第一章.玻璃的结构与性质
- 格式:ppt
- 大小:1.34 MB
- 文档页数:62
第1章玻璃的结构和组成汇总玻璃是一种常见的无定形固体,具有广泛的应用领域。
它的结构和组成是决定其性质和用途的重要因素。
本文将对玻璃的结构和组成进行综述。
在微观层面上,玻璃的结构是一种无序的固态结构,没有长程的周期性。
这是与晶体不同的地方。
晶体具有有序排列的原子或分子,可以形成晶格结构。
然而,玻璃的结构是由成千上万个原子或分子组成的无序网络。
这种无序性导致了玻璃的特殊性质,如透明度和断裂特性。
玻璃的主要成分是硅氧四面体。
硅氧四面体由一个中心的硅原子和四个周围的氧原子组成。
硅氧四面体通过共价键相互连接,形成三维的网络结构。
这种结构是玻璃形成的基础。
除了硅氧四面体,其他元素的添加也可以改变玻璃的性质和组成。
玻璃的组成可以根据成分的不同而有所变化。
硅酸盐玻璃是最常见的一种,其主要成分是硅氧四面体。
具体来说,硅酸盐玻璃是由四氧化硅(SiO2)和其他金属氧化物(如氧化钠、氧化钙、氧化铝等)形成的。
不同金属的加入会改变玻璃的化学和物理性质。
另一种常见的玻璃是硼硅酸盐玻璃。
硼硅酸盐玻璃中,硅氧四面体和硼氧四面体交替排列。
硼氧四面体由一个中心的硼原子和三个周围的氧原子组成。
硼硅酸盐玻璃具有低的熔点和低的热膨胀系数,常用于热力学应用。
另外,还有氧化物玻璃和非氧化物玻璃。
氧化物玻璃是以金属氧化物为主要组成部分,如硅酸盐玻璃。
而非氧化物玻璃是由非金属元素(如氟、碳、氮、硫等)形成的,常见的非氧化物玻璃有氟硅酸盐玻璃和硫化物玻璃。
非氧化物玻璃具有特殊的光学、电学和热学性质,广泛应用于光纤通信和光学器件等领域。
此外,玻璃的制备过程也会影响其结构和组成。
常见的玻璃制备方法包括熔融法、溶胶-凝胶法和化学气相沉积法。
熔融法是最传统的制备方法,即将玻璃原料加热到高温熔化后冷却。
溶胶-凝胶法则是将溶胶经过凝胶化处理形成固态玻璃。
化学气相沉积法是通过气态前体沉积到基底上形成玻璃薄膜。
总之,玻璃的结构和组成是多样化的,具有广泛的应用领域。
玻璃⼯艺学复习资料第⼀章玻璃的定义与结构1、解释转变温度、桥氧、硼反常现象和混合碱效应。
转变温度:使⾮晶态材料发⽣明显结构变化,导致热膨胀系数、⽐热容等性质发⽣突变的温度范围。
⾮桥氧:仅与⼀个成⽹离⼦相键连,⽽不被两个成⽹多⾯体所共的氧离⼦则为⾮桥氧。
桥氧:玻璃⽹络中作为两个成⽹多⾯体所共有顶⾓的氧离⼦,即起“桥梁”作⽤的氧离⼦。
硼反常性:在钠硅酸盐玻璃中加⼊氧化硼时,往往在性质变化曲线中产⽣极⼤值和极⼩值,这现象也称为硼反常性。
混合碱效应:在⼆元碱玻璃中,当玻璃中碱⾦属氧化物的总含量不变,⽤⼀种碱⾦属氧化物逐步取代另⼀种时,玻璃的性质不是呈直线变化,⽽是出现明显的极值。
这⼀效应叫做混合碱效应。
2、玻璃的通性有哪些?各向同性;⽆固定熔点;介稳性;渐变性和可逆性;①.各向同性玻璃态物质的质点总的来说都是⽆规则的,是统计均匀的,因此,它的物理化学性质在任何⽅向都是相同的。
这⼀点与液体类似,液体内部质点排列也是⽆序的,不会在某⼀⽅向上发现与其它⽅向不同的性质。
