2015-2019高考数学全国卷真题(不等式选讲)
- 格式:doc
- 大小:179.67 KB
- 文档页数:2
2015年全国统一高考数学试卷(理科)(新课标I)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()B2n4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投5.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()....6.(5分)《九章算术》是我国古代内容极为丰富的数学明著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()7.(5分)设D为△ABC所在平面内一点,,则().8.(5分)函数f(x)=cos(ωx+ϕ)的部分图象如图所示,则f(x)的单调递减区间为()﹣,,,)(2k+9.(5分)执行如图的程序框图,如果输入的t=0.01,则输出的n=()255211.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()12.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<l,若存在唯一的整数x0使得f(x0)[[[[二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数.则a=.14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为.15.(5分)若x,y满足约束条件.则的最大值为.16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.三、解答题:17.(12分)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n =,求数列{b n }的前n 项和.18.(12分)如图,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD 同一侧的两点,BE 丄平面ABCD ,DF 丄平面 ABCD ,BE=2DF ,AE 丄EC . (Ⅰ)证明:平面AEC 丄平面AFC(Ⅱ)求直线AE 与直线CF 所成角的余弦值.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i ﹣)2(x i ﹣)(y i )(w i ﹣)(y i表中w i =1,=(Ⅰ)根据散点图判断,y=a+bx 与y=c+d 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利率的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.选修4一4:坐标系与参数方程23.(10分)(2015春•新乐市校级月考)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN 的面积.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.2015年全国统一高考数学试卷(理科)(新课标I)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()满足=iB.2n4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投5.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()....=﹣(﹣<<6.(5分)《九章算术》是我国古代内容极为丰富的数学明著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有(),则,××(,÷7.(5分)设D为△ABC所在平面内一点,,则().利用向量的三角形法则首先表示为=本题考查了向量的三角形法则的运用;关键是想法将向量表示为8.(5分)函数f(x)=cos(ωx+ϕ)的部分图象如图所示,则f(x)的单调递减区间为()﹣,,,)(2k+)的部分图象,可得函数的周期为(﹣可得+=,)≤≤2k+)的单调递减区间为()9.(5分)执行如图的程序框图,如果输入的t=0.01,则输出的n=()﹣﹣≤﹣≤﹣=﹣=2552,的通项为=的系数为11.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()×+22r+12.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<l,若存在唯一的整数x0使得f(x0)[[[[<﹣时,,>﹣时,﹣,,解得二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数.则a=1.x+14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为(x﹣)2+y2=.解:一个圆经过椭圆,解得,,).)15.(5分)若x,y满足约束条件.则的最大值为3.,则,解得,即=3的最大值为16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是(﹣,+).x x xx+m=+AD=x+mx+m=,x+m x=+x的取值范围是(﹣+﹣,)三、解答题:17.(12分)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.,利用裂项法即可求数列==(﹣(﹣+﹣)(﹣.18.(12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.AG=GC=,且BE=,故,,EF=,),=,)=,﹣,,>=﹣.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i ﹣)2(w i ﹣)2(x i ﹣)(y i )(w i ﹣)(y i表中w i=1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利率的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.w=,建立y=c+dw=的线性回归方程,由于===563的线性回归方程为的回归方程为=100.6+68,的预报值=100.6+68=576.6的预报值的预报值=0.2100.6+68)﹣+20.12=20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由),利用导数的运算法则,利用导数的几何意义、点斜式即可得出切线方程..)联立M Ny=点处的切线斜率为=a=处的切线方程为:,化为==.21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.,,即可得出零点的个数;,解得.时,﹣=a+<﹣=a+=,∴当)在内单调递减,在x==,即,则,即,=a+a时,或时,或选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.,BE=选修4一4:坐标系与参数方程23.(10分)(2015春•新乐市校级月考)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN 的面积.3的面积(3=2=.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.,或求得<,a|=,,[2a+1]参与本试卷答题和审题的老师有:刘长柏;qiss;maths;changq;caoqz;cst;lincy;吕静;双曲线;whgcn;孙佑中(排名不分先后)菁优网2015年7月20日。
2015年高考数学试卷1. (5 分)(2015・原题)复数 i (2-i)二( )A. l+2iB. 1—2iC. — 1 +2iD. — 1 — 2ix - y=C02. (5分)(2015*原题)若x, y 满足< x+y^ 1 ,则z=x+2y 的最大值为() .x>03A. 0B. 1C. —D. 2 23. (5分)(2015-原题)执行如图所示的程序框图输出的结果为( )A. ( -2, 2)B. ( -4, 0)C. ( -4, -4)D. (0, -8)4. (5分)(2015•原题)设oc,卩是两个不同的平面,m 是克线且ms,缶//0“是“oc //卩” 的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 一、选择J (每小题5分,共40分)5.(5分)(2015•原题)某三棱锥的三视图如图所示,则该三棱锥的表面积是()6. (5分)(2015・原题)设{%}是等差数列,下列结论屮正确的是( )八・若 a 1+a 2>0,贝!j a 2+a 3>0 B.若 a 1+a 3<0> 贝lj a]+a 2<07. (5分)(2015•原题)如图,函数f (x )的图象为折线ACB,则不等式f (x ) >1<)& (x+1)A. {x| -l<x<0}B. {x| -Kx<l}C. {x| - 1<x<1}D. {x| -l<x<2}8. (5分)(2015-原题)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描 述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是( )C.若 0<ai <a 2,则 2〉寸8护3D.若 2]V0,贝lj (a 2-a 1) (a 2-a 3) >0 A. 2+V5 B. 4+^5 C. 2+2A /5 D ・ 5A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车屮,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D. 某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油9. (5分)(2015•原题)在(2+x )'的展开式中,J 的系数为 __________ (用数字作答)10. (5分)(2015-原题)已知双曲线岭-y2=l (a >0)的一条渐近线为V3x+y=0,贝911. (5分)(2015-原题)在极坐标系中,点(2,牛)到直线° (cosO+V3sinO ) =6的距离 为 ____________ •12. (5 分)(2015・原题)在AABC 中,a=4, b=5, c=6,则二 ____________________ .sinC在AABC 中,点 M, N 满足 AM=2MC, BN=NC,若MN=xAB+yAC,① 若汗1,则f (x )的最小值为 _____________ ;② 若f (x )恰有2个零点,则实数a 的取值范围是 ____________15. (13 分)(2015・原题)已矢U 函数 F (x ) =V2sin —cos — - V2sin ^―.2 2 2(I )求f (x )的最小正周期;(H ) 求F (x )在区间[■心0]上的最小值.16. (13分)(2015-原题)A, B 两组各有7位病人,他们服用某种药物后的康复时间(单位: 天)记录如下:A 组:10, 11, 12, 13, 14, 15, 16B 组;12, 13, 15, 16, 17, 14, a假设所有病人的康复时间相互独立,从八,B 两组随机各选1人,八组选出的人记为甲,B 组选出的人记为乙.(I ) 求甲的康复时间不少于14天的概率;(U )如果沪25,求甲的康复时间比乙的康复时间长的概率;(HI )当a 为何值时,A, B 两组病人康复时间的方差相等?(结论不要求证明)17. (14分)(206原题)如图,在四棱锥A-EFCB 中,AAEF 为等边三角形,平面AEF 丄平面 EFCB, EF//BC, BC=4, EF=2a,上EBC 二上FCB 二60° , O 为 EF 的中点.(I )求证:AO1BE.