物理杠杆平衡的专项培优练习题(含答案)附答案解析
- 格式:doc
- 大小:656.00 KB
- 文档页数:19
一、初中物理杠杆平衡条件的应用问题1.在一个长3米的跷跷板(支点在木板中点)的两端分别放置两个木箱,它们的质量分别为m 1=30kg ,m 2=20kg ,为了使跷跷板在水平位置平衡,以下做法可行的是( )A .把m 1向右移动0.5米B .把m 2向左移动0.5米C .把m 1向右移动0.2米D .把m 2向左移动0.3米【答案】A【解析】【分析】【详解】 跷跷板的支点在木板中点,根据图中信息可知,木板左边受到的压力比右边大,为了使跷跷板在水平位置平衡,应该将m 1向右移,则m 2的力臂不变为1.5m ,根据杠杆的平衡条件有1122m gl m gl '=代入数据可得m 1向右移后的力臂 221120kg 1.5m 1m 30kgm gl l m g ⨯'=== m 1的力臂由1.5m 变为1m ,为了使跷跷板在水平位置平衡,把m 1向右移动0.5米,所以BCD 项错误,A 项正确。
故选A 。
2.如图所示,作用在A 点的各个力中,不可能使杠杆平衡的力是A .F 3和F 4B .F 1和F 3C .F 2和F 4D .F 1和F 2【答案】A【解析】【详解】因为力F3的作用线所在的直线过支点O,所以力F3的力臂为0,又因为0乘以任何数都为0,所以力F3不能使杠杆平衡;力F4使杠杆转动方向与重物使杠杆的转动方向相同,所以力F4不能使杠杆平衡;力F1和F2使杠杆转动方向与重物使杠杆转动方向相反,所以力F1和F2可以使杠杆平衡;故选A。
3.如图甲是制作面团的情景,把竹竿的一端固定在绳扣中,人骑在另一端施加一个向下的大小为F的力,面团被不断挤压后变得更有韧性,图乙为压面团原理图.关于压面团过程的叙述正确的是()A.面团对杆的作用力方向向下B.面团对杆的作用力大小等于FC.面团被压扁说明力能使物体发生形变D.A点向下移动的距离小于B点向下移动的距离【答案】C【解析】【分析】【详解】A.杆对面团的作用力向下,面团对杆的作用力向上,故A错误;B.由于面团B点到支点C的距离小于A点到C的距离,根据杠杆定律F1L1=F2L2,可知面团对杆的作用力大于F,故B错误;C.面团被压扁说明力能使物体发生形变,故C正确;D.C为支点,A点向下移动的距离大于B点向下移动的距离,故D错误;故选C。
一、初中物理杠杆平衡条件的应用问题1.如图为搬运砖头的独轮车,车箱和砖头所受的总重力G 为1 000 N (车架所受重力忽略不计),独轮车的有关尺寸如图所示,推车时,人手向上的力F 的大小为 ( )A .200 NB .300 NC .400 ND .500 N【答案】B【解析】【分析】【详解】由平衡条件可知 12Gl Fl =则 121000N0.3=300N mGl F l ⨯==m1 故选B 。
2.如图所示,杠杆在水平状态保持静止,要使弹簧测力计的示数变为原来的12,下列措施中可行的是A .去掉三个钩码B .把钩码向左移动2小格C .把钩码向右移动2小格D .把弹簧秤测力计向左移动2小格【答案】B【分析】【详解】根据杠杆平衡条件F1L1=F2L2得,4G×4L=F2×8L,解得F2=2G,要使弹簧测力计的示数变为原来的12,即F2=G。
A.去掉三个钩码,根据杠杆平衡条件F1L1=F2L2得,G×4L=F'2×8L,所以F'2=12G,不符合题意;B.把钩码向左移动2小格,根据杠杆平衡条件F1L1=F2L2得,4G×2L=F'2×8L,所以F'2=G,故B符合题意;C.把钩码向右移动2小格,根据杠杆平衡条件F1L1=F2L2得,4G×6L=F'2×8L,所以F'2=3G,故C不符合题意;D.把弹簧秤测力计向左移动2小格,根据杠杆平衡条件F1L1=F2L2得,4G×4L=F'2×6L,所以F'2=83G,故D不符合题意。
故选B。
3.如图所示,将重150N的甲物体用细绳挂在轻质杠杆的A端,杠杆的B端悬挂乙物体,杠杆在水平位置平衡,已知:乙物体所受重力为30N,:1:3AO OB ,甲物体的底面积为0.2m2,g取10N/kg。
下列说法正确的是()A.甲物体对杠杆的拉力为10N B.杠杆对甲物体竖直向上的拉力为60N C.甲物体对水平地面的压强为750Pa D.水平地面对甲物体的支持力为60N【答案】D【解析】【详解】对物体甲受力分析,甲受到重力、地面给甲的支持力、杠杆施加的拉力的作用,其中杠杆施加的拉力与甲对杠杆的拉力为一对相互作用力,地面给甲的支持力和甲给地面的压力为一对相互作用力。
一、初中物理杠杆平衡条件的应用问题1.如图所示装置,杆的两端A 、B 离支点O 的距离之比:1:2OA OB =,A 端接一重为G A 的物体,B 端连一滑轮,滑轮上挂有另一重为G B 的物体。
现杠杆保持平衡,若不计滑轮重力,则G A 与G B 之比应是( )A .1∶4B .1∶2C .1∶1D .2∶1【答案】C【解析】【分析】【详解】由杠杆平衡条件可知 A G OA F OB ⋅=⋅即A G OA F OB⋅=因 :1:2OA OB =所以12A F G = 由图和动滑轮的特点可知12B F G = 故1:1A BG G = 故选C 。
