抽象函数周期函数复合函数对称性课件
- 格式:docx
- 大小:269.93 KB
- 文档页数:5
抽象函数的周期性与对称性(精)抽象函数的周期性和对称性问题可以通过恒等式简单判断。
如果函数满足f(x+a)=f(-x+a),那么它是偶函数,对称轴为x=a,周期为T=2a。
如果函数满足f(x+a)=-f(-x+a),那么它是奇函数,对称中心为(a,0)。
如果函数满足f(a-x)=f(b+x),那么它的对称轴为x=(a+b)/2,周期为T=|b-a|。
如果函数满足f(x+a)=-f(x-a),那么它的对称中心为(a,0),周期为T=2a。
需要注意区分一个函数的对称性和两个函数的对称性的区别,对称轴或对称中心的位置可以通过对应法则求得。
例如,对于已知定义在实数集上的奇函数f(x),满足f(x+2)=-f(x),则f(6)的值为-1.又如,如果函数f(x)对于任意实数x都有f(1+2x)=f(1-2x),则f(2x)的图像关于x=1对称。
练1:如果函数y=f(x+1)是偶函数,则y=f(x)的图像关于x=1对称。
练2:如果函数y=f(x)满足11f(x+3)=-f(x),且f(3)=1,则f(2010)=-1/2.23、已知函数f(x)是定义在实数集上的奇函数,且当x>2时,f(x)=2x-3,则f(1)+f(2)+f(3)+f(4)+f(5)= 2f(3)+f(1)+f(5)=2(2×3-3)+2×1-3+2×5-3= 8.4、已知函数f(x)是定义在实数集上的奇函数,且f(x+2)=-f(x),当-1≤x≤1时,f(x)=x。
要求求出f(7.5)的值。
由奇函数的定义可知,f(5.5)=f(-5.5),即f(7.5)=f(-7.5)。
又因为f(x+4)=-f(x+2)=-(-f(x))=f(x),所以f(x+4k)=f(x),其中k为整数。
故f(-7.5)=f(-7.5+4×2)=f(0)=-f(0),即f(0)=0.又f(1)+f(-1)=0,所以f(1)=-f(-1)。
抽象函数的对称性、奇偶性与周期性常用结论抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较 困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力。
一、函数)(x f y =图象本身的对称性(自身对称)1、函数的轴对称:推论1:)()(x a f x a f -=+ ⇔)(x f y =的图象关于直线a x =对称推论2、)2()(x a f x f -= ⇔)(x f y =的图象关于直线a x =对称推论3、)2()(x a f x f +=- ⇔)(x f y =的图象关于直线a x =对称特殊地,函数()x f y =满足()()x f x f -=,则函数()x f y =的图象关于直线0=x (y 轴)对称。
2、 函数的点对称:推论1、b x a f x a f 2)()(=-++ ⇔)(x f y =的图象关于点),(b a 对称 推论2、b x a f x f 2)2()(=-+ ⇔)(x f y =的图象关于点),(b a 对称推论3、b x a f x f 2)2()(=++- ⇔)(x f y =的图象关于点),(b a 对称特殊地,若()x f y =满足()()0=-++x a f x a f ,则()x f y =的图象关于点()0,a 对称。
特殊地,若()x f y =满足()()0=-+x f x f ,则函数()x f y =的图象关于原点()0,0对称。
二、函数的周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。
函数的周期性和对称性一、 函数的轴对称:定理1:如果函数()x f y =满足()()x b f x a f -=+,则函数()x f y =的图象关于直线2ba x +=对称. 推论1:如果函数()x f y =满足()()x a f x a f -=+,则函数()x f y =的图象关于直线a x =对称.推论2:如果函数()x f y =满足()()x f x f -=,则函数()x f y =的图象关于直线0=x (y 轴)对称.特别地,推论2就是偶函数的定义和性质.它是上述定理1的简化.二、 函数的点对称:定理2:如果函数()x f y =满足()()b x a f x a f 2=-++,则函数()x f y =的图象关于点()b a ,对称.推论3:如果函数()x f y =满足()()0=-++x a f x a f ,则函数()x f y =的图象关于点()0,a 对称.推论4:如果函数()x f y =满足()()0=-+x f x f ,则函数()x f y =的图象关于原点()0,0对称.三、函数周期性的性质:定理3:若函数()x f 在R 上满足()x a f x a f -=+)(,且()x b f x b f -=+)((其中b a ≠),则函数()x f y =以()b a -2为周期. 定理4:若函数()x f 在R 上满足()x a f x a f --=+)(,且()x b f x b f --=+)((其中b a ≠),则函数()x f y =以()b a -2为周期.定理5:若函数()x f 在R 上满足()x a f x a f -=+)(,且()x b f x b f --=+)((其中b a ≠),则函数()x f y =以()b a -4为周期.1、()()f x f x a =+,则()y f x =是以T a =为周期的周期函数;2、 若函数y=f(x)满足f(x+a)=-f(x)(a>0),则f(x)为周期函数且2a 是它的一个周期。