从这个⾓度来说,玻璃可以近似地看作过冷液。
②.⽆固定熔点玻璃态物质由熔体转变成固体是在⼀定温度区域(软化温度范围)内进⾏的,(从固态到熔融态的转变常常需要经历⼏百度的温度范围),它与结晶态物质不同,没有固定的熔点。
③.介稳性玻璃态物质⼀般是由熔融体过冷⽽得到。
在冷却过程中粘度过急剧增⼤,质点来不及作有规则排列⽽形成晶体,因⽽系统内能尚未处于最低值⽽⽐相应的结晶态物质含有较⾼的能量。
还有⾃发放热转化为内能较低的晶体的倾向。
④.性质变化的渐变性和可逆性玻璃态物质从熔融状态到固体状态的过程是渐变的,其物理、化学性质变化是连续的和可逆的,其中有⼀段温度区域呈塑性,称“转变”或“反常”区域。
3、分别阐述玻璃结构的晶⼦学说和⽆规则⽹络学说内容。
答:(1)玻璃的晶⼦学说揭⽰了玻璃中存在有规则排列区域,即有⼀定的有序区域,这对于玻璃的分相、晶化等本质的理解有重要价值,但初期的晶⼦学说机械地把这些有序区域当作微⼩晶体,并未指出相互之间的联系,因⽽对玻璃结构的理解是初级和不完善的。
第一章玻璃的结构与组成1-1\名词解释1、硼-氧反常:在一定范围内,碱金属氧化物提供的氧,不像在熔融石英玻璃中的作为非桥氧出现于结构中,二十是硼氧三角体【BO3】转变成为完全由桥氧组成的硼氧四面体【BO4】,导致B2O3玻璃从原来两维空间的层状结构部分转变为三维空间的架状结构,从而加强了网络,使玻璃的各种物理性质与相同条件下的硅酸盐玻璃相比,相应的向着相反的方向变化。
这就是所谓的“硼氧性反常”。
2、硼反常:硼酸盐玻璃与相同条件下的硅酸盐玻璃相比,其性质随R2O或RO加入量的变化规律相反,这种现象称硼反常现象。
“硼反常现象”是由于玻璃中硼氧三角体【BO3】与硼氧四面体【BO4】之间的量变而引起性质突变的结果。
3、硼-铝反常:“硼-铝反常”体现在一系列性质变化中,如折射率、密度、硬度、弹性模量。
在介质常数与膨胀系数变化曲线中显得很模糊。
色散、电导与介质损耗等则不出现“硼-铝反常”。
4、积聚作用:由分化过程产生的低聚合物,相互作用,形成级次较高的聚合物,同时释放出部分Na2O,这个过程称为缩聚,也即聚合。
5、解聚作用:在熔融SiO2中,O/Si比为2:1,[SiO4]连接成架状。
若加入Na2O则使O/Si比例升高,随加入量增加,O/Si比可由原来的2:1逐步升高到4:1,[SiO4]连接方式可从架状变为层状、带状、链状、环状直至最后断裂而形成[SiO4]岛状,这种架状[SiO4]断裂称为熔融石英的分化过程,也即解聚。
6、混合碱效应:在二元碱硅玻璃中,当玻璃中碱金属氧化物的总含量不变,用一种碱金属氧化物逐步取代另一种时,玻璃的性质不是呈直线变化,而是出现明显的极值。
这一效应称为混合碱效应,过去称为“中和效应”。
7、压制效应:在含碱硅酸盐中随RO增加,是R+在扩散中系数下降。
8、逆性玻璃:如果玻璃中同时存在两种以上金属离子,而且它们的大小和所带的电荷也不相同时,情况就大为不同。
即使Y<2也能制成玻璃,而且某些性能随金属离子数的增大而变好。
非晶态结构与性质内容提要熔体和玻璃体是物质另外两种聚集状态。
