高中数学之计数原理
- 格式:docx
- 大小:95.32 KB
- 文档页数:9
第1课时组合与组合数公式知识点组合的定义从n个不同元素中取出m(m≤n)个元素□01合成一组,叫做从n个不同元素中取出m个元素的一个组合.知识点组合与组合数公式组合的定义包含两个基本内容:一是“取出元素”;二是“合成一组”,表示与元素的顺序无关,排列与组合的相同点是从n 个不同元素中任取m 个元素,不同点是组合是“不管元素的顺序合成一组”,而排列是要求元素按照一定的顺序排成一列.因此区分某一问题是组合还是排列,关键是看取出的元素有无顺序.组合数的两个性质,性质1反映了组合数的对称性,在m >n2时,通常不直接计算C mn 而改为C n -m n ,对于性质2,C m n +1=C m n +C m -1n 要会正用、逆用、变形用.1.判一判(正确的打“√”,错误的打“×”)(1)从a ,b ,c 三个不同的元素中任取两个元素的一个组合是C 23.( ) (2)从1,3,5,7中任取两个数相乘可得C 24个积.( ) (3)1,2,3与3,2,1是同一个组合.( ) (4)C 35=5×4×3=60.( ) 答案 (1)× (2)√ (3)√ (4)×2.做一做(1)从6名学生中选出3名学生参加数学竞赛的不同选法种数是________. (2)C 1820=________. (3)C 399+C 299=________.答案 (1)20 (2)190 (3)161700解析 (1)由组合数公式知C 36=6×5×43×2×1=20.(2)C 1820=C 220=20×192×1=190. (3)C 399+C 299=C 3100=100×99×983×2×1=161700.探究1 组合的有关概念 例1 给出下列问题:(1)从a ,b ,c ,d 四名学生中选2名学生完成一件工作,有多少种不同的选法? (2)从a ,b ,c ,d 四名学生中选2名学生完成两件不同的工作,有多少种不同的选法? (3)a ,b ,c ,d 四支足球队之间进行单循环比赛,共需赛多少场? (4)a ,b ,c ,d 四支足球队争夺冠亚军,有多少种不同的结果?(5)某人射击8枪,命中4枪,且命中的4枪均为2枪连中,不同的结果有多少种? (6)某人射击8枪,命中4枪,且命中的4枪中恰有3枪连中,不同的结果有多少种? 在上述问题中,哪些是组合问题?哪些是排列问题?[解] (1)2名学生完成的是同一件工作,没有顺序,是组合问题. (2)2名学生完成两件不同的工作,有顺序,是排列问题.(3)单循环比赛要求每两支球队之间只打一场比赛,没有顺序,是组合问题. (4)冠亚军是有顺序的,是排列问题.(5)命中的4枪均为2枪连中,为相同的元素,没有顺序,是组合问题. (6)命中的4枪中恰有3枪连中,即连中3枪和单中1枪,有顺序,是排列问题. 拓展提升判断是否为组合问题,关键是判断问题是否与顺序有关,可以结合条件理解,也可以选择一个结果,交换这个结果中两个元素先后顺序,看是否对结果产生影响,若无新变化,则是组合问题.总之,与顺序有关是排列问题,若与顺序无关,则是组合问题.[跟踪训练1] 判断下列问题是排列问题,还是组合问题.(1)从集合A ={-1,1,10,8,6,4}中任取两个数相加,得到的和共有多少个? (2)从集合A ={-1,1,10,8,6,4}中任取两个数相除,得到的商共有多少个?(3)从a ,b ,c ,d 这四名同学中任取两名同学去参加某一活动,共有多少种不同的选法? (4)四个人互发一个电子邮件,共写了多少个电子邮件?解 (1)从集合A 中取出两个数后,改变两个数的顺序,其和不变.因此此问题,只与取出的元素有关,与元素的顺序无关,故是组合问题.(2)从集合A 中取出两个数相除,若改变其分子、分母的位置,其结果就不同,因此其商的值与元素的顺序有关,是排列问题.(3)由于从4名同学中取出的两名同学参加的同一项活动,没有顺序,因此是组合问题. (4)四人互发电子邮件,由于发信人与收信人是有区别的,与顺序有关,是排列问题. 探究2 组合数及组合数性质的运用 例2 (1)计算:C 410-C 37·A 33; (2)已知1C m 5-1C m 6=710C m 7,求C m8;(3)求C 38-n3n +C 3n21+n 的值; (4)证明:m C m n =n C m -1n -1. [解] (1)原式=C 410-A 37=10×9×8×74×3×2×1-7×6×5=210-210=0.(2)原方程可化为m !(5-m )!5!-m !(6-m )!6!=7×(7-m )!m !10×7!,即m !(5-m )!5!-m !(6-m )(5-m )!6×5!=7×m !(7-m )(6-m )(5-m )!10×7×6×5!,∴1-6-m 6=(7-m )(6-m )60,即m 2-23m +42=0,解得m =2或21(不符合题意,舍去).∴C m 8=C 28=28.(3)∵⎩⎪⎨⎪⎧38-n ≤3n ,3n ≤21+n ,∴9.5≤n ≤10.5,∵n ∈N *,∴n =10, ∴C 38-n3n +C 3n21+n =C 2830+C 3031=30!28!·2!+31!30!·1!=466.(4)证明:m C mn =m ·n !m !(n -m )!=n ·(n -1)!(m -1)!(n -m )!=n ·(n -1)!(m -1)!(n -m )!=n C m -1n -1.拓展提升(1)像排列数公式一样,公式C mn=n (n -1)(n -2)…(n -m +1)m !一般用于计算;而公式C m n =n !m !(n -m )!及C mn =A mn A m m 一般用于证明、解方程(不等式)等.(2)在解决与组合数有关的问题时,要注意隐含条件“m ≤n 且m ,n ∈N *”的运用.如本例(3).(3)要注意公式Am n =C m n A m m 的逆向运用,如本例(1)中可利用“C 37A 33=A 37”简化计算过程. (4)本例(4)所推导的结论“m C m n =n C m -1n -1”以及它的变形公式是非常重要的公式,应熟练掌握.[跟踪训练2] (1)①求值:C 5-n n +C 9-nn +1;②求证:C mn =m +1n -mC m +1n . (2)计算:①C 58+C 98100·C 77; ②C 05+C 15+C 25+C 35+C 45+C 55; ③C n n +1·C n -1n .解 (1)①⎩⎪⎨⎪⎧5-n ≤n ,5-n ≥0,9-n ≤n +1,9-n ≥0,解得4≤n ≤5.又因为n ∈N *,所以n =4或n =5. 当n =4时,原式=C 14+C 55=5, 当n =5时,原式=C 05+C 46=16.②证明:因为C mn =n !m !(n -m )!,m +1n -m C m +1n =m +1(m +1)!·n !(n -m )(n -m -1)!=n !m !(n -m )!,所以C mn =m +1n -mC m +1n . (2)①原式=C 38+C 2100×1=8×7×63×2×1+100×992×1=56+4950=5006.②原式=2(C 05+C 15+C 25)=2(C 16+C 25)=2×⎝ ⎛⎭⎪⎫6+5×42×1=32. ③原式=C 1n +1·C 1n =(n +1)n =n 2+n . 探究3 简单的组合问题例3 现有10名教师,其中男教师6名,女教师4名. (1)从中选2名去参加会议,有多少种不同的选法?(2)从中选出2名男教师或2名女教师去外地学习,有多少种不同的选法? (3)从中选出男、女教师各2名去参加会议,有多少种不同的选法?[解] (1)从10名教师中选2名去参加会议的选法种数,就是从10个不同元素中取出2个元素的组合数,即有C 210=10×92×1=45种不同的选法. (2)可把问题分两类:第1类,选出2名男教师,有C 26种方法;第2类,选出2名女教师,有C 24种方法,即共有C 26+C 24=21种不同的选法.(3)从6名男教师中选2名的选法有C 26种,从4名女教师中选2名的选法有C 24种,根据分步乘法计数原理,共有C 26·C 24=6×52×1×4×32×1=90种不同的选法. 拓展提升解简单的组合应用题时,首先要判断它是不是组合问题,组合问题与排列问题的根本区别在于:排列问题与取出的元素之间的顺序有关,而组合问题与取出元素的顺序无关.其次要注意两个基本原理的运用,即分类与分步的灵活运用,在分类与分步时,一定要注意有无重复和遗漏.[跟踪训练3] 在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人参加市级培训.在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加; (3)甲、乙、丙三人不能参加; (4)甲、乙、丙三人只能有1人参加.解 (1)从中任取5人是组合问题,共有C 512=792种不同的选法.(2)甲、乙、丙三人必须参加,则只需要从另外9人中选2人,是组合问题,共有C 29=36种不同的选法.(3)甲、乙、丙三人不能参加,则只需从另外的9人中选5人,共有C59=126种不同的选法.(4)甲、乙、丙三人只能有1人参加,可分两步:先从甲、乙、丙中选1人,有C13=3种选法;再从另外9人中选4人,有C49种选法.共有C13C49=378种不同的选法.1.下列问题不是组合问题的是 ( )A.10个朋友聚会,每两人握手一次,一共握手多少次?B.平面上有2015个不同的点,它们中任意三点不共线,连接任意两点可以构成多少条线段?C.集合{a1,a2,a3,…,a n}的含有三个元素的子集有多少个?D.从高三(19)班的54名学生中选出2名学生分别参加校庆晚会的独唱、独舞节目,有多少种选法?答案 D解析组合问题与次序无关,排列问题与次序有关,D项中,选出的2名学生,如甲、乙,其中“甲参加独唱、乙参加独舞”与“乙参加独唱、甲参加独舞”是两个不同的选法,因此是排列问题,不是组合问题,选D.2.若C 7n +1-C 7n =C 8n ,则n 等于( ) A .12 B .13 C .14 D .15 答案 C解析 C 7n +1=C 7n +C 8n =C 8n +1,∴n +1=7+8,n =14,故选C. 3.把三张游园票分给10个人中的3人,分法有 ( ) A .A 310种 B .C 310种 C .C 310A 310种 D .30种答案 B解析 三张票没区别,从10人中选3人即可,即C 310,故选B. 4.若C 4n >C 6n ,则n 的集合是________. 答案 {6,7,8,9} 解析 ∵C 4n >C 6n ,∴⎩⎪⎨⎪⎧C 4n >C 6n ,n ≥6⇒⎩⎪⎨⎪⎧n !4!(n -4)!>n !6!(n -6)!,n ≥6⇒⎩⎪⎨⎪⎧n 2-9n -10<0,n ≥6⇒⎩⎪⎨⎪⎧-1<n <10,n ≥6.∵n ∈N *,∴n =6,7,8,9. ∴n 的集合为{6,7,8,9}.5.在6名内科医生和4名外科医生中,现要组成5人医疗小组送医下乡,依下列条件各有多少种选派方法?(1)有3名内科医生和2名外科医生; (2)既有内科医生,又有外科医生.解 (1)先选内科医生有C 36种选法,再选外科医生有C 24种选法,故有C 36C 24=120种选派方法.(2)既有内科医生,又有外科医生,正面思考应包括四种情况,内科医生去1人,2人,3人,4人,有C 16C 44+C 26C 34+C 36C 24+C 46C 14=246种选派方法.若从反面考虑,则有C 510-C 56=246种选派方法.。
轻松搞定摆列组合难题二十一种方法摆列合系生风趣,但型多,思路灵巧,所以解决摆列合,第一要真,弄清楚是摆列、合是摆列与合合;其次要抓住的本特色,采纳合理适合的方法来理。
复稳固1.分数原理 ( 加法原理 )达成一件事,有n 法,在第1法中有 m1种不一样的方法,在第 2 法中有m2种不一样的方法,⋯,在第n 法中有 m n种不一样的方法,那么达成件事共有:N m1m2L m n种不一样的方法.2.分步数原理(乘法原理)达成一件事,需要分红n 个步,做第1步有 m1种不一样的方法,做第 2 步有m2种不一样的方法,⋯,做第n 步有 m n种不一样的方法,那么达成件事共有:N m1m2L m n种不一样的方法.3.分数原理分步数原理区分数原理方法互相独立,任何一种方法都能够独立地达成件事。
