电磁学第二章习题答案教程文件
- 格式:doc
- 大小:397.00 KB
- 文档页数:10
第二章习题解答【习题2.1】101929=.=101.6102.0810e qR R mq e Cp m Ce e 解:电偶极矩p 其中 1.3可得电偶极矩p 的大小其方向为从负电荷指向正电荷,即从氯离子指向氢离子。
---´== =醋【习题2.2】解1解:由例2.2得,电偶极子所产生的电场为533()1[]4e e P R RP E RRπε=-0()R R << ……………………①其中 0e P qR = ,0R方向从负电荷指向正电荷,R是从电偶极子指向电场中任一点的矢量,起点在正负电荷连线的中点。
(如图)本题 100 1.310R m -=⨯ 1010010R m -=⨯满足 0R R << .将①式整理:32013[()]4e e E P R R P RRπε=-令 ()e m k P R R P =-(23k R=)则 304m E Rπε=…………………………②欲求E的最大值,求出m最大值即可.222222[()]()2()()e e e e e e m k P R R P k P R R P k P R P R =-=+- 2222(2)()e e k R k P R P =-+2224296()()e e R P R P R R=-+ 2223()e e P R P R=+其中 00cos e P R qR R qR R θ== , (θ是0R 和R之间的夹角)易见,当cos 1θ=,即0θ=时,2m可取最大值22222m ax 234e e e m R P P P R=+=则 m=2e P 代入②式得 m a x33m ax042e P mERRπεπε==将习题2.1中的结论 e P=2.082910c m -⨯⋅ 代入得29112103max2.08102 3.148.910(10010)EV m ----⨯=⋅⨯⨯⨯⨯⨯513.710V m-≈⨯⋅距离自由电子处的电场 191712121020 1.6101.41044 3.148.910(10010)e E V mV mRπε-----⨯==⋅≈⨯⋅⨯⨯⨯⨯⨯故 距离电偶极子处的电场最大值为 513.710V m -⨯⋅ 距离自由电子处的电场为 711.410V m -⨯⋅【习题2.2】解2解:设矢量0R e的方向从电荷C L -指向电荷H +R n 是从由C L - H +构成的电偶极子指向电场中的任一点的矢量,起点在正负电荷连线的中点,且0R 〈〈R. ( e , n 为单位矢量,θ是e , n的夹角)(1)003303cos 1[]4qR qR E n e R R θπε=- (41P )由向量减法的三角形法则及余弦定理得:=03024qR R πε⎛⎫⎪⎝⎭E =由上题得290( 2.110)e p qR cm -==⨯因此,当0θ=或θπ=时E有最大值, 03024qR E R πε==50302 3.7104qR V M R πε=⨯ (2)7201() 1.4104q R VE M R R πε==⨯【习题2.3】证明: 电偶极距qRe p =其方向为从负电荷指向正电荷。
第二章 导体周围的静电场2.1.1 证明:对于两个无限大带电平板导体来说: (1) 反; (2)同; 相向的两面(附图中2和3)上,电荷的面密度总是大小相等而符号相 相背的两面(附图中1和4)上,电荷的面密度总是大小相等而符号相 证: 斯 (1)选一个侧面垂直于带电板,端面分别在 A,B 板内的封闭圆柱形 面 E?dS E 侧?dS E A 内S E B 内 E 侧 dS 侧 E A 内 E R 内 .=E?dS 0 即:3 2 (2)在导体内任取一点 P , E p E p E 1 E 2 E 3 E 4 其中n?是垂直导体板向右的单位矢。
2.1.2两平行金属板分别带有等量的正负电荷 特,两板的面积都是平方厘米,两板相距毫米,略去边缘效应,求两板间的电场强 度和各板上所带的电量(设其中一板接地).解:设A 板带负电,其电量是-q ,B 板带正电,其电量是+q ,且A 板接地。
两板间的电场强度:E V d 160 1.6 105(伏/米) 3 0E 8.85 10 12 105 8.85 10 7(库 /米2) 根据上题结论: ,若两板的电位差为160伏 4; 2 3又由于A 板接地, 1 4 0 A 板所带电量: q 2S 8.85 10 7 3.6 10 4 3.2 10 10(库)2 3 8.85-(d x)(由A 板的电位得) 0 丄X 0 解以上方程组得出: Q(d x) 2 Sd B 板上感应电荷: Q B 2S 冬 d C 板上的感应电荷: Qx d Q c 5S x) Q(d x) Sd Qx Qx 4 Sd 5 Sd i 0 E nQ(d Sd 0 x)r AB Qx ?A C Sd 0 U i 0; U IVQ(dSd 0r)B 板所带电量: q 3S 8.85 10 7 .3.6 10 4 3.2 10 10(库)2.1.3三块平行放置的金属板 A,B,C 其面积均为S,AB 间距离为x,BC 间距离为 d,设d 极小,金属板可视为无限大平面,忽略边缘效应与A 板的厚度,当B,C 接地 (如图),且A 导体所带电荷为Q 时,试求: ⑴B,C 板上的感应电荷; (2)空间的场强及电位分布. 解:(1)根据静电平衡时,导体中的场强为零,又由 B,C 接地: 5 6 0 4)S Q(由A 板的总电量得) (2)场强分布: 电位分布:Q XU 皿 ST (d x r)其中r 是场点到板A 的距离。
电磁场与电磁波第二章课后答案第二章重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导岀微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。
利用亥姆霍兹定理,直接导岀真空中电场强度与电荷之间的关系。
通过书中列举的4个例子,总结归纳岀根据电荷分布计算电场强度的三种方法。
至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。
讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。