相对于晶体而言,熔体和玻璃体中质点排列具有不规则性,至少在长距离范围结构具有无序性,因此,这类材料属于非晶态材料。
从认识论角度看,本章将从晶体中质点的周期性规则形排列过渡到质点微观排列的非周期性、非规则性来认识非晶态材料的结构和性质。
熔体特指加热到较高温度才能液化的物质的液体,即较高熔点物质的液体。
熔体快速冷却则变成玻璃体。
因此,熔体和玻璃体是相互联系、性质相近的两种聚集状态,这两种聚集状态的研究对理解无机材料的形成和性质有着重要的作用。
传统玻璃的整个生产过程就是熔体和玻璃体的转化过程。
在其他无机材料(如陶瓷、耐火材料、水泥等)的生产过程中一般也都会出现一定数量的高温熔融相,常温下以玻璃相存在于各晶相之间,其含量及性质对这些材料的形成过程及制品性能都有重要影响。
如水泥行业,高温液相的性质(如粘度、表面张力)常常决定水泥烧成的难易程度和质量好坏。
陶瓷和耐火材料行业,它通常是强度和美观的有机结合,有时希望有较多的熔融相,而有时又希望熔融相含量较少,而更重要的是希望能控制熔体的粘度及表面张力等性质。
所有这些愿望,都必须在充分认识熔体结构和性质及其结构与性质之间的关系之后才能实现。
本章主要介绍熔体的结构及性质,玻璃的通性、玻璃的形成、玻璃的结构理论以及典型玻璃类型等内容,这些基本知识对控制无机材料的制造过程和改善无机材料性能具有重要的意义。
4.1 熔体的结构一、对熔体的一般认识自然界中,物质通常以气态、液态和固态三种聚集状态存在。
这些物质状态在空间的有限部分则称为气体、液体和固体。
固体又分为晶体和非晶体两种形式。
晶体的结构特点是质点在三维空间作规则排列,即远程有序;非晶体包括用熔体过冷而得到的传统玻璃和用非熔融法(如气相沉积、真空蒸发和溅射、离子注入等)所获得的新型玻璃,也称无定形体,其结构特点是近程有序,远程无序。
习惯上把高熔点物质的液体称为熔体(指熔点温度以上,具有一定流动性的液体),所以对于硅酸盐来说,它的液体一般称之为熔体。
玻璃的结构与性质玻璃是一种无机非晶固态材料,是由一定比例的硅酸盐和其他氧化物经高温熔融后迅速冷却而成。
玻璃具有诸多优点,如硬度高、耐腐蚀、透明度好、化学稳定性好等,因此广泛应用于建筑、日用品、电子通信、纺织等领域。
玻璃的结构是其性质的基础。
在玻璃中,硅酸盐的主要成分是SiO2,而其他氧化物则可作为玻璃的添加剂,以调节玻璃的颜色、热膨胀系数等性质。
在玻璃中,氧原子形成正四面体结构,而硅原子则填充在四面体中心,形成一种类似于冰晶石的三维网络结构。
由于氧和硅的电子云作用力强,因此Si-O键是玻璃中的主要结构基团。
不同类型的玻璃中,结构单元之间的连接方式也不尽相同,因此其性质亦有所差异。
玻璃的特殊性质源于其非晶结构。
晶体是具有周期性排列结构的物质,而玻璃则是一种无定形的、未能在固态中形成晶体结构的物质。
由于玻璃中的原子没有固定的空间位置,因此难以计算玻璃的机械、光学等性质。
同时,由于其非晶结构的存在,玻璃具有如下几个特点:1.灵活性。
晶体的原子排列方式常常受到限制,而玻璃的原子排列则显得灵活多变。
这种灵活性使得玻璃能够被加工成各种形状,获得各种性质。
2.易变性。