2.生活中,小华发现有如图甲所示的水龙头,很难徒手拧开,但用如图乙所示的钥匙,安装并旋转钥匙就能正常出水(如图丙所示).下列有关这把钥匙的分析中正确的是A.在使用过程中可以减小阻力臂B.在使用过程中可以减小阻力C.在使用过程中可以减小动力臂D.在使用过程中可以减小动力【答案】D【解析】【详解】由图可知,安装并旋转钥匙,阻力臂不变,阻力不变,动力臂变大,根据杠杆平衡的条件F1L1=F2L2可知,动力变小,故选D。
3.如图所示,杠杆在水平状态保持静止,要使弹簧测力计的示数变为原来的12,下列措施中可行的是A.去掉三个钩码B.把钩码向左移动2小格C.把钩码向右移动2小格D.把弹簧秤测力计向左移动2小格【答案】B【解析】【分析】【详解】根据杠杆平衡条件F1L1=F2L2得,4G×4L=F2×8L,解得F2=2G,要使弹簧测力计的示数变为原来的12,即F2=G。
A .去掉三个钩码,根据杠杆平衡条件F 1L 1=F 2L 2得,G ×4L =F'2×8L ,所以F '2=12G ,不符合题意; B .把钩码向左移动2小格,根据杠杆平衡条件F 1L 1=F 2L 2得,4G ×2L =F '2×8L , 所以F '2=G ,故B 符合题意; C .把钩码向右移动2小格,根据杠杆平衡条件F 1L 1=F 2L 2得,4G ×6L =F '2×8L ,所以F '2=3G ,故C 不符合题意;D .把弹簧秤测力计向左移动2小格,根据杠杆平衡条件F 1L 1=F 2L 2得,4G ×4L =F '2×6L ,所以F '2=83G ,故D 不符合题意。
一、初中物理杠杆平衡条件的应用问题1.如图所示,轻质杠杆AOB 的支点是O ,AO=BO 。
若在A 端和B 端分别悬挂重力相等的两个重物,则杠杆( )A .保持平衡B .A 端下沉C .B 端下沉D .以上均可能【答案】B【解析】【分析】【详解】轻质杠杆AOB 的重力可不计,杠杆的示意图如下所示:动力和阻力大小均等于物体的重力,两个重物的重力相等,则F 1=F 2;动力臂为OA ,阻力臂为OC ,满足OC OB OA <=所以可知12F OA F OC ⨯>⨯根据杠杆的平衡条件可知,A 端下沉。
故选B 。
2.如图所示的轻质杠杆OA 上悬挂着一重物G ,O 为支点,在A 端用力使杠杆平衡。
下列叙述正确的是( )A .此杠杆一定是省力杠杆B .沿竖直向上方向用力最小C .沿杆OA 方向用力也可以使杠杆平衡D .此杠杆可能是省力杠杆,也可能是费力杠杆【答案】D【解析】【分析】【详解】A .因为无法确定动力臂的大小,所以无法确定是哪种杠杆,故A 错误;B .沿垂直杠杆向上的方向用力,动力臂最大,动力最小,最省力,故B 错误;C .沿OA 方向动力臂是零,杠杆无法平衡,故C 错误。
D .因为杠杆的动力臂无法确定,所以它可能是省力杠杆,也可能是费力杠杆,故D 正确。
故选D 。
3.AC 硬棒质量忽略不计,在棒的B 、C 两点施加力F 1、F 2,F 2的方向沿OO'线,棒在图所示位置处于静止状态,则( )A .F 1<F 2B .F 1=221s F s C .F 1力臂等于s 1D .F 2方向沿OO '线向上【答案】D【解析】【详解】AC .由图知,F 2的方向沿OO ′线,其力臂最长,为s 2;而F 1的方向竖直向下,所以其力臂L 1是从A 点到F 1的垂线段,小于s 1,更小于s 2, 由F 1L 1=F 2L 2知,L 1<s 2,所以F 1一定大于F 2,故AC 不符合题意;B .由F 1L 1=F 2L 2知,F 1L 1=F 2s 2,即2211F s F L故B 不符合题意; D .已知F 1的方向是竖直向下的,为保持杠杆平衡,F 2的方向应该沿OO′向上,故D 符合题意。
一、初中物理杠杆平衡条件的应用问题1.如图所示,杠杆在水平位置平衡.下列操作仍能让杠杆在水平位置保持平衡的是()A.两侧钩码同时向外移一格B.两侧钩码同时向内移一格C.在两侧钩码下方,同时加挂一个相同的钩码D.左侧增加一个钩码,右侧钩码向外移一格【答案】D【解析】【分析】【详解】设一个钩码的重力为G,横梁上一个格的长度为l,原来杠杆处于平衡状态,则有2332⨯=⨯G l G lA.两侧钩码同时向外移一格,左边为⨯=G l Gl248右边为⨯=339G l GlGl Gl<89杠杆右端下沉,故A项不符合题意;B.两侧钩码同时向内移一格,左边为⨯=G l Gl224右边为313⨯=G l Gl<34Gl Gl杠杆左端下沉,故B项不符合题意;C.同时加挂一个相同的钩码,左边为⨯=G l Gl339右边为⨯=G l Gl428<Gl Gl89杠杆左端下沉,故C项不符合题意;D.左侧增加一个钩码,右侧钩码向外移一格,左边为⨯=G l Gl339右边为⨯=G l Gl339=Gl Gl99杠杆平衡,故D项符合题意。
故选D。
2.按如下原理制作一杆可直接测量液体密度的秤,称为密度秤,其外形和普通的杆秤差不多,装秤钩的地方吊着体积为1cm3的较重的合金块,杆上有表示液体密度数值的刻度,当秤砣放在Q点处时秤杆恰好平衡,如图所示。