抽象函数的奇偶性、周期性和对称性一、奇偶性1、奇函数的定义:一般地,如果对于函数()f x 的定义域内任意一个x ,都有)()(x f x f -=-,那么 函数()f x 就叫做奇函数。
(1)定义域必须关于原点对称;(2)对定义中的任意一个x ,都有)()(x f x f -=-;(3)图象特征:奇函数图象关于原点对称。
(这是判断奇函数的直观方法)2、偶函数定义:一般地,如果对于函数()f x 的定义域内任意一个x ,都有)()(x f x f =-,那么函数 ()f x 就叫做偶函数。
(1)定义域必须关于原点对称;(2)对定义中的任意一个x ,都有)()(x f x f =-; (3)图象特征:偶函数图象关于y 轴对称。
(这是判断偶函数的直观方法) 二、周期性周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期,并不是所有周期函数都存在最小正周期。
例如,狄利克雷函数,当x 为有理数时,()f x 取1;当x 为非有理数时,()f x 取0。
(1)如果函数)(x f y =满足)()(11x T f x T f -=+且)()(22x T f x T f -=+,(1T 和2T 是不相等的常数),则)(x f y =是以为)(212T T -为周期的周期函数。
(2)如果奇函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以T 4为周期的周期函数。
(3)如果偶函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以T 2为周期的三、对称性1、函数图象本身的对称性(自身对称)题设:函数)(x f y =对定义域内一切x 来说,其中a 为常数,函数)(x f y =满足: (1))()(x a f x a f -=+⇔函数)(x f y =图象关于直线a x =成轴对称; (2))()2(x f x a f =-⇔函数)(x f y =的图象关于直线a x =成轴对称;(3))()(x b f x a f -=+⇔函数)(x f y =图象关于直线22)()(b a x b x a x +=-++=成轴对称; (4))(x f -=)(x f ⇔函数)(x f y =图象关于y 轴对称(偶函数); (5))(2)2(x f b x a f -=-⇔函数)(x f y =图象关于),(b a 成中心对称; (6))(x f -=—)(x f ⇔函数)(x f y =图象关于原点成中心对称(奇函数);(7)如果函数)(x f y=满足)()(11x T f x T f -=+且)()(22x T f x T f -=+,(1T 和2T 是不相等的 常数),则)(x f y =是以为)(212T T -为周期的周期函数;(8)如果奇函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以T 4为周期(9)如果偶函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是以T 2为周期 的周期函数。
抽象函数的周期性与对称性问题(由恒等式简单判断:同号看周期,异号T=2|a-b| ;(2)函数图象关于点M(a,0)和点N(b,0)对称,则函数y=f(x)是周期函数,且T=2|a-b| ;(3)函数图象关于直线x=a,及点M(b,0)对称,则函数y=f(x)是周期函数,且T=4|a-b| ;(4) 应注意区分一个函数的对称性和两个函数的对称性的区别:y=f(a+x)与y=f(b-x)关于2ab x -=对称;y=f(a+x)与y=-f(b-x)关于点)0,2(ab-对称。
(可以简单的认为:一个函数的恒等式,对应法则下的两式相加和的一半为对称轴:两个同法则不同表达式的函数,对应法则下的两式相减等于0,解得的x为对称轴)例:①已知定义在R上的奇函数f (x)满足f (x+2) = – f (x),则f (6)的值为()A. –1 B. 0 C. 1 D. 2解:②函数f(x)对于任意的实数x 都有f(1+2x)=f(1-2x),则f(2x)的图像关于对称。
练习1、函数)1(+=x f y 是偶函数,则)(x f y =的图象关于 对称。
2、函数)(x f y =满足)(1)3(x f x f -=+,且1)3(=f ,则=)2010(f 。