二、填空题侮小丿 5分,共30分)13. (5 分)(2015*原题)14. (5分)(2015•原题)设函数f (x )= 2x-a, 4(x - a ) (x _ 2 a ),x<l 三、解答] (共6小题 ,共80分)(U)求二面角F-AE-B的余弦值;(HI)若BE丄平面AOC,求a的值.18. (13分)(2015*原题)已知函数f (x)二1门丿注,(I )求曲线尸f (X )在点(0, f (0))处的切线方程; 3(H) 求证,当*€ (0, 1)时,f (x) >2(x+^-);3(m)设实数k 使得f (x) >k(x+专-)对乂€ (o, 1)恒成立,求k 的最大值.19. (14分)(2015•原题)已知椭圆C:三+笃二1 (a>b>0)的离心率为李,点P (0, 1)/ b , 2和点A (m, n) (mHO)都在椭圆C±,直线PA 交x 轴于点M.(I) 求椭圆C 的方程,并求点M 的坐标(用n 表示);(U )设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N,问:y 轴上是否存 在点Q,使得ZOQM=ZONQ?若存在,求点Q 的坐标,若不存在,说明理由.2(). (13 分)(2013 •原题)已知数列{%}满足: , a t <36,且 a n+1 = (n=l, 2,…),记集合 M ={a n |n€N +}.(I)若引二6,写出集合M 的所有元素;(n )如集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (111)求集合M 的元索个数的最大值.2%,a n <18 2%-36, %>182015年原题市高考数学试卷(理科)1. (5 分)(2015-原题)复数 i (2-i )二()A. l+2iB. 1 -2iC. —l+2iD. - 1 - 2i【分析】利用复数的运算法则解答.【解答】解:原式=2i - i 2=2i - (-1) =l+2i;故选:A.【点评】本题考查了复数的运算;关键是熟记运算法则.注意i 2=-l. &-y<02. (5分)(2015•原题)若x, y 满足《 x+yCl ,则z=x+2y 的最大值为()、x>03A. 0B. 1C. —D. 2 2【分析】作出题中不等式组表示的平面区域,再将目标函数z 二x+2y 对应的直线进行平移, 即可求出z 取得最大值."x-y<0【解答】解:作出不等式组x+y< 1表示的平面区域,.xi>0当1经过点B 时,目标函数z 达到最大值 z 煨大值二0+2X1 —2・【点评】本题给出二元一次不等式组,求目标函数Z 二x+2y 的最大值,着重考查了二元一次 不一、选择题(每小, 5分,共40分)等式组表示的平面区域和简单的线性规划等知识,属于基础题•3.(5分)(2015•原题)执行如图所示的程序框图输出的结果为()A. (—2, 2)B. (一4, 0) C- (一4, -4) D. (0, -8)【分析】模拟程序框图的运行过程,即可得出程序运行后输出的结果.【解答】解:模拟程序框图的运行过程,如下;x=l, y=l,k=0 时,s=x - y=0, t=x+y=2 ;x=s=0, y=t=2,k二1 时,s=x - y= - 2, t二x+y二2;x二s二一2,y二t二2,k=2 吋,s=x - y= ~ 4, t=x+y=0 ;x=s= -4, y=t=0,k=3时,循环终止,输出(x, y)是(-4, 0).故选:B.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,是基础题目•4.(5分)(2015-原题)设冷卩是两个不同的平面,口是直线且muoc, //0 “是、//卩” 的()A.充分而不必耍条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】m // p并得不到a II ,3,根据面面平行的判定定理,只有a内的两相交直线都平行于P,而a//0,并且mua,显然能得到这样即可找出正确选项.【解答】解:mca, 口//(3得不到00”(3,因为oc, 0可能相交,只要m和a,卩的交线平行即可得到m" (3;a // P,mCa, m 和0 没有公共点,.'.m//p,即oc//0 能得到m//0;二“m/邙”是、/人3”的必要不充分条件.故选B.【点评】考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定 理,以及充分条件、必要条件,及必要不充分条件的概念.5. (5分)(2015-原题)某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A. 2+^^/5B. 4+A /5C. 2+2A /5D. 5【分析】根据三视图可判断克观图为:()A 丄面ABC,AC=AB,E 为BC 中点,EA=2,E/\=EB=1, OA二 1,: BC 丄 ffi AEO, AC=V5, OE=V5判断儿何体的各个面的特点,计算边长,求解面积.【解答】解:根据三视图可判断立观图为:()八丄面ABC, AC 二AB, E 为BC 屮点,EA=2, EC=EB=1, ()A 二 1,•••可彳导/\E 丄BC, BC 丄OA,运用£[线平面的垂立得岀:BC 丄面AEO, AC=V5, OR=V5S/XBCO 二专 X2x V5-V5.故该三棱锥的表面积是2+2丽, 故选:C.【点评】本题考查了空间几何体的三视图的运用,空间想象能力,计算能力,关键是恢复直 观图,得出几何体的性质.6. (5分)(2015•原题)设{%}是等差数列,下列结论中正确的是()• • ^AABCX2X2 二 2, S AO/\C =^AOAB-^ XV5>< 1=^^-A.若引+玄2>0,贝lj a2+a3>0B.若卯+%<0,贝lj a1+a2<0C.若0<旬<近,则阴D・若吗<0,贝lj (a2-aj) (a2-a3) >0【分析】对选项分别进行判断,即可得岀结论.【解答】解:若a1+a2>0,则2a]+d>0, a2+a3=2a]+3d>2d, d>0时,结论成立,即A不正确;若吗+%<(),贝lj a1+a2=2a1+d<0, a2+a3=2a1+3d<2d, dV()日寸,结论丿成立,即B 不止确;{%}是詩差数列,0<则<^2,2屯二引+%>2寸3]阴,;•耳>勺a]巧,即C止确;若引V0,贝I」(迈—吗)(a2-a3) =-d2<0,即D不正确.故选:C.【点评】本题考查等差数列的通项,考查学生的计算能力,比较基础.7.(5分)(2015•原题)如图,函数f (x)的图象为折线ACB,则不等式f(x) >lo& (x+1)-l<x<l}C. {x| - l<x<l}D. {x| -l<x<2}【分析】在已知坐标系内作IB y=log2 (x+1)的图象,利用数形结合得到不等式的解集.【解答】解:由已知F(x)的图象,在此坐标系内作出y二1。
2015年全国各地高考数学试题及解答分类汇编大全(05不等式)一、选择题:1.(2015文)已知x,y满足约束条件401x yx yy-≥⎧⎪+-≤⎨⎪≥⎩,则yxz+-=2的最大值是()(A)-1 (B)-2(C)-5 (D)12.(2015理)若x,y满足1x yx yx-⎧⎪+⎨⎪⎩≤,≤,≥,则2z x y=+的最大值为()A.0 B.1 C.32D.2【答案】D【解析】试题分析:如图,先画出可行域,由于2z x y=+,则1122y x z=-+,令0Z=,作直线12y x=-,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z取得最小值2.考点:线性规划;3.(2015文)若直线1(0,0)x ya ba b+=>>过点(1,1),则a b+的最小值等于()A.2 B.3 C.4 D.5【答案】C考点:基本不等式.4.(2015理)若变量,x y满足约束条件20,0,220,x yx yx y+≥⎧⎪-≤⎨⎪-+≥⎩则2z x y=-的最小值等于 ( ) A.52- B.2- C.32- D.2【答案】A【解析】试题分析:画出可行域,如图所示,目标函数变形为2y x z=-,当z最小时,直线2y x z=-的纵截距最大,故将直线2y x=经过可行域,尽可能向上移到过点1(1,)2B-时,z取到最小值,最小值为152(1)22z=⨯--=-,故选A.考点:线性规划.5.(2015文)变量,x y满足约束条件220x yx ymx y+≥⎧⎪-+≥⎨⎪-≤⎩,若2z x y=-的最大值为2,则实数m等于()A.2- B.1-C.1 D.2【答案】C【解析】x–1–2–3–41234–1–2–3–4123BOC试题分析:将目标函数变形为2y x z =-,当z 取最大值,则直线纵截距最小,故当0m ≤时,不满足题意;当0m >时,画出可行域,如图所示, 其中22(,)2121mB m m --.显然(0,0)O 不是最优解,故只能22(,)2121m B m m --是最优解,代入目标函数得4222121mm m -=--,解得1m =,故选C .考点:线性规划.6.(2015文)若变量x ,y 满足约束条件2204x y x y x +≤⎧⎪+≥⎨⎪≤⎩,则23z x y =+的最大值为( )A .10B .8C .5D .2 【答案】C考点:线性规划.7.(2015理)若变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≥+2031854y x y x 则y x z 23+=的最小值为( )A .531 B. 6 C. 523D. 4【答案】C .【解析】不等式所表示的可行域如下图所示,由32z x y =+得322z y x =-+,依题当目标函数直线l :322z y x =-+经过41,5A ⎛⎫⎪⎝⎭时,z 取得最小值即min42331255z =⨯+⨯=,故选C【考点定位】本题考查二元一次不等式的线性规划问题,属于容易题.8. (2015文)不等式2340x x --+>的解集为 .(用区间表示) 【答案】()4,1- 【解析】试题分析:由2340x x --+<得:41x -<<,所以不等式2340x x --+>的解集为()4,1-,所以答案应填:()4,1-. 考点:一元二次不等式.9、(2015文)若变量x 、y 满足约束条件111x y y x x +≥⎧⎪-≤⎨⎪≤⎩,则z=2x-y 的最小值为( )A 、-1B 、0C 、1D 、2【答案】AxyOA l考点:简单的线性规划10. (2015理)若变量x,y满足约束条件1 211 x yx yy+≥-⎧⎪-≤⎨⎪≤⎩,则3z x y=-的最小值为()A.-7B.-1C.1D.2【答案】A.而可知当2-=x,1=y时,min3(2)17z=⨯--=-的最小值是7-,故选A.【考点定位】线性规划.【名师点睛】本题主要考查了利用线性规划求线性目标函数的最值,属于容易题,在画可行域时,首先必须找准可行域的围,其次要注意目标函数对应的直线斜率的大小,从而确定目标函数取到最优解时所经过的点,切忌随手一画导致错解.11、(2015文)若实数a,b满足12aba b+=,则ab的最小值为( )A2 B、2 C、2 D、4【答案】C考点:基本不等式12.(2015理)已知,x y满足约束条件2x yx yy-≥⎧⎪+≤⎨⎪≥⎩,若z ax y=+的最大值为4,则a=()(A)3 (B)2 (C)-2 (D)-3 【答案】B【解析】不等式组2xyx yy-≥⎧⎪+≤⎨⎪≥⎩在直角坐标系中所表示的平面区域如下图中的阴影部分所示,若z ax y=+的最大值为4,则最优解可能为1,1x y==或2,0x y==,经检验,2,0x y==是最优解,此时2a=;1,1x y==不是最优解.故选B.【考点定位】简单的线性规划问题.【名师点睛】本题考查了简单的线性规划问题,通过确定参数a的值,考查学生对线性规划的方法理解的深度以及应用的灵活性,意在考查学生利用线性规划的知识分析解决问题的能力.13.(2015理)设()ln,0f x x a b=<<,若)p f ab=,()2a bq f+=,1(()())2r f a f b=+,则下列关系式中正确的是()A.q r p=< B.q r p=> C.p r q=< D.p r q=>【答案】C考点:1、基本不等式;2、基本初等函数的单调性.14. (2015文)设()ln ,0f x x a b =<<,若()p f ab =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是( )A .q r p =<B .q r p =>C .p r q =<D .p r q => 【答案】C 【解析】试题分析:1()ln ln 2p f ab ab ab ===;()ln22a b a bq f ++==;11(()())ln 22r f a f b ab =+=因为2a b ab +>,由()ln f x x =是个递增函数,()()2a b f f ab +>所以q p r >=,故答案选C考点:函数单调性的应用.15. (2015文) 某企业生产甲乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品需原料及每天原料的可用限额表所示,如果生产1吨甲乙产品可获利润分别为3万元、4万元,则该企业每天可甲乙原料限额A(吨)3212B(吨)128万元【答案】D当直线340x y z +-=过点(2,3)A 时,z 取得最大值324318z =⨯+⨯=故答案选D考点:线性规划.16. (2015理)某企业生产甲、乙两种产品均需用A ,B 两种原料.