当合金块完全浸没在待测密度的液体中时,移动秤砣的悬挂点,直至秤杆恰好重新平衡,便可直接在杆秤上读出液体的密度,下列说法中错误的是()A.密度秤的零点刻度在Q点B.密度秤的刻度都在Q点的左侧C.密度秤的刻度都在Q点的右侧D.秤杆上密度读数较大的刻度在较小的刻度的左边【答案】C【解析】【分析】【详解】A.合金块没有浸入液体时,液体的密度应为零,所以秤的零刻度应该在Q处;故A正确,不符合题意;BC.若秤砣由Q向右移动,它的力臂变长,则左边合金块拉秤杆的力应增大,但合金块受到的浮力不可能竖直向下,所以零点的右边应该是没有刻度的,其刻度都在Q点的左侧。
一、初中物理杠杆平衡条件的应用问题1.如图,一块厚度、密度均匀的长方形水泥板放在水平地面上,用一竖直向上的力,欲使其一端抬离地面,则()A.F1>F2,因为甲方法的动力臂长B.F1=F2,因为动力臂都是阻力臂的2倍C.F1>F2,因为乙方法的阻力臂短D.F1<F2,因为乙方法的动力臂长【答案】B【解析】【分析】【详解】由图示可知,无论用哪种方法来抬,动力臂总是阻力臂的二倍,所用的力总等于阻力的二分之一,由于阻力就是重力,大小是不变的,所以动力的大小也是不变的,故应选B。
2.如图所示,一根均匀木尺放在水平桌面上,它的一端伸出桌面的外面,伸到桌面外面的部分长度是木尺长的14,在木尺末端的B点加一个作用力F,当力F=3N时,木尺的另一端A开始向上翘起,那么木尺受到的重力为()A.3N B.9N C.1N D.2N 【答案】A【解析】【分析】【详解】设直尺长为l,如图所示:从图示可以看出:杠杆的支点为O,动力F=3N动力臂OB =14l 阻力为直尺的重力G ,阻力臂 CO =12l -14l =14l 由杠杆平衡的条件得F ×OB =G ×OC3N×14l = G ×14l G =3N故选A 。
3.如图,一个长方体木箱,重心在它的几何中心,其高度为H 、正方形底面的边长为L 、重为G 。
想把这个木推倒(木箱较重,不会移动),在其中部的中心最初施加一个水平推力大小是( )A .2GHL B .GH L C .HL GD .GL H 【答案】D【解析】【分析】【详解】由图示可知,把这个木箱推倒,它右下端与地面的接触点是支点,当小孩水平推木箱时,力臂为2H ,阻力为木箱的重力,阻力臂为2L ,如图所示:根据杠杆的平衡条件可得G ×2L =F ×2HF =GL H故选D 。
4.用图示装置探究杠杆平衡条件,保持左侧的钩码个数和位置不变,使右侧弹簧测力计的作用点 A 固定,改变测力计与水平方向的夹角 θ,动力臂l 也随之改变,所作出的“F -θ”图象和“F -l ” 图象中,正确的是A .B .C .D .【答案】C【解析】【详解】A .动力F 和θ的关系,当F 从沿杆方向(水平向左)→垂直于杆方向(与水平方向成90°)→沿杆方向(水平向右),由图可知,F 对应的动力臂l =OA ×sinθ,动力臂l 先变大后变小,则动力F 先变小后变大,所以A 错误;B .当θ等于90°时,动力臂最大,动力最小但不为零,所以B 错误;CD .根据杠杆平衡条件Fl =F 2l 2可得:F =22F l l,由于F 2、l 2不变,则F 和l 成反比,故C 正确,D 错误。
一、初中物理杠杆平衡条件的应用问题1.在我国古代书籍《墨经》中,对杠杆有精辟论述,并有许多巧妙的应用.如下图所示是在井上汲水的桔槔,下列对其在使用中正确的解释是A.桔槔是等臂杠杆,不省力也不费力B.向井内放送水桶时,人用的力气一定小于水桶的重力,所以省力C.桔槔是不等臂杠杆,动力臂小于阻力臂,是费力杠杆D.往上提水时,人用的力气一定小于桶与水的总重,所以省力【答案】D【解析】【分析】杠杆的分类:①省力杠杆,动力臂大于阻力臂;②费力杠杆,动力臂小于阻力臂;③等臂杠杆,动力臂等于阻力臂;要使杠杆平衡,作用在杠杆上的两个力(用力点、支点和阻力点)的大小跟它们的力臂成反比。
【详解】AC.由图可见,桔槔是不等臂杠杆,动力臂大于阻力臂,是省力杠杆,故AC错误;B.向井内放送水桶时,人用的力通过杠杆原理,与石头的重力相关,一般比木桶的重力要大,故B错误;D.往上提水时,因为有石头帮忙,人的力气比水和桶的总重力小,故D正确。
故选D。
【点睛】此题主要考查了对简单机械的认识,要掌握杠杆的要素。
2.生活中,小华发现有如图甲所示的水龙头,很难徒手拧开,但用如图乙所示的钥匙,安装并旋转钥匙就能正常出水(如图丙所示).下列有关这把钥匙的分析中正确的是A.在使用过程中可以减小阻力臂B.在使用过程中可以减小阻力C.在使用过程中可以减小动力臂D .在使用过程中可以减小动力 【答案】D 【解析】 【详解】由图可知,安装并旋转钥匙,阻力臂不变,阻力不变,动力臂变大,根据杠杆平衡的条件F 1L 1=F 2L 2可知,动力变小,故选D 。
3.如图所示,将重150N 的甲物体用细绳挂在轻质杠杆的A 端,杠杆的B 端悬挂乙物体,杠杆在水平位置平衡,已知:乙物体所受重力为30N ,:1:3AO OB =,甲物体的底面积为0.2m 2,g 取10N/kg 。