分步数原理各步互相依存,每步中的方法达成事件的一个段,不可以达成整个事件.解决摆列合合性的一般程以下:1.真弄清要做什么事2.怎做才能达成所要做的事 , 即采纳分步是分 , 或是分步与分同行 , 确立分多少步及多少。
3.确立每一步或每一是摆列 ( 有序 ) 是合 ( 无序 ) , 元素数是多少及拿出多少个元素 .4.解决摆列合合性,常常与步交错,所以必掌握一些常用的解策略一 . 特别元素和特别地点先策略例 1. 由 0,1,2,3,4,5能够构成多少个没有重复数字五位奇数.解 : 因为末位和首位有特别要求 , 应当优先安排 , 免得不合要求的元素占了这两个地点 . 先排末位共有 C13而后排首位共有 C14C14A34C13最后排其余地点共有A43由分步计数原理得 C41C31 A43288地点剖析法和元素剖析法是解决摆列组合问题最常用也是最基本的方法, 若以元素剖析为主 , 需先安排特别元素 , 再办理其余元素 . 若以地点剖析为主 , 需先知足特别地点的要求, 再办理其余位置。
如有多个拘束条件,常常是考虑一个拘束条件的同时还要兼备其余条件练习题 :7 种不一样的花种在排成一列的花盆里, 若两种葵花不种在中间,也不种在两头的花盆里,问有多少不一样的种法?二 . 相邻元素捆绑策略例 2. 7人站成一排,此中甲乙相邻且丙丁相邻,共有多少种不一样的排法.解:可先将甲乙两元素捆绑成整体并当作一个复合元素,同时丙丁也当作一个复合元素,再与其余元素进行摆列,同时对相邻元素内部进行自排。
第1课时排列与排列数公式1.了解排列及排列数的意义.2.理解排列数公式的推导并应用.3.掌握排列数公式并会运用.1.排列的定义一般地,从n个不同的元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.2.排列数一般地,从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A m n表示.3.排列数公式A m n=n(n-1)(n-2)…(n-m+1),其中n,m∈N*,且m≤n.4.全排列与n的阶乘(1)n个不同元素全部取出的一个排列,叫做n个不同元素的一个全排列,在排列数公式中,当m=n时,即有A n n=n(n-1)(n-2)·…·3·2·1.(2)正整数1到n的连乘积,叫做n的阶乘,用n!表示,即有A n n=n!.5.排列数公式的阶乘形式A m n=n!(n-m)!(n≥m),规定0!=1.1.判断(正确的打“√”,错误的打“×”)(1)a,b,c与b,a,c是同一个排列.( )(2)同一个排列中,同一个元素不能重复出现.( )(3)在一个排列中,若交换两个元素的位置,则该排列不发生变化.( )(4)从4个不同元素中任取三个元素,只要元素相同得到的就是相同的排列.( ) 答案:(1)×(2)√(3)×(4)×2.下面问题中,是排列问题的是( )A.由1,2,3,4四个数字组成无重复数字的四位数B.从60人中选11人组成足球队C.从100人中选2人抽样调查D.从1,2,3,4,5中选2个数组成集合答案:A3.从甲、乙、丙三人中选两人站成一排的所有站法为________.答案:甲乙,甲丙,乙甲,乙丙,丙甲,丙乙4.A24=________,A33=________.答案:12 6排列的有关概念判断下列问题是否为排列问题:(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、学习委员、生活委员;(6)某班40名学生在假期相互通信.【解】(1)中票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题.(2)植树和种菜是不同的,存在顺序问题,属于排列问题.(3)(4)不存在顺序问题,不属于排列问题.(5)中每个人的职务不同,例如甲当班长或当学习委员是不同的,存在顺序问题,属于排列问题.(6)A给B写信与B给A写信是不同的,所以存在着顺序问题,属于排列问题.所以在上述各题中(2)(5)(6)属于排列问题,(1)(3)(4)不是排列问题.判断一个具体问题是否为排列问题的方法1.判断下列问题是否是排列问题:(1)从1到10十个自然数中任取两个数组成直角坐标平面内的点的坐标,可得多少个不同的点的坐标?(2)从10名同学中任抽两名同学去学校开座谈会,有多少种不同的抽取方法?(3)某商场有四个大门,若从一个门进去,购买物品后再从另一个门出来,不同的出入方式共有多少种?解:(1)由于取出的两数组成点的坐标与哪一个数作横坐标,哪一个数作纵坐标的顺序有关,所以这是一个排列问题.(2)因为从10名同学中抽取两人去学校开座谈会的方式不用考虑两人的顺序,所以这不是排列问题.(3)因为从一门进,从另一门出是有顺序的,所以是排列问题.综上,(1)、(3)是排列问题,(2)不是排列问题.“树形图”解决排列问题四个人A,B,C,D坐成一排照相有多少种坐法?将它们列举出来.【解】先安排A有4种坐法,安排B有3种坐法,安排C有2种坐法,安排D有1种坐法,由分步计数原理,有4×3×2×1=24种.画出树形图:由“树形图”可知,所有坐法为ABCD,ABDC,ACBD,ACDB,ADBC,ADCB,BACD,BADC,BCAD,BCDA,BDAC,BDCA,CABD,CADB,CBAD,CBDA,CDAB,CDBA,DACB,DABC,DBAC,DBCA,DCAB,DCBA.1.若本例条件再增加一条“A不坐排头”,则结论如何?解:画出树形图:由“树形图”可知,所有坐法为BACD,BADC,BCAD,BCDA,BDAC,BDCA,CABD,CADB,CBAD,CBDA,CDAB,CDBA,DACB,DABC,DBAC,DBCA,DCAB,DCBA,共18种坐法.2.若在本例条件中再增加一条“A,B不相邻”,则结论如何?解:画出树形图:由“树形图”可知,所有坐法为ACBD,ACDB,ADBC,ADCB,BCAD,BCDA,BDAC,BDCA,CADB,CBDA,DACB,DBCA共12种.利用“树形图”法解决简单排列问题的适用范围及策略(1)适用范围:“树形图”在解决排列元素个数不多的问题时,是一种比较有效的表示方式.(2)策略:在操作中先将元素按一定顺序排出,然后以先安排哪个元素为分类标准进行分类,再安排第二个元素,并按此元素分类,依次进行,直到完成一个排列,这样能做到不重不漏,然后再按树形图写出排列.2.将语文、数学、英语书各一本分给甲、乙、丙三人,每人一本,共有多少种不同的分法?请将它们列举出来.解:按分步计数原理的步骤:第一步,分给甲,有3种分法;第二步,分给乙,有2种分法;第三步,分给丙,有1种分法. 故共有3×2×1=6种不同的分法. 列出树形图,如下:所以,按甲乙丙的顺序分的分法为:语数英,语英数,数语英,数英语,英语数,英数语.排列数公式及其应用(1)计算2A 58+7A 48A 88-A 59;(2)解方程3A 3x =2A 2x +1+6A 2x . 【解】 (1)2A 58+7A 48A 88-A 59=2×8×7×6×5×4+7×8×7×6×58×7×6×5×4×3×2×1-9×8×7×6×5=8×7×6×5×(8+7)8×7×6×5×(24-9)=1.(2)由3A 3x =2A 2x +1+6A 2x ,得3x (x -1)(x -2)=2(x +1)x +6x (x -1). 因为x ≥3,且x ∈N *,所以3(x -1)(x -2)=2(x +1)+6(x -1), 即3x 2-17x +10=0. 解得x =5,x =23(舍去).所以x =5.利用排列数公式①A m n =n (n -1)(n -2)…(n -m +1)或②A mn =n !(n -m )!解题时,要注意题目特点,当m 较小时,用公式①较方便,第②个公式常用在化简或证明问题中.3.已知3A n -18=4A n -29,则n 等于________.解析:由已知3×8!(9-n )!=4×9!(11-n )!,即4×3(11-n )(10-n )=1,因为n ≤9,所以解得n =7. 答案:71.排列定义的两个要素一是“取出元素”,二是“将元素按一定顺序排列”,这是排列的两个要素. 2.对排列数公式的说明(1)这个公式是在m ,n ∈N *,m ≤n 的情况下成立的,m >n 时不成立.(2)公式右边是m 个数的连乘积,形式较复杂,其特点是:从n 开始,依次递减1,连乘m 个.3.排列与排列数的区别排列与排列数是两个不同的概念,一个排列就是完成一件事的一种方法,不是数;排列数是指所有排列的个数,它是一个数.符号A m n 中,m ,n 均为正整数,且m ≤n ,A mn 是一个整体.10个人走进只有6把不同椅子的屋子,若每把椅子必须且只能坐一人,共有多少种不同的坐法?【解】 坐在椅子上的6个人是走进屋子的10个人中的任意6个人,若把人抽象地看成元素,将6把不同的椅子当成不同的位置,则原问题抽象为从10个元素中取6个元素占据6个不同的位置.显然是从10个元素中任取6个元素的排列问题.从而,共有A 610=151 200(种)坐法.(1)本题易出现以下错解:10个人坐6把不同的椅子,相当于从含10个元素的集合到含6个元素的集合的映射,故有610种不同的坐法.该错解是没弄清题意,题中要求每把椅子必须并且只能坐一个,是从10个人中取出6个人的一个排列问题.(2)在用排列数公式求解时需先对问题是否是排列问题做出判断.1.4×5×6×…×(n -1)×n 等于( ) A .A 4n B .A n -4n C .n !-4!D .A n -3n解析:选D.4×5×6×…×(n -1)×n 中共有n -4+1=n -3个因式,最大数为n ,最小数为4,故4×5×6×…×(n -1)×n =A n -3n .2.从1,2,3,4这四个数字中任取两个不同的数字,则可组成不同的两位数有( ) A .9个 B .12个 C .15个D .18个解析:选B.用树形图表示为:由此可知共有12个. 3.5A 35+4A 24=________.解析:原式=5×5×4×3+4×4×3=348. 答案:3484.若A m 10=10×9×…×5,则m =________. 解析:10-m +1=5,得m =6. 答案:6[A 基础达标]1.已知下列问题:①从甲、乙、丙三名同学中选出两名分别参加数学、物理兴趣小组;②从甲、乙、丙三名同学中选出两人参加一项活动;③从a ,b ,c ,d 中选出3个字母;④从1,2,3,4,5这五个数字中取出2个数字组成一个两位数.其中是排列问题的有( )A .1个B .2个C .3个D .4个 解析:选B.由排列的定义知①④是排列问题. 2.计算A 67-A 56A 45=( )A .12B .24C .30D .36解析:选D.A 67-A 56A 45=7×6×5×4×3×2-6×5×4×3×25×4×3×2=7×6-6=36.3.若α∈N *,且α<27,则(27-α)(28-α)…(34-α)等于( ) A .A 827-α B .A 27-α34-α C .A 734-αD .A 834-α解析:选D.从27-α到34-α共有34-α-(27-α)+1=8个数.所以(27-α)(28-α)…(34-α)=A 834-α.4.甲、乙、丙三人排成一排照相,甲不站在排头的所有排列种数为( ) A .6 B .4 C .8 D .10解析:选B.列树形图如下:5.不等式A 2n -1-n <7的解集为( ) A .{n |-1<n <5} B .{1,2,3,4} C .{3,4}D .{4}解析:选C.由不等式A 2n -1-n <7, 得(n -1)(n -2)-n <7, 整理得n 2-4n -5<0, 解得-1<n <5.又因为n -1≥2且n ∈N *, 即n ≥3且n ∈N *, 所以n =3或n =4,故不等式A 2n -1-n <7的解集为{3,4}. 