3、函数f(x)是定义在R 上的奇函数,且11()()22f x f x +=-,则(1)(2)(3)(4)(5)f f f f f ++++=解析:法一:因f(x)为奇函数且关于12x =对称,T=2,可借助图象解答,得结果。
小结:此方法为数形结合法;法二:因f(x)为奇函数且关于12x =对称,类比()sin f x x =联想函数()sin f x x π= ; 小结:此方法为抽象函数具体化法。
4.设f(x)是R 的奇函数,f(x+2)= — f(x),当0≤x ≤1,时,f(x)=x,则f(7.5)= - 0.55.定义在R 上的函数f(x)满足f(-x)+f(x)=3,则f-1(x)+f-1(3-x)=6、 f (x )是定义在R 上的以3为周期的奇函数,且f (2)=0,则方程f (x )=0在区间(0,6)内解的个数的最小值是( )A.4B.5C.6D.77、设函数f(x)的定义域为[1,3],且函数f(x)的图象关于点(2,0)成中心对称,已知当x [2,3]时f(x)=2x,求当x [1,2]时,f(x)的解析式.。
图③图①图②抽象函数背景下的对称性、周期性以及“类周期性” 在高中数学的学习中,每个学生都或多或少的遇到过几次类似()()f a x f a x +=-亦或()()f x a f x b +=-+这类关于函数的抽象描述,大多数学生都能够通过积累经验后,认识到前式涉及到函数对称性,后式涉及到函数周期性。
但是大部分学生对于这类抽象表示依然不理解,那么有没有一种较为实在又准确的方式来理解它们并加以记忆呢?一、对称性:1.轴对称(1). 以()()f x f x =-为引例:关于()()f x f x =-的理解方式和角度非常多,但这里我们统一为:该式子体现的是函数的两个函数值之间的关系,其对应的两个自变量分别为x 和x -。
那么()()f x f x =-可以解读为:互为相反的两个自变量(x 和x -)所对应的函数值相等。
下面我们通过取若干个常数x ,来模拟(),y f x x R =∈的图象分别取12x a =、、()a R ∈,则描点后图象必呈现出如图①所示的对称性:那么就不难理解用()()f x f x =-作为偶函数的定义,即图象关于y 轴呈轴对称。
(2). 下面按照上述方式对()()11f x f x +=-加以解读首先注意到这两个函数值之间的关系依然是相等关系,而其涉及到的两个自变量分为1x -和1x +。
因为()()1112x x -++=,所以按照数轴上两点的中点坐标公式可得,这两个变化的自变量1x -和1x +始终保持着关于1x =对称的位置关系。
那么()()11f x f x +=-可以解读为:关于1x =对称的两个自变量对应的函数值始终相等。
模拟其图象易得其必呈现出图②的对称性。
且其对称轴1x =是以中点坐标公式的形式产生,非常方便理解和记忆。
(3). 对于一般的()()f a x f a x +=-,由于()()2a x a x a ++-=,那么按照上述方式可以解读为:关于x a =对称的两个自变量所对应的函数值相等,易得函数()y f x =关于x a =呈轴对称。
函数的周期性与对称性1函数的周期性若a是非零常数,若对于函数y= f(x)定义域内的任一变量x点有下列条件之一成立,则函数y = f(x)是周期函数,且2|a|是它的一个周期。
①f(x + a) = f(x —a)② f(x + a) = —f(x) ③f(x + a) = 1/f(x) ④ f(x + a) =—1/f(x)2、函数的对称性与周期性性质5若函数y = f(x)同时关于直线x= a与x = b轴对称,则函数f(x)必为周期函数,且T= 2|a —b|性质6、若函数y= f(x)同时关于点(a, 0)与点(b, 0)中心对称,则函数f(x)必为周期函数,且T= 2|a —b|性质7、若函数y= f(x)既关于点(a, 0)中心对称,又关于直线x = b轴对称,则函数f(x)必为周期函数,且T= 4|a —b|3. 函数y二f (x)图象本身的对称性(自身对称)若f (x • a)二f (x b),贝U f (x)具有周期性;若f (a • x)二f (b - x),贝U f (x)具有对称性:"内同表示周期性,内反表示对称性”。
推论1: f (a • x) = f (a - x) = y = f (x)的图象关于直线x = a对称推论2、f (x) = f (2a —x) := y = f (x)的图象关于直线x = a对称推论3、f (-x) = f (2a • x) := y = f(x)的图象关于直线x = a对称推论1、f (a x) f (a - x) = 2b =推论2、f(x) f (2a -x) =2b = 推论3、f (-x) f (2a x) = 2b :二例题分析:1 .设f (x)是(Y「::)上的奇函数,f(47.5)等于(A) 0.5 ( B) -0.52、(山东)已知定义在R上的奇函数A . —1B . 03•设f (x)是定义在R上的奇函数,y = f(x)的图象关于点(a,b)对称y = f (x)的图象关于点(a,b)对称y = f(x)的图象关于点(a,b)对称f(x 2) = — f(x),当0 乞x ^1 时,f(x)二x,则( )(C) 1.5 ( D) -1.5f (x)满足f (x • 2) = -f(x),贝y f(6)的值为( ) C. 1 D . 2f(1)=2, f(x 1) = f (x 6),求f(10).4•函数f(x)对于任意实数x满足条件f(x • 2)1,若f(l)二-5,贝y f[f(5)]二f (x)5•已知f(x)是定义在R上的奇函数,且它的图像关于直线x = 1对称。