晶体由于其明确的原子排列方式,为其赋予了明确的物理性质,在不同的条件下其物理性质变化也比较小。
而玻璃由于其非晶结构,使得其物理性质变化比较明显,在不同的温度、压强条件下,玻璃的机械性能、热力学性质都有所不同。
3.断裂韧性低。
由于玻璃没有明确的原子排列方式,因此它的原子间结合力并不十分均匀,特别是玻璃中存在一些空隙、缺陷等结构的存在,使得其断裂韧性很低,容易因外力的作用而破裂。
4.密实性高。
晶体有明确的原子排列方式,因此原子之间的空隙要比玻璃少得多。
从数学角度来讲,晶体的最紧堆积密度为0.74,而玻璃的密度则可以达到0.95左右。
玻璃的高密度是其化学稳定性好、透明度高等性质的重要基础。
同时,玻璃的高密度也为其在各个领域的应用提供了巨大的优势。
总之,玻璃的结构和性质密不可分,了解玻璃的结构将有助于我们更好地理解其性质、应用及加工过程。
玻璃结构与通性
1.各向同性
2.介稳性
3.无固定熔点,熔融态到玻璃态转化在转变温度范围区间内(Tg-Tf)进行。
玻璃凝固是在统一粘度下实现的,粘度等于1012.4pa.s,与组成无关,这时玻璃出现脆性的最高温度。
T g玻璃形成温度,又称脆性温度,也称退火温度上限。
T f软化温度,相当于108pa.s
它是玻璃出现液体状态典型性质的温度,也是玻璃可拉成丝的最低温度。
4.物理、化学性质碎成分变化的连续性
5由熔融态向玻璃态转化时物理、化学性质随温度变化的连续性与可逆性
Tg影响因素:
1.玻璃的组成
不同组成玻璃的黏度-温度曲线是不同的,对应同一黏度的转变温度范围不同。
2.冷却速率
冷却速率会影响Tg大小,快冷时Tg较慢冷时高
第二节玻璃的结构学说
近程有序,远程无序
一、晶子学说
玻璃是由无数的晶子组成。
揭示了近程有序结构
二、无规则网络学说
强调了玻璃中多面体相互间排列的连续性、均匀性和无序性方面。
R=o/si,即玻璃中氧离子总数与网络形成离子总数之比。
X=每个多面体非桥氧个数
Y=桥氧数目
Z=每个多面体氧离子平均总数(一般硅酸盐和磷酸盐玻璃中为4,硼酸盐中为3)
X+Y=Z X=2R-Z
逆性玻璃:如果玻璃中同时存在两种以上金属离子,且它的大小和所带电荷也不相同时,及时Y<2也能形成玻璃而且某些性能岁金属离子数的增大而变好,这种玻璃称之为”逆性玻璃”。
玻璃的组成、结构和性能姓名:郑朝阳班级:材料化学12-02班学号:311213020233引言:在自然界的固体物质中存在着晶态和非晶态两种状态。
有人把“非晶态”“玻璃态”看作是同义词,也有人将它们加以区别。
我国的技术词典中把“玻璃态”定义为“从熔体冷却,在室温下还保持熔体结构的固体物质状态”,习惯上常称玻璃为“过冷的液体”,“非晶态”作为更广义的名词,包括用其它方法获得的以结构无序为主要特征的固体物质状态。
关键词:玻璃组成结构性能正文:㈠各种“玻璃”的成分(1)普通玻璃(Na2SiO3、CaSiO3、SiO2或Na2O•CaO•6SiO2)(2)石英玻璃(以纯净的石英为主要原料制成的玻璃,成分仅为SiO2)(3)钢化玻璃(与普通玻璃成分相同)(4)钾玻璃(K2O、CaO、SiO2)(5)硼酸盐玻璃(SiO2、B2O3)(6)有色玻璃在(普通玻璃制造过程中加入一些金属氧化物。