介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。
关于静电场的能量与力,应总结岀计算能量的三种方法,指岀电场能量不符合迭加原理。
介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。
至于电容和部分电容一节可以从简。
重要公式真空中静电场方程:q积分形式::i E d S E d I = 0S - - I%微分形式:'' E= —V E =O已知电荷分布求解电场强度:1,E (r )--''?(r);φ( r) -[ . (IdV4 叭J I r —r |2,r P(r )( rE (r)LV 4πε0 | r^r)d"3-r I3,r qE d S =S;0高斯定律介质中静电场方程:静电场积分形式:■. D d S =q=SE■ ld I= 0微分形式:? D=-V X E= 0线性均匀各向同性介质中静电场方程:积分形式:qE d S =-■2 SεI E d I= 0微分形式:V E =V X E= 0静电场边界条件:1,E1t =E2t。
对于两种各向同性的线性介质,贝UD1t D∑12,D2n-D1n = I。
在两种介质形成的边界上,则Dm = D2n对于两种各向同性的线性介质,则;疋仆_ ;2E2n3,介质与导体的边界条件:e n E =O ;e n D = \若导体周围是各向同性的线性介质,则;:n 静电场的能量:孤立带电体的能量:W e =IQ1GQ 2 C2库仑定律:F qq 2e r4 a : rdW eq蛋数dl 一dW e常电位系统:F= ----------------- g 数dl2-1 若真空中相距为d 的两个电荷q 1及q 2的电量分别为q 及4q ,当点电荷q 位于q I 及q 2的连线上时,系统处于平衡状态,试求q ■的大小及位置。
电磁场与电磁波第二章课后答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March第二章 静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。
利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。
通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。
至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。
讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。
介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。
关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。
介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。
至于电容和部分电容一节可以从简。
重要公式真空中静电场方程:积分形式:⎰=⋅SS E 0d εq⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E已知电荷分布求解电场强度:1,)()(r r E ϕ-∇=; ⎰''-'=V Vd )(41)(|r r |r r ρπεϕ2,⎰'''-'-'=V V 3d |4))(()(|r r r r r r E περ3,⎰=⋅SS E 0d εq高斯定律介质中静电场方程:积分形式:q S=⋅⎰ d S D⎰=⋅ll E 0d微分形式:ρ=⋅∇D0=⨯∇E线性均匀各向同性介质中静电场方程:积分形式:εqS=⋅⎰ d S E⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E静电场边界条件:1,t t E E 21=。
电磁场与电磁波第四版第二章部分答案习题二无限长线电荷通过点且平行于z轴,线电荷密度为ρ?,试求点P(x,y,x)处的电场强度E。
解:线电荷沿z方向为无限长,故电场分布与z无关,设P位于z=0的平面上。
则R=ex x?6 +ey y?8 , R = (x?6)2+(y?8)2ex x?6 +ey y?8 ReR== R (x?6)2+(y?8)2则P点的E为ρ?ρ?ex x?6 +ey y?8 RE=eR=?=? 222πε0RR2πε0R2πε0(x?6)+(y?8)2.10半径为a的一个半圆环上均匀分布着线电荷ρ?,如图所示。
试求垂直于半圆环所在轴线的平面上z=a处的电场强度E(0,0,a)。
解:′P(0,0,a)的位置矢量是 =eza,电荷元ρ?dl=ρ?ad?, =eacos?+x′rrρ?eyasin?′′′ ? =ea?eacos??easin? zxy′rr= a2+ acos?′ 2+ asin?′ 2= 2aez? exacos?′+eyasin?′ dE=d?=d?4πε0 2a 3a8 2 πε0ρ?E 0,0,a = dE = =ρ?8 2 aπε0? ρ?a rr′ez? exacos?′+eyasin?′ d? π2π?2ρ?(ezπ?ex2)8 2 aπε0一个很薄的无限大导体带电平面,其上的面电荷密度为ρs。
试证明:垂直于平面的z轴上z=z0处的电场强度中,有一半是平面上半径为 3z0的圆内的电荷产生的。
解:取面积元ds′=r′d?′dr′,dq=ρsds′=ρsr′d?′dr′,电荷元在z=z0处产生的电场强度dE=ρsr′d?′dr′4πε0ezz0+err′ z0322+r′ 2 d?′整个平面在z=z0处的电场强度为E=ρsz0=?ez2ε0当r ∞时,E=exρs2ε0ρs4πε0r2πezz0+err′′′rdr 3002z02+r′ 21 z02+r2ρs1+ez2ε02,当r= 3z0时,E′=ezρs4ε0=E21半径为a的导体球形体积内充满密度为ρ r 的体电荷。
1-1. (1) 叙述库仑定律,并写出数学表达式。
(2)电荷之间的作用力满足牛顿第三定律吗?请给出证明。