6.A n +32n +A n +14=________.解析:由⎩⎪⎨⎪⎧n +3≤2n ,n +1≤4,n ∈N *,得n =3,所以A n +32n +A n +14=6!+4!=744. 答案:7447.给出的下列四个关系式中,其中正确的个数是________.①A mn =(n -m )!n !;②A m -1n -1=n -1!(m -n )!;③A m n =n A m -1n -1;④n !=(n +1)!n +1.解析:①②不成立,③④成立. 答案:28.从a ,b ,c ,d ,e 五个元素中每次取出三个元素,可组成________个以b 为首的不同的排列,它们分别是____________________.解析:画出树状图如下:可知共12个,它们分别是bac ,bad ,bae ,bca ,bcd ,bce ,bda ,bdc ,bde ,bea ,bec ,bed .答案:12 bac ,bad ,bae ,bca ,bcd ,bce ,bda ,bdc ,bde ,bea ,bec ,bed 9.求证:12!+23!+34!+…+n -1n !<1.证明:因为n -1n !=n n !-1n !=1(n -1)!-1n !, 所以12!+23!+34!+…+n -1n !=11!-12!+12!-13!+13!-14!+…+1(n -1)!-1n ! =1-1n !<1. 所以原式得证. 10.计算下列各题. (1)A 215; (2)A 66; (3)A m -1n -1·A n -mn -m A n -1n -1;(4)1!+2·2!+3·3!+…+n ·n !. 解:(1)A 215=15×14=210.(2)A 66=6!=6×5×4×3×2×1=720.(3)原式=(n -1)![n -1-(m -1)]!·(n -m )!·1(n -1)!=(n -1)!(n -m )!·(n -m )!·1(n -1)!=1.(4)因为n ·n !=[(n +1)-1]·n! =(n +1)n !-n! =(n +1)!-n !,所以原式=(2!-1)+(3!-2!)+(4!-3!)+…+[(n +1)!-n !]=(n +1)!-1.[B 能力提升]1.若S =A 11+A 22+A 33+A 44+…+A 100100,则S 的个位数字是( ) A .8 B .5 C .3D .0解析:选C.因为当n ≥5时,A nn 的个位数字是0,故S 的个位数取决于前四个排列数.又A 11+A 22+A 33+A 44=33,故选C.2.若2<(m +1)!A m -1m -1≤42,则满足条件的m 的集合是________. 解析:原不等式可化为2<(m +1)!(m -1)!≤42.即2<m 2+m ≤42.所以⎩⎪⎨⎪⎧m 2+m -2>0m 2+m -42≤0,解不等式组得,-7≤m <-2或1<m ≤6,又m ∈N *,所以满足题意的m 的集合为{2,3,4,5,6}. 答案:{2,3,4,5,6}3.一条铁路有n 个车站,为适应客运需要,新增了m 个车站,且知m >1,客运车票增加了62种,问原有多少个车站?现在有多少个车站?解:由题意可知,原有车票的种数是A 2n 种,现有车票的种数是A 2n +m 种,所以A 2n +m -A 2n =62,即(n +m )(n +m -1)-n (n -1)=62,所以m (2n +m -1)=62=2×31,因为m <2n +m -1,且n ≥2,m ,n ∈N *,所以⎩⎪⎨⎪⎧m =2,2n +m -1=31, 解得m =2,n =15,故原有15个车站,现有17个车站.4.(选做题)A ,B ,C ,D 四名同学重新换位(每个同学都不能坐其原来的位子),试列出所有可能的换位方法.解:假设A ,B ,C ,D 四名同学原来的位子分别为1,2,3,4号,树形图如下:换位后,原来1,2,3,4号座位上坐的同学的所有可能排法有:BADC ,BCDA ,BDAC ,CADB ,CDAB ,CDBA ,DABC ,DCAB ,DCBA .。
第32讲计数原理学校____________ 姓名____________ 班级____________一、知识梳理基本计数原理1.分类加法计数原理完成一件事,如果有n类办法,且:第一类办法中有m1种不同的方法,第二类办法中有m2种不同的方法……第n类办法中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.2.分步乘法计数原理完成一件事,如果需要分成n个步骤,且:做第一步有m1种不同的方法,做第二步有m2种不同的方法……做第n步有m n种不同的方法.那么完成这件事共有N=m1×m2×…×m n种不同的方法.3.分类加法和分步乘法计数原理,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤中的方法相互依存,只有各个步骤都完成了才算完成这件事.排列与组合1.排列与组合的概念(1)从n个不同对象中取出m(m≤n)个对象的所有排列的个数,称为从n个不同对象中取出m个对象的排列数,用符号A m n表示.(2)从n个不同对象中取出m(m≤n)个对象的所有组合的个数,称为从n个不同对象中取出m个对象的组合数,用符号C m n表示.3.排列数、组合数的公式及性质公式(1)A m n=n(n-1)(n -2)…(n-m+1)=n!(n-m)!.(2)C m n=A m nA m m=n(n-1)(n-2)…(n-m+1)m!=n!m!(n-m)!(n,m∈N*,且m≤n).特别地C0n=1性质(1)0!=1;A n n=n!.(2)C m n=C n-mn;C m+1n+C m n=C m+1n+1二项式定理1.二项式定理(1)二项式定理:(a+b)n=C0n a n+C1n a n-1b+…+C k n a n-k b k+…+C n n b n(n∈N*);(2)通项公式:T k+1=C k n a n-k b k,它表示第k+1项;(3)二项式系数:二项展开式中各项的系数C0n,C1n,…,C n n.2.二项式系数的性质性质性质描述对称性与首末等距离的两个二项式系数相等,即C m n=C n-mn增减性二项式系数C k n当k<n+12(n∈N*)时,是递增的当k>n+12(n∈N*)时,是递减的二项式系数最大值当n为偶数时,中间的一项取得最大值当n为奇数时,中间的两项与相等且取得最大值(1)(a+b)n展开式的各二项式系数和:C0n+C1n+C2n+…+C n n=2n.(2)奇数项的二项式系数的和等于偶数项的二项式系数的和,即C0n+C2n+C4n +…=C1n+C3n+C5n+…=2n-1.二、考点和典型例题1、基本计数原理【典例1-1】(2022·湖北·天门市教育科学研究院模拟预测)甲乙丙丁四个同学星期天选择到东湖公园,西湖茶经楼,历史博物馆和北湖公园其中一处去参观游玩,其中茶经楼必有人去,则不同的参观方式共有( )种. A .24 B .96 C .174 D .175【答案】D 【详解】若4人均去茶经楼,则有1种参观方式,若有3人去茶经楼,则从4人中选择3人,另1人从另外3处景点选择一处,有3143C A 12=种参观方式;若有2人去茶经楼,则从4人中选择2人,另外2人从另外3处景点任意选择一处,有211433C A A 54=种参观方式;若有1人去茶经楼,则从4人中选择1人,另外3人从另外的3处景点任意选择一处,有11114333C A A A 108=种参观方式,综上:共有11254108175+++=种参观方式. 故选:D【典例1-2】(2023·山西大同·高三阶段练习)高中数学新教材有必修一和必修二,选择性必修有一、二、三共5本书,把这5本书放在书架上排成一排,必修一、必修二不相邻的排列方法种数是( ) A .72 B .144 C .48 D .36【答案】A 【详解】先将选择性必修有一、二、三这三本书排成一排,有33A =6种方法, 再将必修一、必修二这两本书插入两个空隙中,有24A =12种方法,所以把这5本书放在书架上排成一排,必修一、必修二不相邻的排列方法种数是:612=72⨯.故选:A.【典例1-3】(2023·全国·高三专题练习(理))2010年世界杯足球赛预计共有24个球队参加比赛,第一轮分成6个组进行单循环赛(在同一组的每两个队都要比赛),决出每个组的一、二名,然后又在剩下的12个队中按积分取4个队(不比赛),共计16个队进行淘汰赛来确定冠亚军,则一共需比赛( )场次. A .53B .52C .51D .50【答案】C 【详解】第一轮分成6个组进行单循环赛共需要246C 36=场比赛,淘汰赛有如下情况:16进8需要8场比赛,8进4需要4场比赛,4进2需要2场比赛,确定冠亚军需要1场比赛,共需要36842151++++=场比赛故选:C .【典例1-4】(2022·河南·濮阳一高高三阶段练习(理))某医院从7名男医生(含一名主任医师),6名女医生(含一名主任医师)中选派4名男医生和3名女医生支援抗疫工作,若要求选派的医生中有主任医师,则不同的选派方案数为( ) A .350 B .500 C .550 D .700【答案】C 【详解】所选医生中只有一名男主任医师的选法有3365C C 200,所选医生中只有一名女主任医师的选法有4265C C 150, 所选医生中有一名女主任医师和一名男主任医师的选法有3265C C 200,故所选医师中有主任医师的选派方法共有200150200550种, 故选:C【典例1-5】(2023·全国·高三专题练习)《数术记遗》是《算经十书》中的一部,相传是汉末徐岳所著.该书记述了我国古代14种算法,分别是:积算(即筹算)、太乙算、两仪算、三才算、五行算、八卦算、九宫算、运筹算、了知算、成数算、把头算、龟算、珠算和计数.某中学研究性学习小组有甲、乙、丙、丁四人,该小组拟全部收集九宫算、运筹算、了知算、成数算和把头算等5种算法的相关资料,要求每人至少收集其中一种,且每种算法只由一个人收集,但甲不收集九宫算和了知算的资料,则不同的分工收集方案共有( )种. A .108 B .136 C .126 D .240【答案】C 【详解】分以下两种情况讨论:①若甲只收集一种算法,则甲有3种选择,将其余4种算法分为3组,再分配给乙、丙、丁三人,此时,不同的收集方案种数为23433C A 108=种;②若甲收集两种算法,则甲可在运筹算、成数算和把头算3种算法中选择2种,其余3种算法分配给乙、丙、丁三人,此时,不同的收集方案种数为2333C A 18=种.综上所述,不同的收集方案种数为10818126+=种.2、排列与组合【典例2-1】(2023·全国·高三专题练习)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( ) A .12种 B .24种 C .36种 D .48种【答案】B 【详解】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!2224⨯⨯=种不同的排列方式, 故选:B【典例2-2】(2023·全国·高三专题练习(理))教育部于2022年开展全国高校书记校长访企拓岗促就业专项行动,某市3所高校的校长计划拜访当地企业,共有4家企业可供选择.若每名校长拜访3家企业,每家企业至少接待1名校长,则不同的安排方法共有( ) A .60种 B .64种 C .72种 D .80种【答案】A 【详解】解:3名校长在4家企业任取3家企业的所有安排情况为:333444C C C 44464=⨯⨯=种又每家企业至少接待1名校长,故3名校长选的3家企业,不全相同,因为3名校长选的3家企业完全相同有34C 4=种,则不同的安排方法共有:64460-=种. 故选:A.【典例2-3】(2022·全国·高三专题练习)某校在高一开展了选课走班的活动,已知该校提供了3门选修课供学生选择,现有5名同学参加选课走班的活动,要求这5名同学每人选修一门课程且每门课程都有人选,则5名同学选课的种数为( ) A .150 B .180 C .240 D .540【答案】A 【详解】先把5名同学分为3组:(3人,1人,1人)或(2人,2人,1人), 再把这3组同学分配给3门选修课即可解决.