已知生产1吨每种产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )D .18万元甲乙原料限额A(吨)3212B(吨)128【解析】试题分析:设该企业每天生产甲、乙两种产品分别为x 、y 吨,则利润34z x y =+由题意可列32122800x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,其表示如图阴影部分区域:当直线340x y z +-=过点(2,3)A 时,z 取得最大值,所以max 324318z =⨯+⨯=,故选D . 考点:线性规划.17. (2015文)下列不等式中,与不等式23282<+++x x x 解集相同的是( ).A. 2)32)(8(2<+++x x xB. )32(282++<+x x xC.823212+<++xxxD.218322>+++xxx【答案】B18、(2015理)记方程①:2110x a x++=,方程②:2220x a x++=,方程③:2340x a x++=,其中1a,2a,3a是正实数.当1a,2a,3a成等比数列时,下列选项中,能推出方程③无实根的是()A.方程①有实根,且②有实根 B.方程①有实根,且②无实根C.方程①无实根,且②有实根 D.方程①无实根,且②无实根【答案】B【解析】当方程①有实根,且②无实根时,22124,8a a≥<,从而4222321816,4aaa=<=即方程③:2340x a x++=无实根,选B.而A,D由于不等式方向不一致,不可推;C推出③有实根【考点定位】不等式性质19. (2015文)若不等式组2022020x yx yx y m+-≤⎧⎪+-≥⎨⎪-+≥⎩,表示的平面区域为三角形,且其面积等于43,则m的值为()(A)-3 (B) 1 (C)43(D)3【答案】B【解析】试题分析:如图,;由于不等式组2022020x y x y x y m +-≤⎧⎪+-≥⎨⎪-+≥⎩,表示的平面区域为三角形ABC ,且其面积等于43,再注意到直线AB :x+y-2=0与直线BC:x-y+2m=0互相垂直,所以三角形ABC 是直角三角形;易知,A (2,0),B (1-m,m+1),C(2422,33m m -+); 从而112222122223ABC m S m m m ∆+=+⋅+-+⋅=43,化简得:2(1)4m +=,解得m=-3,或m=1;检验知当m=-3时,已知不等式组不能表示一个三角形区域,故舍去;所以m=1; 故选B.考点:线性规划.20、(2015文)设实数x ,y 满足2102146x y x y x y +≤⎧⎪+≤⎨⎪+≥⎩,则xy 的最大值为( )(A )252(B )492 (C )12 (D )14【答案】A【考点定位】本题主要考查线性规划与基本不等式的基础知识,考查知识的整合与运用,考查学生综合运用知识解决问题的能力.【名师点睛】本题中,对可行域的处理并不是大问题,关键是“求xy 最大值”中,xy 已经不是“线性”问题了,如果直接设xy =k ,,则转化为反比例函数y =的曲线与可行域有公共点问题,难度较大,且有超出“线性”的嫌疑.而上面解法中,用基本不等式的思想,通过系数的配凑,即可得到结论,当然,对于等号成立的条件也应该给以足够的重视.属于较难题.21.(2015天津文)设变量,y x 满足约束条件2020280x x y x y ì-?ïï-?íï+-?ïî,则目标函数3y z x =+的最大值为( )(A) 7 (B) 8 (C) 9 (D)14【答案】C考点:线性规划22.( 2015天津理)设变量,x y 满足约束条件2030230x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩,则目标函数6z x y =+的最大值为( )(A )3 (B )4 (C )18 (D )40【答案】C864224681510551015AB考点:线性规划.23、(2015文)有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:2m)分别为x,y,z,且x y z<<,三种颜色涂料的粉刷费用(单位:元/2m)分别为a,b,c,且a b c<<.在不同的方案中,最低的总费用(单位:元)是()A.ax by cz++ B.az by cx++ C.ay bz cx++ D.ay bx cz++【答案】B考点:1.不等式性质;2.不等式比较大小.二、填空题:1、(2015文)如图,C∆AB及其部的点组成的集合记为D,(),x yP为D中任意一点,则23z x y=+的最大值为.【答案】7考点:线性规划.2.(2015文)若变量,x y满足约束条件4,2,30,x yx yx y+≤⎧⎪-≤⎨⎪-≥⎩则3x y+的最大值是_________.【答案】10.【考点定位】本题考查线性规划的最值问题,属基础题.【名师点睛】这是一道典型的线性规划问题,重点考查线性规划问题的基本解决方法,体现了数形结合的思想在数学解题中重要性和实用性,能较好的考查学生准确作图能力和灵活运用基础知识解决实际问题的能力.3、(2015全国新课标Ⅰ卷文)若x,y满足约束条件20210220x yx yx y+-≤⎧⎪-+≤⎨⎪-+≥⎩,则z=3x+y的最大值为.【答案】4【解析】作出可行域如图中阴影部分所示,作出直线l:30x y+=,平移直线l,当直线l:z=3x+y 过点A时,z取最大值,由2=021=0x yx y+-⎧⎨-+⎩解得A(1,1),∴z=3x+y的最大值为4.【考点定位】简单线性规划解法【名师点睛】对线性规划问题,先作出可行域,在作出目标函数,利用z的几何意义,结合可行域即可找出取最值的点,通过解方程组即可求出做最优解,代入目标函数,求出最值,要熟悉相关公式,确定目标函数的意义是解决最优化问题的关键,目标函数常有距离型、直线型和斜率型.4.(2015全国新课标Ⅰ卷理)若x,y满足约束条件1040xx yx y-≥⎧⎪-≤⎨⎪+-≤⎩,则yx的最大值为 .【答案】3【解析】试题分析:作出可行域如图中阴影部分所示,由斜率的意义知,yx是可行域一点与原点连线的斜率,由图可知,点A(1,3)与原点连线的斜率最大,故yx的最大值为3.考点:线性规划解法5. (2015全国新课标Ⅱ卷文)若x,y满足约束条件50210210x yx yx y+-≤⎧⎪--≥⎨⎪-+≤⎩,则z=2x+y的最大值为.【答案】8考点:线性规划6.(2015全国新课标Ⅱ卷理)若x,y满足约束条件1020,220,x yx yx y-+≥⎧⎪-≤⎨⎪+-≤⎩,,则z x y=+的最大值为____________.【答案】32【解析】试题分析:画出可行域,如图所示,将目标函数变形为y x z=-+,当z取到最大时,直线y x z=-+的纵截距最大,故将直线尽可能地向上平移到1(1,)2D,则z x y=+的最大值为32.考点:线性规划.xy–1–2–3–41234–1–2–3–41234DCBO7. (2015文)若x,y满足约束条件13,1y xx yy-≤⎧⎪+≤⎨⎪≥⎩则3z x y=+的最大值为 .【答案】7【解析】试题分析:画出可行域及直线30x y+=,平移直线30x y+=,当其经过点(1,2)A时,直线的纵截距最大,所以3z x y=+最大为1327z=+⨯=.考点:简单线性规划.8. (2015文)定义运算“⊗”:22x yx yxy-⊗=(,0x y R xy∈≠,).当00x y>>,时,(2)x y y x⊗+⊗的最小值是 .2【解析】试题分析:由新定义运算知,2222(2)4(2)(2)2y x y xy xy x xy--⊗==,因为,00x y>>,,所以,2222224222(2)2222x y y x x y xyx y y xxy xy xy xy--+⊗+⊗=+=≥=2x y=时,(2)x y y x⊗+⊗2考点:1.新定义运算;2.基本不等式.9. (2015文)若yx,满足⎪⎩⎪⎨⎧≥≤+≥-2yyxyx,则目标函数yxz2+=的最大值为 .【答案】3【考点定位】不等式组表示的平面区域,简单的线性规划.10. (2015天津文)已知0,0,8,a b ab>>=则当a的值为时()22log log2a b⋅取得最大值. 【答案】4【解析】试题分析:()()()()22222222log log211log log2log2log164,244a ba b ab+⎛⎫⋅≤===⎪⎝⎭当2a b=时取等号,结合0,0,8,a b ab>>=可得4, 2.a b==考点:基本不等式.11. (2015文)设,0,5a b a b>+=,1++3a b+ ________.【答案】23考点:基本不等式.12、(2015文)已知实数x ,y 满足221x y +≤,则2463x y x y +-+--的最大值是 . 【答案】15 【解析】试题分析: 22,2224631034,22x y y xz x y x y x y y x+-≥-⎧=+-+--=⎨--<-⎩由图可知当22y x ≥-时,满足的是如图的AB 劣弧,则22z x y =+-在点(1,0)A 处取得最大值5;当22y x <-时,满足的是如图的AB 优弧,则1034z x y =--与该优弧相切时取得最大值,故1015z d -==,所以15z =,故该目标函数的最大值为15.考点:1.简单的线性规划;13. (2015理)若实数,x y 满足221x y +≤,则2263x y x y +-+--的最小值是 .三、解答题。
2015年全国各地高考数学试题及解答分类汇编大全(18选修4:几何证明选讲、坐标系与参数方程、不等式选讲、矩阵与变换)一、几何证明选讲:选修4—1;几何证明选讲1.(2015广东理)如图1,已知AB是圆O的直径,4AB=,EC是圆O的切线,切点为C,1BC=,过圆心O做BC的平行线,分别交EC和AC于点D和点P,则OD=图1P OECDAB【答案】8.【考点定位】本题考查直线与圆、直角三角形的射影定理,属于中档题.2.(2015广东文)如图1,AB为圆O的直径,E为AB的延长线上一点,过E作圆O的切线,切点为C,过A作直线CE的垂线,垂足为D.若4AB=,C23E=,则DA=.【答案】3考点:1、切线的性质;2、平行线分线段成比例定理;3、切割线定理.3.(2015湖北理)如图,PA 是圆的切线,A 为切点,PBC 是圆的割线,且3BC PB =,则ABAC=.【答案】21考点:1.圆的切线、割线,2.切割线定理,3.三角形相似.4. (2015湖南理)(Ⅰ)如图,在圆O 中,相交于点E 的两弦AB ,CD 的中点分别是M ,N ,直线MO 与直线CD 相交于点F ,证明: (1)180MEN NOM ∠+∠=; (2)FE FN FM FO ⋅=⋅【答案】(1)详见解析;(2)详见解析.【考点定位】1.垂径定理;2.四点共圆;3.割线定理.【名师点睛】本题主要考查了圆的基本性质等知识点,属于容易题,平面几何中圆的有关问题是高考考查的热点,解题时要充分利用圆的性质和切割线定理,相似三角形,勾股定理等其他平面几何知识点的交汇.5. (2015江苏) 如图,在ABC ∆中,AC AB =,ABC ∆的外接圆圆O 的弦AE 交BC 于点D求证:ABD ∆∽AEB ∆【答案】详见解析考点:三角形相似6.(2015全国新课标Ⅰ卷文、理)如图AB 是O 直径,AC 是O 切线,BC 交O 与点E .(I )若D 为AC 中点,求证:DE 是O 切线; (II )若3OA CE =,求ACB ∠的大小.ABCE DO(第21——A 题)【答案】(Ⅰ)见解析(Ⅱ)60° 【解析】 试题分析:(Ⅰ)由圆的切线性质及圆周角定理知,AE ⊥BC ,AC ⊥AB ,由直角三角形中线性质知DE =DC ,OE =OB ,利用等量代换可证∠DEC +∠OEB =90°,即∠OED =90°,所以DE 是圆O 的切线;(Ⅱ)设CE =1,由OA =得,AB=AE =x,由勾股定理得BE =,由直角三角形射影定理可得2AE CE BE =,列出关于x 的方程,解出x ,即可求出∠ACB 的大小.