解:(1)库仑定律内容为:真空中两个静止的点电荷之间的相互作用力的大小,与它们的电量q 和'q 的乘积成正比,与它们之间距离R 的平方成反比。
作用力的方向沿两者连线的方向。
两点电荷同号时为斥力,异号时为吸力。
所以:(2)电荷之间的作用力不满足牛顿第三定律,请看下面的例证:1q 以速度1v 运动,q 2以速度2v运动。
如图1-2所示。
此时,2q 在1q 处产生有电场2E和磁场2H 。
而1q 在2q 处也产生电场1E和磁场1H 。
但因2q 在1q 处产生的磁场方向与1v 平行。
故由洛仑兹公式知,q 1所受的力为 )(2120112121N E q H v q E q F=⨯+=μ 只有电场力。
但q 1对q 2的作用力为:10221112H v q E q Fμ⨯+= (N) 既有电场力,又有磁场力,所以两者不相等。
1-2 (1) 洛仑磁力表达式中,哪部分做功,哪部分不做功,为什么? (2) 洛仑兹力满足迭加原理吗?为什么? 解: (1) 洛仑磁力公式为H v q E q F0μ⨯+= (N )洛仑兹力做的功为⎰⋅=csd F W,其中dt v s d = 所以有:⎰⋅=cs d F W=⎰∆⋅tdt v F=⎰∆⨯+tdt v H v q E q)(0μ=⎰⎰∆∆⋅⨯+⋅ttdt v H v q dt v E q)(0μ=⎰∆⋅tdt v E q(J)其中使用了矢量恒等式()()BA C CB A ⨯⋅=⨯⋅所以,洛仑兹力作的功为⎰∆⋅=tdt v E q W=)(J sd E qC⎰⋅所以,洛仑兹力中,因为E q 与电荷的做功无关。
而H v q0μ⨯部分总是与电荷的运动方向垂直,故E q 部分做功,而H v q0μ⨯部分不做功。
(2)因为电荷受力与E 和H间都是线性关系,所以,洛仑兹力满足迭加原理。
电磁场与电磁波第2章课后答案2-1.已知真空中有四个点电荷q C 11=,q C 22=,q C 34=,q C 48=,分别位于(1,0,0),(0,1,0),(-1,0,0,),(0,-1,0)点,求(0,0,1)点的电场强度。
解:z y r z x r z y r z xr ??;??;??;??4321+=+=+-=+-=ρρρρ 84?15?6?3)(41024442333222221110πεπεz y xr r q r r q r r q r r q E ++=+++=ρ2-2.已知线电荷密度为ρl 的均匀线电荷围成如图所示的几种形状,求P 点的电场强度。
题2-2图解:(a) 由对称性04321=+++=E E E E E ρρρρρ(b) 由对称性0321=++=E E E E ρρρρ(c) 两条半无限长线电荷产生的电场为yay x y x a E E E ll a ?2)}??()??{(40021περπερ-=+--=+=ρρρ 半径为a 的半圆环线电荷产生的电场为y aE lb ?20περ=ρ总电场为0=+=b a E E E ρρρ2-3.真空中无限长的半径为a 的半边圆筒上电荷密度为ρs ,求轴线上的电场强度。
解:在无限长的半边圆筒上取宽度为?ad 的窄条,此窄条可看作无限长的线电荷,电荷线密度为?ρρad s l =,对?积分,可得真空中无限长的半径为a 的半边圆筒在轴线上的电场强度为y d x y a d r a E ss s ?)?cos ?sin (22?00000??-=--==πππερπερπε?ρρ 题2-3图题2-4图2-4.真空中无限长的宽度为a 的平板上电荷密度为ρs ,求空间任一点上的电场强度。
解: 在平板上'x 处取宽度为'dx 的无限长窄条,可看成无限长的线电荷,电荷线密度为'dx s l ρρ=,在点),(y x 处产生的电场为ρρρπε'?21),(0dx y x E d s =ρ其中 22)'(y x x +-=ρ;22)'(??)'(?yx x y y xx x +-+-=ρ对'x 积分可得无限长的宽度为a 的平板上的电荷在点),(y x 处产生的电场为)}2/2/(2?)2/()2/(ln ?{4),(2222y a x arctg y a x arctg y y a x y a x x y x E s --+++-++=περρ2-5.已知真空中电荷分布为ρ=≤>r a r ar a220;;ρs b r a ==;r 为场点到坐标原点的距离,a ,b 为常数。
前言:特别感谢质心教育的题库与解析,以及“程稼夫力学、电磁学习题答案详解”的作者前辈和血色の寂宁前辈的资料.2-2变阻器在A位置时,焦耳热:,其中.变阻器在中间时,焦耳热:.代入题中数据,可得.2-32-4(1)即,在图中作出该直线,交伏安特性曲线于.两端电压.(2)电源功率之比就等于干路电流之比,即总电阻之反比,设总电阻分别为,则.2-7未烧断前总电阻,烧断后,故干路电流之比为22AB2-10注意电阻温度系数的基准是0℃,得.负载时,负载时,联立解得:.2-11题设是默认加热间断时间相等的,设为.即110V为A、B串联时的工作电压的等差中项作伏安特性曲线关于直线的对称图像,分别交另一曲线于和.得.2-15(1)电容器极板带电量,极板间电流保持为电势差为0时,极板不带电,所以.(2)最大动能的电子到达上极板时动能全部转化为电势能所以,得.K断开时,R与R1串联,该支路总电压该支路与R2并联,为R2两端电压,又R2,R3串联,R3两端电压为可以列出:两式联立,代入数据可解得:.2-18(1)由基尔霍夫方程知:.(2)沿n个电源这一路计算:2-22注意看题,不要啥都不想直接Y-△变换了设从1向O流的电流为,从2向O流的电流为,则从O向3流的电流为则可由三点的电势得到:2-即2-将等效内阻,等效电源. 2-25设有x组电池组串联,每组内有y个电池并联.法一:电源最大输出功率,电池个数.要使电源达到最大输出功率,则必有内阻与负载相等:解得法二:回路内满足:到的是Y-△变换的Y型电路(b),设出电阻即可求解,然后用Y-△变换得到△型电路(a).2-27上式联立解得.2-28(i)由知122’1’回路为电路干路而无支路,该干路总电阻;1 2与1’2’间若有电阻,则应被导线短路.(ii)由知1 2与1’2’间确有电阻,设为;由于要求电路最简,不妨设12间仅有一个电阻;故此情况中两电阻并联:代入数据得:,带回各条件检查,满足.