则5名同学选课的种数为311221352153132222C C C C C C A 150A A ⎛⎫+= ⎪⎝⎭(种)【典例2-4】(2023·全国·高三专题练习)北京2022年冬奥会吉祥物“冰墩墩”和冬残奥会吉祥物“雪容融”一亮相,好评不断.为了宣传2022年北京冬奥会和冬残奥会,某学校决定派小明和小李等5名志愿者将两个吉祥物安装在学校的体育广场,每人参与且只参与一个吉祥物的安装,每个吉祥物都至少由两名志愿者安装.若小明和小李必须安装不同的吉祥物,则不同的安排方案有( ) A .6种 B .12种 C .18种 D .24种【答案】B 【详解】由题意可知:应将志愿者分为三人组和两人组.先将小李、小明之外的三人分为两组,有12323C C =种分法,再将小李、小明分进两组,有222A =种分法,最后将两组分配安装两个吉祥物,有222A =种分法,所以共计有32212⨯⨯=种.故选:B【典例2-5】(2022·贵州·贵阳一中高三阶段练习(理))贵阳一中体育节中,乒乓球球单打12强中有4个种子选手,将这12人平均分成3个组(每组4个人)、则4个种子选手恰好被分在同一组的分法有( ) A .21 B .42 C .35 D .70【答案】C 【详解】4个种子选手分在同一组,即剩下的8人平均分成2组,方法有448422C C 35 A =种, 故选:C .3、二项式定理【典例3-1】(2022·河南洛阳·模拟预测(理))3nx ⎛⎝的展开式中各二项式系数之和为64,则展开式中的常数项为( ) A .-540 B .135C .18D .1215【答案】B 【详解】由题意得264n =,所以6n =,所以63x ⎛- ⎝展开式的通项()()36662166C 31C 3rr rr r r r r T x x---+⎛==-⋅⋅⋅ ⎝, 令3602r -=,得4r =,所以展开式中的常数项为()44261C 3135-⋅⋅=. 故选:B .【典例3-2】(2022·全国·高三专题练习)()91-x 按x 降幕排列的展开式中,系数最大的项是( ) A .第4项和第5项 B .第5项 C .第5项和第6项 D .第6项【答案】B 【详解】因为()91-x 的展开式通项为()919C 1k kk k T x -+=⋅⋅-, 其中第5项和第6项的二项式系数最大,但第5项的系数为正,第6项的系数为负, 故()91-x 按x 降幕排列的展开式中,系数最大的项是第5项. 故选:B.【典例3-3】(2022·全国·高三专题练习)若()1nx +的展开式中,某一项的系数为7,则展开式中第三项的系数是( ) A .7 B .21 C .35 D .21或35【答案】B 【详解】解:由题意,展开式的通项为1(C 0,1,,)r rr n T x r n +==,所以某一项的系数为7,即C 7rn =,解得n =7,r =1或n =7,r =6,所以展开式中第三项的系数是27C 21=.故选:B .【典例3-4】(2023·全国·高三专题练习)二项式()()()237121212x x x ++++++的展开式中,含2x 项的二项式系数为( ) A .84 B .56 C .35 D .21【答案】B 【详解】解:因为二项式为()()()237121212x x x ++++++,所以其展开式中,含2x 项的二项式系数为:222222234567C C C C C C +++++, 3222244567=C C C C C ++++,32225567=C C C C +++, 322667=C C C ++,3277=C C +, 38=C 56=.故选:B【典例3-5】(2022·全国·高三专题练习)已知()523450123451ax a a x a x a x a x a x +=+++++,若3270a =-,则024a a a ++=( ) A .992 B .-32 C .-33 D .496【答案】D 【详解】由题意知:()3333335C 10a x ax a x ==,则310270a =-,解得3a =-;令1x =,则()50123451332a a a a a a -=+++++=-,令1x =-,则()5012345131024a a a a a a +=-+-+-=,两式相加得()0242992a a a ++=,则024496a a a ++=. 故选:D.。
“隔板法”及其应用排列组合计数问题,背景各异,方法灵活,能力要求高,对于相同元素有序分组问题,采用“隔板法”可起到简化解题的功效。
例1、将7个相同的球放入4个不同的盒子中,(1)不出现空盒时的放入方式共多少种?(2)任意放入时的方式共有多少种?该题有多种解法,先介绍其中的“隔板法”。
解:(1)将7个相同小球一字排开,在其中间的6个空格中加入无区别的3个“隔板”将球分成四份。
故每一种插入隔板的方式对应一种球的放法,则不同的放法共有2036==C N 种。
(2)每种放法对应于将7个相同小球与3个相同“隔板”进行的一次排列,即从10个位置中选3个位置安排隔板,故共有120310==C N 种放入的方式。
思维启迪 凡“相同小球放入不同盒中”的问题,即“n 个相同元素有序分成m 组(每组的任务不同)”的问题一般可用“隔板法”解,即(1)当每组含元素数目至少一个时,其不同分组方式为11--=m n C N 种,即给n 个元素的中间1-n 空格加入1-m 个“隔板”。
(2)任意分组,可出现某些组含元素为0个时,其不同分组方式为11--+=m m n C N 种,即将n 个相同元素与1-m 个相同“隔板”进行排序,在1-+m n 个位置中选1-m 个安排隔板。
例2、将10个优秀的指标分配给3个班级,(1)每班至少一个,则共有多少种分配方法?(2)任意分配共有多少种分配方法?(3)若班级为一、二、三班,若名额数不小于班级数,则共多少种分配方法? 分析:由于10个优秀指标是相同的,该题等价于10个相同的小球放入3个不同盒子模型。
可采用“隔板法”。
(1)插隔板,即9个空格中插入2个隔板,共有3629==C N 种分配方法。
(2)排隔板,即10个指标和2个隔板,共12个位置选2个放隔板,共有66212==C N 种分配方法。
(3)先给一班0个优秀名额,二班1个优秀名额,三班2个优秀名额,再对剩下的4个优秀名额用插隔板法,共有1025==C N 种分配方法。
复习课(一)计数原理对应学生用书P48(1)两个计数原理是学习排列与组合的基础,高考中一般以选择题、填空题的形式出现,难度中等.(2)运用两个计数原理解题的关键在于正确区分“分类”与“分步”.分类就是能“一步到位”——任何一类中任何一种方法都能完成这件事情,而分步则只能“局部到位”——任何一步中任何一种方法都不能完成这件事情,只能完成事件的某一部分,只有当各步全部完成时,这件事情才完成.[考点精要]计数原理(1)分类加法计数原理:N=n1+n2+n3+…+n m;(2)分步乘法计数原理:N=n1·n2·n3·…·n m.[典例]如图所示,花坛内有五个花池,有五种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则最多的栽种方案有()A.180种B.240种C.360种D.420种[解析]由题意知,最少用三种颜色的花卉,按照花卉选种的颜色可分为三类方案,即用三种颜色,四种颜色,五种颜色.①当用三种颜色时,花池2,4同色和花池3,5同色,此时共有A35种方案.②当用四种颜色时,花池2,4同色或花池3,5同色,故共有2A45种方案.③当用五种颜色时有A55种方案.因此所有栽种方案为A35+2A45+A55=420(种).[答案] D[类题通法]使用两个原理解决问题时应注意的问题(1)对于一些比较复杂的既要运用分类加法计数原理又要运用分步乘法计数原理的问题,我们可以恰当地画出示意图或列出表格,使问题更加直观、清晰.(2)当两个原理混合使用时,一般是先分类,在每类方法里再分步.[题组训练]1.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有()A.24种B.18种C.12种D.6种解析:选B法一:(直接法)若黄瓜种在第一块土地上,则有3×2=6种不同的种植方法.同理,黄瓜种在第二块、第三块土地上均有3×2=6种不同的种植方法.故不同的种植方法共有6×3=18种.法二:(间接法)从4种蔬菜中选出3种种在三块地上,有4×3×2=24种方法,其中不种黄瓜有3×2×1=6种方法,故共有不同的种植方法24-6=18种.2.有红、黄、蓝旗各3面,每次升一面、二面或三面在旗杆上纵向排列表示不同的信号,顺序不同则表示不同的信号,共可以组成的信号有________种.解析:每次升1面旗可组成3种不同的信号;每次升2面旗可组成3×3=9种不同的信号;每次升3面旗可组成3×3×3=27种不同的信号.根据分类加法计数原理,共可组成3+9+27=39种不同的信号.答案:39(1)高考中往往以实际问题为背景,考查排列与组合的综合应用,同时考查分类讨论的思想方法,常以选择题、填空题形式出现,有时与概率结合考查.(2)解决排列组合问题的关键是掌握四项基本原则①特殊优先原则:如果问题中有特殊元素或特殊位置,优先考虑这些特殊元素或特殊位置的解题原则.②先取后排原则:在既有取出又需要对取出的元素进行排列中,要先取后排,即完整地把需要排列的元素取出后,再进行排列.③正难则反原则:当直接求解困难时,采用间接法解决问题的原则.④先分组后分配原则:在分配问题中如果被分配的元素多于位置,这时要先进行分组,再进行分配.[考点精要]1.排列与组合的概念2.排列数与组合数的概念3.排列数与组合数公式 (1)排列数公式①A m n =n (n -1)…(n -m +1)=n !(n -m )!;②A n n =n !. (2)组合数公式C mn =A m n A m m =n (n -1)(n -2)…(n -m +1)m !=n !m !(n -m )!.4.组合数的性质(1)C m n =C n-mn;(2)C m n +C m -1n=C mn +1. [典例] (1)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( )A .3×3!B .3×(3!)3C .(3!)4D .9!(2)(重庆高考)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A .72B .120C .144D .168(3)从6位同学中选出4位参加一个座谈会,要求张、王两同学中至多有一个人参加,则不同选法的种数为( )A .9B .14C .12D .15[解析] (1)把一家三口看作一个排列,然后再排列这3家,所以有(3!)4种.(2)依题意,先仅考虑3个歌舞类节目互不相邻的排法种数为A 33A 34=144,其中3个歌舞类节目互不相邻但2个小品类节目相邻的排法种数为A 22A 22A 33=24,因此满足题意的排法种数为144-24=120,选B .(3)法一:(直接法)分两类,第一类张、王两同学都不参加,有C 44种选法;第二类张、王两同学中只有1人参加,有C 12C 34种选法.故共有C 44+C 12C 34=9种选法.法二:(间接法)C46-C24=9种.[答案](1)C(2)B(3)A[类题通法]排列与组合综合问题的常见类型及解题策略(1)相邻问题捆绑法.在特定条件下,将几个相关元素视为一个元素来考虑,待整个问题排好之后,再考虑它们“内部”的排列.(2)相间问题插空法.先把一般元素排好,然后把特定元素插在它们之间或两端的空当中,它与捆绑法有同等作用.(3)特殊元素(位置)优先安排法.优先考虑问题中的特殊元素或位置,然后再排列其他一般元素或位置.[题组训练]1.有5盆各不相同的菊花,其中黄菊花2盆、白菊花2盆、红菊花1盆,现把它们摆放成一排,要求2盆黄菊花必须相邻,2盆白菊花不能相邻,则这5盆花的不同摆放种数是()A.12 B.24C.36 D.48解析:选B2盆黄菊花捆绑作为一个元素与一盆红菊花排列,2盆白菊花采用插空法,所以这5盆花的不同摆放共有A22A22A23=24种.2.