第六讲i一、 周期函数(a )概念:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。
(b )函数周期性的几个重要结论:2、()()f x a f x b +=+ ⇔)(x f y =的周期为a b T -=3、)()(x f a x f -=+ ⇔)(x f y =的周期为a T 2=4、)(1)(x f a x f =+ ⇔)(x f y =的周期为a T 2= 5、)(1)(x f a x f -=+ ⇔)(x f y =的周期为a T 2= 7、 1)(1)(+-=+x f a x f ⇔)(x f y =的周期为a T 2= 6、)(1)(1)(x f x f a x f +-=+ ⇔)(x f y =的周期为a T 3= 8、)(1)(1)(x f x f a x f -+=+ ⇔)(x f y =的周期为a T 4= 9、)()()2(x f a x f a x f -+=+ ⇔)(x f y =的周期为a T 6=10、若.2, )2()(,0p T p px f px f p =-=>则推论:偶函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 2=推论:奇函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 4=二、函数对称性(一) 函数)(x f y =图象本身的对称性(自身对称)若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”。
抽象函数周期性、对称性、奇偶性综述抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识.函数的周期性、对称性一般与抽象函数结合,综合函数的其它性质一起考查.函数的周期性要紧扣周期函数的定义.要注意,函数的周期性只涉及到一个函数.函数的对称性比较复杂,要分清是一个函数的对称性,还是两个函数的对称性;分清是轴对称还是中心对称.一、基本定义1、定义1:(周期函数)对于函数()f x ,如果存在一个非零常数T ,使得当x 取定义域的每一个值时,都有()()f x T f x +=,那么,函数()f x 就叫做周期函数.非零常数T 叫做这个函数的周期.2、定义2:(同一函数图象的对称性)若函数)(x f y =图象上任一点关于点P (或直线l )的对称点仍在函数)(x f y =的图象上,则称函数)(x f y =的图象关于点P (或直线l )对称.3、定义3:(两个函数图象的对称性)若函数)(x f y =图象上任一点关于点P (或直线l )的对称点在函数()y g x =的图象上;反过来,函数()y g x =图象上任一点关于点P (或直线l )的对称点也在函数)(x f y =的图象上,则称函数)(x f y =与()y g x =的图象关于点P (或直线l )对称.二、关于周期性、对称性的几个基本结论及证明1、若函数)(x f y =的定义域为R ,且()()f a x f x b +=-恒成立,则函数)(x f y =是以T a b =+为周期的周期函数;2、若函数)(x f y =的定义域为R ,且()()f a x f b x +=-恒成立,则函数)(x f y =的图象关于直线2a bx +=对称;3、若函数)(x f y =的定义域为R ,且()()f a x f b x +=--恒成立,则函数)(x f y =的图象关于点(,0)2a b +对称;4、若函数)(x f y =的定义域为R ,且()()f a x f x b +=--恒成立,则函数)(x f y =是以2()T a b =+为周期的周期函数;5、若函数)(x f y =的定义域为R ,则函数()y f a x =+与()y f b x =-的图象关于直线2b a x -=对称;6、若函数)(x f y =的定义域为R ,则函数()y f a x =+与()y f b x =--的图象关于点(,0)2b a -对称. 