角形的计算中也有着重要的作用。
例如,在测量斜率时,可以利用正切函数计算出斜率的大小。
除了在三角形的计算中,锐角三角函数还有着广泛的应用。
在物理学中,正弦函数和余弦函数可以用来描述波的运动,例如声波和光波。
在工程学中,正弦函数和余弦函数可以用来描述交流电的变化,例如电压和电流的变化。
在计算机科学中,正切函数可以用来计算图像的旋转和缩放。
锐角三角函数是数学中的重要概念,它们在各个领域中都有着广泛的应用。
掌握锐角三角函数的概念和应用,对于学习数学、物理、工程和计算机科学等领域都有着重要的意义。
主备人用案人授课时间年月日总第课时课题7.6锐角三角函数的简单应用(1)课型新授教学目标1.进一步掌握解直角三角形的方法,比较熟练的应用解直角三角形的知识解决与仰角、2.俯角有关的实际问题,培养学生把实际问题转化为数学问题的能力。
重点进一步掌握解直角三角形的方法难点进一步掌握解直角三角形的方法教法及教具自主学习,合作交流,分组讨论多媒体教学过程教学内容个案调整教师主导活动学生主体活动一.指导先学:如右图所示,斜坡AB和斜坡A1B1哪一个倾斜程度比较大?显然,斜坡A1B l的倾斜程度比较大,说明∠A′>∠A。
从图形可以看出ACBCCACB'''',即tanA l>tanA。
在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度。
新授:坡度的概念,坡度与坡角的关系。
如下图,这是一张水库拦水坝的横断面的设计图,坡面的铅垂高度与水平宽度的比叫做坡度(或坡比),记作i,即i=ACBC,坡度通常用l:m的形式,例如上图中的1:2的形式。
坡面与水平面的夹角叫做坡角。
从三角函数的概念可以知道,坡度与坡角的关系是i=tanB,显然,坡度越大,坡角越大,坡面就越陡学生回顾相关所学知识学生按照老师要求完成自学内容,有难度的可以组内交流,达成统一意见教学过程教学内容个案调整教师主导活动学生主体活动四.检测巩固:如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角。
和坝底宽AD。
(i=CE:ED,单位米,结果保留根号)2.如图,单摆的摆长AB为90cm,当它摆动到∠BAB'的位置时,∠BAB'=30°。
问这时摆球B'较最低点B升高了多少?五.小结反思:通过本节课的学习,你有何收获?你还存在什么疑惑?学生独立完成,有难度的可以组内交流,教师巡视,指导学生分组讨论交流,总结归纳,教师补充板书设计7.6锐角三角函数的简单应用(1)坡度的概念,坡度与坡角的关系。
坡面的铅垂高度与水平宽度的比叫做坡度(或坡比),记作i,即i=ACBC,坡度通常用l:m的形式,坡度与坡角的关系是i=tanB,显然,坡度越大,坡角越大,坡面就越陡布置作业补充习题教学札记教学过程教学内容个案调整教师主导活动学生主体活动1、摩天轮启动多长时间后,小明离地面的高度将首次到达10m?2、小明将有多长时间连续保持在离地面20m以上的空中?三.释疑拓展:如图,东西两炮台A、B相距2000米,同时发现入侵敌舰C,炮台A测得敌舰C在它的南偏东40°的方向,炮台B测得敌舰C在它的正南方,试求敌舰与两炮台的距离(精确到l米)。
初中锐角三角函数及应用锐角三角函数是指角度小于90度的三角函数,包括正弦、余弦和正切。
这些函数在数学和物理学中有着广泛的应用。
首先,我们来介绍一下锐角三角函数的定义和性质。
在一个直角坐标系中,对于一个锐角ABC(角A小于90度), 我们可以定义正弦函数sinA 为点B的纵坐标除以斜边AC的长度,余弦函数cosA 为点B的横坐标除以斜边AC的长度,正切函数tanA 为点B的纵坐标除以横坐标。
其中,sinA、cosA和tanA都是角A的函数。
这些函数有许多重要的性质。
首先,它们的定义域都是锐角的正数集合,即(0,90)。
其次,它们的值域都是(-1,1),即在定义域内,这些函数的值都在-1到1之间变化。
此外,正弦函数和余弦函数还具有周期性,周期为360度或2π弧度。
也就是说,对于一个锐角A,sin(A+360k) = sinA,cos(A+360k) = cosA,其中k 为整数。
在应用方面,锐角三角函数有着广泛的作用。
首先,它们被广泛应用于三角计算。
例如,我们可以利用正弦定理或余弦定理,通过已知边和角来求解三角形的其他未知边和角。
这在测量、建筑、工程等领域都有着重要的应用。
其次,锐角三角函数在物理学中也有着重要的应用。
例如,对于一个斜抛运动的物体,我们可以利用正弦函数和余弦函数来分析其垂直和水平方向上的运动。
它们可以帮助我们计算物体的落点、飞行时间、最大高度等。
另外,锐角三角函数还与周期函数和图像有着密切的关系。
它们的图像可以通过函数的周期性来得到。
例如,正弦函数的图像是一个周期为2π的曲线,具有对称性和单调性,而余弦函数的图像是一个周期为2π的曲线,也具有对称性和反单调性。
此外,锐角三角函数还与三角恒等式有着重要的联系。
三角恒等式是指对于锐角A和B,成立的恒等关系。
利用三角恒等式,我们可以化简复杂的三角函数表达式,简化计算过程。
总的来说,锐角三角函数是数学中一类重要的函数,具有广泛的应用。
它们不仅在三角计算和几何题目中有着重要作用,还与物理学、周期函数和三角恒等式等有着紧密的联系。
锐角三角函数1. 锐角三角函数的定义:如图所示:在Rt △ABC 中,∠C =90°,a ,b ,c 分别是∠A ,∠B ,∠C 的对边。
(1)∠A 的正弦:sinA =a cA ∠的对边=斜边; (2)∠A 的余弦:b cA ∠的邻边=斜边; (3)∠A 的正切:a bA A ∠∠的对边=的邻边; (4)∠A 的余切:A b A a ∠∠的邻边=的对边 (是正切的倒数)。
2.30°,45°,60°角的三角函数值:1sin 302︒=,2sin 452︒=,3sin 602︒=; 3cos302︒=,2cos 452︒=,1cos 602︒=; 3tan 303︒=,tan 451︒=,tan 603︒=。
例题1:求下列各式的值:(1)22cos 60sin 60︒+︒ (2)cos 45tan 45sin 45︒-︒︒3.锐角三角函数之间的关系:(1)平方的关系:22sin cos 1A A +=;(2)商的关系: sin tan cos A A A=; (3)互余两角的三角函数关系:sin(90)cos A A ︒-=,cos(90)sin A A ︒-=。
注意:锐角的正弦和正切值随着角度的增大而增大;锐角的余弦值随着角度的增大而减小;对于锐角A 有0sin 1,0cos 1,tan 0,A A A <<<<>且他们都没有单位。
4.直角三角形的有关性质及判定:(1)直角三角形的性质:①直角三角形两个锐角互余;②直角三角形斜边上的中线等于斜边的一半;③在直角三角形中,如果有一个锐角等于30︒,那么它所对的直角边等于斜边的一半;④在直角三角形中,如果有一条直角边等于斜边的一半,那么它所对的锐角等于30︒;⑤在直角三角形中,两条直角边a ,b 的平方和等于斜边c 的平方,即222a b c +=;⑥1122Rt S ch ab ==(h 为斜边上的高),外接圆半径R =2c =斜边上的中线,内切圆半径r =2a b c +-。