【考点定位】圆的切线判定与性质;圆周角定理;直角三角形射影定理【名师点睛】在解有关切线的问题时,要从以下几个方面进行思考:①见到切线,切点与圆心的连线垂直于切线;②过切点有弦,应想到弦切角定理;③若切线与一条割线相交,应想到切割线定理;④若要证明某条直线是圆的切线,则证明直线与圆的交点与圆心的连线与该直线垂直.7. (2015全国新课标Ⅱ卷文、理)如图,O 为等腰三角形ABC 内一点,圆O 与ABC ∆的底边BC 交于M 、N 两点与底边上的高AD 交于点G ,与AB 、AC 分别相切于E 、F 两点.GAEFONDB CM(Ⅰ)证明://EF BC ;(Ⅱ) 若AG 等于O 的半径,且AE MN ==求四边形EBCF 的面积.【答案】(Ⅰ)详见解析;. 【解析】 试题分析:(Ⅰ)由已知得AD BC ⊥,欲证明//EF BC ,只需证明AD EF ⊥,由切线长定理可得AE AF =,故只需证明AD 是角平分线即可;(Ⅱ)连接OE ,OM ,在Rt AEO ∆中,易求得030OAE ∠=,故AEF ∆和AEF ∆都是等边三角形,求得其边长,进而可求其面积.四边形EBCF 的面积为两个等边三角形面积之差. 试题解析:(Ⅰ)由于ABC ∆是等腰三角形,AD BC ⊥,所以AD 是CAB ∠的平分线.又因为O 分别与AB 、AC 相切于E 、F 两点,所以AE AF =,故AD EF ⊥.从而//EF BC .(Ⅱ)由(Ⅰ)知,AE AF =,AD EF ⊥,故AD 是EF 的垂直平分线,又EF 是O 的弦,所以O 在AD 上.连接OE ,OM ,则OE AE ⊥.由AG 等于O 的半径得2AO OE =,所以030OAE ∠=.所以ABC ∆和AEF ∆都是等边三角形.因为AE =,所以4AO =,2OE =.因为2OM OE ==,12DM MN ==,所以1OD =.于是5AD =,AB =.所以四边形EBCF 的面积221122⨯⨯=考点:1.等腰三角形的性质;2、圆的切线长定理;3、圆的切线的性质. 8. (2015陕西文、理)如图,AB 切O 于点B ,直线AO 交O 于,D E 两点,,BC DE ⊥垂足为C .(I)证明:CBD DBA ∠=∠(II)若3,AD DC BC ==O 的直径.【答案】(I)证明略,详见解析; (II)3. 【解析】 试题分析::(I)因为DE 是O 的直径,则90BED EDB ∠+∠=︒,又BC DE ⊥,所以90CBD EDB ∠+∠=︒,又AB 切O 于点B ,得DBA BED ∠=∠,所以CBD DBA ∠=∠;(II)由(I)知BD 平分CBA ∠,则3BA ADBC CD==,又BC =,从而AB =222AB BC AC =+,解得4AC =,所以3AD =,由切割线定理得2AB AD AE =⋅,解得6AE =,故3DE AE AD =-=,即O 的直径为3.试题解析:(I)因为DE 是O 的直径, 则90BED EDB ∠+∠=︒又BC DE ⊥,所以90CBD EDB ∠+∠=︒ 又AB 切O 于点B , 得DBA BED ∠=∠ 所以CBD DBA ∠=∠(II)由(I)知BD 平分CBA ∠,则3BA ADBC==,又BC =,从而AB =,所以4AC == 所以3AD =,由切割线定理得2AB AD AE =⋅即26AB AE AD==, 故3DE AE AD =-=, 即O 的直径为3.考点:1.几何证明;2.切割线定理.9.(2015天津文、理)如图,在圆O 中,,M N 是弦AB 的三等分点,弦,CD CE 分别经过点,M N .若2,4,3CM MD CN === ,则线段NE 的长为( )(A )83 (B )3 (C )103 (D )52E【答案】A【解析】 试题分析:由相交弦定理可知,,AM MB CM MD CN NE AN NB ⋅=⋅⋅=⋅,又因为,M N 是弦AB 的三等分点,所以AM MB AN NB CN NE CM MD ⋅=⋅∴⋅=⋅,所以24833CM MD NE CN ⋅⨯===,故选A.考点:相交弦定理.10.(2015重庆理)如图,圆O 的弦AB ,C D 相交于点E ,过点A 作圆O 的切线与DC 的延长线交于点P ,若PA =6,AE =9,PC =3,CE :ED =2:1,则BE =_______.【答案】2【考点定位】相交弦定理,切割线定理.二、坐标系与参数方程:选修4-4:坐标系与参数方程1.(2015安徽理)在极坐标中,圆8sin ρθ=上的点到直线()3R πθρ=∈距离的最大值是 .【答案】6【解析】由题意2sin ρρθ=,转化为普通方程为228x y y +=,即22(4)16x y +-=;直线()3R πθρ=∈2. (2015北京理)在极坐标系中,点π23⎛⎫ ⎪⎝⎭‚到直线()cos 6ρθθ+=的距离为.【答案】1 【解析】试题分析:先把点(2,)3π极坐标化为直角坐标,再把直线的极坐标方程()cos 6ρθθ=化为直角坐标方程60x +-=,利用点到直线距离公式1d ==.考点:1.极坐标与直角坐标的互化;2.点到直线距离.3.(2015福建理)在平面直角坐标系xoy 中,圆C 的参数方程为13cos (t )23sin x ty tì=+ïí=-+ïî为参数.在极坐标系(与平面直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,直线l 的方程为sin()m,(m R).4pq -=? (Ⅰ)求圆C 的普通方程及直线l 的直角坐标方程; (Ⅱ)设圆心C 到直线l 的距离等于2,求m 的值. 【答案】(Ⅰ) ()()22129x y -++=,0x y m --=;(Ⅱ) m=-3±【解析】试题分析:(Ⅰ)将圆的参数方程通过移项平方消去参数得()()22129x y -++= ,利用cos x ρθ=,sin y ρθ=将直线的极坐标方程化为直角坐标方程;(Ⅱ)利用点到直线距离公式求解. 试题解析:(Ⅰ)消去参数t ,得到圆的普通方程为()()22129x y -++=,sin()m 4pq -=,得sin cos m 0r q r q --=, 所以直线l 的直角坐标方程为0x y m --=.(Ⅱ)依题意,圆心C 到直线l 的距离等于2|12m |2,--+=解得m=-3±考点:1、参数方程和普通方程的互化;2、极坐标方程和直角坐标方程的互化;3、点到直线距离公式.4.(2015广东理) 已知直线l 的极坐标方程为24sin(2=-)πθρ,点A 的极坐标为74A π⎛⎫ ⎪⎝⎭,则点A 到直线l 的距离为 【答案】2.【解析】依题已知直线l :2sin 4πρθ⎛⎫-=⎪⎝⎭74A π⎛⎫ ⎪⎝⎭可化为l :10x y -+=和()2,2A -,所以点A 与直线l 的距离为2d ==,故应填入. 【考点定位】本题考查极坐标与平面直角坐标的互化、点与直线的距离,属于容易题.5. (2015广东文) 在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C的参数方程为2x ty ⎧=⎪⎨=⎪⎩t 为参数),则1C 与2C 交点的直角坐标为 .【答案】()2,4- 【解析】试题分析:曲线1C 的直角坐标方程为2x y +=-,曲线2C 的普通方程为28y x =,由228x y y x+=-⎧⎨=⎩得:24x y =⎧⎨=-⎩,所以1C 与2C 交点的直角坐标为()2,4-,所以答案应填:()2,4-. 考点:1、极坐标方程化为直角坐标方程;2、参数方程化为普通方程;3、两曲线的交点. 16.(2015湖北理)在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系. 已知直线l 的极坐标方程为(sin 3cos )0ρθθ-=,曲线C 的参数方程为1,1x t t y t t ⎧=-⎪⎪⎨⎪=+⎪⎩( t 为参数) ,l 与C 相交于A ,B 两点,则||AB =. 【答案】52考点:1.极坐标方程、参数方程与普通方程的转化,2.两点间的距离.7.(2015湖南理)(Ⅱ)已知直线5:12x l y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=.(1) 将曲线C 的极坐标方程化为直角坐标方程;(2) 设点M的直角坐标为,直线l 与曲线C 的交点为A ,B ,求||||MA MB ⋅的值. 【答案】(1)0222=-+x y x ;(2)18.的两个实数根分别为1t ,2t ,则由参数t 的几何意义即知,1821==⋅|t |t |MB||MA|. 【考点定位】1.极坐标方程与直角坐标方程的互相转化;2.直线与圆的位置关系.【名师点睛】本题主要考查了极坐标方程与直角坐标方程的互相转化以及直线与圆的位置关系,属于容易题,在方程的转化时,只要利用θρcos =x ,θρsin =y 进行等价变形即可,考查极坐标方程与参数方程,实为考查直线与圆的相交问题,实际上为解析几何问题,解析几何中常用的思想,如联立方程组等,在极坐标与参数方程中同样适用.8、(2015湖南文)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为2sin ρθ=,则曲线C 的直角坐标方程为_____.【答案】2211x y +-=() 【解析】试题分析:将极坐标化为直角坐标,求解即可.曲线C 的极坐标方程为222sn sn ρθρρθ=∴=,,它的直角坐标方程为222x y y += , 2211x y ∴+-=(). 故答案为:2211x y +-=(). 考点:圆的极坐标方程9.(2015江苏)已知圆C 的极坐标方程为2sin()404πρθ+--=,求圆C 的半径.考点:圆的极坐标方程,极坐标与之间坐标互化10.(2015全国新课标Ⅰ卷文)在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(I )求12,C C 的极坐标方程.(II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积. 【答案】(Ⅰ)cos 2ρθ=-,22cos 4sin 40ρρθρθ--+=(Ⅱ)12【解析】试题分析:(Ⅰ)用直角坐标方程与极坐标互化公式即可求得1C ,2C 的极坐标方程;(Ⅱ)将将=4πθ代入22cos 4sin 40ρρθρθ--+=即可求出|MN|,利用三角形面积公式即可求出2C MN 的面积.试题解析:(Ⅰ)因为cos ,sin x y ρθρθ==,∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.……5分(Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1ρ=2ρ,|MN|=1ρ-2ρ,因为2C 的半径为1,则2C MN 的面积o 11sin 452⨯=12. 【考点定位】直角坐标方程与极坐标互化;直线与圆的位置关系【名师点睛】对直角坐标方程与极坐标方程的互化问题,要熟记互化公式,另外要注意互化时要将极坐标方程作适当转化,若是和角,常用两角和与差的三角公式展开,化为可以公式形式,有时为了出现公式形式,两边可以同乘以ρ,对直线与圆或圆与圆的位置关系,常化为直角坐标方程,再解决.11. (2015全国新课标Ⅰ卷理)在直角坐标系xOy 中,直线1C :x =-2,圆2C :()()22121x y -+-=,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系。