故电路图如下:所以安培表示数.2-30题意即5两端接电源.电压表示数是由其上电流决定的,所以可以把电压表全看成电阻,求其上电流比例.由分析,电路可简化为如下图:由节点方程可知流经并联两表中电压表的电流欧姆定律:得. 2-33由每个量程达到满偏时通过电流计的电流相同得:,干路电流为,而B,C间的电流为,即100kΩ电阻和电压表各分得干路电流的一半,可知电压表内阻也为100kΩ.在图(b)中,200kΩ电阻与电压表并联后的电阻为,电压表读数为A、B间所分的电压为.由本题推广,可以证明,电压表接入串联电路测得的数值与所测部分电阻成正比,此性质与电压表内阻无关.2-36首先说明,若测量过程中测得某两点间电阻为1Ω,由对称性及电阻串并联等效可以判断:特异电阻被短路,连接在另外两端点间.2-38等效电路图如下:其中,由电桥平衡条件,有,解得.2-39第一次实验,B端电压为40V,即电阻R分压40V,则左段电缆电阻为第二次实验,A端电压为40V,即电阻R分压40V,则右段电缆电阻为左右电缆的电阻之比为:由于电缆的电阻与长度成正比,可知左段电缆长度为由此得:2-41,解得,解得;对于上述两支路的交点A,列节点方程:;由欧姆定律,图中B点的电势为:.显然U1与U3所在支路的电流为0;由于电容所在支路电流为0,由节点方程,图中B与C之间的支路上电流为;对图中红圈内的部分列节点方程(以向下为正方向):.2-42设该平行板电容器极板面积为S,极板间距为d,漏电流为I.由平行板电容器的电容公式,得玻璃的电阻为.由高斯2-44首先明确,无论短接哪个电阻,总电阻一定变小将五个电阻分两类,一类是四周的4 个电阻臂,一类是中间的100Ω桥上电阻.短接桥上电阻,总电阻变为203Ω;短接一支电阻臂,以500Ω的为例:两个100Ω的并联后与200Ω的串联再与300Ω的并联.可以看出300Ω的在这里与其他所有电阻并联,而并联电路中的总电阻不超过最小的电阻,故让100Ω与其他电阻并联可以使变化最大.2-45等效电阻整理得,故或.2-46本题为无穷网络等效电阻题.先分析对称性:电路呈轴对称,可将图中各个处于对称轴上的中点断开,于是电路转化为:转化为:再将A,B两点左侧网络“翻折”至右侧:单电路:,即两导线间电压为零.2-51本题为无穷网络等效电阻题,解题关键在于网络的自相似性.记A点左侧无穷网络等效电阻为R1.分析电路可知:故只需求出R1.分析R1结构可知:除去三个电阻r后剩余部分仍为一无穷网络R1:2-52(1)本题中的三角形电阻网络具有高度对称性,可将分割n次后的电阻网络(设其两顶点之间的电阻为;图中未画出分割后电阻网络的全貌;最初的只有三条边的三角形当作分割了0次)等效为如下的Y形网络:其中每个电阻的大小均为则下一次分割所得的电阻网络可以等效为三个上图所示的网络相连接而成(每个电阻变为一半),如下图所示:其中每个电阻大小为.这是一个简单的电阻网络,我们可以依据串并联关系计算其两端点间的电阻:(2,解得.2-53本题为等效电容题.(a)图中三电容实为并联;(b)图为中心对称图形,由对称性可知中间的C0等价为断路:整个线路和原来的线路完全一样,线路结构没有改变,各线上电流、各点的电势均无改变.可见,由点2到点n−1这n−2个点是完全等价的.因此,上述n−2个点的电势必然完全相同,从而这些点之间的连线上都没有电流,在考虑本题所问时,这些连线可以全部撤去,于是可得.2-58(1)电阻网络E、G两点间电压可表示为从图中的二极管D的正向伏安曲线中可査得,电压UDI对应的电流I1为25.0mA,此电流就是流过电阻R及由E点流入电阻网络的电流,将数据代入上式得由对称性可得H、A、C、F电势相等,其等效电路如图13-13所示(除两只电阻为外,(2)当引线两端P、Q与电阻网络B、D两点相接时,等效电路仍如图所示,易得通过二极管DD的电流与二极管两端电压有关系代入数据得这是一条联系UD与ID的方程,但是UD与ID又必须满足二极管的伏安特性曲线,在图中绘出上式所述直线,它与曲线的交点的纵坐标即为通过二极管的电流ID,由图中读出由对称性,,,则.2-59本题为图像分析题,同时需要用到“负载功率最大时,路端电压等于电源电动势的一半”的结论(此处证明从略).图像显示电源可视为两个负载电流范围不同的电源``拼接''而成,分段讨论即可.电流小于0.26A时,电源电动势等于6.2V,故路端电压等于3.1V时(由(2)(3)C1电荷变化量C2电荷变化量故由a到b流过K的正电荷.2-62本题为含电容的电路分析题,只需分析始末状态和电量变化即可.通过K的电量即通过R的电量.闭合K前,两电容器不带电;闭合K并稳定后,两电容器靠近电键K的极板上均沿回路列出方程:联立解得代入数据.忽略接地信息的解法得到的答案与此一致,但无视了与大地间的电流和电位.。
程稼夫电磁学篇第二章《恒定电流》因此两球间介质间的电阻:.法二:设总电流为,两球心间距,一球直径对另一球球心的张角利用电流的叠加原理,用张角为的这部分电流计算电势差:后同法一2-2变阻器在A位置时,焦耳热:,其中.变阻器在中间时,焦耳热:.代入题中数据,可得.2-32-4(1)即,在图中作出该直线,交伏安特性曲线于.电阻R热平衡:,解得.(2),即在图中作出该直线,交伏安特性曲线于.即.2-5(1)消耗的功率,不变,而随减小而增大,因而时,最大,消耗的功率最大.(2)电路中电流,消耗的功率根据均值不等式得,时,消耗的功率最大.2-6(1)电压按电阻分配.合上开关前,上电压为两端电压.(2)电源功率之比就等于干路电流之比,即总电阻之反比,设总电阻分别为,则.2-7未烧断前总电阻,烧断后,故干路电流之比为炉丝上电流由干路均分,所以故,几乎相等.2-8题意应是恰好不能烧开,即100℃时达到热平衡,断电后只下降1℃,可以认为散热功率是不变的:,其中水的比热容为2-9(1)周期,A位置时热平衡:,其中加热时间B位置时热平衡:,其中加热时间两式相除,解得(2)连续加热时热平衡:,解得.2-10注意电阻温度系数的基准是0℃,得.负载时,负载时,联立解得:.2-11题设是默认加热间断时间相等的,设为.电压最小时,,解得.2-12保险丝要保证熔断电流是一定的.在一定的融化温度下,辐射功率P与辐射体表面积S成正比.电流一定时,电功率Q与R成正比.解得,与无关.2-13绝缘层损坏使得相邻的两圈电阻丝接触,相当于损坏处产生的接触电阻与一圈漆包线并联之后,再与剩余九圈漆包线串联.