锐角三角函数的实际应用一、仰角、俯角问题例1. 某数学课外活动小组利用课余时间,测量了安装在一幢楼房顶部的公益广告牌的高度.如图,矩形CDEF 为公益广告牌,CD为公益广告牌的高,DM为楼房的高,且C、D、M三点共线.在楼房的侧面A处,测得点C与点D的仰角分别为45°和37.3°,BM=15米.根据以上测得的相关数据,求这个广告牌的高(CD的长).(结果精确到0.1米,参考数据:sin37.3°≈0.6060,cos37.3°≈0.7955,tan37.3°≈0.7618)例2.如图,在电线杆上的C处引拉线CE,CF固定电线杆,拉线CE和地面成57.5°角,在离电线杆6米处安置测角仪AB,在A处测得电线杆上C处的仰角为30°.已知测角仪AB的高为1.5米,求拉线CE的长.(结果精确到0.01米,参考数据:sin57.5°≈0.843,cos57.5°≈0.537,tan57.5°≈1.570,3≈1.732,2≈1.414)二、坡度、坡角问题例3. 如图,水坝的横断面是梯形,背水坡AB的坡角∠BAE=45°,坝高BE=20米.汛期来临,为加大水坝的防洪强度,将坝底从A处向后水平延伸到F处,使新的背水坡BF的坡角∠F=30°,求AF的长度.(结果精确到1米,参考数据:2≈1.414,3≈1.732)例4. 如图,点A、B、C表示某旅游景区三个缆车站的位置,线段AB,BC表示连接缆车站的钢缆,已知A,B,C 三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米,310米,710米,钢缆AB的坡度i1=1∶2,钢缆BC的坡度i2=1∶1,景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度i是指坡面的铅直高度与水平宽度的比)三、测量问题例5、为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥.建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°.请你根据以上测量数据求出河的宽度.(参考数据:2≈1.41,3≈1.73;结果保留整数)例6、如图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4米,AB=6米,中间平台宽度DE=1米,EN、DM、CB为三根垂直于A B的支柱,垂足分别为N、M、B,∠EAB=31°,DF⊥BC于F,∠CDF=45°.求DM和BC的水平距离BM的长度.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)四、方向角问题例7:某海域有A、B两个港口,B港口在A港口北偏西30°的方向上,距A港口60海里.有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处.求该船与B港口之间的距离即CB的长(结果保留根号).例8:如图,在海面上生产了一股强台风,台风中心(记为点M)位于海滨城市(记作点A)的南偏西15°,距离为612千米,且位于临海市(记作点B)正西方向603千米处.台风中心正以72千米/时的速度沿北偏东60°的方向移动(假设台风在移动过程中的风力保持不变),距离台风中心60千米的圆形区域内均会受到此次强台风的侵袭.(1)滨海市、临海市是否会受到此次台风的侵袭?请说明理由.(2)若受到此次台风侵袭,该城市受到台风侵袭的持续时间有多少小时?巩固练习:1、如图,线段AB,CD表示甲、乙两幢居民楼的高,两楼间的距离BD是60米.某人站在A处测得C点的俯角为37°,D点的俯角为48°(人的身高忽略不计),求乙楼的高度CD.(参考数据:sin37°≈35,tan37°≈34,sin48°≈710,tan48°≈1110)2. 张老师利用休息时间组织学生测量山坡上一棵大树CD的高度,如图,山坡与水平面成30°角(即∠MAN=30°),在山坡底部A处测得大树顶端点C的仰角为45°,沿坡面前进20米,到达B处,又测得树顶端点C的仰角为60°(图中各点均在同一平面内),求这棵大树CD的高度.(结果精确到0.1米,参考数据:3≈1.732)3.如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20)4、如图,斜坡AC的坡度(坡比)为1:3,AC=10米.坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带AB相连,AB=14米.试求旗杆BC的高度.5、如图,某军港有一雷达站,军舰停泊在雷达站的南偏东方向36海里处,另一艘军舰位于军舰的正西方向,与雷达站相距海里.求:(1)军舰在雷达站的什么方向?(2)两军舰的距离.(结果保留根号)6、(某中学九年级学生在学习“直角三角形的边角关系”一章时,开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度.如图,他们先在点C测得教学楼AB的顶点A的仰角为30°,然后向教学楼前进60米到达点D,又测得点A的仰角为45°。
锐角三角形的三角函数三角函数是数学中的重要概念,它们在几何、物理学等领域中具有广泛的应用。
其中,锐角三角函数是指以锐角为自变量的三角函数。
本文将介绍锐角三角形的三角函数,并探讨其性质和应用。
一、正弦函数正弦函数是将一个锐角的相对边长度与斜边长度的比值定义为该锐角的正弦。
用符号表示为 sin,其计算公式如下:sin A = 相对边长度 / 斜边长度正弦函数的定义域为(0°, 90°),值域为[0, 1]。
正弦函数具有周期性,即 sin(A + 180°) = -sinA。
二、余弦函数余弦函数是将一个锐角的邻边长度与斜边长度的比值定义为该锐角的余弦。
用符号表示为 cos,其计算公式如下:cos A = 邻边长度 / 斜边长度余弦函数的定义域为(0°, 90°),值域为(0, 1]。
余弦函数也具有周期性,即 cos(A + 180°) = -cosA。
三、正切函数正切函数是将一个锐角的相对边长度与邻边长度的比值定义为该锐角的正切。
用符号表示为 tan,其计算公式如下:tan A = 相对边长度 / 邻边长度正切函数的定义域为(0°, 90°),值域为(0, +∞)。
正切函数也具有周期性,即 tan(A + 180°) = tanA。
四、余切函数余切函数是将一个锐角的邻边长度与相对边长度的比值定义为该锐角的余切。
用符号表示为 cot,其计算公式如下:cot A = 邻边长度 / 相对边长度余切函数的定义域为(0°, 90°),值域为(0, +∞)。
余切函数也具有周期性,即 cot(A + 180°) = cotA。
五、正割函数和余割函数正割函数是将一个锐角的斜边长度与邻边长度的比值定义为该锐角的正割。
用符号表示为 sec,其计算公式如下:sec A = 斜边长度 / 邻边长度正割函数的定义域为(0°, 90°),值域为(1, +∞)。