下列说法正确的是( )A .甲物体对杠杆的拉力为10NB .杠杆对甲物体竖直向上的拉力为60NC .甲物体对水平地面的压强为750PaD .水平地面对甲物体的支持力为60N【答案】D 【解析】 【分析】 【详解】对物体甲受力分析,甲受到重力、地面给甲的支持力、杠杆施加的拉力的作用,其中杠杆施加的拉力与甲对杠杆的拉力为一对相互作用力,地面给甲的支持力和甲给地面的压力为一对相互作用力。
一、初中物理杠杆平衡条件的应用问题1.如图,轻质杠杆上各小格间距相等,O 为杠杆中点,甲、乙是同种金属材料制成的实心物体,甲为正方体,乙重15N ,将甲、乙用能承受最大拉力为25N 的细线分别挂于杠杆上M 、Q 两刻线处时,两细线被拉直且都沿竖直方向,M 、Q 正好在甲、乙重心正上方,杠杆在水平位置平衡,这时甲对地面的压强为4000Pa ;当甲不动,把乙移挂至R 时,甲对地面的压强为3750Pa ,下列说法中正确的是( )A .将甲挂在M 下,乙挂在Q 下,此时甲对地面的压力为45NB .将甲挂于N 正下方,乙挂于S ,放手后甲被拉离地面C .将甲挂在N 的下方,乙挂于R ,再将乙沿水平方向切去1/3,此时甲对地面的压强仍为3750PaD .将甲挂在M 正下方,乙挂于Q 再将甲沿竖直方向切去1/5,并将这1/5上挂在乙的下方,此时甲对地面的压强为2800Pa【答案】C【解析】【分析】(1)利用杠杆平衡条件1122Fl F l =求出甲上方的绳上的拉力,再分析甲的受力情况,根据压强F p S=列出甲在两种情况下的压强,联立解答甲的重力; (2)利用杠杆平衡条件判断是否再一次平衡,并利用平衡时的对应物理量根据F p S =计算. 【详解】A .设甲的重力为G ,甲的底面积为S ,杠杆上1小格为l ,则根据杠杆平衡条件可得:6215N 2F l G l l ⨯=⨯=⨯甲乙,解得5N F =甲,此时甲对地面的压强为5N 4000Pa F G p S S-===; 同理可得: 6315N 3F l G l l '⨯=⨯=⨯甲乙, 解得7.5N F '=甲,此时甲对地面的压强为 7.5N 3750Pa F G p S S'-'===;两式联立解得:45N G =,此时甲对地面的压力为45N-5N=40N ,故A 错误; B .如果将甲挂于N 正下方,乙挂于S ,设地面对甲的支持力为1F ,此时,()147G F l G l -⨯=⨯乙,()145N 415N 7F l l -⨯=⨯解得118.75N F =,则甲对地面仍有压力,故B 错误;C .将甲挂于N 正下方,乙挂于R ,再将乙沿水平方向切去1/3,设地面对甲的支持力为2F ,此时,()214133G F l G l ⎛⎫-⨯=-⨯ ⎪⎝⎭乙, ()2145N 4115N 33F l l ⎛⎫-⨯=-⨯⨯ ⎪⎝⎭, 解得237.5N F =,由A 中条件可知此时甲对地面的压强为3750Pa ,故C 正确; D .将甲挂在M 正下方,乙挂于Q 再将甲沿竖直方向切去1/5,并将这1/5上挂在乙的下方,设地面对甲的支持力为3F ,且假设甲的重心仍在M 正下方,此时,3416255G F l G G l ⎛⎫⎛⎫-⨯=+⨯ ⎪ ⎪⎝⎭⎝⎭乙, 34145N 615N 45N 255F l l ⎛⎫⎛⎫⨯-⨯=+⨯⨯ ⎪ ⎪⎝⎭⎝⎭, 解得328N F =,由A 中条件可求出甲的底面积为245N 5N 0.01m 4000PaS -==, 此时甲对地面的压强为 33228N 2800Pa 0.01mF p S ===, 而由于甲沿竖直方向切去1/5后,重心一定会发生水平移动,则其力臂不可能等于6l ,所以,此时甲对地面的压强也不可能等于2800Pa ,故D 错误.【点睛】本题综合考查杠杆平衡条件的应用和固体压强计算,同时运用到方程组的思想进行解答,要求学生们一方面熟悉杠杆平衡分析,另一方面计算能力一定要扎实.2.如图所示,杠杆挂上钩码后刚好平衡,每个钩码的质量相同,在下列情况中,杠杆还能平衡的是A.左右钩码各向支点移一格B.左右各减少一个钩码C.左右各减少一半钩码D.左右各增加两个钩码【答案】C【解析】设杠杆的分度值为 L,一个钩码的重为G.原来4G×2L=2G×4L;左、右钩码各向支点移动一格,左边=4G×L=4GL,右边=2G×3L=6GL,左边<右边,杠杆向右端下沉,A不符合题意;左右各减少一个钩码,左边=3G×2L=6GL,右边=G×4L=4GL,左边>右边,杠杆向左下沉,B 不符合题意;左、右钩码各减少一半法码,左边=2G×2L=4GL,右边=G×4L=4GL,左边=右边,杠杆平衡;C符合题意;左右各增加两个钩码,左边=6G×2L=12GL,右边=4G×4L=16GL,左边<右边,杠杆右边下沉,D不符合题意,故选C.3.悬挂重物G的轻质杠杆,在力的作用下倾斜静止在如图所示的位置,若力施加在A 点,最小的力为F A,若力施加在B点或C点,最小的力分别为F B、F C、且AB=BO=OC.下列判断正确的是()(忽略O点的位置变化)A.F A > GB.F B = GC.F C <GD.F B > F C【答案】C【解析】【详解】在阻力和阻力臂不变的情况下,动力臂越大,动力最小;若力施加在A点,当OA为动力臂时,动力最小为F a;若力施加在B点,当OB为力臂时动力最小,为F b;若力施加在C 点,当OC为力臂时,最小的力为F c,从支点作阻力的力臂为G l,如图所示:A.F a的力臂AO>G l,根据杠杆的平衡条件可知,F a<G,A错误。