一圈电阻为设绝缘层损坏处产生电阻为,则解得.2-14(1)作直线交A于,交B于故.(2).即110V为A、B串联时的工作电压的等差中项作伏安特性曲线关于直线的对称图像,分别交另一曲线于和.得.2-15(1)电容器极板带电量,极板间电流保持为电势差为0时,极板不带电,所以.(2)最大动能的电子到达上极板时动能全部转化为电势能所以,得.2-16(1)设流过的电流为,上流过的电流为.所以,故.此时.(2),取最小值(此时)代入得.2-17设流过灯泡电流为,.设图中三个定值电阻从左至右分别为K闭合时,R3与R并联,流过R2的电流于是可列出:K断开时,R与R1串联,该支路总电压该支路与R2并联,为R2两端电压,又R2,R3串联,R3两端电压为可以列出:两式联立,代入数据可解得:.2-18(1)由基尔霍夫方程知:.(2)沿n个电源这一路计算:.2-20设通过电源1的逆时针电流为,通过电源2顺时针电流为于是在电源1与R1构成的回路可列出:在电源2与R1R2构成的回路中,可列出:代入数据可解得,通过R1的电流为1A,通过R2的电流为0.5A.设从1向O流的电流为,从2向O流的电流为,则从O向3流的电流为则可由三点的电势得到:代入数据,联立可解得:.2-23设R1上电流为,R2上电流为由并联得又由节点电流方程知:,联立解得:.又因为,所以可得即CD上电流大小为1.0A,方向由C流向D.2-24将R替换为导线,用叠加原理计算短路电流等效内阻,等效电源.将R替换为导线,用叠加原理计算短路电流.等效内阻,等效电源.2-25设有x组电池组串联,每组内有y个电池并联.法一:电源最大输出功率,电池个数.要使电源达到最大输出功率,则必有内阻与负载相等:解得法二:回路内满足:令,电源最少,要使最小代入得是关于x的一元二次方程,该方程要有实数解:将n带回原方程即可解得答案同法一答:至少需要120个电池.此时有20组电池组串联,每组内有6个电池并联.2-26首先,B与B’为同一节点,思考时可视为一点,由(2)可知电路对称,此时容易联想到的是Y-△变换的Y型电路(b),设出电阻即可求解,然后用Y-△变换得到△型电路(a).2-27上式联立解得.2-28(i)由知122’1’回路为电路干路而无支路,该干路总电阻;1 2与1’2’间若有电阻,则应被导线短路.(ii)由知1 2与1’2’间确有电阻,设为;由于要求电路最简,不妨设12间仅有一个电阻;故此情况中两电阻并联:代入数据得:,带回各条件检查,满足.故电路图如下:,所以.2-29由分析知,安培表读数由两部分组成.第一部分,R2回路;第二部分,流过R1电流,于是流过R3R3(电流表)的电流:.所以安培表示数.2-30题意即5两端接电源.电压表示数是由其上电流决定的,所以可以把电压表全看成电阻,求其上电流比例.由分析,电路可简化为如下图:2-31(1)(2)设流经V1的电流为,流经V2的电流为,则流经V3从左到右的电流为则有2-32设电压表电阻为,电流表电阻为由并联两表电压相等可知由节点方程可知流经并联两表中电压表的电流欧姆定律:得.2-33由每个量程达到满偏时通过电流计的电流相同得:解得:.如用A修复,则在用1mA量程测量1mA电流时流过A的电流为0.195mA<0.2mA.若再串联一个电阻,则分到的电流更少.若并联,则由两个电阻并联变成三个电阻并联,A 在总电流中分到的电流依然会更少.综上:排除A 而B在此时分到的电流为0.57mA>0.5 mA故可以考虑并联一个17 欧的电阻或者串联一个40 欧的电阻。
电磁学第二章习题答案(总8页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除习题五(第二章 静电场中的导体和电介质)1、在带电量为Q 的金属球壳内部,放入一个带电量为q 的带电体,则金属球壳内表面所带的电量为 q ,外表面所带电量为 q +Q 。
2、带电量Q 的导体A 置于外半径为R 的导体 球壳B 内,则球壳外离球心r 处的电场强度大小204/r Q E πε=,球壳的电势R Q V 04/πε=。
3、导体静电平衡的必要条件是导体内部场强为零。
4、两个带电不等的金属球,直径相等,但一个是空心,一个是实心的。
现使它们互相接触,则这两个金属球上的电荷( B )。
(A)不变化 (B)平均分配 (C)空心球电量多 (D)实心球电量多5、半径分别R 和r 的两个球导体(R >r)相距很远,今用细导线把它们连接起来,使两导体带电,电势为U 0,则两球表面的电荷面密度之比σR /σr 为 ( B )(A) R/r (B) r/R (C) R 2/r 2 (D) 16、有一电荷q 及金属导体A ,且A 处在静电平衡状态,则( C )(A)导体内E=0,q 不在导体内产生场强; (B)导体内E ≠0,q 在导体内产生场强; (C)导体内E=0,q 在导体内产生场强; (D)导体内E ≠0,q 不在导体内产生场强。
7、如图所示,一内半径为a ,外半径为b 的金属球壳,带有电量Q ,在球壳空腔内距离球心为r 处有一点电荷q ,设无限远 处为电势零点。
试求: (1)球壳外表面上的电荷;(2)球心O 点处由球壳内表面上电荷产生的电势; (3)球心O 点处的总电势。
r AR Q·O · Q· b· O a rqB解: (1) 设球壳内、外表面电荷分别为q 1 , q 2,以O 为球心作一半径为R (a <R <b )的高斯球面S,由高斯定理01εqq dS E S +=⋅⎰⎰ ,根据导体静电平衡条件,当a <R <b 时,0=E。