锐角三角函数及其应用榆林第六中学 高启鹏一、锐角三角函数中考考点归纳考点一、锐角三角函数1、锐角三角函数的定义如图,在Rt △ABC 中,∠C 为直角,则∠A 为△ABC 中的一锐角,则有∠A 的正弦:斜边的对边A A ∠=sin c a =∠A 的余弦:斜边的邻边A A ∠=cos cb =∠A的正切:的邻边的对边A tan ∠∠=A A ba =2、特殊角的三角函数值(1)图表记忆法 (2)规律记忆法:30°、45°、60°角的正弦值的分母都是2,分子依次为1、23;30°、45°、60°角余弦值恰好是60°、45°、 30°角的正弦值。
邻边C(3)口诀记忆法口诀是:“一、二、三,三、二、一,三、九、二十七,弦比二,切比三,分子根号不能删.”前三句中的1,2,3;3,2,1;3,9,27,分别是30°,45°,60°角的正弦、余弦、正切值中分子根号内的值.弦比二、切比三是指正弦、余弦的分母为2,正切的分母为3.最后一句,讲的是各函数值中分子都加上根号,不能丢掉.如tan60°=3=tan45°=13=.这种方法有趣、简单、易记. 考点二、解直角三角形1、由直角三角形中的已知元素求出其他未知元素的过程,叫做解直角三角形。
2、解直角三角形的类型和解法如下表:考点三、锐角三角函数的实际应用(高频考点)仰角、俯角、坡度(坡比)、坡角、方向角仰角、俯角在视线与水平线所成的锐角中,视线在水平线上方的角叫仰角,视线在水平线下方的角叫俯角。
坡度(坡比)、坡角坡面的铅直高度h和水平宽度l的比叫坡度(坡比),用字母i表示;坡面与水平线的夹角α叫坡角,方向角指北或指南的方向线与目标方向线所成的小于90°的锐角叫做方向角.注意:东北方向指北偏东45°方向,东南方向指南偏东45°方向,西北方向指北偏西45°方向,西南方向指南偏西45°方向.我们一般画图的方位为上北下南,左西右东.lhi==αtan二、锐角三角函数常见考法(一)、锐角三角函数以选择题的形式出现.例1、(2016?陕西)已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A. B. C. D.2【考点】抛物线与x轴的交点;锐角三角函数的定义.【解析】先求出A、B、C坐标,作CD⊥AB于D,根据tan∠ACD=即可计算.【解答】解:令y=0,则﹣x2﹣2x+3=0,解得x=﹣3或1,不妨设A(﹣3,0),B(1,0),∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点C(﹣1,4),如图所示,作CD⊥AB于D.在RT△ACD中,tan∠CAD===2,故答案为D.(二)、锐角三角函数以填空题的形式出现.例2、(2016?陕西)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个多边形的一个外角为45°,则这个正多边形的边数是8 .B.运用科学计算器计算:3sin73°52′≈.(结果精确到)【考点】计算器—三角函数;近似数和有效数字;计算器—数的开方;多边形内角与外角.【解析】(1)根据多边形内角和为360°进行计算即可;(2)先分别求得3和sin73°52′的近似值,再相乘求得计算结果.【解答】解:(1)∵正多边形的外角和为360°∴这个正多边形的边数为:360°÷45°=8(2)3sin73°52′≈×≈故答案为:8,例3、(2015?陕西)如图,有一滑梯AB,其水平宽度AC为米,铅直高度BC为米,则∠A的度数约为°(用科学计算器计算,结果精确到°).【考点】解直角三角形的应用-坡度坡角问题.【解析】直接利用坡度的定义求得坡角的度数即可.【解答】解:∵tan∠A==≈,∴∠A=°,故答案为:°.【点评】本题考查了坡度坡角的知识,解题时注意坡角的正切值等于铅直高度与水平宽度的比值,难度不大.例4、(2014?陕西)用科学计算器计算:+3tan56°≈(结果精确到)【考点】计算器—三角函数;计算器—数的开方.【分析】先用计算器求出′、tan56°的值,再计算加减运算.【解答】解:≈,tan56°≈,则+3tan56°≈+3×≈故答案是:.【点评】本题考查了计算器的使用,要注意此题是精确到.例5、(2014?陕西)如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A′BD′,此时A′D′与CD交于点E,则DE的长度为2﹣.【考点】旋转的性质【分析】利用正方形和旋转的性质得出A′D=A′E,进而利用勾股定理得出BD的长,进而利用锐角三角函数关系得出DE的长即可.【解答】解:由题意可得出:∠BDC=45°,∠DA′E=90°,∴∠DEA′=45°,∴A′D=A′E,∵在正方形ABCD中,AD=1,∴AB=A′B=1,∴BD=,∴A′D=﹣1,∴在Rt△DA′E中,DE==2﹣.故答案为:2﹣.【点评】此题主要考查了正方形和旋转的性质以及勾股定理、锐角三角函数关系等知识,得出A′D的长是解题关键.(三)、锐角三角函数定义以解答题的形式出现例6、(12分)(2015?陕西)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为24;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.【考点】四边形综合题..【专题】综合题.【解析】(1)如图①,过A作AE⊥BC,可得出四边形AECF为矩形,得到EC=AD,BE=BC﹣EC,在直角三角形ABE中,求出AE的长,即为三角形BMC的高,求出三角形BMC面积即可;(2)如图②,作点C关于直线AD的对称点C′,连接C′N,C′D,C′B交AD于点N′,连接CN′,则BN+NC=BN+NC′≥BC′=BN′+CN′,可得出△BNC 周长的最小值为△BN′C的周长=BN′+CN′+BC=BC′+BC,求出即可;(3)如图③所示,存在点P,使得cos∠BPC的值最小,作BC的中垂线PQ交BC于点Q,交AD于点P,连接BP,CP,作△BPC的外接圆O,圆O与直线PQ交于点N,则PB=PC,圆心O在PN上,根据AD与BC平行,得到圆O与AD 相切,根据PQ=DC,判断得到PQ大于BQ,可得出圆心O在BC上方,在AD上任取一点P′,连接P′B,P′C,P′B交圆O于点M,连接MC,可得∠BPC=∠BMC≥∠BP′C,即∠BPC最小,cos∠BPC的值最小,连接OB,求出即可.【解答】解:(1)如图①,过A作AE⊥BC,∴四边形AECD为矩形,∴EC=AD=8,BE=BC﹣EC=12﹣8=4,在Rt△ABE中,∠ABE=60°,BE=4,∴AB=2BE=8,AE==4,则S △BMC=BC?AE=24;故答案为:24;(2)如图②,作点C关于直线AD的对称点C′,连接C′N,C′D,C′B交AD于点N′,连接CN′,则BN+NC=BN+NC′≥BC′=BN′+CN′,∴△BNC周长的最小值为△BN′C的周长=BN′+CN′+BC=BC′+BC,∵AD∥BC,AE⊥BC,∠ABC=60°,∴过点A作AE⊥BC,则CE=AD=8,∴BE=4,AE=BE?tan60°=4,∴CC′=2CD=2AE=8,∵BC=12,∴BC′==4,∴△BNC周长的最小值为4+12;(3)如图③所示,存在点P,使得cos∠BPC的值最小,作BC的中垂线PQ交BC于点Q,交AD于点P,连接BP,CP,作△BPC的外接圆O,圆O与直线PQ交于点N,则PB=PC,圆心O在PN上,∵AD∥BC,∴圆O与AD相切于点P,∵PQ=DC=4>6,∴PQ>BQ,∴∠BPC<90°,圆心O在弦BC的上方,在AD上任取一点P′,连接P′B,P′C,P′B交圆O于点M,连接MC,∴∠BPC=∠BMC≥∠BP′C,∴∠BPC最大,cos∠BPC的值最小,连接OB,则∠BON=2∠BPN=∠BPC,∵OB=OP=4﹣OQ,在Rt△BOQ中,根据勾股定理得:OQ2+62=(4﹣OQ)2,解得:OQ=,∴OB=,∴cos∠BPC=cos∠BOQ==,则此时cos∠BPC的值为.