一、初中物理杠杆平衡条件的应用问题1.如图,轻质杠杆可绕O 点转动(不计摩擦).A 处挂着一重为80N 、底面积为500cm 2的物体G .在B 点施加一个垂直于杆的动力F 使杠杆水平平衡,且物体G 对地面的压强为1000Pa ,OB =3OA .则B 点的拉力F 的大小为A .50NB .30NC .10ND .90N【答案】C【解析】【分析】【详解】 地面对物体G 的支持力21000Pa 0.05m 50N F F ps ===⨯=压支物体G 对杠杆的拉力A 80N 50N 30N F G F =-=-=支已知OB =3OA ,由杠杆平衡的条件A F F OB OA ⨯=⨯可得: A 1=30N =10N 3F OA F OB ⨯=⨯. 故选C .2.生活中,小华发现有如图甲所示的水龙头,很难徒手拧开,但用如图乙所示的钥匙,安装并旋转钥匙就能正常出水(如图丙所示).下列有关这把钥匙的分析中正确的是A .在使用过程中可以减小阻力臂B .在使用过程中可以减小阻力C .在使用过程中可以减小动力臂D.在使用过程中可以减小动力【答案】D【解析】【详解】由图可知,安装并旋转钥匙,阻力臂不变,阻力不变,动力臂变大,根据杠杆平衡的条件F1L1=F2L2可知,动力变小,故选D。
3.如图所示,一根均匀木尺放在水平桌面上,它的一端伸出桌面的外面,伸到桌面外面的部分长度是木尺长的14,在木尺末端的B点加一个作用力F,当力F=3N时,木尺的另一端A开始向上翘起,那么木尺受到的重力为()A.3N B.9N C.1N D.2N 【答案】A【解析】【分析】【详解】设直尺长为l,如图所示:从图示可以看出:杠杆的支点为O,动力F=3N动力臂OB=1 4 l阻力为直尺的重力G,阻力臂CO=12l-14l=14l由杠杆平衡的条件得F×OB=G×OC3N×14l= G×14l G=3N故选A。
一、初中物理杠杆平衡条件的应用问题1.如图所示为建筑工地上常用的吊装工具,物体M是重5000N的配重,杠杆AB的支点为O,已知长度OA∶OB=1∶2,滑轮下面挂有建筑材料P,每个滑轮重100N,工人体重为700N,杠杆与绳的自重、滑轮组摩擦均不计。
当工人用300N的力竖直向下以1m/s的速度匀速拉动绳子时()A.建筑材料P上升的速度为3m/s B.物体M对地面的压力为5000NC.工人对地面的压力为400N D.建筑材料P的重力为600N【答案】C【解析】【分析】【详解】A.物重由2段绳子承担,建筑材料P上升的速度v=12v绳=12×1m/s=0.5m/s故A错误;B.定滑轮受向下的重力、3段绳子向下的拉力、杠杆对定滑轮向上的拉力,由力的平衡条件可得F A′=3F+G定=3×300N+100N=1000N杠杆对定滑轮的拉力和定滑轮对杠杆的拉力是一对相互作用力,大小相等,即F A= F A′=1000N根据杠杆的平衡条件F A×OA=F B×OB,且OA:OB=1:2,所以F B=F A×OAOB=1000N×2OAOA=500N因为物体间力的作用是相互的,所以杠杆对物体M的拉力等于物体M对杠杆的拉力,即F B′=F B=500N物体M受竖直向下的重力、竖直向上的支持力、竖直向上的拉力,则物体M受到的支持力为F M支持=G M− F B′=5000N−500N=4500N因为物体间力的作用是相互的,所以物体M对地面的压力F M压=F M支持=4500N故B错误;C.当工人用300N的力竖直向下拉绳子时,因力的作用是相互的,则绳子对工人会施加竖直向上的拉力,其大小也为300N,此时人受竖直向下的重力G、竖直向上的拉力F、竖直向上的支持力F支,由力的平衡条件可得F+F支=G,则F支=G−F=700N−300N=400N因为地面对人的支持力和人对地面的压力是一对相互作用力,大小相等,所以工人对地面的压力F压=F支=400N故C正确;D.由图可知n=2,且滑轮组摩擦均不计,由F=12(G+G动)可得,建筑材料P重G=2F−G动=2×300N−100N=500N故D错误。
一、初中物理杠杆平衡条件的应用问题1.如图所示,在调节平衡后的杠杆两侧,分别挂上相同规格的钩码,杠杆处于平衡状态。
如果在两侧钩码下方各增加一个与原来规格相同的钩码,则()A.左端下降B.右端下降C.仍然平衡D.无法判断【答案】A【解析】【分析】本题考查杠杆的平衡原理。
【详解】杠杆的平衡原理是:动力×动力臂=阻力×阻力臂。
图中,设一个钩码的重为G,杠杆每一小格的长度为L,则有G∙4L=2G∙2L,若两侧钩码下方各增加一个与原来规格相同的钩码,则杠杆的左边变成2G∙4L=8GL,右边变成3G∙2L=6GL,此时8GL>6GL,所以左端下降,故A符合题意,BCD都不符合题意。
故选A。