高考数学真题精选(按考点分类)专题52 不等式选讲(学生版)1.(2019•新课标Ⅱ)已知f(x)=|x﹣a|x+|x﹣2|(x﹣a).(1)当a=1时,求不等式f(x)<0的解集;(2)当x∈(﹣∞,1)时,f(x)<0,求a的取值范围.2.(2018•新课标Ⅰ)已知f(x)=|x+1|﹣|ax﹣1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.3.(2018•新课标Ⅱ)设函数f(x)=5﹣|x+a|﹣|x﹣2|.(1)当a=1时,求不等式f(x)≥0的解集;(2)若f(x)≤1,求a的取值范围.4.(2017•新课标Ⅰ)已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.5.(2017•新课标Ⅲ)已知函数f(x)=|x+1|﹣|x﹣2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.6.(2016•新课标Ⅲ)已知函数f(x)=|2x﹣a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.7.(2016•新课标Ⅱ)已知函数f(x)=|x−12|+|x+12|,M为不等式f(x)<2的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b∈M时,|a+b|<|1+ab|.8.(2015•新课标Ⅰ)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.9.(2014•新课标Ⅱ)设函数f(x)=|x+1a|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.10.(2014•新课标Ⅰ)若a >0,b >0,且1a+1b=√ab .(Ⅰ)求a 3+b 3的最小值;(Ⅱ)是否存在a ,b ,使得2a +3b =6?并说明理由.11.(2013•新课标Ⅰ)已知函数f (x )=|2x ﹣1|+|2x +a |,g (x )=x +3. (Ⅰ)当a =﹣2时,求不等式f (x )<g (x )的解集;(Ⅱ)设a >﹣1,且当x ∈[−a2,12]时,f (x )≤g (x ),求a 的取值范围.12.(2011•辽宁)选修4﹣5:不等式选讲 已知函数f (x )=|x ﹣2|﹣|x ﹣5|. (1)证明:﹣3≤f (x )≤3;(2)求不等式f (x )≥x 2﹣8x +15的解集. 13.(2019•新课标Ⅲ)设x ,y ,z ∈R ,且x +y +z =1. (1)求(x ﹣1)2+(y +1)2+(z +1)2的最小值;(2)若(x ﹣2)2+(y ﹣1)2+(z ﹣a )2≥13成立,证明:a ≤﹣3或a ≥﹣1. 14.(2019•新课标Ⅰ)已知a ,b ,c 为正数,且满足abc =1.证明: (1)1a +1b+1c≤a 2+b 2+c 2;(2)(a +b )3+(b +c )3+(c +a )3≥24.15.(2017•新课标Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.16.(2015•新课标Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明: (1)若ab >cd ,则√a +√b >√c +√d ;(2)√a +√b >√c +√d 是|a ﹣b |<|c ﹣d |的充要条件. 17.(2013•辽宁)(1)证明:当x ∈[0,1]时,√22x ≤sinx ≤x ; (2)若不等式ax +x 2+x 32+2(x +2)cosx ≤4对x ∈[0,1]恒成立,求实数a 的取值范围.18.(2013•新课标Ⅱ)【选修4﹣﹣5;不等式选讲】 设a ,b ,c 均为正数,且a +b +c =1,证明: (Ⅰ)ab +bc +ca ≤13(Ⅱ)a 2b+b 2c+c 2a≥1.历年高考数学真题精选(按考点分类)专题52 不等式选讲(学生版)一.解答题(共18小题)1.(2019•新课标Ⅱ)已知f (x )=|x ﹣a |x +|x ﹣2|(x ﹣a ). (1)当a =1时,求不等式f (x )<0的解集;(2)当x ∈(﹣∞,1)时,f (x )<0,求a 的取值范围. 解:(1)当a =1时,f (x )=|x ﹣1|x +|x ﹣2|(x ﹣1),∵f (x )<0,∴当x <1时,f (x )=﹣2(x ﹣1)2<0,恒成立,∴x <1; 当x ≥1时,f (x )=(x ﹣1)(x +|x ﹣2|)≥0恒成立,∴x ∈∅; 综上,不等式的解集为(﹣∞,1);(2)当a ≥1时,f (x )=2(a ﹣x )(x ﹣1)<0在x ∈(﹣∞,1)上恒成立; 当a <1时,x ∈(a ,1),f (x )=2(x ﹣a )>0,不满足题意, ∴a 的取值范围为:[1,+∞)2.(2018•新课标Ⅰ)已知f (x )=|x +1|﹣|ax ﹣1|. (1)当a =1时,求不等式f (x )>1的解集;(2)若x ∈(0,1)时不等式f (x )>x 成立,求a 的取值范围.解:(1)当a =1时,f (x )=|x +1|﹣|x ﹣1|={2,x >12x ,−1≤x ≤1−2,x <−1,由f (x )>1,∴{2x >1−1≤x ≤1或{2>1x >1, 解得x >12,故不等式f (x )>1的解集为(12,+∞),(2)当x ∈(0,1)时不等式f (x )>x 成立, ∴|x +1|﹣|ax ﹣1|﹣x >0, 即x +1﹣|ax ﹣1|﹣x >0,即|ax﹣1|<1,∴﹣1<ax﹣1<1,∴0<ax<2,∵x∈(0,1),∴a>0,∴0<x<2 a,∴a<2 x∵2x>2,∴0<a≤2,故a的取值范围为(0,2].3.(2018•新课标Ⅱ)设函数f(x)=5﹣|x+a|﹣|x﹣2|.(1)当a=1时,求不等式f(x)≥0的解集;(2)若f(x)≤1,求a的取值范围.解:(1)当a=1时,f(x)=5﹣|x+1|﹣|x﹣2|={2x+4,x≤−1 2,−1<x<2−2x+6,x≥2.当x≤﹣1时,f(x)=2x+4≥0,解得﹣2≤x≤﹣1,当﹣1<x<2时,f(x)=2≥0恒成立,即﹣1<x<2,当x≥2时,f(x)=﹣2x+6≥0,解得2≤x≤3,综上所述不等式f(x)≥0的解集为[﹣2,3],(2)∵f(x)≤1,∴5﹣|x+a|﹣|x﹣2|≤1,∴|x+a|+|x﹣2|≥4,∴|x+a|+|x﹣2|=|x+a|+|2﹣x|≥|x+a+2﹣x|=|a+2|,∴|a+2|≥4,解得a≤﹣6或a≥2,故a的取值范围(﹣∞,﹣6]∪[2,+∞).4.(2017•新课标Ⅰ)已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f (x )≥g (x )的解集包含[﹣1,1],求a 的取值范围.解:(1)当a =1时,f (x )=﹣x 2+x +4,是开口向下,对称轴为x =12的二次函数,g (x )=|x +1|+|x ﹣1|={2x ,x >12,−1≤x ≤1−2x ,x <−1,当x ∈(1,+∞)时,令﹣x 2+x +4=2x ,解得x =√17−12,g (x )在(1,+∞)上单调递增,f (x )在(1,+∞)上单调递减,∴此时f (x )≥g (x )的解集为(1,√17−12]; 当x ∈[﹣1,1]时,g (x )=2,f (x )≥f (﹣1)=2.当x ∈(﹣∞,﹣1)时,g (x )单调递减,f (x )单调递增,且g (﹣1)=f (﹣1)=2.综上所述,f (x )≥g (x )的解集为[﹣1,√17−12];(2)依题意得:﹣x 2+ax +4≥2在[﹣1,1]恒成立,即x 2﹣ax ﹣2≤0在[﹣1,1]恒成立,则只需{12−a ⋅1−2≤0(−1)2−a(−1)−2≤0,解得﹣1≤a ≤1,故a 的取值范围是[﹣1,1].5.(2017•新课标Ⅲ)已知函数f (x )=|x +1|﹣|x ﹣2|. (1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2﹣x +m 的解集非空,求m 的取值范围.解:(1)∵f (x )=|x +1|﹣|x ﹣2|={−3,x <−12x −1,−1≤x ≤23,x >2,f (x )≥1,∴当﹣1≤x ≤2时,2x ﹣1≥1,解得1≤x ≤2; 当x >2时,3≥1恒成立,故x >2; 综上,不等式f (x )≥1的解集为{x |x ≥1}.(2)原式等价于存在x ∈R 使得f (x )﹣x 2+x ≥m 成立, 即m ≤[f (x )﹣x 2+x ]max ,设g (x )=f (x )﹣x 2+x .由(1)知,g (x )={−x 2+x −3,x ≤−1−x 2+3x −1,−1<x <2−x 2+x +3,x ≥2,当x ≤﹣1时,g (x )=﹣x 2+x ﹣3,其开口向下,对称轴方程为x =12>−1, ∴g (x )≤g (﹣1)=﹣1﹣1﹣3=﹣5;当﹣1<x <2时,g (x )=﹣x 2+3x ﹣1,其开口向下,对称轴方程为x =32∈(﹣1,2), ∴g (x )≤g (32)=−94+92−1=54;当x ≥2时,g (x )=﹣x 2+x +3,其开口向下,对称轴方程为x =12<2, ∴g (x )≤g (2)=﹣4+2+3=1; 综上,g (x )max =54,∴m 的取值范围为(﹣∞,54].6.(2016•新课标Ⅲ)已知函数f (x )=|2x ﹣a |+a . (1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x ﹣1|,当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围. 解:(1)当a =2时,f (x )=|2x ﹣2|+2, ∵f (x )≤6,∴|2x ﹣2|+2≤6, |2x ﹣2|≤4,|x ﹣1|≤2, ∴﹣2≤x ﹣1≤2, 解得﹣1≤x ≤3,∴不等式f (x )≤6的解集为{x |﹣1≤x ≤3}. (2)∵g (x )=|2x ﹣1|,∴f (x )+g (x )=|2x ﹣1|+|2x ﹣a |+a ≥3, 2|x −12|+2|x −a 2|+a ≥3, |x −12|+|x −a 2|≥3−a2, 当a ≥3时,成立,当a <3时,|x −12|+|x −a 2|≥12|a ﹣1|≥3−a2>0, ∴(a ﹣1)2≥(3﹣a )2, 解得2≤a <3,∴a 的取值范围是[2,+∞).7.(2016•新课标Ⅱ)已知函数f (x )=|x −12|+|x +12|,M 为不等式f (x )<2的解集. (Ⅰ)求M ;(Ⅱ)证明:当a ,b ∈M 时,|a +b |<|1+ab |.解:(I )当x <−12时,不等式f (x )<2可化为:12−x ﹣x −12<2,解得:x >﹣1, ∴﹣1<x <−12,当−12≤x ≤12时,不等式f (x )<2可化为:12−x +x +12=1<2,此时不等式恒成立, ∴−12≤x ≤12,当x >12时,不等式f (x )<2可化为:−12+x +x +12<2, 解得:x <1, ∴12<x <1,综上可得:M =(﹣1,1); 证明:(Ⅱ)当a ,b ∈M 时, (a 2﹣1)(b 2﹣1)>0, 即a 2b 2+1>a 2+b 2,即a 2b 2+1+2ab >a 2+b 2+2ab , 即(ab +1)2>(a +b )2, 即|a +b |<|1+ab |.8.(2015•新课标Ⅰ)已知函数f (x )=|x +1|﹣2|x ﹣a |,a >0. (Ⅰ)当a =1时,求不等式f (x )>1的解集;(Ⅱ)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 解:(Ⅰ)当a =1时,不等式f (x )>1,即|x +1|﹣2|x ﹣1|>1, 即{x <−1−x −1−2(1−x)>1①,或{−1≤x <1x +1−2(1−x)>1②,或{x ≥1x +1−2(x −1)>1③. 解①求得x ∈∅,解②求得23<x <1,解③求得1≤x <2.综上可得,原不等式的解集为(23,2).(Ⅱ)函数f (x )=|x +1|﹣2|x ﹣a |={x −1−2a ,x <−13x +1−2a ,−1≤x ≤a −x +1+2a ,x >a,由此求得f (x )的图象与x 轴的交点A (2a−13,0),B (2a +1,0),故f (x )的图象与x 轴围成的三角形的第三个顶点C (a ,a +1), 由△ABC 的面积大于6, 可得12[2a +1−2a−13]•(a +1)>6,求得a >2. 故要求的a 的范围为(2,+∞).9.(2014•新课标Ⅱ)设函数f (x )=|x +1a |+|x ﹣a |(a >0). (Ⅰ)证明:f (x )≥2;(Ⅱ)若f (3)<5,求a 的取值范围.解:(Ⅰ)证明:∵a >0,f (x )=|x +1a |+|x ﹣a |≥|(x +1a )﹣(x ﹣a )|=|a +1a |=a +1a ≥2√a ⋅1a =2,故不等式f (x )≥2成立. (Ⅱ)∵f (3)=|3+1a|+|3﹣a |<5,∴当a >3时,不等式即a +1a<5,即a 2﹣5a +1<0,解得3<a <5+√212. 当0<a ≤3时,不等式即 6﹣a +1a <5,即 a 2﹣a ﹣1>0,求得1+√52<a ≤3. 综上可得,a 的取值范围(1+√52,5+√212).10.(2014•新课标Ⅰ)若a >0,b >0,且1a+1b=√ab .(Ⅰ)求a 3+b 3的最小值;(Ⅱ)是否存在a ,b ,使得2a +3b =6?并说明理由. 解:(Ⅰ)∵a >0,b >0,且1a +1b=√ab ,∴√ab =1a +1b ≥2√1ab ,∴ab ≥2,当且仅当a =b =√2时取等号.∵a 3+b 3 ≥2√(ab)3≥2√23=4√2,当且仅当a =b =√2时取等号, ∴a 3+b 3的最小值为4√2.(Ⅱ)∵2a +3b ≥2√2a ⋅3b =2√6ab ,当且仅当2a =3b 时,取等号. 而由(1)可知,2√6ab ≥2√12=4√3>6, 故不存在a ,b ,使得2a +3b =6成立.11.