【点评】此题属于四边形综合题,涉及的知识有:勾股定理,矩形的判定与性质,对称的性质,圆的切线的判定与性质,以及锐角三角函数定义,熟练掌握定理及性质是解本题的关键.例7、(10分)(2014年陕西省)已知抛物线C:y=﹣x2+bx+c经过A(﹣3,0)和B(0,3)两点,将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.(1)求抛物线C的表达式;(2)求点M的坐标;(3)将抛物线C平移到C′,抛物线C′的顶点记为M′,它的对称轴与x 轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?【考点】二次函数图象与几何变换;二次函数的性质;待定系数法求二次函数解析式;平行四边形的性质.菁优网版权所有【分析】(1)直接把A(﹣3,0)和B(0,3)两点代入抛物线y=﹣x2+bx+c,求出b,c的值即可;(2)根据(1)中抛物线的解析式可得出其顶点坐标;(3)根据平行四边形的定义,可知有四种情形符合条件,如解答图所示.需要分类讨论.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣3,0)和B(0,3)两点,∴,解得,故此抛物线的解析式为:y=﹣x2﹣2x+3;(2)∵由(1)知抛物线的解析式为:y=﹣x2﹣2x+3,∴当x=﹣=﹣=﹣1时,y=4,xKb om∴M(﹣1,4).(3)由题意,以点M、N、M′、N′为顶点的平行四边形的边MN的对边只能是M′N′,∴MN∥M′N′且MN=M′N′.∴MN?NN′=16,∴NN′=4.i)当M、N、M′、N′为顶点的平行四边形是?MNN′M′时,将抛物线C向左或向右平移4个单位可得符合条件的抛物线C′;ii)当M、N、M′、N′为顶点的平行四边形是?MNM′N′时,将抛物线C先向左或向右平移4个单位,再向下平移8个单位,可得符合条件的抛物线C′.∴上述的四种平移,均可得到符合条件的抛物线C′.【点评】本题考查了抛物线的平移变换、平行四边形的性质、待定系数法及二次函数的图象与性质等知识点.第(3)问需要分类讨论,避免漏解.例8、(12分)(2014?陕西)问题探究(1)如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个等腰三角形△APD,并求出此时BP的长;(2)如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F 分别为边AB、AC的中点,当AD=6时,BC边上存在一点Q,使∠EQF=90°,求此时BQ的长;问题解决(3)有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安装监控装置,用来监视边AB,现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使∠AMB=60°?若存在,请求出符合条件的DM的长,若不存在,请说明理由.【考点】圆的综合题;全等三角形的判定与性质;等边三角形的性质;勾股定理;三角形中位线定理;矩形的性质;正方形的判定与性质;直线与圆的位置关系;特殊角的三角函数值.菁优网版权所有【专题】压轴题;存在型.【分析】(1)由于△PAD是等腰三角形,底边不定,需三种情况讨论,运用三角形全等、矩形的性质、勾股定理等知识即可解决问题.(2)以EF为直径作⊙O,易证⊙O与BC相切,从而得到符合条件的点Q唯一,然后通过添加辅助线,借助于正方形、特殊角的三角函数值等知识即可求出BQ长.(3)要满足∠AMB=60°,可构造以AB为边的等边三角形的外接圆,该圆与线段CD的交点就是满足条件的点,然后借助于等边三角形的性质、特殊角的三角函数值等知识,就可算出符合条件的DM长.【解答】解:(1)①作AD的垂直平分线交BC于点P,如图①,则PA=PD.∴△PAD是等腰三角形.∵四边形ABCD是矩形,∴AB=DC,∠B=∠C=90°.∵PA=PD,AB=DC,∴Rt△ABP≌Rt△DCP(HL).∴BP=CP.∵BC=4,∴BP=CP=2.②以点D为圆心,AD为半径画弧,交BC于点P′,如图①,.则DA=DP′.∴△P′AD是等腰三角形.∵四边形ABCD是矩形,∴AD=BC,AB=DC,∠C=90°.∵AB=3,BC=4,∴DC=3,DP′=4.∴CP′==.∴BP′=4﹣.③点A为圆心,AD为半径画弧,交BC于点P″,如图①,则AD=AP″.∴△P″AD是等腰三角形.同理可得:BP″=.综上所述:在等腰三角形△ADP中,若PA=PD,则BP=2;若DP=DA,则BP=4﹣;若AP=AD,则BP=.(2)∵E、F分别为边AB、AC的中点,∴EF∥BC,EF=BC.∵BC=12,∴EF=6.以EF为直径作⊙O,过点O作OQ⊥BC,垂足为Q,连接EQ、FQ,如图②.∵AD⊥BC,AD=6,∴EF与BC之间的距离为3.∴OQ=3∴OQ=OE=3.∴⊙O与BC相切,切点为Q.∵EF为⊙O的直径,∴∠EQF=90°.过点E作EG⊥BC,垂足为G,如图②.∵EG⊥BC,OQ⊥BC,∴EG∥OQ.∵EO∥GQ,EG∥OQ,∠EGQ=90°,OE=OQ,∴四边形OEGQ是正方形.∴GQ=EO=3,EG=OQ=3.∵∠B=60°,∠EGB=90°,EG=3,∴BG=.∴BQ=GQ+BG=3+.∴当∠EQF=90°时,BQ的长为3+.(3)在线段CD上存在点M,使∠AMB=60°.理由如下:以AB为边,在AB的右侧作等边三角形ABG,作GP⊥AB,垂足为P,作AK⊥BG,垂足为K.设GP与AK交于点O,以点O为圆心,OA为半径作⊙O,过点O作OH⊥CD,垂足为H,如图③.则⊙O是△ABG的外接圆,∵△ABG是等边三角形,GP⊥AB,∴AP=PB=AB.∵AB=270,∴AP=135.∵ED=285,∴OH=285﹣135=150.∵△ABG是等边三角形,AK⊥BG,∴∠BAK=∠GAK=30°.∴OP=AP?tan30°=135×=45.∴OA=2OP=90.∴OH<OA.∴⊙O与CD相交,设交点为M,连接MA、MB,如图③.∴∠AMB=∠AGB=60°,OM=OA=90..∵OH⊥CD,OH=150,OM=90,∴HM===30.∵AE=400,OP=45,∴DH=400﹣45.若点M在点H的左边,则DM=DH+HM=400﹣45+30.∵400﹣45+30>340,∴DM>CD.∴点M不在线段CD上,应舍去.若点M在点H的右边,则DM=DH﹣HM=400﹣45﹣30.