前言:特别感谢质心教育的题库与解析,以及“程稼夫力学、电磁学习题答案详解”的作者前辈和血色の寂宁前辈的资料.2-2变阻器在A位置时,焦耳热:,其中.变阻器在中间时,焦耳热:.代入题中数据,可得.2-32-4(1)即,在图中作出该直线,交伏安特性曲线于.两端电压.(2)电源功率之比就等于干路电流之比,即总电阻之反比,设总电阻分别为,则.2-7未烧断前总电阻,烧断后,故干路电流之比为22AB2-10注意电阻温度系数的基准是0℃,得.负载时,负载时,联立解得:.2-11题设是默认加热间断时间相等的,设为.即110V为A、B串联时的工作电压的等差中项作伏安特性曲线关于直线的对称图像,分别交另一曲线于和.得.2-15(1)电容器极板带电量,极板间电流保持为电势差为0时,极板不带电,所以.(2)最大动能的电子到达上极板时动能全部转化为电势能所以,得.K断开时,R与R1串联,该支路总电压该支路与R2并联,为R2两端电压,又R2,R3串联,R3两端电压为可以列出:两式联立,代入数据可解得:.2-18(1)由基尔霍夫方程知:.(2)沿n个电源这一路计算:2-22注意看题,不要啥都不想直接Y-△变换了设从1向O流的电流为,从2向O流的电流为,则从O向3流的电流为则可由三点的电势得到:2-即2-将等效内阻,等效电源. 2-25设有x组电池组串联,每组内有y个电池并联.法一:电源最大输出功率,电池个数.要使电源达到最大输出功率,则必有内阻与负载相等:解得法二:回路内满足:到的是Y-△变换的Y型电路(b),设出电阻即可求解,然后用Y-△变换得到△型电路(a).2-27上式联立解得.2-28(i)由知122’1’回路为电路干路而无支路,该干路总电阻;1 2与1’2’间若有电阻,则应被导线短路.(ii)由知1 2与1’2’间确有电阻,设为;由于要求电路最简,不妨设12间仅有一个电阻;故此情况中两电阻并联:代入数据得:,带回各条件检查,满足.故电路图如下:所以安培表示数.2-30题意即5两端接电源.电压表示数是由其上电流决定的,所以可以把电压表全看成电阻,求其上电流比例.由分析,电路可简化为如下图:由节点方程可知流经并联两表中电压表的电流欧姆定律:得. 2-33由每个量程达到满偏时通过电流计的电流相同得:,干路电流为,而B,C间的电流为,即100kΩ电阻和电压表各分得干路电流的一半,可知电压表内阻也为100kΩ.在图(b)中,200kΩ电阻与电压表并联后的电阻为,电压表读数为A、B间所分的电压为.由本题推广,可以证明,电压表接入串联电路测得的数值与所测部分电阻成正比,此性质与电压表内阻无关.2-36首先说明,若测量过程中测得某两点间电阻为1Ω,由对称性及电阻串并联等效可以判断:特异电阻被短路,连接在另外两端点间.2-38等效电路图如下:其中,由电桥平衡条件,有,解得.2-39第一次实验,B端电压为40V,即电阻R分压40V,则左段电缆电阻为第二次实验,A端电压为40V,即电阻R分压40V,则右段电缆电阻为左右电缆的电阻之比为:由于电缆的电阻与长度成正比,可知左段电缆长度为由此得:2-41,解得,解得;对于上述两支路的交点A,列节点方程:;由欧姆定律,图中B点的电势为:.显然U1与U3所在支路的电流为0;由于电容所在支路电流为0,由节点方程,图中B与C之间的支路上电流为;对图中红圈内的部分列节点方程(以向下为正方向):.2-42设该平行板电容器极板面积为S,极板间距为d,漏电流为I.由平行板电容器的电容公式,得玻璃的电阻为.由高斯2-44首先明确,无论短接哪个电阻,总电阻一定变小将五个电阻分两类,一类是四周的4 个电阻臂,一类是中间的100Ω桥上电阻.短接桥上电阻,总电阻变为203Ω;短接一支电阻臂,以500Ω的为例:两个100Ω的并联后与200Ω的串联再与300Ω的并联.可以看出300Ω的在这里与其他所有电阻并联,而并联电路中的总电阻不超过最小的电阻,故让100Ω与其他电阻并联可以使变化最大.2-45等效电阻整理得,故或.2-46本题为无穷网络等效电阻题.先分析对称性:电路呈轴对称,可将图中各个处于对称轴上的中点断开,于是电路转化为:转化为:再将A,B两点左侧网络“翻折”至右侧:单电路:,即两导线间电压为零.2-51本题为无穷网络等效电阻题,解题关键在于网络的自相似性.记A点左侧无穷网络等效电阻为R1.分析电路可知:故只需求出R1.分析R1结构可知:除去三个电阻r后剩余部分仍为一无穷网络R1:2-52(1)本题中的三角形电阻网络具有高度对称性,可将分割n次后的电阻网络(设其两顶点之间的电阻为;图中未画出分割后电阻网络的全貌;最初的只有三条边的三角形当作分割了0次)等效为如下的Y形网络:其中每个电阻的大小均为则下一次分割所得的电阻网络可以等效为三个上图所示的网络相连接而成(每个电阻变为一半),如下图所示:其中每个电阻大小为.这是一个简单的电阻网络,我们可以依据串并联关系计算其两端点间的电阻:(2,解得.2-53本题为等效电容题.(a)图中三电容实为并联;(b)图为中心对称图形,由对称性可知中间的C0等价为断路:整个线路和原来的线路完全一样,线路结构没有改变,各线上电流、各点的电势均无改变.可见,由点2到点n−1这n−2个点是完全等价的.因此,上述n−2个点的电势必然完全相同,从而这些点之间的连线上都没有电流,在考虑本题所问时,这些连线可以全部撤去,于是可得.2-58(1)电阻网络E、G两点间电压可表示为从图中的二极管D的正向伏安曲线中可査得,电压UDI对应的电流I1为25.0mA,此电流就是流过电阻R及由E点流入电阻网络的电流,将数据代入上式得由对称性可得H、A、C、F电势相等,其等效电路如图13-13所示(除两只电阻为外,(2)当引线两端P、Q与电阻网络B、D两点相接时,等效电路仍如图所示,易得通过二极管DD的电流与二极管两端电压有关系代入数据得这是一条联系UD与ID的方程,但是UD与ID又必须满足二极管的伏安特性曲线,在图中绘出上式所述直线,它与曲线的交点的纵坐标即为通过二极管的电流ID,由图中读出由对称性,,,则.2-59本题为图像分析题,同时需要用到“负载功率最大时,路端电压等于电源电动势的一半”的结论(此处证明从略).图像显示电源可视为两个负载电流范围不同的电源``拼接''而成,分段讨论即可.电流小于0.26A时,电源电动势等于6.2V,故路端电压等于3.1V时(由(2)(3)C1电荷变化量C2电荷变化量故由a到b流过K的正电荷.2-62本题为含电容的电路分析题,只需分析始末状态和电量变化即可.通过K的电量即通过R的电量.闭合K前,两电容器不带电;闭合K并稳定后,两电容器靠近电键K的极板上均沿回路列出方程:联立解得代入数据.忽略接地信息的解法得到的答案与此一致,但无视了与大地间的电流和电位.。
1.一边长为2a的载流正方形线圈,通有电流I。
试求:(1)轴线上距正方形中心为r0处的磁感应强度;(2) 当a=1.0cm , I=5.0A , r0=0 或10cm时,B等于多少特斯拉?解(1)沿轴向取坐标轴OX,如图所示。