2.工人师傅利用如图所示的两种方式,将重均为 400N 的货物从图示位置向上缓慢提升一段距离.F1、F2始终沿竖直方向;图甲中BO=2AO,图乙中动滑轮重为 50N,重物上升速度为 0.02m/s.不计杠杆重、绳重和摩擦,则下列说法正确的是( )A.甲方式F1由 150N 逐渐变大B.乙方式F2的功率为 3WC.甲乙两种方式都省一半的力D.乙方式中滑轮组的机械效率约为 88.9%【答案】D【解析】【详解】A .由图知道,重力即阻力的方向是竖直向下的,动力F 1 的方向也是竖直向下的,在提升重物的过程中,动力臂和阻力臂的比值是: 1221L OB L OA == 所以,动力F 1 的大小始终不变,故A 错误;BC .由于在甲图中, OB =2OA ,即动力臂为阻力臂的2倍,由于不计摩擦及杠杆自重,所以,由杠杆平衡条件知道,动力为阻力的一半,即111400N 200N 22F G ==⨯= 由图乙知道,承担物重是绳子的段数是n =3,不计绳重和摩擦,则()()211500N+50N 150N 22F G G =+=⨯=动, 即乙中不是省力一半;所以,绳子的自由端的速度是:v 绳 =0.02m/s×3=0.06m/s ,故乙方式F 2 的功率是:P=F 2 v 绳 =150N×0.06m/s=9W ,故BC 错误;D .不计绳重和摩擦,乙方式中滑轮组的机械效率是: 400N 100%=100%=100%88.9%400N 50NW Gh W Gh G h η=⨯⨯⨯≈++有用总轮 故D 正确.3.生活中,小华发现有如图甲所示的水龙头,很难徒手拧开,但用如图乙所示的钥匙,安装并旋转钥匙就能正常出水(如图丙所示).下列有关这把钥匙的分析中正确的是A .在使用过程中可以减小阻力臂B .在使用过程中可以减小阻力C .在使用过程中可以减小动力臂D .在使用过程中可以减小动力【答案】D【解析】【详解】由图可知,安装并旋转钥匙,阻力臂不变,阻力不变,动力臂变大,根据杠杆平衡的条件F 1L 1=F 2L 2可知,动力变小,故选D 。
一、初中物理杠杆平衡条件的应用问题1.如图所示,在“探究杠杆的平衡条件”的实验中,已知杠杆上每个小格的长度为2cm ,用弹簧测力计在A 点斜向上(与水平方向成30°角)拉杠杆,使杠杆在水平位置平衡。
下列说法中正确的是( )A .此时杠杆的动力臂为0.08mB .此时为省力杠杆C .当弹簧测力计向左移至竖直位置时,其示数为1ND .图中钩码的总重力为2N【答案】D【解析】【分析】【详解】A .当弹簧测力计在A 点斜向上拉(与水平方向成30°角)杠杆,所以动力臂11142cm 4cm=0.04m 22l OA ==⨯⨯= 故A 错误;B .由图知,钩码对杠杆拉力为阻力,阻力臂的大小l 2=3×2cm=6cm >l 1杠杆为费力杠杆,故错误;CD .由图知,弹簧测力计示数为3N ,根据杠杆的平衡条件F 1l 1=Gl 2可得1123N 4cm =2N 6cmF lG l ⨯== 竖直向上拉A 点时,力臂大小等于OA ,由杠杆平衡条有'12F OA Gl ⋅= ,所以测力计的示数212N 6cm =1.5N 2cm 4Gl F OA '⨯==⨯ 故C 错误,D 正确。
故选D 。
2.如图所示的轻质杠杆OA 上悬挂着一重物G ,O 为支点,在A 端用力使杠杆平衡。
下列叙述正确的是( )A.此杠杆一定是省力杠杆B.沿竖直向上方向用力最小C.沿杆OA方向用力也可以使杠杆平衡D.此杠杆可能是省力杠杆,也可能是费力杠杆【答案】D【解析】【分析】【详解】A.因为无法确定动力臂的大小,所以无法确定是哪种杠杆,故A错误;B.沿垂直杠杆向上的方向用力,动力臂最大,动力最小,最省力,故B错误;C.沿OA方向动力臂是零,杠杆无法平衡,故C错误。
D.因为杠杆的动力臂无法确定,所以它可能是省力杠杆,也可能是费力杠杆,故D正确。
故选D。
3.生活中,小华发现有如图甲所示的水龙头,很难徒手拧开,但用如图乙所示的钥匙,安装并旋转钥匙就能正常出水(如图丙所示).下列有关这把钥匙的分析中正确的是A.在使用过程中可以减小阻力臂B.在使用过程中可以减小阻力C.在使用过程中可以减小动力臂D.在使用过程中可以减小动力【答案】D【解析】【详解】由图可知,安装并旋转钥匙,阻力臂不变,阻力不变,动力臂变大,根据杠杆平衡的条件F1L1=F2L2可知,动力变小,故选D。
一、初中物理杠杆平衡条件的应用问题1.如图所示,杠杆恰好处于水平平衡状态,若在B处下方再挂一个钩码,若要使杠杆在水平位置再次平衡,下列可行的操作是______。
(选填字母)A.减少一个悬挂在A处的钩码B.增加一个悬挂在A处的钩码C.将悬挂在A处的钩码向左移动一格D.将悬挂A处的钩码向右移动一格【答案】C【解析】【分析】【详解】假设一个钩码重力为G,杠杆一格为l,杠杆平衡时⨯=⨯=32236G l G l Gl若在B处下方再挂一个钩码,则右边为339⨯=G l GlA.减少一个悬挂在A处的钩码,则左边为G l Gl⨯=224左边小于右边,杠杆不能平衡,故A项不符合题意;B.增加一个悬挂在A处的钩码,则左边为G l Gl⨯=428左边小于右边,杠杆不能平衡,故B项不符合题意;C.将悬挂在A处的钩码向左移动一格,则左边为⨯=G l Gl339左边等于右边,杠杆能再次平衡,故C项符合题意;D.将悬挂A处的钩码向右移动一格,则左边为⨯=G l Gl313左边小于右边,杠杆能再次平衡,故D项不符合题意。
故选C。
2.按如下原理制作一杆可直接测量液体密度的秤,称为密度秤,其外形和普通的杆秤差不多,装秤钩的地方吊着体积为1cm3的较重的合金块,杆上有表示液体密度数值的刻度,当秤砣放在Q点处时秤杆恰好平衡,如图所示。
