小学六年级奥数教案—时钟问题
- 格式:doc
- 大小:455.50 KB
- 文档页数:6
时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走度注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。
例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度小格,每分钟走0.5度时针速度:每分钟走112注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
分。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走0.5度注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。
例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快 30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度小格,每分钟走0.5度时针速度:每分钟走112注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
分。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
时钟问题(一)月 日 姓名:【知识要点】钟面是一个360°的周角(即60格),分针1小时旋转1周,即360°(即60格),时针1小时旋转121周,即30°(即5格),即时针1分钟旋转: )121(5.06030格即︒=︒;分针1分钟旋转:)1(0660360格即︒=︒.时针1分钟走 121格,分针1分钟走1格,分针每分钟比时钟多走1211-。
常用原基本公式:初始时刻需追赶的格数÷(1211-)=追及时间(分钟); 其中,(1211-)为分针与时针的速度差.钟面一周平均分为60格,相邻两格刻度之间的时间间隔为1分钟,【典型例题】例1 (1)9点几分,时针和分针重合?时针和分针成反向一直线?(2)9点几分,时针和分针相互垂直?时针和分针成30°角?例2 10点24分时,分针与时针的夹角是多少度?再过多少分钟,时针与分针垂直?例3 分针和时针每隔多少时间重合一次?一个钟面上分针和时针一昼夜重合几次?例4 小明在7点多开始解一道题,开始时分针落后时针5格,解完题时两针正好成反向直线,小明解题共用了多少时间?此时是什么时刻?例5 4点整,再经过多少分钟,时针正好与分针第二次重合?时针与分针第三次成30°角?课堂小测姓名:成绩:1.7点几分,时针和分针重合?时针和分针成反向一直线?2.4点48分时,分针与时针的夹角是多少度?再过多少分钟,时针与分针垂直?3.在0到12时之间,钟面上的时针与分针成60°角共有几次?分针与时针正好成一条直线的机会有多少次?4.5点整,再经过多少分钟,时针正好与分针第三次重合?时针与分针第三次成80°角?5.双休日,小明一家去欢乐谷游玩,上午八点多从家出发,小明发现钟面上时针与分针恰好重合,下午2点多,他们回到家,小明发现时针与分针正好成反向直线。
问:在欢乐谷玩了多久?小明一家上午几点几分离家的?下午几点几分回家的?7.观察在镜面反射后的钟面的指针位置,并说出:(1)两钟面所表示的实际时刻;(2)两钟面的时间差。
时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人"分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟, 具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度小格,每分钟走0。
5度时针速度:每分钟走112注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟",或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
分。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒。
而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600—30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600—30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600—30)/3600*(3600+30)/3600】=1-14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针每分钟走多少角度”或者每分钟走多少小格”对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度1时针速度:每分钟走小格,每分钟走0.5度12注意:但是在许多时钟问题中,往往我们会遇到各种怪钟”或者是坏了的钟”它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
5例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为65 分。