(2013•新课标Ⅰ)已知函数f (x )=|2x ﹣1|+|2x +a |,g (x )=x +3. (Ⅰ)当a =﹣2时,求不等式f (x )<g (x )的解集;(Ⅱ)设a >﹣1,且当x ∈[−a2,12]时,f (x )≤g (x ),求a 的取值范围.解:(Ⅰ)当a =﹣2时,求不等式f (x )<g (x )化为|2x ﹣1|+|2x ﹣2|﹣x ﹣3<0. 设y =|2x ﹣1|+|2x ﹣2|﹣x ﹣3,则y ={−5x ,x <12−x −2,12≤x ≤13x −6,x >1,它的图象如图所示:结合图象可得,y <0的解集为(0,2),故原不等式的解集为(0,2). (Ⅱ)设a >﹣1,且当x ∈[−a2,12]时,f (x )=1+a ,不等式化为1+a ≤x +3,故x ≥a ﹣2对x ∈[−a 2,12]都成立.故−a 2≥a ﹣2, 解得a ≤43,故a 的取值范围为(﹣1,43].12.(2011•辽宁)选修4﹣5:不等式选讲 已知函数f (x )=|x ﹣2|﹣|x ﹣5|. (1)证明:﹣3≤f (x )≤3;(2)求不等式f (x )≥x 2﹣8x +15的解集.解:(1)f (x )=|x ﹣2|﹣|x ﹣5|={−3,x ≤22x −7,2<x <53,x ≥5.当2<x <5时,﹣3<2x ﹣7<3. 所以﹣3≤f (x )≤3. (2)由(1)可知,当x ≤2时,f (x )≥x 2﹣8x +15的解集为空集;当2<x <5时,f (x )≥x 2﹣8x +15的解集为{x |5−√3≤x <5};当x ≥5时,f (x )≥x 2﹣8x +15的解集为{x |5≤x ≤6}. 综上,不等式f (x )≥x 2﹣8x +15的解集为{x |5−√3≤x ≤6}. 13.(2019•新课标Ⅲ)设x ,y ,z ∈R ,且x +y +z =1. (1)求(x ﹣1)2+(y +1)2+(z +1)2的最小值;(2)若(x ﹣2)2+(y ﹣1)2+(z ﹣a )2≥13成立,证明:a ≤﹣3或a ≥﹣1. 解:(1)x ,y ,z ∈R ,且x +y +z =1, 由柯西不等式可得(12+12+12)[(x ﹣1)2+(y +1)2+(z +1)2]≥(x ﹣1+y +1+z +1)2=4, 可得(x ﹣1)2+(y +1)2+(z +1)2≥43,即有(x ﹣1)2+(y +1)2+(z +1)2的最小值为43;(2)证明:由x +y +z =1,柯西不等式可得(12+12+12)[(x ﹣2)2+(y ﹣1)2+(z ﹣a )2]≥(x ﹣2+y ﹣1+z ﹣a )2=(a +2)2,可得(x ﹣2)2+(y ﹣1)2+(z ﹣a )2≥(a+2)23, 即有(x ﹣2)2+(y ﹣1)2+(z ﹣a )2的最小值为(a+2)23,由题意可得(a+2)23≥13,解得a ≥﹣1或a ≤﹣3.14.(2019•新课标Ⅰ)已知a ,b ,c 为正数,且满足abc =1.证明: (1)1a +1b+1c≤a 2+b 2+c 2;(2)(a +b )3+(b +c )3+(c +a )3≥24.证明:(1)分析法:已知a ,b ,c 为正数,且满足abc =1. 要证(1)1a +1b+1c≤a 2+b 2+c 2;因为abc =1. 就要证:abc a+abc b+abc c≤a 2+b 2+c 2;即证:bc +ac +ab ≤a 2+b 2+c 2; 即:2bc +2ac +2ab ≤2a 2+2b 2+2c 2; 2a 2+2b 2+2c 2﹣2bc ﹣2ac ﹣2ab ≥0 (a ﹣b )2+(a ﹣c )2+(b ﹣c )2≥0; ∵a ,b ,c 为正数,且满足abc =1.∴(a ﹣b )2≥0;(a ﹣c )2≥0;(b ﹣c )2≥0恒成立;当且仅当:a =b =c =1时取等号. 即(a ﹣b )2+(a ﹣c )2+(b ﹣c )2≥0得证.故1a +1b +1c ≤a 2+b 2+c 2得证.(2)证(a +b )3+(b +c )3+(c +a )3≥24成立;即:已知a ,b ,c 为正数,且满足abc =1.(a +b )为正数;(b +c )为正数;(c +a )为正数;(a +b )3+(b +c )3+(c +a )3≥3(a +b )•(b +c )•(c +a );当且仅当(a +b )=(b +c )=(c +a )时取等号;即:a =b =c =1时取等号; ∵a ,b ,c 为正数,且满足abc =1.(a +b )≥2√ab ;(b +c )≥2√bc ;(c +a )≥2√ac ;当且仅当a =b ,b =c ;c =a 时取等号;即:a =b =c =1时取等号;∴(a +b )3+(b +c )3+(c +a )3≥3(a +b )•(b +c )•(c +a )≥3×8√ab •√bc •√ac =24abc =24;当且仅当a =b =c =1时取等号;故(a +b )3+(b +c )3+(c +a )3≥24.得证.故得证.15.(2017•新课标Ⅱ)已知a >0,b >0,a 3+b 3=2.证明:(1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.证明:(1)由柯西不等式得:(a +b )(a 5+b 5)≥(5+√b ⋅b 5)2=(a 3+b 3)2≥4, 当且仅当√ab 5=√ba 5,即a =b =1时取等号,(2)∵a 3+b 3=2,∴(a +b )(a 2﹣ab +b 2)=2,∴(a +b )[(a +b )2﹣3ab ]=2,∴(a +b )3﹣3ab (a +b )=2,∴(a+b)3−23(a+b)=ab ,由均值不等式可得:(a+b)3−23(a+b)=ab ≤(a+b 2)2, ∴(a +b )3﹣2≤3(a+b)34,∴14(a +b )3≤2, ∴a +b ≤2,当且仅当a =b =1时等号成立.16.(2015•新课标Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则√a +√b >√c +√d ;(2)√a +√b >√c +√d 是|a ﹣b |<|c ﹣d |的充要条件.证明:(1)由于(√a +√b )2=a +b +2√ab ,(√c +√d )2=c +d +2√cd ,由a ,b ,c ,d 均为正数,且a +b =c +d ,ab >cd ,则√ab >√cd ,即有(√a +√b )2>(√c +√d )2,则√a +√b >√c +√d ;(2)①若√a +√b >√c +√d ,则(√a +√b )2>(√c +√d )2,即为a +b +2√ab >c +d +2√cd ,由a +b =c +d ,则ab >cd ,于是(a ﹣b )2=(a +b )2﹣4ab ,(c ﹣d )2=(c +d )2﹣4cd ,即有(a ﹣b )2<(c ﹣d )2,即为|a ﹣b |<|c ﹣d |;②若|a ﹣b |<|c ﹣d |,则(a ﹣b )2<(c ﹣d )2,即有(a +b )2﹣4ab <(c +d )2﹣4cd ,由a +b =c +d ,则ab >cd ,则有(√a +√b )2>(√c +√d )2.综上可得,√a +√b >√c +√d 是|a ﹣b |<|c ﹣d |的充要条件.17.(2013•辽宁)(1)证明:当x ∈[0,1]时,√22x ≤sinx ≤x ; (2)若不等式ax +x 2+x 32+2(x +2)cosx ≤4对x ∈[0,1]恒成立,求实数a 的取值范围.(1)证明:记F (x )=sin x −√22x ,则F ′(x )=cos x −√22.当x ∈(0,π4)时,F ′(x )>0,F (x )在[0,π4]上是增函数; 当x ∈(π4,1)时,F ′(x )<0,F (x )在[π4,1]上是减函数;又F (0)=0,F (1)>0,所以当x ∈[0,1]时,F (x )≥0,即sin x ≥√22x ,记H (x )=sin x ﹣x ,则当x ∈(0,1)时,H ′(x )=cos x ﹣1<0,所以H (x )在[0,1]上是减函数;则H (x )≤H (0)=0,即sin x ≤x .综上,√22x ≤sin x ≤x . (2)∵当x ∈[0,1]时,ax +x 2+x 32+2(x +2)cos x ﹣4 =(a +2)x +x 2+x 32−4(x +2)sin 2x 2≤(a +2)x +x 2+x 32−4(x +2)(√24x)2 =(a +2)x ,∴当a ≤﹣2时,不等式ax +x 2+x 32+2(x +2)cos x ≤4对x ∈[0,1]恒成立,下面证明,当a >﹣2时,不等式ax +x 2+x 32+2(x +2)cos x ≤4对x ∈[0,1]不恒成立. ∵当x ∈[0,1]时,ax +x 2+x 32+2(x +2)cos x ﹣4 =(a +2)x +x 2+x 32−4(x +2)sin 2x 2≥(a +2)x +x 2+x 32−4(x +2)(x 2)2 =(a +2)x ﹣x 2−x 32≥(a +2)x −32x 2=−32x [x −23(a +2)].所以存在x 0∈(0,1)(例如x 0取a+23和12中的较小值)满足 ax 0+x 02+x 032+2(x 0+2)cos x 0﹣4>0,即当a >﹣2时,不等式ax +x 2+x 32+2(x +2)cos x ≤4对x ∈[0,1]不恒成立. 综上,实数a 的取值范围是(﹣∞,﹣2].18.(2013•新课标Ⅱ)【选修4﹣﹣5;不等式选讲】设a ,b ,c 均为正数,且a +b +c =1,证明:(Ⅰ)ab +bc +ca ≤13(Ⅱ)a 2b +b 2c +c 2a ≥1.证明:(Ⅰ)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得a 2+b 2+c 2≥ab +bc +ca , 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1,所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13. (Ⅱ)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c , 故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ),即a 2b +b 2c +c 2a ≥a +b +c . 所以a 2b +b 2c +c 2a ≥1.。
绝密★启封并使用完毕前试题类型:A2015年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足1+z1-z=i ,则|z |=A .1B . 2C . 3D .22.sin 20°cos 10°-cos 160°sin 10°= A .-32 B .32 C .-12 D .123.设命题P :∃n ∈N ,n 2>2n ,则¬P 为A .∀n ∈N , n 2>2nB .∃n ∈N , n 2≤2nC .∀n ∈N , n 2≤2nD .∃n ∈N , n 2=2n4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为A .0.648B .0.432C .0.36D .0.3125.已知M (x 0,y 0)是双曲线C :x 22-y 2=1 上的一点,F 1、F 2是C 上的两个焦点,若MF 1→·MF 2→<0 ,则y 0的取值范围是A .⎝⎛⎭⎫-33,33 B .⎝⎛⎭⎫-36,36 C .⎝⎛⎭⎫-223,223 D .⎝⎛⎭⎫-233,2336.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有 A .14斛 B .22斛 C .36斛 D .66斛7.设D 为△ABC 所在平面内一点BC →=3CD →,则A .AD →=-13AB →+43AC → B .AD →=13AB →-43AC → C .AD →=43AB →+13AC → D .AD →=43AB →-13AC →8.函数f (x )=cos (ωx +φ)的部分图像如图所示,则f (x )的单调递减区间为A .⎝⎛⎭⎫k π-14,k π+34 (k ∈Z )B .⎝⎛⎭⎫2k π-14,2k π+34 (k ∈Z )C .⎝⎛⎭⎫k -14,k +34 (k ∈Z )D .⎝⎛⎭⎫2k -14,2k +34 (k ∈Z )9.执行右面的程序框图,如果输入的t =0.01,则输出的n =A .5B .6C .7D .810.(x 2+x +y )5的展开式中,x 5y 2的系数为A .10B .20C .30D .60 (第11题图)11.