∵400﹣45﹣30<340,∴DM<CD.∴点M在线段CD上.综上所述:在线段CD上存在唯一的点M,使∠AMB=60°,此时DM的长为(400﹣45﹣30)米.X|k | B| 1 . c |O |m【点评】本题考查了垂直平分线的性质、矩形的性质、等边三角形的性质、正方形的判定与性质、直线与圆的位置关系、圆周角定理、三角形的中位线定理、全等三角形的判定与性质、勾股定理、特殊角的三角函数值等知识,考查了操作、探究等能力,综合性非常强.而构造等边三角形及其外接圆是解决本题的关键.三、三角函数易错点解析三角函数是初中数学的重要内容,三角函数是学生在初中阶段第一次接触角函数,这部分知识的学习对于学生来说有一定的难度,下面就三角函数教学中容易出现的几种“错误”进行分析:1.对应关系混淆【1】如图9,先进村准备在坡角为α的山坡上栽树,要求相邻两树之间的图9水平距离为a 米,那么这两树在坡面上的距离AB 为 ( )A. a a cos 米B.αcos a 米 C. a a sin 米 D. αsin a 米 解析:分别过点B ,A 作平行水平面的直线和垂直于水平面的直线相交于点C 。
锐角三角函数及其运用复习考点攻略考点一 锐角三角函数1. 锐角三角函数的定义:在Rt △ABC 中.∠C =90°.AB =c .BC =a .AC =b .正弦:sin A =∠的对边=斜边A ac ;余弦:cos A =∠的邻边=斜边A bc;正切:tanA =∠的对边=邻边A ab.【注意】根据定义求三角函数值时.一定要根据题目图形来理解.严格按照三角函数的定义求解.有时需要通过辅助线来构造直角三角形.2【例2】A .BCD .1【答案】C 【解析】把sin45°=代入原式得:原式=2×.故选C . 考点三 解直角三角形1.在直角三角形中.求直角三角形所有未知元素的过程叫做解直角三角形. 2.解直角三角形的常用关系: 在Rt △ABC 中.∠C =90°.则: (1)三边关系:a 2+b 2=c 2; (2)两锐角关系:∠A +∠B =90°; (3)边与角关系:sin A =cos B =a c .cos A =sin B =b c .tan A =ab; (4)sin 2A +cos 2A =1.3.科学选择解直角三角形的方法口诀: 已知斜边求直边.正弦、余弦很方便; 已知直边求直边.理所当然用正切; 已知两边求一边.勾股定理最方便; 已知两边求一角.函数关系要记牢; 已知锐角求锐角.互余关系不能少; 已知直边求斜边.用除还需正余弦.【例3】如图.我市在建高铁的某段路基横断面为梯形ABCD .DC ∥AB ,BC 长为6米.坡角β为45°.AD 的坡角α为30°.则AD 的长为 ________ 米 (结果保留根号)2sin 222【答案】62【解析】解:过C 作CE ⊥AB 于E.DF ⊥AB 于F.可得矩形CEFD 和Rt △CEB 与Rt △DFA. ∵BC=6.∴CE=2sin 456322BC ︒=⨯=.∴DF=CE=32.∴62sin 30DF AD ==︒.故答案为:62.【例4】如图.大海中有A 和B 两个岛屿.为测量它们之间的距离.在海岸线PQ 上点E 处测得74AEP =︒∠.30BEQ =︒∠;在点F 处测得60AFP =︒∠.60BFQ =︒∠.1km EF =.⑴ 判断AB 、AE 的数量关系.并说明理由⑵ 求两个岛屿A 和B 之间的距离(结果精确到0.1km ).(参考数据:3 1.73≈. sin740.96︒≈.cos740.28︒≈.tan74 3.49︒≈.sin760.97︒≈.cos760.24︒≈)【答案】(1)见解析;(2)3.6km【解析】(1)相等.证明:∵30BEQ =︒∠.60BFQ =︒∠.∴30EBF =︒∠.EF BF =.又∵60AFP =︒∠.∴60BFA =︒∠.在AEF △与ABF △中.EF BF =.AFE AFB =∠∠.AF AF =. ∴AEF ABF △≌∠.∴AB AE =. (2)作AH PQ ⊥.垂足为H .设AE x =.则sin74AH x =︒.cos74HE x =︒.cos741HF x =︒+.Rt AHF △中.tan60AH HF =⋅︒.∴()cos74cos741tan 60x x ︒=︒+⋅︒.即()0.960.281 1.73x x =+⨯. ∴ 3.6x ≈.即 3.6km AB ≈.考点四 锐角三角函数的应用1.仰角和俯角:仰角:在视线与水平线所成的角中.视线在水平线上方的角叫做仰角. 俯角:在视线与水平线所成的角中.视线在水平线下方的角叫做俯角. 2.坡度和坡角坡度:坡面的铅直高度h 和水平宽度l 的比叫做坡面的坡度(或坡比).记作i =h l. 坡角:坡面与水平面的夹角叫做坡角.记作α.i =tan α. 坡度越大.α角越大.坡面越陡. 3.方向角(或方位角)指北或指南方向线与目标方向线所成的小于90°的水平角叫做方向角.4.解直角三角形中“双直角三角形”的基本模型:5.解直角三角形实际应用的一般步骤(1)弄清题中名词、术语.根据题意画出图形.建立数学模型;(2)将条件转化为几何图形中的边、角或它们之间的关系.把实际问题转化为解直角三角形问题;(3)选择合适的边角关系式.使运算简便、准确;(4)得出数学问题的答案并检验答案是否符合实际意义.从而得到问题的解.6.解直角三角形应用题应注意的问题:(1)分析题意.根据已知条件画出它的平面或截面示意图.分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;(2)找出要求解的直角三角形.有些图形虽然不是直角三角形.但可添加适当的辅助线.把它们分割成一些直角三角形和矩形(包括正方形);(3)根据已知条件.选择合适的边角关系式解直角三角形;(4)按照题目中已知数据的精确度进行近似计算.检验是否符合实际.并按题目要求的精确度取近似值.注明单位.【例5】如图.一名滑雪爱好者先从山脚下A处沿登山步道走到点B处.再沿索道乘坐缆车到达顶部C.已知在点A处观测点C.得仰角为35°.且A.B的水平距离AE=1000米.索道BC 的坡度i=1:1.长度为2600米.求山的高度(即点C到AE的距离)(参考数据:sin35°≈0.57.cos35°≈0.82.tan35°≈0.70.≈1.41.结果保留整数)【答案】1983米【解析】:如图.作CD⊥AE于点D.BF⊥CD于点F.又∵BE⊥AD.∴四边形BEDF是矩形.在Rt△BCF中.∵BC的坡度i=1:1.∴∠CBF=45°.∵BC=2600米.∴米.∴米.∵A.B的水平距离AE=1000米.∴米.∵∠CAD=35°.∴(米).答:山高CD约为1983米.【例6】如图.一艘海轮位于灯塔P的南偏东30°方向.距离灯塔100海里的A处.它计划沿正北方向航行.去往位于灯塔P的北偏东45°方向上的B处.(1)问B处距离灯塔P有多远?(结果精确到0.1海里)(2)假设有一圆形暗礁区域.它的圆心位于射线PB上.距离灯塔150海里的点O处.圆形暗礁区域的半径为60海里.进入这个区域.就有触礁的危险.请判断海轮到达B处是否有触礁的危险?如果海伦从B处继续向正北方向航行.是否有触礁的危险?并说明理由.(参考数据:≈1.414.