11例题精讲:模块一、时针与分针的追及与相遇问题【例1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30秒.而闹钟却比标准时间每小时慢30秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600* (3600+30)/3600个小时,则手表每小时比标准时间慢 1 —【(3600-30)/3600* (3600+30)/3600】=1 —14399/14400=1/14400 个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上 2 人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为 6 度。
分针速度:每分钟走 1 小格,每分钟走 6 度1时针速度:每分钟走小格,每分钟走0.5 度12注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
5例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为65 分。
11例题精讲:模块一、时针与分针的追及与相遇问题【例1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走( 3600-30 )/3600 个小时,手表又比闹钟快那么它一小时走(3600+30 )/3600 个小时,则标准时间走 1 小时手表则走 ( 3600-30 )/3600* ( 3600+30 ) /3600 个小时,则手表每小时比标准时间慢1—【( 3600-30 )/3600* (3600+30 ) /3600 】=1 —14399/14400=1/14400 个小时,也就是1/14400*3600= 四分之一秒,所以一昼夜24 小时比标准时间慢四分之一乘以24 等于 6 秒【巩固】小强家有一个闹钟,每时比标准时间快 3 分。
时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的M每秒或者千M每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走0.5度注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。
例题精讲:模块一、时针与分针的追及与相遇问题【例1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走0.5度注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。
例题精讲:模块一、时针与分针的追及与相遇问题【例1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度小格,每分钟走0.5度时针速度:每分钟走112注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
分。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
时钟问题“时间就是生命”。
自从人类发明了计时工具——钟表,人们的生活就离不开它了。
什么时间起床,什么时间吃饭,什么时间上学……全都依靠钟表,如果没有钟表,生活就乱套了。
时钟问题就是研究钟面上时针和分针关系的问题。
大家都知道,钟面的一周分为60格,分针每走60格,时针正好走5格,所以时针的速度是分针速度垂直、两针成直线、两针成多少度角提出问题。
因为时针与分针的速度不同,并且都沿顺时针方向转动,所以经常将时钟问题转化为追及问题来解。
例1现在是2点,什么时候时针与分针第一次重合?分析:如右图所示,2点分针指向12,时针指向2,分针在时针后面例2在7点与8点之间,时针与分针在什么时刻相互垂直?分析与解:7点时分针指向12,时针指向7(见右图),分针在时针后面5×7=35(格)。
时针与分针垂直,即时针与分针相差15格,在7点与8点之间,有下图所示的两种情况:(1)顺时针方向看,分针在时针后面15格。
从7点开始,分针要比时针多走35-15=20(格),需(2)顺时针方向看,分针在时针前面15格。
从7点开始,分针要比时针多走35+15=50(格),需例3在3点与4点之间,时针和分针在什么时刻位于一条直线上?分析与解:3点时分针指向12,时针指向3(见右图),分针在时针后面5×3=15(格)。
时针与分针在一条直线上,可分为时针与分针重合、时针与分针成180°角两种情况(见下图):(1)时针与分针重合。
从3点开始,分针要比时针多走15格,需15÷(2)时针与分针成180°角。
从3点开始,分针要比时针多走15+30例4 晚上7点到8点之间电视里播出一部动画片,开始时分针与时针正好成一条直线,结束时两针正好重合。
这部动画片播出了多长时间?分析与解:这道题可以利用例3的方法,先求出开始的时刻和结束的时刻,再求出播出时间。
但在这里,我们可以简化一下。
因为开始时两针成180°,结束时两针重合,分针比时针多转半圈,即多走30格,所以播出时间为例1~例4都是利用追及问题的解法,先找出时针与分针所行的路程差是多少格,再除以它们的速度差求出准确时间。
时钟问题知识点拨:时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度小格,每分钟走0.5度时针速度:每分钟走112注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