当合金块完全浸没在待测密度的液体中时,移动秤砣的悬挂点,直至秤杆恰好重新平衡,便可直接在杆秤上读出液体的密度,下列说法中错误的是()A.密度秤的零点刻度在Q点B.密度秤的刻度都在Q点的左侧C.密度秤的刻度都在Q点的右侧D.秤杆上密度读数较大的刻度在较小的刻度的左边【答案】C【解析】【分析】【详解】A.合金块没有浸入液体时,液体的密度应为零,所以秤的零刻度应该在Q处;故A正确,不符合题意;BC.若秤砣由Q向右移动,它的力臂变长,则左边合金块拉秤杆的力应增大,但合金块受到的浮力不可能竖直向下,所以零点的右边应该是没有刻度的,其刻度都在Q点的左侧。
一、初中物理杠杆平衡条件的应用问题1.在一个长3米的跷跷板(支点在木板中点)的两端分别放置两个木箱,它们的质量分别为m 1=30kg ,m 2=20kg ,为了使跷跷板在水平位置平衡,以下做法可行的是( )A .把m 1向右移动0.5米B .把m 2向左移动0.5米C .把m 1向右移动0.2米D .把m 2向左移动0.3米【答案】A 【解析】 【分析】 【详解】跷跷板的支点在木板中点,根据图中信息可知,木板左边受到的压力比右边大,为了使跷跷板在水平位置平衡,应该将m 1向右移,则m 2的力臂不变为1.5m ,根据杠杆的平衡条件有1122m gl m gl '=代入数据可得m 1向右移后的力臂221120kg 1.5m1m 30kgm gl l m g ⨯'=== m 1的力臂由1.5m 变为1m ,为了使跷跷板在水平位置平衡,把m 1向右移动0.5米,所以BCD 项错误,A 项正确。
故选A 。
2.如图所示,轻质杠杆OA 的B 点挂着一个重物,A 端用细绳吊在圆环M 下,此时OA 恰成水平且A 点与圆弧形架PQ 的圆心重合,那么当环M 从P 点逐渐滑至Q 点的过程中,绳对A 端的拉力大小将( )A .保持不变B .逐渐增大C .逐渐减小D .先变小再变大【答案】D 【解析】 【详解】作出当环M位于P点、圆弧中点、Q点时拉力的力臂l1、l2、l3如下由图可知,动力臂先增大,再减小,阻力与阻力臂不变,则由杠杆平衡公式F1l1=F2l2可知,拉力先变小后变大,故选D。
3.如图所示,杠杆挂上钩码后刚好平衡,每个钩码的质量相同,在下列情况中,杠杆还能平衡的是A.左右钩码各向支点移一格B.左右各减少一个钩码C.左右各减少一半钩码D.左右各增加两个钩码【答案】C【解析】设杠杆的分度值为 L,一个钩码的重为G.原来4G×2L=2G×4L;左、右钩码各向支点移动一格,左边=4G×L=4GL,右边=2G×3L=6GL,左边<右边,杠杆向右端下沉,A不符合题意;左右各减少一个钩码,左边=3G×2L=6GL,右边=G×4L=4GL,左边>右边,杠杆向左下沉,B 不符合题意;左、右钩码各减少一半法码,左边=2G×2L=4GL,右边=G×4L=4GL,左边=右边,杠杆平衡;C符合题意;左右各增加两个钩码,左边=6G×2L=12GL,右边=4G×4L=16GL,左边<右边,杠杆右边下沉,D不符合题意,故选C.4.悬挂重物G的轻质杠杆,在力的作用下倾斜静止在如图所示的位置,若力施加在A 点,最小的力为F A,若力施加在B点或C点,最小的力分别为F B、F C、且AB=BO=OC.下列判断正确的是()(忽略O点的位置变化)A.F A > GB.F B = GC.F C <GD.F B > F C【答案】C【解析】【详解】在阻力和阻力臂不变的情况下,动力臂越大,动力最小;若力施加在A点,当OA为动力臂时,动力最小为F a;若力施加在B点,当OB为力臂时动力最小,为F b;若力施加在C 点,当OC为力臂时,最小的力为F c,从支点作阻力的力臂为G l,如图所示:A.F a的力臂AO>G l,根据杠杆的平衡条件可知,F a<G,A错误。
一、初中物理杠杆平衡条件的应用问题1.如图所示,在探究杠杆平衡条件的实验中,杠杆处于水平平衡状态,所用钩码完全相同。
下列做法中能使杠杆再次平衡的是A .分别在两边钩码下再增加一个相同钩码B .左边减少1个钩码,右边减少2个钩码C .两边钩码均向支点移动相同的距离D .左边钩码向左移1.5cm ,右边钩码向右移1cm【答案】D【解析】【详解】设一个钩码的重力为G ,左边钩码到支点的距离为3l ,因为杠杆正处于水平平衡,所以由杠杆平衡条件可得233G l G l ⨯=⨯右,解得2l l =右,即右边钩码到支点的距离为2l ;A .若分别在两边钩码下再增加一个相同钩码,则3342G l G l ⨯≠⨯,此时杠杆不再平衡,不符合题意;B .若左边减少1个钩码,右边减少2个钩码,则32G l G l ⨯≠⨯ ,此时杠杆不再平衡,不符合题意;C .若两边的钩码均向支点移动相同的距离l ,则223G l G l ⨯≠⨯,此时杠杆不再平衡,不符合题意;D .若左边钩码向左移1.5cm ,右边钩码向右移1cm ,则2(3 1.5)3(21)G l G l ⨯+=⨯+,此时杠杆平衡,符合题意。
2.如图所示的轻质杠杆OA 上悬挂着一重物G ,O 为支点,在A 端用力使杠杆平衡。