≈1.732)【答案】(1)71海里;(2)见解析【解析】解:(1)过点P作PD⊥AB于点D.依题意可知.P A=100.∠APD=60°.∠BPD=45°.∴∠A=30°.∴PD=50.在△PBD中.BD=PD=50.∴PB =50≈71.答:B 处距离灯塔P 约71海里.(2)依题意知:OP =150.OB =150﹣71=79>60. ∴海轮到达B 处没有触礁的危险.海伦从B 处继续向正北方向航行.有触礁的危险.第一部分 选择题一、选择题(本题有10小题.每题3分.共30分)1. 比萨斜塔是意大利的著名建筑.其示意图如图所示.设塔顶中心点为点B .塔身中心线AB 与垂直中心线AC 的夹角为A ∠.过点B 向垂直中心线AC 引垂线.垂足为点D .通过测量可得AB 、BD 、AD 的长度.利用测量所得的数据计算A ∠的三角函数值.进而可求A ∠的大小.下列关系式正确的是( )A .sin BDA AB= B .cos ABA AD=C .tan ADA BD=D .sin ADA AB=【答案】A【解析】由题可知.△ABD 是直角三角形.90BDA ∠=︒.sin BD A AB ∴=.cos AD A AB=,tan BDA AD =.∴选项B 、C 、D 都是错误的.故答案选A . 2. 如图.在ABC 中.∠C =90°.设∠A .∠B .∠C 所对的边分别为a .b .c .则( )A .c =b sinB B .b =c sin BC .a =b tan BD .b =c tan B【答案】B【解析】∵Rt ABC 中.90C ∠=︒.A ∠、B 、C ∠所对的边分别为a 、b 、c ∴sin bB c=.即sin b c B =.则A 选项不成立.B 选项成立 tan bB a=.即tan b a B =.则C 、D 选项均不成立故选:B . 3. 已知α是锐角.sin α=cos60°.则α等于( ) A .30° B .45°C .60°D .不能确定4. 若∠A 是锐角.且sinA= 3.则( )A. 0°<∠A<30°B. 30°<∠A<45°C. 45°<∠A<60°D. 60°<∠A<90° 【答案】 A【解析】∵sin0°=0.sinα= 13.sin30°= 12.又0< 13< 12.∴0°<α<30°. 故答案为:A .5. 点(-sin60°.cos60°)关于y 轴对称的点的坐标是( )A. (√32.12) B. (-√32.12) C. (-√32.-12) D. (- 12.- 32)【答案】 A 【解析】∵sin60°=√32.cos60°=12.∴(-sin60°.cos60°)=(-√32. 12).关于y 轴对称点的坐标是( √32.12).故答案为:A .6. 在Rt △ABC 中.∠C =90°.BC =5.AC =12.则sinB 的值是( )A .512B .125C .513D .1213【答案】D【解析】解:如图所示:∵∠C =90°.BC =5.AC =12.∴13AB =. ∴12sin 13AC B AB ==.故选:D .7. 如图.某停车场入口的栏杆AB.从水平位置绕点O 旋转到A′B′的位置.已知AO 的长为4米.若栏杆的旋转角∠AOA′=α.则栏杆A 端升高的高度为( ) A .米 B .4sinα米 C .米 D .4cosα米【答案】B【解析】 解:如答图.过点A′作A′C ⊥AB 于点C .在Rt △OCA′.sinα=.所以A′C =A′O ·sinα.由题意得A′O =AO =4.所以A′C =4sinα.因此本题选B .8. 菱形ABCD 的对角线AC =10cm.BD =6cm.那么tan为( )【解析】如图.由题意得.AO ⊥BO .AO =AC =5cm.BO =BD =3cm. 4sin α4cos αA CA O''2B1212则tan=tan ∠OBA .故选A.9. 如图.AB 是圆锥的母线.BC 为底面直径.已知BC =6 cm.圆锥的侧面积为15π cm 2 . 则sin∠ABC 的值为 ( )A.34B.35C.45 D. 53【答案】 C【解析】解:设圆锥的母线长为R.由题意得: 15π=π6R.解得:R=5. ∴圆锥的高为4. ∴.故答案为:C.10. 如图.四边形ABCD 是一张平行四边形纸片.其高2cm AG =.底边6cm BC .45B ∠=︒.沿虚线EF 将纸片剪成两个全等的梯形.若30BEF ∠=︒.则AF 的长为( )2B53AO BO ==A .1cm B.cm 3C.3)cm - D.(2-【答案】D【解析】如图所示.过点F 作FM BC ⊥交BC 于点M.∵AG BC ⊥.45B ∠=︒.AG=2.∴BG=FM=2.AF=GM.令AF=x. ∵两个梯形全等.∴AF=GM=EC=x.又∵30BEF ∠=︒.∴2=tan 30FMME =︒.∴ME =.又∵BC=6.∴26BC BG GM ME EC x x =+++=+++=.∴2x =-D .第二部分 填空题二、填空题(本题有6小题.每题4分.共24分)11..若tan (α–15°)= .则锐角α的度数是________.【答案】 75°【解析】【解答】由tan(α−15°)= √3.得 α−15°=60°. 解得α=75°. 故答案为:75°12.如图.在Rt △ABC 中.∠C =90°.BC =12.tan A =.则sin B =___________.125【答案】【解析】在Rt △ABC 中.∠C =90°.BC =12.tan A =.得.即. ∴AC =5.由勾股定理.得AB.所以sin B =. 故答案为:.13. 如图.A.B.C 是O上的三点.若OBC ∆是等边三角形.则cos A ∠=___________.【解析】解:∵△OBC 是等边三角形∴∠COB=60° ∴∠A=12COB ∠=30°∴cos cos30A ∠= 14. 如图是某商场营业大厅自动扶梯示意图.自动扶梯AB 的倾斜角为30.在自动扶梯下方地面C 处测得扶梯顶端B 的仰角为60︒.A 、C 之间的距离为4m . 则自动扶梯的垂直高度BD =_________m .(结果保留根号)【答案】【解析】∵∠BAC+∠ABC=∠BCD=60°.∠BAC=30°. ∴∠ABC=30°.∴∠ABC=∠BAC.∴BC=AC=4. 在Rt △BCD 中.BD=BCsin60°=4×2=故答案为: 513125125BC AC =12125AC =513AC AB =51315. 如图所示.在四边形ABCD 中.90B ∠=︒.2AB =.8CD =.连接AC .AC CD ⊥.若1sin 3ACB ∠=.则AD 长度是_________.【答案】10【解析】解:在Rt ABC 中.∵12,sin 3AB AB ACB AC =∠==.∴1263AC =÷=.在Rt ADC 中.AD ==10=.故答案为:10.16. 如图.某校教学楼后面紧邻着一个山坡.坡上面是一块平地.//,BC AD BE AD ⊥.斜坡AB 长26m .斜坡AB 的坡比为12∶5.为了减缓坡面.防止山体滑坡.学校决定对该斜坡进行改造.经地质人员勘测.当坡角不超过50°时.可确保山体不滑坡.