分。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511例题精讲:模块一、时针与分针的追及与相遇问题【例 1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)/3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)/3600*(3600+30)/3600个小时,则手表每小时比标准时间慢1—【(3600-30)/3600*(3600+30)/3600】=1—14399/14400=1/14400个小时,也就是1/14400*3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
(六年级)备课教员:×××第一讲时钟问题一、教学目标:知识目标1.回顾并掌握圆上角和度的知识。
2.回顾并掌握行程问题中的相遇和追及问题。
3.掌握钟表上时针、分针的转速,并能将相关问题转化为行程问题解题。
能力目标1.培养学生数学思维和推理能力。
2.培养学生自主探索和合作交流的能力。
情感目标1.体会数学源于生活,培养对数学的学习兴趣。
2.激励学生学习数学,帮助学生认识自我,建立自信心。
二、教学重点:1. 掌握钟表上每大格与每小格所对应的角度,会计算时针和分针之间的夹角,以及加深对时针和分针的转速的理解。
三、教学难点:1. 掌握将相关问题转化为行程问题解题的方法。
四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(5分)【设计意图:通过简单的游戏回顾钟表上的读数,并思考钟表上每大格和每小格所对应的时间和圆心角,加深理解时针和分针的转速。
】师:同学们,过新年的时候,老师和大家都有一个相同点,你们知道是什么吗?生:拿红包、放鞭炮……师:同学们说得都很对,但只有一个相同点是对老师和同学们都适用的,那就是每个人都长大了一岁,这是时间老人给大家带来的礼物。
今天我们就要来认识一下时间,一起来比一比,看看哪个同学和时间最熟。
(出示PPT“谁读得更快”,分成2组,选出小组代表,由小组代表发言比赛)师:好,我们来看看哪组同学能够更快地说出PPT上钟表的时间是多少?生:(抢答)师:两组同学的代表反应都很快,表现非常棒。
由此可见,同学们对钟表已经很熟悉了。
但老师还是想考考大家。
(出示PPT“认识时钟”,开火车形式回答问题)师:时钟有几大格?生:12大格。
师:每个大格有几个小格?生:5个。
师:所以,一共有几个小格?生:60个。
师:时针走一大格是多少时间?生:1个小时。
师:一小格呢?生:12分钟?师:那么我们把时钟看作一个圆的话,时钟上一大格是几度?生:360÷12=30(度)。
小学数学教案学习如何解决时钟问题【教案】一、教学目标通过本课的学习,学生将能够掌握解决时钟问题的方法和策略,提高观察能力和逻辑思维能力。
二、教学重点1. 时钟读数的基本概念和表示方法;2. 解决时钟问题的基本步骤和策略。
三、教学内容1. 时钟读数的基本知识时钟由时针、分针和秒针组成,时针长度最短,分针长度略长,秒针长度最长。
时针每转一圈表示12小时,分针和秒针每转一圈分别表示60分钟和60秒钟。
通过时针、分针和秒针的位置,我们可以读出具体的时间。
2. 解决时钟问题的基本步骤和策略(1)确定题目要求:仔细阅读题目,明确要求解决的问题。
(2)分析时钟走动的规律:根据时针、分针和秒针的运动规律,分析时钟的变化过程。
(3)解题思路:根据题目要求和时钟走动的规律,确定解题思路。
(4)解题步骤:按照解题思路,逐步进行计算和推理,得出结果。
(5)检验答案:回顾题目要求,检查计算过程,确保答案的准确性。
四、教学步骤Step 1 引入通过教师向学生提出一个简单的时钟问题,如:现在是3点10分,再过多少分钟时分针和秒针会重合?激发学生对问题的兴趣和思考。
Step 2 讲解时钟的基本知识1. 教师简要介绍时钟的基本构造和表示方法,让学生了解时钟的组成部分和读数方法。
2. 布置任务:每个学生拿一张纸,模拟时钟读数,分别表示不同的时间。
Step 3 解决时钟问题的基本步骤1. 教师向学生讲解解决时钟问题的基本步骤和策略。
2. 通过示例演练,让学生理解并掌握解决时钟问题的方法。
Step 4 练习与巩固1. 教师布置一些时钟问题,让学生独立解答并讲解答案。
2. 学生相互交流并纠正错误,巩固所学解决时钟问题的能力。
五、教学反思通过本课的教学,学生能够熟练掌握解决时钟问题的方法和策略,并培养了观察能力和逻辑思维能力。
教学中采用了引入、讲解、练习等多种教学方法,能够激发学生的兴趣,并提高了学生的参与度和专注度。
在巩固环节进行了互动讨论和纠错,能够有效提升学生的学习效果和能力水平。
小学六年级奥数教案—24时钟问题
本教程共30讲
时钟问题
“时间就是生命”。
自从人类发明了计时工具——钟表,人们的生活就离不开它了。
什么时间起床,什么时间吃饭,什么时间上学……全都依靠钟表,如果没有钟表,生活就乱套了。
时钟问题就是研究钟面上时针和分针关系的问题。
大家都知道,钟面的一周分为60格,分针每走60格,时针正好走5格,所以时针的速度是分针速度
垂直、两针成直线、两针成多少度角提出问题。
因为时针与分针的速度不同,并且都沿顺时针方向转动,所以经常将时钟问题转化为追及问题来解。
例1现在是2点,什么时候时针与分针第一次重合?