利用一段载流直导线产生磁场的结果,正方形载流线圈每边在点P产生的磁感应强度的大小均为:,式中:由分析可知,4条边在点P的磁感应强度矢量的方向并不相同,其中AB边在P点的B1方向如图所示。
由对称性可知,点P上午B应沿X轴,其大小等于B1在X轴投影的4倍。
设B1与X轴夹角为α则:把r0=10cm , a=1.0cm ,I=5.0A 带入上式,得B=3.9×10-7(T)。
把r0=0cm , a=1.0cm ,I=5.0A 带入上式,得B=2.8×10-7(T)。
可见,正方形载流线圈中心的B要比轴线上的一点大的多。
2. 将一根导线折成正n边形,其外接圆半径为a,设导线栽有电流为I,如图所示。
试求:(1)外接圆中心处磁感应强度B0;(2) 当n→∞时,上述结果如何?解: (1)设正n边形线圈的边长为b,应用有限长载流直导线产生磁场的公式,可知各边在圆心处的感应强度大小相等,方向相同,即:所以,n边形线圈在O点产生的磁感应强度为:因为2θ=2π/n,θ=π/n,故有:由右手法则,B0方向垂直于纸面向外。
(2)当n→∞时,θ变的很小,tanθ≈θ,所以:代入上述结果中,得:此结果相当于一半径为a,载流为I的圆线圈在中心O点产生磁感应强度的结果,这一点在n→∞时,是不难想象的。
3. 如图所示,载流等边三角形线圈ACD,边长为2a,通有电流I。
试求轴线上距中心为r0处的磁感应强度。
解:由图可知,要求场点P的合场强B,先分别求出等边三角形载流线圈三条边P点产生的磁感应强度Bi ,再将三者进行矢量叠加。
由有限长载流导线的磁场公式可知,AC边在P点产生的磁感应强度BAC的大小为:由于⊿ACP为等腰三角形,且PC垂直AC,即:代入上述结果中,得:由右手螺旋定则可知,BAC的方向垂直于ACP平面向外,如图所示。
电磁学第二章习题答案习题五(第二章 静电场中的导体和电介质)1、在带电量为Q 的金属球壳内部,放入一个带电量为q 的带电体,则金属球壳内表面所带的电量为 - q ,外表面所带电量为 q +Q 。
2、带电量Q 的导体A 置于外半径为R 的导体 球壳B 内,则球壳外离球心r 处的电场强度大小204/r Q E πε=,球壳的电势R Q V 04/πε=。
3、导体静电平衡的必要条件是导体内部场强为零。
4、两个带电不等的金属球,直径相等,但一个是空心,一个是实心的。
现使它们互相接触,则这两个金属球上的电荷( B )。
(A)不变化 (B)平均分配 (C)空心球电量多 (D)实心球电量多5、半径分别R 和r 的两个球导体(R >r)相距很远,今用细导线把它们连接起来,使两导体带电,电势为U 0,则两球表面的电荷面密度之比σR /σr 为 ( B )(A) R/r (B) r/R (C) R 2/r 2 (D) 16、有一电荷q 及金属导体A ,且A 处在静电平衡状态,则( C )(A)导体内E=0,q 不在导体内产生场强; (B)导体内E ≠0,q 在导体内产生场强; (C)导体内E=0,q 在导体内产生场强; (D)导体内E ≠0,q 不在导体内产生场强。
7、如图所示,一内半径为a ,外半径为b 的金属球壳,带有电量Q ,在球壳空腔内距离球心为r 处有一点电荷q ,设无限远 处为电势零点。
试求: (1)球壳外表面上的电荷;(2)球心O 点处由球壳内表面上电荷产生的电势; (3)球心O 点处的总电势。
解: (1) 设球壳内、外表面电荷分别为q 1 , q 2,以O 为球心作一半径为R (a <R <b )的高斯球面S,由高斯定理01εqq dS E S +=⋅⎰⎰ ,根据导体静电平衡条件,当a <R <b 时,0=E。
则0=⋅⎰⎰SdS E ,即01=+q q ,得q q -=1根据电荷守恒定律,金属球壳上的电量为21q q Q +=q Q q Q q +=-=∴12(2)在内表面上任取一面元,其电量为dq ,在O 点产生的电势adq dV o πε411=q 1在O 点产生的电势aq aq adq dV V o o o πεπεπε4441111-====⎰⎰内内(3) 同理,外球面上的电荷q 2在O 点产生的电势bqQ bq V o o πεπε4422+== 点电荷q 在O 点产生的电势rq V o q πε4=∴ O 点的总点势o q V V V V πε41210=++=(bq Q a q r q ++-) 8、点电荷Q 放在导体球壳的中心,球的内、外半径分别为a 和b ,求场强和电势分布。
解:根据静电平衡条件,球壳内、外球面分别带 电量-Q 、Q 。
其场强分布为:2014/ , r πεQ E a r =<0 , 2=<<E b r a2034/ , r πεQ E b r =>电场中的电势分布:)111(4 ,03211ba r Qdr E dr E dr E V a r bbaar+-=++=<⎰⎰⎰∞πεb Q dr E V b r a b0324 ,πε==<<⎰∞rQdr E V b r r0334 ,πε==>⎰∞习题六(第二章 静电场中的导体和电介质)1、分子的正负电荷中心重合的电介质叫 无极分子 电介质,在外电场的作用下,分子正负电荷中心发生相对位移,形成 位移极化 。
2、一平板电容器始终与端电压一定的电源相联,当电容器两极板间为真空时,电场强度为 0E,电位移为0D,而当极板间充满相对电容率为r ε的各向同性均匀电介质时,电场强度为E ,电位移为D,则( B )(A)00 , /D D E E r ==ε (B)00 , D D E E rε==(C)000/ , /εεD D E E r== (D)00 , D D E E ==3、两个完全相同的电容器,把一个电容器充电,然后与另一个未充电的电容器并联,那么总电场能量将( C )(A)增加 (B)不变 (C)减少 (D)无法确定4、一空气平行板电容器,接电源充电后电容器中储存的能量为W 0,在保持电源接通的条件下,在两极板间充满相对电容率为r ε的各向同性均匀电介质,则该电容器中储存的能量W 为( A )(A) 0W W r ε= (B) r W W ε/0= (C) 0)1(W W r ε+= (D) 0W W =5、一平行板电容器,其极板面积为S ,间距为d ,中间有两层厚度各为d 1和d 2,相对电容率分别为εr1和εr2的电介质层(且d 1+d 2 = d )。