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =A .1B .2C .4D .812.设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0,使得f (x 0)<0,则a 的取值范围是A .⎣⎡⎭⎫-32e ,1B . ⎣⎡⎭⎫-32e ,34C . ⎣⎡⎭⎫32e ,34D . ⎣⎡⎭⎫32e ,1第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题未选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分13.若函数f (x )=xln (x +a +x 2)为偶函数,则a =______.2rr正视图俯视图r2r14.一个圆经过椭圆 x 216+y 24=1 的三个顶点,且圆心在x 轴上,则该圆的标准方程为 .15.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0 (1)x -y ≤0 (2)x +y -4≤0 (3),则 yx的最大值为 .16.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 .三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +4.(Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =1a n a n +1 ,求数列{b n }的前n 项和.18.如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.19.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.ABCFED36 38 34 40 42 44 46 48 50 52 54 56年宣传费/千元表中w 1 =x 1, ,w - =18∑x +11w 1(Ⅰ)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x 、y 的关系为z =0.2y -x .根据(Ⅱ)的结果回答下列问题:(ⅰ)年宣传费x =49时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费x 为何值时,年利率的预报值最大?附:对于一组数据(u 1 v 1),(u 2 v 2),……,(u n v n ),其回归线v =αβ+u 的斜率和截距的最小二乘估计分别为:β=∑i =1n(u i -u -)(v i -v -) ∑i =1n(u i -u -)2α=v --βu -20.(本小题满分12分)在直角坐标系xoy 中,曲线C :y =x 24与直线y =kx +a (a >0)交于M ,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.21.(本小题满分12分)已知函数f (x )=x 3+ax +14,g (x )=-lnx .(Ⅰ)当a 为何值时,x 轴为曲线y =f (x ) 的切线;(Ⅱ)用min {},m n 表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )} (x >0),讨论h (x )零点的个数.请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做第一个题目计分,做答时,请用2B22.(本题满分10分)选修4-1:几何证明选讲 如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于点E . (Ⅰ)若D 为AC 的中点,证明:DE 是⊙O 的切线;(Ⅱ)若OA =3CE ,求∠ACB 的大小.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求C 1,C 2的极坐标方程;(Ⅱ)若直线C 3的极坐标方程为 θ=π4 (ρ∈R ),设C 2与C 3的交点为M 、N ,求△C 2MN 的面积.24.(本小题满分10分)选修4—5:不等式选讲 已知函数f (x )=|x +1|-2|x -a |,a >0.(Ⅰ)当a =1时,求不等式f (x )>1的解集;(Ⅱ)若f (x )的图像与x 轴围成的三角形面积大于6,求a 的取值范围.。
不等式选讲年份题号考点考查内容2011文理24不等式选讲绝对值不等式的解法2012文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法2013卷1文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理24不等式选讲多元不等式的证明2014卷1文理24不等式选讲基本不等式的应用卷2文理24不等式选讲绝对值不等式的解法2015卷1文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理24不等式选讲不等式的证明2016卷1文理24不等式选讲分段函数的图像,绝对值不等式的解法卷2文理24不等式选讲绝对值不等式的解法,绝对值不等式的证明卷3文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法2017卷1文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理23不等式选讲不等式的证明卷3文理23不等式选讲绝对值不等式的解法,绝对值不等式解集非空的参数取值范围问题2018卷1文理23不等式选绝对值不等式的解法,不等式恒成立参数取值范围问题的解法讲卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲绝对值函数的图象,不等式恒成立参数最值问题的解法2019卷1文理23不等式选讲三元条件不等式的证明卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲三元条件最值问题的解法,三元条件不等式的证明2020卷1文理23不等式选讲绝对值函数的图像,绝对值不等式的解法卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲三元条件不等式的证明考点出现频率2021年预测考点120绝对值不等式的求解23次考4次2021年主要考查绝对值不等式的解法、绝对值不等式的证明,不等式恒成立参数取值范围问题的解法等.考点121含绝对值不等式的恒成立问题23次考12次考点122不等式的证明23次考7次考点120绝对值不等式的求解1.(2020全国Ⅰ文理22)已知函数()3121f x x x =+--.(1)画出()y f x =的图像;(2)求不等式()()1f x f x >+的解集.【解析】(1)∵()3,1151,1313,3x x f x x x x x ⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图像,如图所示:(2)将函数()f x 的图像向左平移1个单位,可得函数()1f x +的图像,如图所示:由()3511x x --=+-,解得76x =-,∴不等式的解集为7,6⎛⎫-∞- ⎪⎝⎭.2.(2020江苏23)设x ∈R ,解不等式2|1|||4x x ++≤.【答案】22,3⎡⎤-⎢⎥⎣⎦【思路导引】根据绝对值定义化为三个不等式组,解得结果.【解析】1224x x x <-⎧⎨---≤⎩ 或10224x x x -≤≤⎧⎨+-≤⎩或0224x x x >⎧⎨++≤⎩,21x ∴-≤<-或10x -≤≤或203x <≤,∴解集为22,3⎡⎤-⎢⎥⎣⎦.3.(2016全国I 文理)已知函数()|1||23|f x x x =+--.(I)在图中画出()y f x =的图像;(II)求不等式|()|1f x >的解集.【解析】(1)如图所示:(2)()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥,()1f x >.当1x -≤,41x ->,解得5x >或3x <,1x -∴≤;当312x -<<,321x ->,解得1x >或13x <,113x -<<∴或312x <<;当32x ≥,41x ->,解得5x >或3x <,332x <∴≤或5x >.综上,13x <或13x <<或5x >,()1f x >∴,解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭ ,,,.4.(2014全国II 文理)设函数()f x =1(0)x x a a a++->(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围.【解析】(I)由0a >,有()f x 111()2x x a x x a a a a a=++-≥+--=+≥,∴()f x ≥2.(Ⅱ)1(3)33f a a=++-.当时a >3时,(3)f =1a a+,由(3)f <5得3<a <5212;当0<a ≤3时,(3)f =16a a-+,由(3)f <5得12<a ≤3.综上:a 的取值范围是(152+,5212+).5.(2011新课标文理)设函数()3f x x a x =-+,其中0a >.(Ⅰ)当1a =时,求不等式()32f x x ≥+的解集;(Ⅱ)若不等式()0f x ≤的解集为{}|1x x ≤-,求a 的值.【解析】(Ⅰ)当1a =时,()32f x x ≥+可化为|1|2x -≥,由此可得3x ≥或1x ≤-.故不等式()32f x x ≥+的解集为{|3x x ≥或1}x ≤-.(Ⅱ)由()0f x ≤得30x a x -+≤,此不等式化为不等式组30x ax a x ≥⎧⎨-+≤⎩或30x aa x x ≤⎧⎨-+≤⎩,即4x a a x ⎧⎪⎨⎪⎩≥≤或2x aax ⎧⎪⎨-⎪⎩≤≤,因为0a >,∴不等式组的解集为{}|2a x x ≤-,由题设可得2a-=1-,故2a =.考点121含绝对值不等式的恒成立问题6.(2020全国Ⅱ文理22)已知函数()221f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞ .【思路导引】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果.【解析】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥;综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x ax a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞ .7.(2019全国II 文理23)[选修4-5:不等式选讲](10分)已知()|||2|().f x x a x x x a =-+--(1)当1a =时,求不等式()0f x <的解集;(2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围.【解析】(1)当a=1时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥,∴不等式()0f x <的解集为(,1)-∞.(2)因为()=0f a ,∴1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----∴a 的取值范围是[1,)+∞.8.(2018全国Ⅰ文理)已知()|1||1|f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围.【解析】(1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.--⎧⎪=-<<⎨⎪⎩≤≥x f x x x x 故不等式()1f x >的解集为1{|}2x x >.(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立.若0≤a ,则当(0,1)x ∈时|1|1-≥ax ;若0a >,|1|1ax -<的解集为20x a <<,∴21≥a,故02<≤a .综上,a 的取值范围为(0,2].9.(2018全国Ⅱ文理)设函数()5|||2|=-+--f x x a x .(1)当1a =时,求不等式()0≥f x 的解集;(2)若()1≤f x ,求a 的取值范围.