某班准备从含甲、乙的7名男生中选取4人参加4×100米接力赛,要求甲、乙两人至少有一人参加,且若甲、乙同时参加,则他们在赛道上顺序不能相邻,那么不同的排法种数为()A.720 B.520C.600 D.360解析:选C根据题意,分2种情况讨论.①只有甲乙其中一人参加,有C12C35A44=480种情况;②若甲乙两人都参加,有C22C25A44=240种情况,其中甲乙相邻的有C22C25A33A22=120种情况,不同的排法种数为480+240-120=600种,故选C.(1)求二项展开式中的项或项的系数是高考的热点,通常以选择题、填空题形式考查,难度中低档.(2)解决此类问题常遵循“知四求一”的原则在二项式的通项公式中共含有a, b,n,k,T k+1这五个元素,只要知道其中的4个元素,便可求第5个元素的值,在有关二项式定理的问题中,常常会遇到这样的问题:知道这5个元素中的若干个(或它们之间的关系),求另外几个元素.这类问题一般是利用通项公式,把问题归结为解方程(组)或不等式(组).这里要注意n为正整数,k为自然数,且k≤n.[考点精要]1.二项式定理2.二项式系数的性质[典例](1)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=()A.-4 B.-3C.-2 D.-1(2)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5 B.6C.7 D.8(3)若(1-2x)4=a0+a1x+a2x2+a3x3+a4x4,则a1+a2+a3+a4=________.[解析](1)展开式中含x2的系数为C25+a C15=5,解得a=-1,故选D.(2)由题意得:a=C m2m,b=C m2m+1,所以13C m2m=7C m2m+1,∴13·(2m)!m!·m!=7·(2m+1)!m!·(m+1)!,∴7(2m+1)m+1=13,解得m=6,经检验为原方程的解,选B.(3)令x=1可得a0+a1+a2+a3+a4=1,令x=0,可得a0=1,所以a1+a2+a3+a4=0.[答案](1)D(2)B(3)0[类题通法]求二项式展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r +1项,再由特定项的特点求出r 值即可. (2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项公式写出第r +1项,由特定项得出r 值,最后求出其参数.(3)与二项式各项系数的和有关的问题一般用赋值法求解.[题组训练]1.在x (1+x )6的展开式中,含x 3项的系数为( ) A .30 B .20 C .15D .10解析:选C 只需求(1+x )6的展开式中含x 2项的系数即可,而含x 2项的系数为C 26=15,故选C .2.若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为( ) A .9 B .8 C .6D .5解析:选B 令x =1,则a 0+a 1+a 2+a 3+a 4=0,令x =-1,则a 0-a 1+a 2-a 3+a 4=16,∴a 0+a 2+a 4=8.1.设二项式⎝⎛⎭⎪⎫3x +3x n 的展开式各项系数的和为a ,所有二项式系数的和为b ,若a +2b =80,则n 的值为( )A .8B .4C .3D .2解析:选C 由题意a =4n ,b =2n ,∵a +2b =80, ∴4n +2×2n -80=0,即(2n )2+2×2n -80=0,解得n =3.2.教室里有6盏灯,由3个开关控制,每个开关控制2盏灯,则不同的照明方法有( ) A .63种 B .31种 C .8种D .7种解析:选D 由题意知,可以开2盏、4盏、6盏灯照明,不同方法有C 13+C 23+C 33=7(种).3.分配4名水暖工去3户不同的居民家里检查暖气管道.要求4名水暖工都分配出去,且每户居民家都要有人去检查,那么分配的方案共有( )A .A 34种B .A 33A 13种 C .C 24A 33种D .C 14C 13A 33种解析:选C 先将4名水暖工选出2人分成一组,然后将三组水暖工分配到3户不同的居民家,故有C 24A 33种.4.(x +2)2(1-x )5中x 7的系数与常数项之差的绝对值为( ) A .5 B .3 C .2D .0解析:选A 常数项为C 22·22·C 05=4,x 7系数为C 02·C 55(-1)5=-1,因此x 7系数与常数项之差的绝对值为5.5.⎝⎛⎭⎫x 2-12x 6的展开式中,常数项是( ) A .-54B .54C .-1516D .1516解析:选D T r +1=C r 6(x 2)6-r ⎝⎛⎭⎫-12x r =⎝⎛⎭⎫-12r C r 6x 12-13r ,令12-3r =0,解得r =4. ∴常数项为⎝⎛⎭⎫-124C 46=1516.故选D . 6.将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里球的个数不小于该盒子的编号,则不同的放球方法有( )A .10种B .20种C .36种D .52种解析:选A 分为两类:①1号盒子放入1个球,2号盒子放入3个球,有C 14=4种放球方法;②1号盒子放入2个球,2号盒子放入2个球,有C 24=6种放球方法.∴共有C 14+C 24=10种不同的放球方法.7.若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________.解析:不妨设1+x =t ,则x =t -1,因此有(t -1)5=a 0+a 1t +a 2t 2+a 3t 3+a 4t 4+a 5t 5,则a 3=C 25(-1)2=10.答案:108.农科院小李在做某项试验中,计划从花生、大白菜、大豆、玉米、小麦、高粱这6种种子中选出4种,分别种植在4块不同的空地上(1块空地只能种1种作物),若小李已决定在第1块空地上种玉米或高粱,则不同的种植方案有________种.(用数字作答)解析:由已知条件可得第1块地有C 12种种植方法,则第2~4块地共有A 35种种植方法,由分步乘法计数原理可得,不同的种植方案有C 12A 35=120种.答案:1209.(北京高考)把5件不同产品摆成一排,若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有________种.解析:将A ,B 捆绑在一起,有A 22种摆法,再将它们与其他3件产品全排列,有A 44种摆法,共有A 22A 44=48种摆法,而A ,B ,C 3件在一起,且A ,B 相邻,A ,C 相邻有CAB ,BAC 两种情况,将这3件与剩下2件全排列,有2×A 33=12种摆法,故A ,B 相邻,A ,C不相邻的摆法有48-12=36种.答案:3610.若(2x +3)3=a 0+a 1(x +2)+a 2(x +2)2+a 3(x +2)3,求a 0+a 1+2a 2+3a 3的值. 解:由(2x +3)3=[2(x +2)-1]3=C 03[2(x +2)]3(-1)0+C 13[2(x +2)]2(-1)1+C 23[2·(x +2)]1(-1)2+C 33[2(x +2)]0(-1)3=8(x +2)3-12(x +2)2+6(x +2)-1 =a 0+a 1(x +2)+a 2(x +2)2+a 3(x +2)3. 则a 0=-1,a 1=6,a 2=-12,a 3=8. 则a 0+a 1+2a 2+3a 3=5.11.将7个相同的小球放入4个不同的盒子中. (1)不出现空盒时的放入方式共有多少种? (2)可出现空盒时的放入方式共有多少种?解:(1)将7个相同的小球排成一排,在中间形成的6个空当中插入无区别的3个“隔板”将球分成4份,每一种插入隔板的方式对应一种球的放入方式,则共有C 36=20种不同的放入方式.(2)每种放入方式对应于将7个相同的小球与3个相同的“隔板”进行一次排列,即从10个位置中选3个位置安排隔板,故共有C 310=120种放入方式.12.已知(3x 2+3x 2)n 展开式中各项的系数和比各项的二项式系数和大992. (1)求展开式中二项式系数的最大项; (2)求展开式中系数最大的项.解:(1)令x =1,则二项式各项系数和为(1+3)n =4n , 展开式中各项的二项式系数之和为2n . 由题意,知4n -2n =992.∴(2n )2-2n -992=0.∴(2n +31)(2n -32)=0. ∴2n =-31(舍)或2n =32,∴n =5. 由于n =5为奇数,∴展开式中二项式系数最大项为中间两项,它们是 T 3=C 25(x 23)3(3x 2)2=90x 6,T 4=C 35(x 23)2(3x 2)3=270x 223.(2)展开式通项公式为T r +1=C r 53r·(x 23)5-r (x 2)r =C r 5·3r ·x 103+4r 3.假设T r +1项系数最大,则有⎩⎪⎨⎪⎧C r 53r ≥C r -15·3r -1,C r 53r ≥C r +15·3r +1, ∴⎩⎪⎨⎪⎧5!(5-r )!r !×3≥5!(6-r )!(r -1)!,5!(5-r )!r !≥5!(4-r )!(r +1)!×3.∴⎩⎨⎧3r ≥16-r ,15-r ≥3r +1.∴72≤r ≤92. ∵r ∈N *,∴r =4.∴展开式中系数最大项为T 5=C 45·34·x 103+4×43=405x 263.。
高中数学计数原理教案
教学内容:计数原理
教学对象:高中学生
教学时间:一节课
教学目标:
1. 了解计数原理的概念和基本原理;
2. 能够应用计数原理解决相关问题;
3. 培养学生的逻辑思维和问题解决能力。
教学重点:
1. 计数原理的基本概念和原理;
2. 计数原理在实际问题中的应用。
教学难点:
1. 计数原理的具体运用;
2. 解决实际问题时的逻辑思维能力。
教学准备:
1. 计算器;
2. 实例题目。
教学过程:
一、导入(5分钟)
教师引导学生回顾排列、组合的概念,并提出计数原理的概念。
通过一个简单的例子引导学生了解计数原理的基本原理。
二、讲解(15分钟)
1. 计数原理的概念和原理;
2. 巴斯卡三角形及其应用;
3. 实例分析和解决。
三、练习(15分钟)
教师布置几道相关计数原理的练习题,学生针对每道题进行思考并给出答案,教师引导学生讨论解题方法,帮助学生掌握计数原理的运用技巧。
四、总结(5分钟)
教师对本节课的教学内容进行总结和回顾,强化学生对计数原理的理解和运用。
五、作业(5分钟)
布置相关练习题作为课后作业,加深学生对计数原理的掌握和应用。
【教学反思】
本节课主要通过讲解概念、实例分析和练习训练,帮助学生掌握计数原理的基本原理和运用技巧。
在以后的教学中,可以结合实际问题,进一步提高学生的问题解决能力和创新思维。