略证:1、 ()f x a b ++[()]f x b a =++[()]()f x b b f x =+-=,∴函数)(x f y =是以T a b =+为周期的周期函数.2、函数)(x f y =图象上的任一点00(,)P x y (满足00()f x y =)关于直线2a b x +=的对称点为00(,)Q a b x y +-, 00()[()]f a b x f b x a +-=-+000[()]()f b b x f x y =--==∴点Q 仍在函数)(x f y =的图象上,从而函数)(x f y =的图象关于直线2a b x +=对称.3、函数)(x f y =图象上的任一点00(,)P x y (满足00()f x y =)关于点(,0)2a b +的对称点为00(,)Q a b x y +--, 00()[()]f a b x f b x a +-=-+000[()]()f b b x f x y =---=-=-∴点Q 仍在函数)(x f y =的图象上,从而函数)(x f y =的图象关于点(,0)2a b+对称. 4、 (22)[(2)]f x a b f x a b a ++=+++[(2)]()f x a b b f x a b =-++-=-++[()]{[()]}()f x b a f x b b f x =-++=--+-=,∴函数)(x f y =是以2()T a b =+为周期的周期函数.5、函数()y f a x =+图象上的任一点00(,)P x y (满足00()f a x y +=)关于直线2b a x -=的对称点为00(,)Q b a x y --, 000[()]()f b b a x f a x y ---=+=∴点Q 在函数()y f b x =-的图象上;反之函数()y f b x =-的图象上任一点关于直线2b a x -=的对称点也在函数()y f a x =+图象上.从而函数()y f a x =+与()y f b x =-的图象关于直线2b a x -=对称.6、函数()y f a x =+图象上的任一点00(,)P x y (满足00()f x y =)关于点(,0)2b a -的对称点为00(,)Q b a x y ---, 000[()]()f b b a x f a x y ----=-+=-∴点Q 在函数()y f b x =--的图象上;反之函数()y f b x =--的图象上任一点关于点(,0)2b a -的对称点也在函数()y f a x =+图象上.从而函数()y f a x =+与()y f b x =--的图象关于点(,0)2b a -对称.三、关于周期性、对称性的若干易混淆的常用结论1、若函数)(x f y =满足()()f x f x =-,则函数)(x f y =的图象关于y 轴对称;函数)(x f y =和函数()y f x =-的图象也关于y 轴对称.2、若函数)(x f y =满足()()f x f x =--,则函数)(x f y =的图象关于原点对称;函数)(x f y =和函数()y f x =--的图象也关于原点对称.3、若函数)(x f y =满足()()f x a f a x -=-,则函数)(x f y =的图象关于y 轴对称;而函数()y f x a =-和函数()y f a x =-的图象关于直线x a =对称.4、若函数)(x f y =满足()()f x a f a x -=--,则函数)(x f y =的图象关于原点对称.而函数()y f x a =-和函数()y f a x =--的图象关于点(,0)a 对称.5、若函数)(x f y =满足)()(x m f x m f +=-,则函数)(x f y =的图象关于直线m x =对称;而函数()y f m x =-和函数()y f m x =+的图象关于y 轴对称.6、若函数)(x f y =满足)()(x m f x m f +-=-,则函数)(x f y =的图象关于点)0,(m 对称;而函数()y f m x =-和函数()y f m x =-+的图象关于原点对称.7、若函数)(x f y =满足()(2)f x f b x =-,则函数)(x f y =的图象关于直线x b =对称;函数()y f x =和函数(2)y f b x =-的图象也关于直线x b =对称.8、若函数)(x f y =满足()(2)f x f b x =--,则函数)(x f y =的图象关于点(,0)b 对称;函数()y f x =和函数(2)y f b x =--的图象也关于点(,0)b 对称.9、若函数)(x f y =满足()()f m x f x m +=-,则函数)(x f y =是以2T m =为周期的周期函数;若函数)(x f y =满足()()f m x f x m +=--,则函数)(x f y =是以4T m =为周期的周期函数.四、函数周期性与对称性的关系1、定义在R 上的函数()f x ,若同时关于直线x a =和()x b a b =>对称,即对于任意的实数x ,函数()f x 同时满足()()f a x f a x -=+,()()f b x f b x -=+,则函数()f x 是以2()T a b =-为周期的周期函数.2、定义在R 上的函数()f x ,若同时关于点(,0)a 和点(,0)()b a b >对称,即对于任意的实数x ,函数()f x 同时满足()()f a x f a x -=-+,()()f b x f b x -=-+,则函数()f x 是以2()T a b =-为周期的周期函数.3、定义在R 上的函数()f x ,若同时关于直线x a =和点(,0)()b a b ≠对称,即对于任意的实数x ,函数()f x 同时满足()()f a x f a x -=+,()()f b x f b x -=-+,则函数()f x 是以4T a b =-为周期的周期函数.