Cu2O——红色;CuO——蓝绿色;CdO——浅黄色;CO2O3——蓝色;Ni2O3——墨绿色;MnO2——紫色;胶体Au——红色;胶体Ag——黄色)(7)变色玻璃(用稀土元素的氧化物作为着色剂的高级有色玻璃)(8)光学玻璃(在普通的硼硅酸盐玻璃原料中加入少量对光敏感的物质,如AgCl、AgBr等,再加入极少量的敏化剂,如CuO等,使玻璃对光线变得更加敏感)(9)彩虹玻璃(在普通玻璃原料中加入大量氟化物、少量的敏化剂和溴化物制成)(10)防护玻璃(在普通玻璃制造过程加入适当辅助料,使其具有防止强光、强热或辐射线透过而保护人身安全的功能。
如灰色——重铬酸盐,氧化铁吸收紫外线和部分可见光;蓝绿色——氧化镍、氧化亚铁吸收红外线和部分可见光;铅玻璃——氧化铅吸收X射线和r射线;暗蓝色——重铬酸盐、氧化亚铁、氧化铁吸收紫外线、红外线和大部分可见光;加入氧化镉和氧化硼吸收中子流。
(11)微晶玻璃(又叫结晶玻璃或玻璃陶瓷,是在普通玻璃中加入金、银、铜等晶核制成,代替不锈钢和宝石,作雷达罩和导弹头等)。
玻璃材料的结构和特性分析玻璃,作为一种无定形材料,在人类生活中扮演着重要角色。
无论是建筑、家具、电子设备还是珠宝、艺术品,玻璃的应用都不可忽视。
本篇文章将会探讨玻璃的结构和特性,以期更好地理解玻璃材料的本质。
一、玻璃的结构玻璃的结构可分为两种:原子结构和微观结构。
原子结构是指玻璃固态时原子的排列方式,而微观结构则是指玻璃的结晶性质和短程有序性。
原子结构是影响玻璃材料性质的关键,它与晶体的结构有所区别。
晶体的原子排列是规则、有序的,而玻璃则没有这种规则的结构。
玻璃原子之间的键结构是一些非常短的键,这些键使得玻璃原子之间的距离相近。
因此,玻璃材料呈现出非晶胶态的状态。
微观结构则是关于玻璃的短程有序性。
短程有序性是指在约为10^-10米的空间尺度下,微观结构有规律可循。
这种规律存在于玻璃中,这是与众不同的,因为其他非晶体材料中缺乏这种规律性。
这种有序性能强化玻璃的物理性质,例如硬度和强度。
二、玻璃的特性由于玻璃本身的特殊结构,它的物理、化学和光学特性也与众不同。
物理特性硬度和强度是玻璃的两个主要特性。
晶体材料的硬度和强度可以通过晶格结构的有序性来确定,而这些属性与玻璃材料相信更多依赖于玻璃的短程有序性和原子结构。
因此,玻璃通常比晶体材料更易碎,但是高硬度的合成玻璃比传统玻璃具有更高的抗磨损和抗裂纹特性。
热膨胀性是玻璃材料的另一个重要属性。
玻璃材料的膨胀性将直接影响其在高温环境下的使用情况。
正常情况下,玻璃的膨胀系数为10^-5/K,这意味着在每开尔文的温度变化下,材料的长度将会变化1/100000。
化学特性玻璃是一种半透明或不透明的材料,但通过化学作用,它可以显得透明或者半透明。
玻璃的成分、制造过程和添加剂会影响其透明度和颜色。
例如,添加少量氧化金属可以赋予玻璃不同的颜色。
玻璃对于化学物质的反应较为敏感。
一些化学物质,如氢氟酸和氢氧化钠等,都会对玻璃产生不利的影响。
在这些物质作用下,玻璃可能会溶解、变形或者失去透明度。