第7章 计数原理1.两个计数原理(1)应用分类加法计数原理,应准确进行“分类”,明确分类的标准:每一种方法必属于某一类(不漏),任何不同类的两种方法是不同的方法(不重),每一类中的每一种方法都能独立地“完成这件事情”.(2)应用分步乘法计数原理,应准确理解“分步”的含义,完成这件事情,需要分成若干步骤,只有每个步骤都完成了,这件事情才能完成,即这些步骤不能互相替代,任何一步不能跳过.2.排列排列定义特别强调了按“一定顺序”排成一列,就是说,取出的元素不同一定是不相同的排列,即使元素相同,顺序不同,也不是相同的排列.要特别注意“有序”与“无序”的区别.3.组合(1)组合的定义中包含两个基本内容:一是取出“元素”,二是“并成一组”,即表示与顺序无关.(2)如果两个组合中的元素不完全相同就是不同的组合. 4.二项式定理(1)(a +b )n 的展开式的通项为T r +1=C r n a n -r b r,且为展开式的第r +1项.(2)二项式系数的性质①对称性:C 0n =C n n ,C 1n =C n -1n ,C 2n =C n -2n ,…,C r n =C n -rn . ②增减性与最大值:二项式系数C rn ,当r <n +12时,二项式系数是递增的;当r >n +12时,二项式系数是递减的.当n 是偶数时,中间的一项C 2nn取得最大值.当n 是奇数时,中间两项C -12n n 和C +12n n 相等,且同时取得最大值.③二项式系数的和:C 0n +C 1n +C 2n +…+C kn +…+C nn =2n, 且C 1n +C 3n +C 5n +…=C 0n +C 2n +C 4n +…=2n -1.[例1]只能种同种颜色的花卉,相邻两池的花色不同,则最多的栽种方案有( )A.180种B.240种C.360种D.420种[解析] 由题意知,最少用三种颜色的花卉,按照花卉选种的颜色可分为三类方案,即用三种颜色,四种颜色,五种颜色.①当用三种颜色时,花池2,4同色和花池3,5同色,此时共有A35种方案.②当用四种颜色时,花池2,4同色或花池3,5同色,故共有2A45种方案.③当用五种颜色时有A55种方案.因此所有栽种方案为A35+2A45+A55=420(种).[答案] D应用两个计数原理解决有关计数问题的关键是区分事件是分类完成还是分步完成.对于有些较复杂的既要分类又要分步的问题,应注意层次清晰,不重不漏,在分步时,要注意上一步的方法确定后对下一步有无影响(即是否是独立的).1.甲与其四位同事各有一辆私家车,车牌尾数分别是0,0,2,1,5,为遵守当地某月5日至9日5天的限行规定(奇数日车牌尾数为奇数的车通行,偶数日车牌尾数为偶数的车通行),五人商议拼车出行,每天任选一辆符合规定的车,但甲的车最多只能用一天,则不同的用车方案种数为( )A.5 B.24C.32 D.64解析:选D 5日至9日,有3天奇数日,2天偶数日,第一步安排奇数日出行,每天都有2种选择,共有23=8(种),第二步安排偶数日出行分两类,第一类,先选1天安排甲的车,另外一天安排其他车,有2×2=4(种).第二类,不安排甲的车,每天都有2种选择,共有22=4(种),共计4+4=8,根据分步乘法计数原理,不同的用车方案种数共有8×8=64.2.从集合{1,2,3,…,10}中任意选出3个不同的数,使这3个数成等比数列,这样的等比数列的个数为( )A.3 B.4C.6 D.8解析:选D 以1为首项的等比数列为1,2,4;1,3,9.以2为首项的等比数列为2,4,8.以4为首项的等比数列为4,6,9.把这4个数列的顺序颠倒,又得到4个数列,∴所求的数列共有2×(2+1+1)=8(个).[例2](1)五名学生必须排在一起共有多少种排法;(2)五名学生不能相邻共有多少种排法;(3)老师和学生相间隔共有多少种排法.[解] (1)先将五名学生“捆绑”在一起看作一个与五位老师排列有A66种排法,五名学生再内部全排列有A55种,故共有A66·A55=86 400种排法.(2)先将五位老师全排列有A55种排法,再将五名学生排在五位老师产生的六个空位上有A56种排法,故共有A55·A56=86 400种排法.(3)排列方式只能有两类,如图所示:○□○□○□○□○□□○□○□○□○□○(用□表示老师所在位置,用○表示学生所在位置)故有2A55·A55=28 800种排法.“学生相邻”就“捆绑学生”,“学生不相邻”就插空.“捆绑”之中的元素有顺序,哪些元素不相邻就插空.[例3] 由1、2、3、4、5五个数字组成没有重复数字的五位数排成一递增数列,则首项为12 345,第2项是12 354,…直到末项(第120项)是54 321.问:(1)43 251是第几项?(2)第93项是怎样的一个五位数?[解] (1)由题意知,共有五位数为A55=120(个),比43 251大的数有下列几类:①万位数是5的有A44=24(个);②万位数是4,千位数是5的有A33=6(个);③万位数是4,千位数是3,百位数是5的有A22=2(个);∴比43 251大的数共有24+6+2=32个,所以43 251是第120-32=88项.(2)从(1)知万位数是5的有A44=24个,万位数是4,千位数是5的有A33=6(个);但比第93项大的数有120-93=27个,第93项即倒数第28项,而万位数是4,千位数是5的6个数是45 321、45 312、45 231、45 213、45 132、45 123,从此可见第93项是45 213.带有限制条件的排列组合问题,常用“元素分析法”和“位置分析法”,当直接考虑对象较为复杂时,可用逆向思维,使用间接法(排除法),既先不考虑约束条件,求出所有排列组合总数,然后减去不符合条件的排列、组合种数.3.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( ) A.3×3! B.3×(3!)3C.(3!)4D.9!解析:选C 把一家三口看作一个排列,共有3个三口之家,然后再排列这3家,所以有(3!)4种.4.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72 B.120C.144 D.168解析:选B 依题意,先仅考虑3个歌舞类节目互不相邻的排法种数为A33A34=144,其中3个歌舞类节目互不相邻但2个小品类节目相邻的排法种数为A22A22A33=24,因此满足题意的排法种数为144-24=120.5.从6位同学中选出4位参加一个座谈会,要求张、王两同学中至多有一个人参加,则不同选法的种数为( )A.9 B.14C.12 D.15解析:选A 法一:(直接法)分两类,第一类张、王两同学都不参加,有C44种选法;第二类张、王两同学中只有1人参加,有C12C34种选法.故共有C44+C12C34=9种选法.法二:(间接法)C46-C24=9种.6.某班班会准备从甲、乙等7名学生中选派4名进行发言,要求甲、乙两人至少有一人参加.当甲、乙同时参加时,他们两人的发言不能相邻.那么不同的发言顺序的种数为( )A.360 B.520C.600 D.720解析:选C 当甲或乙只有一人参加时,不同的发言顺序的种数为2C35A44=480,当甲、乙同时参加时,不同的发言顺序的种数为A 25A 23=120,则不同的发言顺序的种数为480+120=600.[例4] (1) ) A .-4 B .-3 C .-2D .-1(2)(2x -3)10=a 0+a 1(x -1)+a 2(x -1)2+…+a 10(x -1)10,则a 1+a 2+a 3+…+a 10等于( )A .1-310B .-310-1 C .310-1 D .0(3)(2017·山东高考)已知(1+3x )n 的展开式中含有x 2项的系数是54,则n =________. [解析] (1)展开式中含x 2的系数为C 25+a C 15=5, 解得a =-1.(2)令x =1,得a 0=1,令x =2,得a 0+a 1+…+a 10=1, 所以a 1+a 2+…+a 10=0.(3)(1+3x )n 的展开式的通项为T r +1=C r n (3x )r. 令r =2,得T 3=9C 2n x 2.由题意得9C 2n =54,解得n =4. [答案] (1)D (2)D (3)4(1)二项式及其展开式的实质是一个恒等式,无论x 取什么值,左、右两边代数式的值总对应相等.通常利用这一点,分析x 取何值时,展开式等于所求式,再将此x 值代入左侧的二项式,就可以得出结果,这种处理方法叫做赋值法.(2)解决与二项展开式的项有关的问题时,通常利用通项公式T r +1=C rn a n -r b r(r =0,1,2,…,n ).7.已知⎝⎛⎭⎪⎪⎫x +14x n 展开式中各项系数的和为256,求: (1)n 的值;(2)展开式中所有有理项. 解:(1)由题意2n=256,∴n =8.(2)通项公式T r +1=C r 8(x )8-r ⎝ ⎛⎭⎪⎪⎫14x r =C r 8x4-3r4 , 其中0≤r ≤8,要使展开式中的项为有理项,只要x 的指数为整数,则r =0,4,8.所以第1项,第5项与第9项为有理项,它们分别是x 4,70x ,x -2.8.求⎝⎛⎭⎪⎫x 2+4x2-45的展开式中含x 4的项的系数.解:∵⎝⎛⎭⎪⎫x 2+4x2-45=⎝ ⎛⎭⎪⎫x -2x 10,∴通项公式为T r +1=C r 10x 10-r ⎝ ⎛⎭⎪⎫-2x r =(-2)r C r 10x10-2r, 令10-2r =4,则r =3,∴x 4的项的系数为(-2)3C 310=-960.(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算C 58+2A 24的值是( ) A .64 B .80 C .13 464D .40解析:选B C 58+2A 24=C 38+2A 24=8×7×63×2×1+2×4×3=80.2.将A ,B ,C ,D ,E 排成一列,要求A ,B ,C 在排列中顺序为“A ,B ,C ”或“C ,B ,A ”(可以不相邻),则不同的排列方法有( )A .12种B .20种C .40种D .60种解析:选C 五个元素没有限制,全排列数为A 55,由于要求A ,B ,C 的次序一定(按A ,B ,C 或C ,B ,A ),故所求排列数为A 55A 33×2=40.3.如图,要给①,②,③,④四块区域分别涂上五种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同的涂色方法种数为( )A .320B .160C .96D .60解析:选A 按③→①→②→④的顺序涂色,有C 15×C 14×C 14×C 14=5×4×4×4=320种不同的方法.4.设⎝⎛⎭⎪⎫5x -1x n的展开式的各项系数之和为M ,二项式系数之和为N ,若M -N =240,则展开式中x 的系数为( )A .-150B .150C .300D .-300解析:选B 由题意知,M =4n,N =2n,由M -N =240,解得n =4,则T r +1=C r 4·(5x )4-r·⎝⎛⎭⎪⎫-1x r=(-1)r 54-r C r4x 4-3r 2,令4-3r2=1得r =2.所以展形式中x 的系数为(-1)2C 24·52=150.5.若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为( ) A .1 B .-1 C .0D .2解析:选A (a 0+a 2+a 4)2-(a 1+a 3)2=(a 0+a 1+a 2+a 3+a 4)(a 0-a 1+a 2-a 3+a 4)=(2+3)4×(-2+3)4=1.6.有9个男生,5个女生排成一排,要求女生排在一起(中间不能有男生),不同的排法种数是( )A .A 55A 99 B .10A 55 C .A 55A 1010D .2A 55A 99解析:选C 把5名女生作为一个元素,与其他9名男生排列,有A 1010种不同的排法,其中这5名女生有A 55种排法,根据分步乘法计数原理有A 1010A 55种不同的排法.7.4名男歌手和2名女歌手联合举行一场音乐会,出场顺序要求两名女歌手之间恰有一名男歌手,共有出场方案的种数是( )A .6A 33 B .3A 33 C .2A 33D .A 22A 14A 44解析:选D 先选一名男歌手排在两名女歌手之间,有A 14种选法,这两名女歌手有A 22种排法,把这三人作为一个元素,与另外三名男歌手排列有A 44种排法,根据分步乘法计数原理,有A 14A 22A 44种出场方案.8.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( ) A .144个 B .120个 C .96个D .72个解析:选B 当万位数字为4时,个位数字从0,2中任选一个,共有2A 34个偶数;当万位数字为5时,个位数字从0,2,4中任选一个,共有C 13A 34个偶数.故符合条件的偶数共有2A 34+C 13A 34=120(个).9.若⎝⎛⎭⎪⎪⎫3x -13x 2 n 的展开式中各项系数之和为128,则展开式中含1x 3的项的系数是( ) A .7 B .