略证:1、 [2()]f x a b +-[(2)]f a x a b =++-[(2)]f a x a b =-+-=(2)f b x =-[()]f b b x =+-[()]()f b b x f x =--=,∴函数)(x f y =是以2()T a b =-为周期的周期函数.2、3同理可证.五、函数周期性、对称性与奇偶性的关系1、定义在R 上的函数()f x ,若同时关于直线x a =和2x a =对称,即对于任意的实数x ,函数()f x 同时满足()()f a x f a x -=+,(2)(2)f a x f a x -=+,则函数()f x 是以2T a =为周期的周期函数,且是偶函数.2、定义在R 上的函数()f x ,若同时关于直线x a =和点(2,0)a 对称,即对于任意的实数x ,函数()f x 同时满足()()f a x f a x -=+,(2)(2)f a x f a x -=-+,则函数()f x 是以4T a =为周期的周期函数,且是奇函数.3、定义在R 上的函数()f x ,若同时关于点(,0)a 和直线2x a =对称,即对于任意的实数x ,函数()f x 同时满足()()f a x f a x -=-+,(2)(2)f a x f a x -=+,则函数()f x 是以4T a =为周期的周期函数,且是偶函数.4、定义在R 上的函数()f x ,若同时关于点(,0)a 和点(2,0)a 对称,即对于任意的实数x ,函数()f x 同时满足()()f a x f a x -=-+,(2)(2)f a x f a x -=-+,则函数()f x 是以2T a =为周期的周期函数,且是奇函数.5、若偶函数()f x 关于直线x a =对称,即对于任意的实数x ,函数()f x 满足()()f a x f a x -=+,则()f x 是以2T a =为周期的周期函数.6、若偶函数()f x 关于点(,0)a 对称,即对于任意的实数x ,函数()f x 满足()()f a x f a x -=-+,则()f x 是以4T a =为周期的周期函数.7、若奇函数()f x 关于直线x a =对称,即对于任意的实数x ,函数()f x 满足()()f a x f a x -=+,则()f x 是以4T a =为周期的周期函数.8、若奇函数()f x 关于点(,0)a 对称,即对于任意的实数x ,函数()f x 满足()()f a x f a x -=-+,则()f x 是以2T a =为周期的周期函数.略证:1、由上述四中的第1点即可得函数()f x 是以2T a =为周期的周期函数, 又()f x -[()]f a x a =-+[()]f a x a =++(2)f a x =+(2)f a x =-[()]f a a x =+-[()]()f a a x f x =--=∴函数)(x f y =是偶函数.2、3、4同理可证.5、6、7、8可利用上述四中的结论证得.以上各条结论均可结合正弦、余弦函数为特例来加以理解.六、其它结论1、若函数()y f x a =+为偶函数,则函数)(x f y =的图象关于直线x a =对称.2、若函数()y f x a =+为奇函数,则函数)(x f y =的图象关于点(,0)a 对称.注:上述两个结论可以通过图象的平移来理解. 3、定义在R 上的函数()f x 满足()()f a x f a x -=+,且方程()0f x =恰有2n 个实根,则这2n 个实根的和为2na .4、定义在R 上的函数)(x f y =满足()()(,,)f a x f b x c a b c ++-=为常数,则函数)(x f y =的图象关于点(,)22a b c+对称. 略证;任取x R ∈,令12,x a x x b x =+=-,则12x x a b +=+,12()()f x f x c +=,由中点公式知点11(,())x f x 与点22(,())x f x 关于点(,)22a b c+对称.由x 的任意性,知函数)(x f y =的图象关于点(,)22a b c+对称. 5、能得出函数为周期函数的常见结论还有:函数()y f x =满足对定义域内任一实数x (其中a 为常数),① ()()f x f x a =+,则()y f x =是以T a =为周期的周期函数; ②()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数; ③()()1f x a fx +=±,则()x f 是以2T a =为周期的周期函数;④()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数;⑤1()()1()f x f x a f x -+=+,则()x f 是以2T a =为周期的周期函数.⑥1()()1()f x f x a f x -+=-+,则()x f 是以4T a =为周期的周期函数.⑦1()()1()f x f x a f x ++=-,则()x f 是以4T a =为周期的周期函数.注:上述结论可以通过反复运用已知条件来证明.七、知识运用1、(2005·广东 19)设函数()f x 在(-∞,+∞)上满足(2)(2)f x f x -=+,(7)(7)f x f x -=+,且在闭区间[0,7]上,只有(1)(3)0f f ==。