下列叙述正确的是( )A.此杠杆一定是省力杠杆B.沿竖直向上方向用力最小C.沿杆OA方向用力也可以使杠杆平衡D.此杠杆可能是省力杠杆,也可能是费力杠杆【答案】D【解析】【分析】【详解】A.因为无法确定动力臂的大小,所以无法确定是哪种杠杆,故A错误;B.沿垂直杠杆向上的方向用力,动力臂最大,动力最小,最省力,故B错误;C.沿OA方向动力臂是零,杠杆无法平衡,故C错误。
D.因为杠杆的动力臂无法确定,所以它可能是省力杠杆,也可能是费力杠杆,故D正确。
故选D。
3.如图所示,将重150N的甲物体用细绳挂在轻质杠杆的A端,杠杆的B端悬挂乙物体,AO OB ,甲物体的底面积杠杆在水平位置平衡,已知:乙物体所受重力为30N,:1:3为0.2m2,g取10N/kg。
一、初中物理杠杆平衡条件的应用问题1.如图所示装置,杆的两端A 、B 离支点O 的距离之比:1:2OA OB =,A 端接一重为G A 的物体,B 端连一滑轮,滑轮上挂有另一重为G B 的物体。
现杠杆保持平衡,若不计滑轮重力,则G A 与G B 之比应是( )A .1∶4B .1∶2C .1∶1D .2∶1【答案】C【解析】【分析】【详解】由杠杆平衡条件可知 A G OA F OB ⋅=⋅即A G OA F OB⋅=因 :1:2OA OB =所以12A F G = 由图和动滑轮的特点可知12B F G = 故1:1A BG G = 故选C 。
2.按如下原理制作一杆可直接测量液体密度的秤,称为密度秤,其外形和普通的杆秤差不多,装秤钩的地方吊着体积为1cm 3的较重的合金块,杆上有表示液体密度数值的刻度,当秤砣放在Q 点处时秤杆恰好平衡,如图所示。
当合金块完全浸没在待测密度的液体中时,移动秤砣的悬挂点,直至秤杆恰好重新平衡,便可直接在杆秤上读出液体的密度,下列说法中错误的是( )A.密度秤的零点刻度在Q点B.密度秤的刻度都在Q点的左侧C.密度秤的刻度都在Q点的右侧D.秤杆上密度读数较大的刻度在较小的刻度的左边【答案】C【解析】【分析】【详解】A.合金块没有浸入液体时,液体的密度应为零,所以秤的零刻度应该在Q处;故A正确,不符合题意;BC.若秤砣由Q向右移动,它的力臂变长,则左边合金块拉秤杆的力应增大,但合金块受到的浮力不可能竖直向下,所以零点的右边应该是没有刻度的,其刻度都在Q点的左侧。
故B正确,不符合题意,C错误,符合题意;D.秤砣的质量不变,由Q向左移动时,它的力臂变短,则左边合金块拉秤杆的力减小,说明合金块受到的浮力增大,而合金块排开液体的体积不变,说明液体的密度变大,所以刻度应逐渐变大,即秤杆上较大的刻度在较小的刻度的左边;故D正确,不符合题意。
故选C。
3.工人师傅利用如图所示的两种方式,将重均为 400N 的货物从图示位置向上缓慢提升一段距离.F1、F2始终沿竖直方向;图甲中BO=2AO,图乙中动滑轮重为 50N,重物上升速度为 0.02m/s.不计杠杆重、绳重和摩擦,则下列说法正确的是( )A.甲方式F1由 150N 逐渐变大B.乙方式F2的功率为 3WC.甲乙两种方式都省一半的力D.乙方式中滑轮组的机械效率约为 88.9%【答案】D【解析】【详解】A .由图知道,重力即阻力的方向是竖直向下的,动力F 1 的方向也是竖直向下的,在提升重物的过程中,动力臂和阻力臂的比值是: 1221L OB L OA == 所以,动力F 1 的大小始终不变,故A 错误;BC .由于在甲图中, OB =2OA ,即动力臂为阻力臂的2倍,由于不计摩擦及杠杆自重,所以,由杠杆平衡条件知道,动力为阻力的一半,即111400N 200N 22F G ==⨯= 由图乙知道,承担物重是绳子的段数是n =3,不计绳重和摩擦,则()()211500N+50N 150N 22F G G =+=⨯=动, 即乙中不是省力一半;所以,绳子的自由端的速度是:v 绳 =0.02m/s×3=0.06m/s , 故乙方式F 2 的功率是:P=F 2 v 绳 =150N×0.06m/s=9W ,故BC 错误;D .不计绳重和摩擦,乙方式中滑轮组的机械效率是:400N 100%=100%=100%88.9%400N 50NW Gh W Gh G h η=⨯⨯⨯≈++有用总轮 故D 正确.4.如图所示,杠杆挂上钩码后刚好平衡,每个钩码的质量相同,在下列情况中,杠杆还能平衡的是A .左右钩码各向支点移一格B .左右各减少一个钩码C .左右各减少一半钩码D .左右各增加两个钩码【答案】C【解析】 设杠杆的分度值为 L ,一个钩码的重为G .原来4G ×2L =2G ×4L ;左、右钩码各向支点移动一格,左边=4G ×L =4GL ,右边=2G ×3L =6GL ,左边<右边,杠杆向右端下沉,A 不符合题意;左右各减少一个钩码,左边=3G ×2L =6GL ,右边=G ×4L =4GL ,左边>右边,杠杆向左下沉,B 不符合题意;左、右钩码各减少一半法码,左边=2G×2L=4GL,右边=G×4L=4GL,左边=右边,杠杆平衡;C符合题意;左右各增加两个钩码,左边=6G×2L=12GL,右边=4G×4L=16GL,左边<右边,杠杆右边下沉,D不符合题意,故选C.5.如图所示的轻质杠杆OA上悬挂着一重物G,O为支点,在A端用力使杠杆平衡。