-7 C .21D .-21解析:选C 赋值法,令x =1,得展开式各项系数之和为(3-1)n=2n=128,所以n =7,所以展开式的通项为T r +1=(-1)r C r 7·37-r·x7-53r ,令7-53r =-3,得r =6,故展开式中含1x3的项的系数是C 67×3=21.10.将4个不同的小球放入3个不同的盒子中,其中每个盒子都不空的放法共有( ) A .34种 B .43种 C .18种D .36种解析:选D 必然有1个盒子放2个球,可以先取出2个球看作一个整体,有C 24种,再将3个元素排3个位置,有A 33种,共有C 24A 33=36种.11.(2017·全国卷Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种解析:选D 因为安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,所以必有1人完成2项工作.先把4项工作分成3组,即2,1,1,有C 24C 12C 11A 22=6种,再分配给3个人,有A 33=6种,所以不同的安排方式共有6×6=36种.12.在(1+x )n 的展开式中,奇数项之和为p ,偶数项之和为q ,则(1-x 2)n等于( ) A .0 B .pq C .p 2-q 2D .p 2+q 2解析:选C 由于(1+x )n与(1-x )n展开式中奇数项相同,偶数项互为相反数,因此(1-x )n=p -q ,所以(1-x 2)n=(1+x )n (1-x )n =(p +q )(1-q )=p 2-q 2.二、填空题(本大题共4小题,每小题5分,满分20分.把答案填写在题中的横线上)13.⎝⎛⎭⎪⎪⎫x -13x 12展开式中的常数项为________.解析:由通项公式T r +1=C r 12 x 12-r ⎝⎛⎭⎪⎪⎫-13x r=(-1)r C r12 x12-43r,令12-43r =0解得r =9.∴T 10=-220. 答案:-22014.从集合{1,2,3,…,10}中,选出由5个数组成的子集,使得这5个数中任何两个数的和不等于11,则这样的子集共有________个.解析:两个数的和等于11的情况有(1,10),(2,9),(3,8),(4,7),(5,6),所以满足条件的子集有C 12·C 12·C 12·C 12·C 12=32(个).答案:3215.5个人排成一排,要求甲、乙两个人之间至少有一个人,则不同的排法有________种.解析:甲、乙两个人之间至少有一个人,就是甲、乙两个人不相邻,则有A 33·A 24=72(种)排法.答案:7216.⎝⎛⎭⎪⎫1+1x 2(1+x )6展开式中x 2的系数为________. 解析:(1+x )6展开式的通项T r +1=C r 6x r ,所以⎝⎛⎭⎪⎫1+1x 2(1+x )6的展开式中x 2的系数为1×C 26+1×C 46=30.答案:30三、解答题(本大题共有6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)六个人按要求站成一排,分别有多少种不同的站法?(用数字作答,要有详细的说明过程)(1)甲不站在两端; (2)甲、乙不相邻;(3)甲在乙的左边(可以不相邻); (4)甲、乙之间间隔两个人; (5)甲不站左端,乙不站右端.解:(1)先排甲,有C 14种;其余的人全排列有A 55种,故共有C 14A 55=480(种).(2)法一:先计算甲、乙两个相邻的排法数共有A 22A 55=240(种),则甲、乙两个不相邻的方法数为A 66-A 22A 55=480(种).法二:先排其余的四人有A 44=24(种),再在四个人的五个空隙中排甲、乙两人,共有A 25=20(种),根据分步乘法计数原理,共有A 44A 25=480(种).(3)在无限制的排列中,共有A 66种,其中甲在乙的左边与甲在乙的右边的排列种数是相同的,故共有12A 66=360(种)排法.(4)先从另外四人中选出两人排在甲、乙的中间有A 24种不同的排法,所以包括甲、乙这四人的排法有A 24A 22种排法,将这四人看作一个整体,与另外两人全排列有A 33种排法,根据分步计数原理可知共有A 24A 22A 33=144(种)不同的排法.(5)(排除法)甲站左端的排法数有A 55种,乙站右端的排法数有A 55种,甲站左端同时乙站右端的排法数有A 44种,所以甲不站左端,乙不站右端的排法数为A 66-2A 55+A 44=504(种).18.(本小题满分12分)已知(1+2x )n的展开式中,某一项的系数恰好是它的前一项系数的2倍,而且是它的后一项系数的56,试求展开式中二项式系数最大的项.解:设展开式中第k 项的系数是第k -1项系数的2倍,是k +1项系数的56.所以⎩⎪⎨⎪⎧C k n 2k=2C k -1n ·2k -1,C k n 2k =56C k +1n ·2k +1,解得n =7.所以展开式中二项式系数最大的项是T 4=C 37(2x )3=280x 32与T 5=C 47(2x )4=560x 2.19.(本小题满分12分)用数字0,1,2,3,4组成四位数或三位数(数字可重复利用). (1)可组成多少个不同的四位数? (2)可组成多少个大于2000的四位数? (3)可组成多少个被3整除的三位数? 解:(1)A 14·53=500或54-53=500(间接法). (2)A 13·53-1=374.(3)各位数字之和是3的倍数的数可被3整除, ∴符合题意的有以下几种情况 ①各位上数字相同有4个.②含有0的数字,由0,0,3组成有1个,由0,1,2组成、或由0,2,4组成各有C 12C 22=4(个).0,3,3组成有2个.③由1,2,3组成或由2,3,4组成的各有A 33=6个,由1,1,4组成的有3个,4,4,1组成的有3个.所以共有4+1+2×4+2+2×6+3×2=33个.20.(本小题满分12分)如图,在以AB 为直径的半圆周上,有异于A ,B 的六个点C 1,C 2,C 3,C 4,C 5,C 6,直径AB 上有异于A ,B 的四个点D 1,D 2,D 3,D 4.(1)以这10个点中的3个点为顶点作三角形可作出多少个?其中含C 1点的有多少个?(2)以图中的12个点(包括A ,B )中的4个点为顶点,可作出多少个四边形? 解:(1)可分三种情况处理:①C 1,C 2,…,C 6这六个点任取三点可构成一个三角形;②C 1,C 2,…,C 6中任取一点,D 1,D 2,D 3,D 4中任取两点可构成一个三角形; ③C 1,C 2,…,C 6中任取两点,D 1,D 2,D 3,D 4中任取一点可构成一个三角形. ∴C 36+C 16C 24+C 26C 14=116(个).其中含C 1点的三角形有C 25+C 15·C 14+C 24=36(个).(2)构成一个四边形,需要四个点,且无三点共线,∴共有C 46+C 36C 16+C 26C 26=360(个).21.(本小题满分12分)已知⎝ ⎛⎭⎪⎫2x i +1x 2n ,i 是虚数单位,x >0,n ∈N *. (1)如果展开式中的倒数第3项的系数是-180,求n 的值;(2)对(1)中的n ,求展开式中系数为正实数的项.解:(1)由已知,得C n -2n (2i)2=-180,即4C 2n =180,所以n 2-n -90=0,又n ∈N +,解得n =10.(2)⎝ ⎛⎭⎪⎫2x i +1x 210展开式的通项为 T k +1=C k 10·(2x i)10-k x -2k =C k 10(2i)10-k x 5-52k .因为系数为正实数,且k ∈{0,1,2,…,10},所以k =2,6,10.所以所求的项为T 3=11 520,T 7=3 360x -10,T 11=x -20.22.(本小题满分12分)10双互不相同的鞋子混装在一只口袋中,从中任意取出4只,试求出现如下结果时,各有多少种情况?(1)4只鞋子没有成双的;(2)4只鞋子恰成两双;(3)4只鞋中有2只成双,另两只不成双.解:(1)从10双鞋子中选取4双,有C 410种不同的选法,每双鞋子各取一只,分别有2种取法,根据分步乘法计数原理,选取种数为N=C410·24=3 360(种).(2)从10双鞋子中选取2双有C210种取法,即45种不同取法.(3)先选取一双有C110种选法,再从9双鞋中选取2双鞋有C29种选法,每双鞋只取一只各有2种取法,根据分步乘法计数原理,不同取法为N=C110C29·22=1 440(种).。
描述:例题:高中数学选修2-3(人教B版)知识点总结含同步练习题及答案第一章 计数原理 1.3计数模型(补充)一、学习任务掌握计数的几种模型,并能处理一些简单的实际问题.二、知识清单数字组成模型 条件排列模型 分组分配模型染色模型计数杂题三、知识讲解1.数字组成模型与顺序相关的数字问题,通常是计算满足某些特征的数字的个数.常见特征比如各个数位的数字不同、四位数、奇数、比某数大的数、某个数位满足某种条件的数等等,其中各个数位数字可以相同的问题通常借助乘法原理分步解决,各个数位数字不相同通常是与排列相关的问题.由 、、、、 这五个数字可组成多少个无重复数字的五位数?解:首位不能是 ,有 种,后四位数有 种排列,所以这五个数可以组成 个无重复的五位数.012340C 14A 44=96C 14A 44用数字 、 组成四位数,且数字 、 至少都出现一次,这样的四位数共有______个(用数字作答).解:因为四位数的每个数位上都有两种可能性,其中四个数字全是 或 的情况不合题意,所以符合题意的四位数有 个.23231423−2=1424从 , 中选一个数字,从 、、 中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A. B. C. D.解:B当选 时,先从 、、 中选 个数字有 种方法,然后从选中的 个数字中选 个排在末位有 种方法,剩余 个数字排在首位,共有 种方法;当选 时,先从 、、 中选 个数字有 种方法,然后从选中的 个数字中选 个排在末位有 种方法,其余 个数字全排列,共有 种方法.依分类加法计数原理知共有 个奇数.02135241812601352C 2321C 121=6C 23C 1221352C 2321C 122=12C 23C 12A 226+12=18用 , ,, , , 这 个数字,可以组成______个大于 且小于 的012345630005421描述:例题:2.条件排列模型计算满足某些限制条件的排列的个数,常见的如相邻问题、不相邻问题、某位置不能排某人、某人只能或不能排在某些位置的问题等等.不重复的四位数.解:分四类:①千位数字为 , 之一时,百十个位数只要不重复即可,有 (个);②千位数字为 ,百位数字为 ,,, 之一时,共有 (个);③千位数字是 ,百位数字是 ,十位数字是 , 之一时,共有 (个);④最后还有 也满足条件.所以,所求四位数共有 (个).175342=120A 3550123=48A 14A 245401=6A 12A 135420120+48+6+1=175 名男生, 名女生,按照不同的要求排队,求不同的排队方案的方法种数.(1)全体站成一排,其中甲只能在中间或两端;(2)全体站成一排,男生必须排在一起;(3)全体站成一排,甲、乙不能相邻.解:(1)先考虑甲的位置,有 种方法,再考虑其余 人的位置,有 种方法.故有种方法;(2)(捆绑法)男生必须站在一起,即把 名男生进行全排列,有 种排法,与 名女生组成 个元素全排列,故有 种不同的排法;(3)(插空法)甲、乙不能相邻,先把剩余的 名同学全排列,有 种排法,然后将甲、乙分别插到 个空中,有 种排法,故有 种不同的排法.34A 136A 66=2160A 13A 663A 3345=720A 33A 555A 556A 26=3600A 55A 26有甲、乙、丙在内的 个人排成一排照相,其中甲和乙必须相邻,丙不排在两头,则这样的排法共有______种.解:甲和乙必须相邻,可将甲、乙捆绑,看成一个元素,与丙除外的另三个元素构成四个元素,自由排列,有 种方法;丙不排在两头,可对丙插空,插四个元素生成的中间的三个空中的任何一个,有 种方法;最后甲、乙两人的排法有 种方法.综上,总共有 种排法.6144A 44A 13A 22=144A 44A 13A 22 把椅子摆成一排, 人随机就座,任何两人不相邻的坐法种数为( )A. B. C. D.解:D“不相邻”应该用“插空法”,三个空椅子,形成 个空,三个坐人的椅子插入空中,因为人不同,所以需排序,所以有 种不同坐法.6314412072244=24A 34某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同课程的排法?解:法一: 门课程总的排法是 种,其中不符合要求的可分为:体育排在第一节有 种排法,数学排在最后一节有 种排法,但这两种方法,都包括体育在第一节,数学排在最后一节,这种情况有 种排法,因此符合条件的排法应是: 种.法二:① 体育、数学即不排在第一节也不排在最后一节,这种情况有 种排法;② 数学6A 66A 55A 55A 44−2+=504A 66A 55A 44⋅A 24A 44⋅144种颜色可供选择,则不同的着色方法共有______种.(以数字作答)72种花,且相邻的96高考不提分,赔付1万元,关注快乐学了解详情。