第六讲i一、 周期函数(a )概念:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。
(b )函数周期性的几个重要结论:2、()()f x a f x b +=+ ⇔)(x f y =的周期为a b T -=3、)()(x f a x f -=+ ⇔)(x f y =的周期为a T 2=4、)(1)(x f a x f =+ ⇔)(x f y =的周期为a T 2= 5、)(1)(x f a x f -=+ ⇔)(x f y =的周期为a T 2= 7、 1)(1)(+-=+x f a x f ⇔)(x f y =的周期为a T 2= 6、)(1)(1)(x f x f a x f +-=+ ⇔)(x f y =的周期为a T 3= 8、)(1)(1)(x f x f a x f -+=+ ⇔)(x f y =的周期为a T 4= 9、)()()2(x f a x f a x f -+=+ ⇔)(x f y =的周期为a T 6=10、若.2, )2()(,0p T p px f px f p =-=>则推论:偶函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 2=推论:奇函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 4=二、函数对称性(一) 函数)(x f y =图象本身的对称性(自身对称)若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”。
推论1:)()(x a f x a f -=+ ⇔)(x f y =的图象关于直线a x =对称推论2、)2()(x a f x f -= ⇔)(x f y =的图象关于直线a x =对称推论3、)2()(x a f x f +=- ⇔)(x f y =的图象关于直线a x =对称推论1、b x a f x a f 2)()(=-++ ⇔)(x f y =的图象关于点),(b a 对称推论2、b x a f x f 2)2()(=-+ ⇔)(x f y =的图象关于点),(b a 对称推论3、b x a f x f 2)2()(=++- ⇔)(x f y =的图象关于点),(b a 对称(二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解)1、偶函数)(x f y =与)(x f y -=图象关于Y 轴对称2、奇函数)(x f y =与)(x f y --=图象关于原点对称函数3、函数)(x f y =与()y f x =-图象关于X 轴对称4、互为反函数)(x f y =与函数1()y f x -=图象关于直线y x =对称推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称推论2:函数)(x f y =与)2(x a f y -= 图象关于直线a x =对称推论3:函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称三、抽象函数(a )概念:抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等。
(b )抽象函数的对称性与周期性1、抽象函数的对称性性质1 若函数y =f(x)关于直线x =a 轴对称,则以下三个式子成立且等价:(1)f(a +x)=f(a -x) (2)f(2a -x)=f(x) (3)f(2a +x)=f(-x)性质2 若函数y =f(x)关于点(a ,0)中心对称,则以下三个式子成立且等价:(1)f(a +x)=-f(a -x)(2)f(2a -x)=-f(x)(3)f(2a +x)=-f(-x)易知,y =f(x)为偶(或奇)函数分别为性质1(或2)当a =0时的特例。
四、复合函数的奇偶性定义1、 若对于定义域内的任一变量x ,均有f[g(-x)]=f[g(x)],则复数函数y =f[g(x)]为偶函数。
定义2、 若对于定义域内的任一变量x ,均有f[g(-x)]=-f[g(x)],则复合函数y =f[g(x)]为奇函数。
说明:(1)复数函数f[g(x)]为偶函数,则f[g(-x)]=f[g(x)]而不是f[-g(x)]=f[g(x)],复合函数y =f[g(x)]为奇函数,则f[g(-x)]=-f[g(x)]而不是f[-g(x)]=-f[g(x)]。
