医学影像物理学 PPT课件
- 格式:ppt
- 大小:713.01 KB
- 文档页数:21
医学影像物理学课件汇报人:日期:CATALOGUE 目录•医学影像物理学概述•X射线成像原理•MRI成像原理•CT成像原理•医学影像物理学的未来发展01医学影像物理学概述医学影像物理学是物理学与医学影像技术相结合的交叉学科,主要研究医学影像的生成、传输、存储、处理和显示等过程中的物理规律和现象。
医学影像物理学涉及的内容广泛,包括X射线、超声、核磁共振、光成像等医学影像技术的物理原理和应用。
医学影像物理学的定义医学影像物理学的发展经历了多个阶段,最早可以追溯到19世纪末的X射线技术,之后相继出现了超声、核磁共振、光成像等新的医学影像技术。
近年来,随着计算机技术的飞速发展,医学影像物理学在图像处理、图像重建、定量分析等方面也取得了很大的进展。
医学影像物理学的发展历程医学影像物理学在医学领域有着广泛的应用,包括诊断、治疗、手术导航、放射治疗等方面。
通过研究医学影像的物理特性,医学影像物理学可以帮助医生更准确地诊断疾病,提高治疗效果,同时也可以为医学研究和教学提供支持。
医学影像物理学在医学领域的应用02X射线成像原理由电子枪、阴阳极和聚焦系统组成,当阴极被加热时,电子从阴极逸出,在电场的作用下飞向阳极。
X射线产生原理阴极射线管产生高电压,使阴极射线管内的气体被电离,电子在强电场中加速,以高能量撞击金属靶,产生X射线。
高压发生器去除散射的X射线,减少背景干扰。
滤光片康普顿散射部分光子与原子核发生弹性碰撞,传递部分能量给原子核,使其发生微小移动,这种散射现象称为康普顿散射。
光电效应当X射线照射到物质表面时,光子与物质原子中的电子相互作用,电子被击出,光子能量传递给电子,使原子电离。
光致电离X射线使气体分子电离,产生正负离子。
X射线与物质的相互作用X射线探测器的工作原理闪烁计数器由闪烁晶体、光电倍增管和前置放大器组成,闪烁晶体吸收X射线能量后发出荧光,光电倍增管将荧光转换为电信号,经前置放大器放大后输出。
半导体探测器利用PN结势垒的伏安特性测量X射线能量,具有高灵敏度、低噪声等优点。