如果改造时保持坡脚A 不动.则坡顶B 沿BC 至少向右移________m 时.才能确保山体不滑坡.(取tan50 1.2︒=)【答案】10【解析】解:如图.设点B 沿BC 向右移动至点H.使得∠HAD=50°.过点H 作HF ⊥AD 于点F.∵AB=26.斜坡AB 的坡比为12∶5.则设BE=12a.AE=5a.∴()()22212526a a +=.解得:a=2.∴BE=24.AE=10.∴HF=BE=24.∵∠HAF=50°.则24tan50 1.2HFAF AF︒===.解得:AF=20.∴BH=EF=20-10=10.故坡顶B沿BC至少向右移10m时.才能确保山体不滑坡.故答案为:10.第三部分解答题二、解答题(本题有7小题.共46分)17. 如图.在ABC中.90,tanC A ABC∠==∠的平分线BD交AC于点.D CD=AB的长?【答案】6【解析】解:在Rt ABC中.90,3C tanA∠==30,60,A ABC∴∠=∠=BD是ABC∠的平分线.30,CBD ABD∴∠=∠=︒又3,CD=330CDBCtan∴==.在Rt ABC中.90,30∠=︒∠=︒C A.630BCABsin∴==︒.故答案为:6.18. 已知:如图.在菱形ABCD中.AE⊥BC.垂足为E.对角线BD=8.tan∠CBD=.(1)求边AB的长;(2)求cos∠BAE的值.12【答案】(1)2√5 ;(2)35【解析】(1)连接AC .AC 与BD 相交于点O .∵四边形ABCD 是菱形.∴AC ⊥BD .BO =BD =4. ∵Rt △BOC 中.tan ∠CBD ==.∴OC =2. ∴AB =BC(2)∵AE ⊥BC.∴S 菱形ABCD =BC ·AE=BD ·AC . ∵AC=2OC =4.∴=×8×4.∴AE =.∴BE. ∴cos ∠ABE ==.19. 如图.小明利用学到的数学知识测量大桥主架在水面以上的高度AB .在观测点C 处测得大桥主架顶端A 的仰角为30°.测得大桥主架与水面交汇点B 的俯角为14°.观测点与大桥主架的水平距离CM 为60米.且AB 垂直于桥面.(点,,,A B C M 在同一平面内)12OC OB 1212125BE AB 35(1)求大桥主架在桥面以上的高度AM ;(结果保留根号)(2)求大桥主架在水面以上的高度AB .(结果精确到1米)(参考数据sin140.24,cos140.97,tan14 1.73︒︒︒≈≈≈≈)【答案】(1)大桥主架在桥面以上的高度AM 为(2)大桥主架在水面以上的高度AB 约为50米.【解析】解:(1)AB 垂直于桥面90︒∴∠=∠=AMC BMC在Rt AMC △中.60,30︒=∠=CM ACMtan ∠=AM ACM CM tan 30603︒∴=⋅=⨯=AM CM (米)答:大桥主架在桥面以上的高度AM 为(2)在Rt BMC △中.60,14︒=∠=CM BCMtan ∠=MBBCM CMtan14600.2515︒∴=⋅=⨯≈MB CM=+AB AM MB 1550∴≈+≈AB (米)答:大桥主架在水面以上的高度AB 约为50米.20. 如图.某船向正东航行.在A 处望见海岛C 在北偏东60°.前进6海里到B 点.此时测得海岛C 在北偏东45°.已知在该岛周围6海里内有暗礁.问船继续向正东航行.有触礁的危险吗?【答案】见解析【解析】 解:如图.过点C 作CD ⊥AB 于点D.∵∠CAD=90°-60°=30°.∠CBD=90°-45°=45°.∴BD=CD.设CD=x.∴AD=AB+6=6+x.在Rt△CAD中.tan∠CAD=CD AD.∴√33= xx+6.3x=6 √3+ √3x.(3-√3)x=6 √3.解得x=3 √3+3>6.答:若船继续向东航行.无触礁危险。
锐角三角函数在日常生活中有哪些用途锐角三角函数在日常生活中的用途那可真是不少!咱们先来说说建筑方面。
就拿盖房子来说吧,建筑工人师傅们在搭建脚手架的时候,可就得用到锐角三角函数的知识。
我之前亲眼见过一个建筑工人师傅,他站在地上,拿着测量工具,眼睛专注地盯着上面的架子,嘴里还念念有词。
我好奇凑过去一听,原来他在计算架子与地面形成的角度,用的就是锐角三角函数。
他跟我说,如果角度算不对,这脚手架搭得不稳当,那可就危险啦!再说说装修的时候,要安装一个斜着的窗户。
这时候就得算出窗户与墙面的夹角,才能保证窗户安装得既美观又实用。
工人师傅们会拿着尺子和量角器,在那比划来比划去,其实就是在运用锐角三角函数的原理呢。
还有测量山的高度。
有一次我去爬山,碰到一群搞测量的人。
他们站在山脚下,拿着各种仪器。
其中一个人拿着望远镜看向山顶,另外几个人在本子上记录着数据。
我好奇地问他们在干啥,他们说在测量这座山的高度。
原来他们是通过测量山脚下到山顶的角度,还有他们与山之间的距离,利用锐角三角函数来算出山的高度。
这可真神奇,我当时就在想,这小小的锐角三角函数居然有这么大的本事!在航海中,锐角三角函数也起着重要作用。
船长要确定船只的位置和航向,就得依靠对角度的测量和计算。
比如说,通过测量灯塔与船只的夹角,结合已知的距离,就能准确判断出船只的位置,避免触礁或者迷路。
在日常生活里,如果你想在墙上挂一幅画,要挂得正又好看,也得用到锐角三角函数。
你得先测量画框与墙面的角度,还有画框的长度和高度,这样才能确定钉子应该钉在哪个位置,画才能挂得稳稳当当,不会歪歪斜斜的。
还有啊,比如你想在院子里搭一个滑梯给小朋友玩。
滑梯的坡度太陡,小朋友滑下来速度太快不安全;坡度太缓,又滑得不痛快。
这时候就得通过锐角三角函数来计算出最合适的角度,让小朋友既能玩得开心又能保证安全。
甚至在拍照的时候,有时候为了拍出特别的效果,摄影师也会考虑角度的问题。
通过计算拍摄角度和距离,来达到想要的构图和视觉效果。
锐角三角函数的简单应用(方位角)(2)【知识要点】1.认清俯角与仰角3. 解决此类问题的关键是将一般三角形问题,通过添加辅助线转化直角三角形问题。
【典型例题】如图,AB 和CD 是同一地面上的两座相距36米的楼房,在楼AB 的楼顶A 点测得楼CD 的楼顶C 的仰角为45°,楼底D 的俯角为30°.求楼CD 的高。
若已知楼CD 高为30米,其他条件不变,你能求出两楼之间的距离BD 吗?2.如图,飞机在距地面9km 高空上飞行,先在A 处测得正前方某小岛C 的俯角为30°,飞行一段距离后,在B 处测得该小岛的俯角为60°.求飞机的飞行距离。
30° 45° 45° 北东西 O 南 2.方位角: 如图,从O 点出发的视线与铅垂线 所成的锐角,叫做观测的方位角3.如图,在一笔直的海岸线上有A,B两个观测站,A在B的正西方向,AB=2km,从A测得船C在北偏东60°的方向,从B测得船C在北偏西45°的方向.求船C离海岸线的距离.4.气象局发出预报:如图, 沙尘暴在A市的正东方向400km的B处以40km/h的速度向北偏西600的方向转移,距沙尘暴中心300km的范围内将受到影响,A市是否受到这次沙尘暴的影响?如果受到影响,将持续多长时间?5.如图, 海上有一灯塔P, 在它周围3海里处有暗礁. 一艘客轮以9海里/时的速度由西向东航行, 行至A点处测得P在它的北偏东60度的方向, 继续行驶20分钟后, 到达B处又测得灯塔P在它的北偏东45度方向. 问客轮不改变方向继续前进有无触礁的危险?课后练习:【基础演练】1.如图,一座塔的高度TC=120m ,甲、乙两人分别站在塔的西、东两侧的点A 、B 处,测得塔顶的仰角分别为28º、15º。