高中数学知识点总结 第 1 页 共 1 页 高中数学知识点总结:计数原理1、分类加法计数原理:做一件事情,完成它有N 类办法,在第一类办法中有M 1种不同的方法,在第二类办法中有M 2种不同的方法,……,在第N 类办法中有M N 种不同的方法,那么完成这件事情共有M 1+M 2+……+M N 种不同的方法。
2、分步乘法计数原理:做一件事,完成它需要分成N 个步骤,做第一 步有m1种不同的方法,做第二步有M 2不同的方法,……,做第N 步有M N 不同的方法.那么完成这件事共有 N=M 1M 2...M N 种不同的方法。
3、排列:从n 个不同的元素中任取m(m ≤n )个元素,按照一...定顺序...排成一列,叫做从n 个不同元素中取出m 个元素的一个排列4、排列数: ),,()!(!)1()1(N m n n m m n n m n n n A m ∈≤-=+--=5、组合:从n 个不同的元素中任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。
6、组合数:)!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--== )!(!!)1()1(m n m n C m m n n n A A C m n mm m n m n -=+--==;m n n m n C C -= m n m n m n C C C 11+-=+7、二项式定理:()a b C a C a b C a b C a b C b n n n n n n n n r n r r n n n +=++++++---011222…… 8、二项式通项公式展开式的通项公式:,……T C a b r n r nr n r r +-==101()。
计数原理(讲义)
➢ 知识点睛
一、两个计数原理
1. 全排列:n 个不同元素全部取出的排列,叫做n 个不同元素的一个全排列,
A (1)(2)21n n n n n n =⨯-⨯-⨯⨯⨯=L !
即正整数1到n 的连乘积叫做n 的阶乘,用n !表示.
A ()m n n n m =-!!,A !C !()!A m m n n m m n m n m ==-,
规定0!1=,0C 1n =. 2. 组合数的性质
C C m n m n n -=,11C C C m m m n n n
-+=+. ➢ 精讲精练
1. 从A 地到B 地要经过C 地和D 地,从A 地到C 地有3条路,从C 地到D 地有2条路,从D 地
到B 地有4条路,则从A 地到B 地的不同走法共有( )种.
A .3+2+4=9
B .1
C .3×2×4=24
D .1+1+1=3
2. 设4名学生报名参加同一时间安排的3项课外活动的方案有a 种,这4名学生在运动会上共同争
夺100米、跳远、铅球3项比赛的冠军的可能结果有b 种,则(a ,b )为( )
A .(34,34)
B .(43,34)
C .(34,43)
D .3344(A A ),
3. 填空:
(1)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有______种.
(2)某校学生会由高一年级5人,高二年级6人,高三年级4人组成,若要选出不同年级的两人参加市里组织的某项活动,则不同的选法共有______种.
(3)从6台原装计算机和5台组装计算机中任意选取5台,其中至少有原装与组装计算机各两台,则不同的取法有_____种.
(4)在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的为_____种(结果用数值表示).
4. 填空:
(1)用0到9这10个数字,可组成________个没有重复数字的四位偶数.
(2)6个人从左至右排成一行,若最左端只能排甲或乙,最右端不能排甲,则不同的排法共有________种.
(3)某运输公司有7个车队,每个车队的车均多于4辆且型号相同,现从这个车队中抽调出10辆车,并且每个车队至少抽调一辆,则不同的抽调方法共有________种.
5.4名男生和3名女生并坐一排,分别回答下列问题:
(1)男生必须排在一起的坐法有多少种?
(2)女生互不相邻的坐法有多少种?
(3)男生相邻、女生也相邻的坐法有多少种?
(4)男女生相间的坐法有多少种?
(5)女生顺序已定的坐法有多少种?
6.6把椅子摆成一排,3人随机就座,任何两人不相邻的情况共有()种.
A.144B.120C.72D.24
7.市内某公共汽车站有6个候车位(成一排),现有3名乘客随便坐在某个座位上候车,则恰好有2
个连续空座位的候车方式共有()种.
A.48B.54C.72D.84
8.填空:
(1)有形状大小相同的3个红色小球和5个白色小球,排成一排,则不同的排列方法共有________种.
(2)宿舍楼内的走廊一排有8盏灯,为节约用电又不影响照明,要同时熄灭其中3盏,但这3盏灯不能相邻,则不同的熄灯方法共有________种.
9.有4个不同的球,4个不同的盒子,把球全部放入盒内.
(1)共有几种放法?
(2)恰有1个空盒,有几种放法?
(3)恰有2个盒子不放球,有几种放法?
【参考答案】
1.C
2.C
3.(1)75;(2)74;(3)350;(4)120
4.(1)2296;(2)216;(3)84
5.(1)576;(2)1440;(3)288;(4)144;(5)840
6.D
7.C
8.(1)56;(2)20
9.(1)256;(2)144;(3)84
计数原理(随堂测试)
10.7名同学排队照相.
(1)若排成两排照,前排3人,后排4人,有多少种不同的排法?
(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?
(3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?
(4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不同的排法?
【参考答案】
(1)5040;(2)1440;(3)720;(4)1440
计数原理(习题)
➢例题示范
例1:现有3辆公交车、3位司机和3位售票员,若要求每辆车配1位司机和1位售票员,则车辆、司机、售票员的搭配方案共有多少种?
思路分析:
可以把3辆车看成排了顺序的三个空:,然后把3名司机和3名售票员分别填入.因此可认为事件分两步完成,每一步都是一个排列问题.
第一步,把3名司机安排到3辆车中,有3
A=6种安排方法;
3
第二步,把3名售票员安排到3辆车中,有3
A=6种安排方法.
3
故搭配方案共有3333
A A ⋅=36种.
例2:5本不同的书全部分给4个学生,每个学生至少一本,不同的分法共有( )
A .480种
B .240种
C .120种
D .96种
思路分析: 首先把5本书转化成4本书,然后分给4个人.
第一步:从5本书中任意取出2本捆绑成一本书,有25C 种方法;第二步:再把4本书分给4个学生,
有44A 种方法.
由乘法原理,共有2454C A ⋅=240种方法,故选B .
➢ 巩固练习
1. (1)4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有_______种报名方法.
(2)4名同学争夺跑步、跳高、跳远三项冠军,共有_____种可能的结果.
2. 已知a ∈{0,3,4},b ∈{1,2,7,8},r ∈{8,9},则方程(x -a )2+(y -b )2=r 2表示__________个不同
的圆.
3. 满足a ,b ∈{-1,0,1,2},且关于x 的方程ax 2+2x+b =0有实数解的有序数对(a ,b )共有( )
A .14个
B .13个
C .12个
D .10个
4. 某校一年级有5个班,二年级有7个班,三年级有4个班,分年级举行班与班之间的篮球单循环
赛,共需进行比赛的场数是( )
A .222574C C C ++
B .222574
C C C ⋅⋅ C .222574A A A ++
D .216C
5. 将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1
名教师和2名学生组成,不同的安排方案共有( )
A .12种
B .10种
C .9种
D .8种
6. 用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )
A .144个
B .120个
C .96个
D .72个
7. 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行展出,要求
同一品种的画必须连在一起,并且水彩画不能放在两端,则不同的展出方式共有( )种.
A .4
545A A ⋅
B .345345A A A ⋅⋅
C .1
45345C A A ⋅⋅ D .2
45245A A A ⋅⋅
8. 现有8个人排成一排照相,其中甲、乙、丙三人不能相邻的排法有( )种.
A .3
565A A ⋅
B .863863A A A -⋅
C .3
353A A ⋅ D .8
486A A -
9. 从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )
A .24对
B .30对
C .48对
D .60对
10. 填空: (1)有10个运动员名额,分给7个班,每班至少分1个,共有__________种分配方案.
(2)由1,2,3,4,5,6组成没有重复数字且1,3都不与5相邻的六位偶数,这样的六位偶数共有__________个.
(3)6个人排成一行,其中甲、乙两人不相邻的不同排法共有__________种.
11.某餐厅供应客饭,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种,现在餐厅
准备了5种不同的荤菜,若要保证每位顾客有200种以上的不同选择,则餐厅至少还需准备__________种不同的素菜.
12.3个女生和5个男生排成一排.
(1)如果女生必须全排在一起,有多少种不同的排法?
(2)如果女生必须全分开,有多少种不同的排法?
(3)如果两端都不能排女生,有多少种不同的排法?
(4)如果两端不能都排女生,有多少种不同的排法?
13.某街道有十只路灯,为节约用电又看清路面,可以把其中的三只灯关掉,但不能同时关掉相邻的
两只,且在两端的灯也不能关掉,求满足条件的关灯方法共有多少种?
【参考答案】
1.(1)81;(2)64
2.24
3.B
4.A
5.A
6.B
7.D
8.A
9.C
10.(1)84;(2)108;(3)480
11.7
12.(1)4320;(2)14 400;(3)14 400;(4)36 000 13.20。