大连理工大学连续介质力学作业(第一章)
- 格式:doc
- 大小:1.04 MB
- 文档页数:4
连续介质力学作业-----1
1.给定一组协变基矢量
(1)求逆变基
(2)求
(3)在上述协变基下,若的逆变分量为,求的协变分量解:
(1)
(2)
(3)
2.已知笛卡尔坐标系,一个新的坐标系定义为:
向量,给定函数
(1)求函数的梯度
(2)求向量参考新坐标系的表示形式
(3)求函数在新坐标系下的表达形式
(4)判断的客观性
解:
(1)
(2)
(3)
(4)
其中,故具有张量的客观性。(#)
3.二维情况下,一质点应力张量主值。主方向,
。应变张量主值,主方向与应力张量相同。为平面直
角坐标系的单位基矢量。
(1)以,为基,计算该质点处应变能密度
(2)求,使得
(3)求,使得
(4)以为基,计算该质点处的应变能密度
(5)计算的球应力张量和偏应力张量,并计算偏应力张量的主值和方向解:
(1)
(2)
(3)
(4)
(5)
4. 是二阶张量,证明:
证明:
将张量按照标准正交基分解有:
(#)
5(1) 如果二阶张量是反对称张量,对于任意一阶张量,证明
(2) 是二阶反对称张量,是二阶对称张量,证明
证明:
(1)
故对于任意,均有
(2)