求A 、B 两点间的距离_________(精确到0.1米) (参考数据:tan 280.53,tan150.27︒≈︒≈)2.如图所示,小华同学在距离某建筑物6米的点A 处测得广告牌B 点、C 点的仰角分别为60°和45°,则广告牌的高度BC 为_____________米(结果保留根号).3.如图,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东60°方向上,在A 处向东500米的B 处,测得海中灯塔P 在北偏东30°方向上,则灯塔P 到环海路的距离PC= 米(结果保留根号).题1图 题2图 题3图 4.如图,在某广场上空飘着一只汽球P ,A 、B 是地面上相距90米的两点,它们分别在汽球的正西和正东,测得仰角∠PAB=45o ,仰角∠PBA=30o ,求汽球P 的高度。
运用锐角三角函数的定义解题锐角三角形函数是初中几何的重要内容,是解直角三角形的基础,利用锐角三角函数定义解题,往往使计算方便简洁.一、求锐角三角函数值例1 已知∠A 为锐角,sin A =513,求其他三角函数值. 解析:设∠A 为某直角三角形的锐角,其对边a 为5k ,斜边c 为13k (k >0),则∠A 的邻边b 为12k .根据定义,得c os A = b c = 12k 13k = 1213, t a n A = a b = 5k 12k = 512,c ot A = 125. 二、求条件代数式的值例2 已知∠A 为锐角,t a n A =2.求sinA+2cosA 3sinA-cosA的值. 解析:设∠A 为Rt△ABC 的一锐角,其对边为a ,斜边为c ,邻边为b .∵t a n A = a b=2,∴a =2b . ∴c = 5 b ∴sin A = a c ,c os A = b c. ∴代入原式中可得结果为.三、证明三角函数值例3 在ABC △中,A B C ∠,∠,∠的对边为a b c ,,,且::3:4:5a b c =.试说明7sin sin 5A B +=. 错解:设345a k b k c k ===,,, 则3344sin sin 5555a kb k A Bc k c k ======,. 所以347sin sin 555A B +=+=. 分析:本题中没有说明90C =∠,而直接应用正弦、余弦函数的定义是错误的,应先说明ABC △为直角三角形,且90C =∠后才能用定义.正解:设345(0)a k b k c k k ===>,,,因为222222(3)(4)25a b k k k c +=+==,所以ABC △是以c 为斜边的直角三角形. 所以3344sin sin 5555a kb k A Bc k c k ======, . 所以347sin sin 555A B +=+=. 四、比较三角函数值的大小例4 已知α为锐角,比较sinα与t a nα的大小解析:设α为Rt△ABC 的一锐角,其对边为a ,邻边为b ,斜边为c .∵sinα= a c ,t a nα= a b, 又∵c >b >0,∴a c < a b, 即sinα<t a nα.五、证明相关关系式例5 在Rt△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,求证:b 3sin A +a 3sin B =abc .证明:在Rt△ABC 中,∵∠A 、∠B 、∠C 的对边分别为a 、b 、c ,∴sin A = a c ,sin B = b c,a 2+b 2=c 2, ∴b 3sin A +a 3sin B = b 3·a c + a 3 b c =ab 3+a 3b c = ab(b 2+a 2)c = ab ·c 3c =abc . 六、求非特殊角的三角函数值例6 求tan15°的值.解:如右图,作Rt△ABC ,使∠C =90°,∠B =30°,延长CB 到D ,使B D=BA ,则∠D=15°,设AC =k ,则AB =2k ,BC = 3 k .∴C D=(2+ 3 )k .∴tan∠D = AC CD∴tan15°=2- 3A。
1.5 三角函数的应用
一、学习目标
能够把实际问题转化为数学问题,能够利用三角函数的进行计算,并能对结果的意义进行说明.
二、学习重点和难点
重点:进一步体会三角函数在解决问题过程中的作用,发展学生数学应用意识和解决问题的能力.
难点:灵活将实际问题转化为数学问题,建立数学模型,并选择适当三角函数来解决.
三、学习过程:
(一)情境引入:
小明想测量塔CD的高度.他在A处仰望塔顶,测得仰角为30°,再往塔的方向前进50m至B 处,测得仰角为60°,那么该塔有多高?(小明的身高忽略不计,结果保留根号)
(二)合作探究:
如图,海中有一个小岛A,该岛四周10海里内有暗礁.今有货轮由西向东航行,开始在A 岛南偏西55°的B处,往东行驶20海里后,到达该岛的南偏西25°的C处,之后,货轮继续往东航行,你认为货轮继续向东航行途中会有触礁的危险吗?
四、随堂练习:
1. 某商场准备改善原有楼梯的安全性能,把倾斜角由400减至350,已知原楼梯长为4m,调整后的楼梯会加长多少?楼梯多占多长一段地面?(结果精确到0.01m)
2. 一灯柱AB 被一钢缆CD 固定.CD 与地面成40°夹角,且DB=5m.现再在CD 上方2m 处加固另一根钢缆ED,那么,钢缆ED 的长度为多少?(结果精确到0.01m) .
3.如图,水库大坝的截面是梯形ABCD,坝顶AD=6m,坡长CD=8m.坡底BC=30m, ∠ADC=135°.
(1)求坡角∠ABC 的大小;
(2)如果坝长100m,那么修建这个大坝共需多少
土石方(结果精确到0.01m 3 ) .
4.如图,燕尾槽的横截面是梯形ABCD ,其中AD ∥BC ,AB=DC ,燕尾角∠B=550,外口宽AD= 180mm ,燕尾槽深度是70mm ,求它的里口宽BC (结果精确到1mm ).
5.一艘货轮以36kn 的速度在海面上航行,当它行驶到A 处时,发现它的东北方向有一灯塔B ,货轮继续向北航行40min 后到达C 处,发现灯塔B 在它北偏东750方向,求此时货轮与灯塔B 的距离(结果精确到0.01 n mile ).
6.如图,在小山的西侧A 处有一热气球,以30米/分钟的速度沿着与垂直方向所成夹角为30°的方向升空,40分钟后到达C 处,这时热气球上的人发现,在A 处的正东方向有一处着火点B ,十分钟后,在D 处测得着火点B 的俯角为15°,求热气球升空点A 与着火点B 的距离。
(结果保留根号)
(参考数据:42615sin -=
︒,4
2615cos +=︒,3215tan -=︒)。
7.我市准备在相距2千米的A 、B 两工厂间修一条笔直的公路,但在B 地北偏东60°方向、A 地北偏西45°方向的C 处,有一个半径为0.6千米的住宅小区(见下图),问修筑公路时,这个小区是否有居民需要搬迁?(参考数据:2≈1.414,3≈1.732)。