分析:如右图所示,2点分针指向12,时针指向2,分针在时针后面
例2在7点与8点之间,时针与分针在什么时刻相互垂直?
分析与解:7点时分针指向12,时针指向7(见右图),分针在时针后面5×7=35(格)。
时针与分针垂直,即时针与分针相差15格,在7点与8点之间,有下图所示的两种情况:
(1)顺时针方向看,分针在时针后面15格。
从7点开始,分针要比时针多走35-15=20(格),需
(2)顺时针方向看,分针在时针前面15格。
从7点开始,分针要比时针多走35+15=50(格),需
例3在3点与4点之间,时针和分针在什么时刻位于一条直线上?
分析与解:3点时分针指向12,时针指向3(见右图),分针在时针后面5×3=15(格)。
时针与分针在一条直线上,可分为时针与分针重合、时针与分针成180°角两种情况(见下图):
(1)时针与分针重合。
从3点开始,分针要比时针多走15格,需15÷
(2)时针与分针成180°角。
从3点开始,分针要比时针多走15+30
例4 晚上7点到8点之间电视里播出一部动画片,开始时分针与时针正好成一条直线,结束时两针正好重合。
这部动画片播出了多长时间?
分析与解:这道题可以利用例3的方法,先求出开始的时刻和结束的时刻,再求出播出时间。
但在这里,我们可以简化一下。
因为开始时两针成180°,结束时两针重合,分针比时针多转半圈,即多走30格,所以播出时间为
例1~例4都是利用追及问题的解法,先找出时针与分针所行的路程差是多少格,再除以它们的速度差求出准确时间。
但是,有些时钟问题不太容易求出路程差,因此不能用追及问题的方法求解。
如果将追及问题变为相遇问题,那么有时反而更容易。
例5 3点过多少分时,时针和分针离“3”的距离相等,并且在“3”的两边?
分析与解:假设3点以后,时针以相反的方向行走,时针和分针相遇的时刻就是本题所求的时刻。
这就变成了相遇问题,两针所行距离和是15个格。
例6小明做作业的时间不足1时,他发现结束时手表上时针、分针的位置正好与开始时时针、分针的位置交换了一下。
小明做作业用了多少时间?
分析与解:从左上图我们可以看出,时针从A走到B,分针从B走到A,两针一共走了一圈。
换一个角度,问题可以化为:时针、分针同时从B出发,反向而行,它们在A点相遇。
两针所行的
时间是:
练习24
1.时针与分针在9点多少分时第一次重合?
2.王师傅2点多钟开始工作时,时针与分针正好重合在一起。
5点多钟完工时,时针与分针正好又重合在一起。
王师傅工作了多长时间?
3.8点50分以后,经过多长时间,时针与分针第一次在一条直线上?
4.小红8点钟开始画一幅画,正好在时针与分针第三次垂直时完成,此时是几点几分?
5.3点36分时,时针与分针形成的夹角是多少度?
6.3点过多少分时,时针和分针离“2”的距离相等,并且在“2”的两边?
7.早晨小亮从镜子中看到表的指针指在6点20分,他赶快起床出去跑步,可跑步回来妈妈告诉他刚到6点20分。
问:小亮跑步用了多长时间?
答案与提示练习24
解:分针比时针多转5-2=3(圈),所以王师傅工作了
解:从9点开始,分针还要比时针多走15格,所求时间为
解:8点分针在时针后面40格,第一次垂直分针要比时针多走
40-15=25(格),第三次垂直要多走25+30×2=85(格),
5.108°。
解:分针走36格,时针走36÷12=3(格)。
3点36分时,分针在时针前面36-(5×3+3)=18(格),它们形成的夹角是
360°×(18÷60)=108°。
解:与例5类似,假设2点以后,时针以相反的方向走,时针与分针第2次相遇的时刻就是所求的时刻。
第一次相遇,两针共走5×2=10(格),第二次相遇,两针还要共走一圈,即60格。
所以需要
7.40分。
提示:镜子中的影像左右位置互换了,所以镜子中看到的6点20分(左下图),实际上是5点40分(右下图)。