(2)两个特例:y =f(x +a)为偶函数,则f(x +a)=f(-x +a);y =f(x +a)为奇函数,则f(-x +a)=-f(a +x)。
(3)y =f(x +a)为偶(或奇)函数,等价于单层函数y =f(x)关于直线x =a 轴对称(或关于点(a ,0)中心对称)。
例题:1. 若)(),()()2()(x f y x a f x a f x a f x f =+=--=则或的图像关于直线a x =对称。
设个不同的实数根,则有n x f 0)(=na x a x x a x x a x x x x n n n =-+++-++-+=+++)2()2()2(22221121 .),212(111a x x a x k n =⇒-=+=时,必有当五、例题分析灵活应用函数奇偶性、周期性与对称性,可巧妙的解答某些数学问题,它对训练学生分析问题与解决问题的能力有重要作用.下面通过实例说明其应用类型。
1.求函数值例1.(1996年高考题)设)(x f 是),(+∞-∞上的奇函数,),()2(x f x f -=+当10≤≤x 时,x x f =)(,则)5.7(f 等于(-0.5)(A )0.5; (B )-0.5; (C )1.5; (D )-1.5.例2.(1989年北京市中学生数学竞赛题)已知)(x f 是定义在实数集上的函数,且[])(1)(1)2(x f x f x f +=-+,,32)1(+=f 求)1989(f 的值.23)1989(-=f 。
2、比较函数值大小例 3.若))((R x x f ∈是以2为周期的偶函数,当[]1,0∈x 时,,)(19981x x f =试比较)1998(f 、)17101(f 、)15104(f 的大小. 解:))((R x x f ∈ 是以2为周期的偶函数,又19981)(x x f = 在[]1,0上是增函数,且1151419161710<<<<,).15104()1998(17101(),1514()1916()171(f f f f f f <<<<∴即 3、求函数解析式例4.(1989年高考题)设)(x f 是定义在区间),(+∞-∞上且以2为周期的函数,对Z k ∈,用k I 表示区间),12,12(+-k k 已知当0I x ∈时,.)(2x x f =求)(x f 在k I 上的解析式.解:设1211212),12,12(<-<-⇒+<<-∴+-∈k x k x k k k x 0I x ∈ 时,有22)2()2(121,)(k x k x f k x x x f -=-<-<-∴=得由)(x f 是以2 为周期的函数,2)2()(),()2(k x x f x f k x f -=∴=-∴.例5.设)(x f 是定义在),(+∞-∞上以2为周期的周期函数,且)(x f 是偶函数,在区间[]3,2上,.4)3(2)(2+--=x x f 求[]2,1∈x 时,)(x f 的解析式. 解:当[]2,3--∈x ,即[]3,2∈-x ,4)3(24)3(2)()(22++-=+---=-=x x x f x f又)(x f 是以2为周期的周期函数,于是当[]2,1∈x ,即243-≤-≤-x 时,[]).21(4)1(243)4(2)()4()(22≤≤+--=++--=⇒-=x x x x f x f x f 有).21(4)1(2)(2≤≤+--=∴x x x f4、判断函数奇偶性例6.已知)(x f 的周期为4,且等式)2()2(x f x f -=+对任意R x ∈均成立,判断函数)(x f 的奇偶性.解:由)(x f 的周期为4,得)4()(x f x f +=,由)2()2(x f x f -=+得)4()(x f x f +=-,),()(x f x f =-∴故)(x f 为偶函数.5、确定函数图象与x 轴交点的个数例7.设函数)(x f 对任意实数x 满足)2()2(x f x f -=+,=+)7(x f,0)0()7(=-f x f 且判断函数)(x f 图象在区间[]30,30-上与x 轴至少有多少个交点.解:由题设知函数)(x f 图象关于直线2=x 和7=x 对称,又由函数的性质得)(x f 是以10为周期的函数.在一个周期区间[)10,0上,,)(0)0()22()22()4(,0)0(不能恒为零且x f f f f f f ==-=+==故)(x f 图象与x 轴至少有2个交点.而区间[)30,30-有6个周期,故在闭区间[]30,30-上)(x f 图象与x 轴至少有13个交点.附:1、奇偶函数性质(1)满足定义式子(2)在原点有定义的奇函数有0)0(=f (3)两个偶函数之和、差、积、商为偶函数;(4)两个奇函数之和、差为奇函数;积(商)为偶函数;(5)一个奇函数和偶函数之积、商为奇函数.(6)任意函数)(x f 均可表示成一个奇函数[])()(21)(x f x f x g --=与一个偶函数[])()(21)(x f x f x h -+=的和(7)一般的奇函数都具有反函数,且依然是奇函数,偶函数没有反函数(8)图形的对称性i 高一数学2011-10-22。