两极板上自由电荷面密度分别为±σ,求:(1)两介质层中的电位移和电场强度; (2)极板间的电势差;(3)电容解:(1) 电荷分布有平面对称性,可知极板间D 是均匀的,方向由A 指向B 。
⎰⎰⎰⎰⎰⎰⎰⎰⋅+⋅+⋅=⋅右侧左S d D S d D S d D S d D S 111100S S D S d D ∆σ∆=⋅=⋅++=⎰⎰左∴ σD =1⎰⎰⎰⎰⎰⎰⎰⎰⋅+⋅+⋅=⋅右侧左S d D S d D S d D S d D S2⎰⎰⎰⎰+-=右左dS D dS D 2102221=+⋅-=S D S D ∆∆ ∴ σD D ==21由σεσε====222111 E D E D ,得 2022210111 r r D E D E εεσεεεσε====, 且有 121221 r r εεεεE E == (2) 12112012111d E d E l d E l d E V V d d dd B A +=⋅+⋅=-⎰⎰+⎪⎪⎭⎫ ⎝⎛+=2211εd εd σ210211222110)(r r r r r r εεεσd εd εεd εd εσ+=⎪⎪⎭⎫ ⎝⎛+= (3) B A V V q C -=B A V V S σ-=2112210d εd εS εεεr r r r +=0211221C d εd εdεεr r r r +=6、如图,在半径为a 的金属球外有一层外半径为b 的均匀电介质球壳,电介质的相对电容率为εr ,金属球带电Q ,求:(1)介质层内外的场强大小; (2)介质层内外的电势; (3)金属球的电势; (4)电场的总能量; (5)金属球的电容。
解:(1)电量Q 均匀分布在半径为a 的球面上,作一半径为r 的球面为高斯面,利用高斯定理可求得场强分布r < a : 1=0E ; a < r < b : 220=4r Q E r πεε; r > b : rQ E 034πε=(2) r < a : bQb a Qdr E dr E dr E V r b ba ar 0032114)11(4πεεπε+-=++=⎰⎰⎰∞a < r <b : bQ b r Qdr E dr E V r bb r003224)11(4πεεπε+-=+=⎰⎰∞r > b : rQ dr E V r0334πε==⎰∞(3) 金属球的电势 aba b Q b Qb a QV V r r r επεεπεεπε00014)]1([4)11(4-+=+-==球(4) ab a b Q ab a b Q Q QV W r r r r επεεεπεε0208)]1([4)]1([2121-+=-+==球(5) )1(40-+==r r a b ab V Q C εεπε球或由221球CV W =得: 2220022)]1([)4(4)]1([2-+-+==r r r r a b Q ab ab a b Q V W C εεπεεπεε球)1(40-+=r r a b ab εεπε 7、一球形电容器,内球壳半径为R 1外球壳半径为R 2,两球壳间充满了相对电容率为r ε的各向同性均匀电介质,设两球壳间电势差为V 12,求: (1)电容器的电容;(2)电容器储存的能量。
解:(1) 设内外极板带电量为±Q 作与球壳同心的任意半径r 的高斯球面由 ==⋅=⋅∑⎰⎰q r πD S d D S 24得 =D0, ( r > R 2 )0, ( r < R 1 ) r πQ 4, ( R 1< r < R 2) 0, ( r > R 2 )0, ( r < R 1 )-r επεQ r 04, ( R 1< r < R 2 ) 0, ( r < R 1 )==rεεDE 0∴∵ 21012214)(21R R R R Q dr E V V r R R επε-=⋅=-⎰∴ 12210214R R R R V V Q C r -=-=επε (2) 12212210212221R R V R R CV W r -==επε 习题七(第二章 静电场中的导体和电介质)1、一个平行板电容器的电容值C =100Pf ,面积S =100cm 2,两板间充以相对电容率为εr =6的云母片,当把它接到50V 的电源上时,云母中电场强度大小E =9.42×103v/m ,金属板上的自由电荷量q =5.00×10-9C 。
解:)m (1031.5300-⨯==⇒=CS d dS C r r εεεε,)m/V (1042.91031.55033⨯=⨯==-d V E )C (1000.55010100912--⨯=⨯⨯==CV q2、一空气平行板电容器,电容为C ,两极板间距离为d ,充电后,两极板间相互作用力为F ,则两极板间的电势差为C Fd 2,极板上的电荷量大小为FCd 2。
解:CFdV dCV CV d V Q E F 222122=⇒===,FCd CFdCCV Q 2 2===3、一平行板电容器,两极板间电压为U 12,其间充满相对电容率为εr 的各向同性均匀电介质,电介质厚度为d ,则电介质中的电场能量密度为221202d U w r εε=。
解:将 d U E /12= 代入 20E w r εε=得结果。
4、如图在与电源连接的平行板电容器中,填入两种不同的均匀的电介质,则两种电介质中的场强相等,电位移不相等。
(填相等或不相等) (解法见课件)5、平行板电容器在接入电源后,把两板间距拉大,则电容器( D )(A)电容增大; (B)电场强度增大;(C)所带电量增大 (D)电容、电量及两板内场强都减小。
解:d 增大,V 不变,由d S C /ε=,CV q =和d V E /=可得结果D6、一真空平行板电容器的两板间距为d ,(1)若平行地插入一块厚度为d/2的金属大平板,则电容变为原来的几倍?(2)如果插入的是厚度为d/2的相对电容率为εr =4的大介质平板,则电容变为原来的几倍? 解:原电容器的电容d S C /00ε= (1) 电容器由两个电容器串联而成101d S εC =,202d SεC =,(d 1+d 2=d /2) 121212000001111122d d d d d C C C S S S S C εεεε+=+=+=== ∴ 02C C = (2) 由电荷分布的平面对称性可知电位移垂直极板从A 到B在两极板间的三个区域分别作三个高斯柱面S 1、S 2、S 3。