【解析】(1)当1=a 时,24,1,()2,12,26, 2.+-⎧⎪=-<⎨⎪-+>⎩≤≤x x f x x x x 可得()0≥f x 的解集为{|23}-≤≤x x .(2)()1≤f x 等价于|||2|4++-≥x a x .而|||2||2|++-+≥x a x a ,且当2=x 时等号成立.故()1≤f x 等价于|2|4+≥a .由|2|4+≥a 可得6-≤a 或2≥a ,∴a 的取值范围是(,6][2,)-∞-+∞ .10.(2018全国Ⅲ文理)设函数()|21||1|f x x x =++-.(1)画出()y f x =的图像;(2)当[0,)x ∈+∞时,()f x ax b +≤,求a b +的最小值.【解析】(1)13,,21()2,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-<⎨⎪⎪⎪⎩≤≥()y f x =的图像如图所示.(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a ≥且2b ≥时,()f x ax b +≤在[0,)+∞成立,因此a b +的最小值为5.11.(2018江苏)若x ,y ,z 为实数,且226x y z ++=,求222x y z ++的最小值.【解析】由柯西不等式,得2222222()(122)(22)x y z x y z ++++++≥.因为22=6x y z ++,∴2224x y z ++≥,当且仅当122x y z ==时,不等式取等号,此时244333x y z ===,,,∴222x y z ++的最小值为4.12.(2017全国Ⅰ文理)已知函数2()4f x x ax =-++,()|1||1|g x x x =++-.(1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[1,1]-,求a 的取值范围.【解析】(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.①当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而11712x -+<≤,∴()()f x g x ≥的解集为117{|1}2x x -+-<≤.(2)当[1,1]x ∈-时,()2g x =,∴()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,∴(1)2f -≥且(1)2f ≥,得11a -≤≤,∴a 的取值范围为[1,1]-.13.(2017全国Ⅲ文理)已知函数()|1||2|f x x x =+--.(1)求不等式()1f x ≥的解集;(2)若不等式2()f x x x m -+≥的解集非空,求m 的取值范围.【解析】(1)3,1()21,123,2x f x x x x -<-⎧⎪=--⎨⎪>⎩≤≤,当1x <-时,()f x 1≥无解;当x -12≤≤时,由()f x 1≥得,x -211≥,解得x 12≤≤;当>2x 时,由()f x 1≥解得>2x .∴()f x 1≥的解集为{}x x 1≥.(2)由()f x x x m -+2≥得m x x x x +---+212≤,而x x x x x x x x +---+--+2212+1+2≤x ⎛⎫ ⎪⎝⎭2355=--+244≤,且当32x =时,2512=4x x x x +---+,故m 的取值范围为5-,4⎛⎤∞ ⎥⎝⎦.14.(2016全国III 文理)已知函数()|2|f x x a a =-+(Ⅰ)当a=2时,求不等式()6f x ≤的解集;(Ⅱ)设函数()|21|g x x =-,当x ∈R 时,()()3f x g x +≥,求a 的取值范围.【解析】(Ⅰ)当2a =时,()|22|2f x x =-+.解不等式|22|26x -+ ,得13x - ,因此()6f x ≤的解集为{|13}x x - .(Ⅱ)当x R ∈时,()()|2||12|f xg x x a a x +=-++-|212|x a x a -+-+ |1|a a =-+,当12x =时等号成立,∴当x R ∈时,()()3f x g x + 等价于|1|3a a -+ .①当1a 时,①等价于13a a -+ ,无解.当1a >时,①等价于13a a -+ ,解得2a .∴a 的取值范围是[2,)+∞.15.(2015全国I 文理)已知函数()|1|2||f x x x a =+--,0a >.(Ⅰ)当1a =时,求不等式()1f x >的解集;(Ⅱ)若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.【解析】(Ⅰ)当1a =时,不等式()1f x >化为|1|2|1|10x x +--->,当1x -≤时,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得213x <<;当1x ≥时,不等式化为20x -+>,解得12x <≤.∴()1f x >的解集为2{|2}3x x <<.(Ⅱ)有题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--⎨⎪-++>⎩≤≤,∴函数()f x 图象与x 轴围成的三角形的三个顶点分别为21(,0),(21,0),(,1)3a A B a C a a -++,ABC ∆的面积为22(1)3a +.有题设得22(1)63a +>,故2a >.∴a 的取值范围为(2,)+∞.16.(2014全国I 文理)若0,0ab >>,且11a b +=.(Ⅰ)求33a b +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由.【解析】(I)11a b =+≥,得2ab ≥,且当a b ==时取等号.故33ab+≥≥,且当a b ==∴33a b +的最小值为(II)由(I)知,23a b +≥.由于6>,从而不存在,a b ,使得236a b +=.16.(2013全国I 文理)已知函数()f x =|21||2|x x a -++,()g x =3x +.(Ⅰ)当a =-2时,求不等式()f x <()g x 的解集;(Ⅱ)设a >-1,且当x ∈[2a -,12)时,()f x ≤()g x ,求a 的取值范围.【解析】(Ⅰ)当a =-2时,不等式()f x <()g x 化为|21||22|30x x x -+---<,设函数y =|21||22|3x x x -+---,y =15, 212, 1236, 1x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩,其图像如图所示,从图像可知,当且仅当(0,2)x ∈时,y <0,∴原不等式解集是{|02}x x <<.(Ⅱ)当x ∈[2a -,12)时,()f x =1a +,不等式()f x ≤()g x 化为13a x ++≤,∴2x a -≥对x ∈[2a -,12)都成立,故2a -≥2a -,即a ≤43,∴a 的取值范围为(-1,43].17.(2012新课标文理)已知函数|2|||)(-++=x a x x f .(Ⅰ)当|3-=a 时,求不等式()3f x 的解集;(Ⅱ)若()|4|f x x - 的解集包含]2,1[,求a 的取值范围.【解析】(1)当3a =-时,()3323f x x x ⇔-+- 2323x x x ⎧⇔⎨-+-⎩ 或23323x x x <<⎧⇔⎨-+-⎩ 或3323x x x ⎧⇔⎨-+-⎩ 1x ⇔ 或4x .(2)原命题()4f x x ⇔- 在[1,2]上恒成立24x a x x ⇔++-- 在[1,2]上恒成立22x a x ⇔--- 在[1,2]上恒成立30a ⇔- .考点122不等式的证明18.(2020全国Ⅲ文理23)设,,,0,1a b c a b c abc ∈++==R .(1)证明:0ab bc ca ++<;(2)用{}max ,,a b c 表示,,a b c 的最大值,证明:{}3max ,,4a b c ≥【答案】(1)证明见解析(2)证明见解析.【思路导引】(1)根据题设条件,0=++c b a 两边平方,再利用均值不等式证明即可;(2)思路一:不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a a a bc bc+++=⋅==,结合基本不等式,即可得出证明.思路二:假设出c b a ,,中最大值,根据反证法与基本不等式推出矛盾,即可得出结论.【解析】(1)证明:().0,02=++∴=++c b a c b a ,0222222=+++++∴ca ac ab c b a 即()222222c b a ca bc ab ++-=++.0,0222<++∴<++∴ca bc ab ca bc ab (2)证法一:不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--= ,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=,当且仅当b c =时,取等号,a ∴≥,即max{,,}a b c .证法二:不妨设403<<<≤c b a ,则,4,41133>=-->=c b a c ab而1132a b ->--≥>==矛盾,∴命题得证.19.(2019全国I 文理23)已知a ,b ,c 为正数,且满足abc=1.证明:(1)222111a b c a b c++≤++;(2)333()()()24a b b c c a +++≥++.【解析】(1)因为2222222,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c ++++≥++==++,∴222111a b c a b c++≤++.(2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥=3(+)(+)(+)a b b c ac 3≥⨯⨯⨯=24.∴333()()()24a b b c c a +++++≥.20.(2019全国III 文理23)设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-.【解析】(1)由于2[(1)(1)(1)]x y z -++++222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x =-+++++-++++++-2223(1)(1)(1)x y z ⎡⎤≤-++++⎣⎦,故由已知得2224(1)(1)(1)3x y z -++++≥,当且仅当x=53,y=–13,13z =-时等号成立.∴222(1)(1)(1)x y z -++++的最小值为43.(2)由于2[(2)(1)()]x y z a -+-+-222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =-+-+-+--+--+--2223(2)(1)()x y z a ⎡⎤-+-+-⎣⎦ ,故由已知2222(2)(2)(1)()3a x y z a +-+-+- ,当且仅当43a x -=,13a y -=,223a z -=时等号成立,因此222(2)(1)()x y z a -+-+-的最小值为2(2)3a +.由题设知2(2)133a + ,解得3a - 或1a - .21.(2017全国Ⅱ文理)已知0a >,0b >,332a b +=,证明:(1)()()554a b a b ++≥;(2)2a b +≤.【解析】(1)556556()()a b a b a ab a b b ++=+++3323344()2()a b a b ab a b =+-++()22244ab a b =+-≥.(2)∵33223()33a b a a b ab b +=+++23()ab a b =++23()2()4a b a b +≤++33()24a b +=+,∴3()8a b +≤,因此2a b +≤.22.(2017江苏)已知a ,b ,c ,d 为实数,且224a b +=,2216c d +=,证明8ac bd +≤.【解析】证明:由柯西不等式可得:22222()()()ac bd a b c d +++≤,因为22224,16,a b c d +=+=∴2()64ac bd +≤,因此8ac bd +≤.23.(2016全国II 文理)已知函数()1122f x x x =-++,M 为不等式()2f x <的解集.(I)求M ;(II)证明:当a ,b M ∈时,1a b ab +<+.【解析】(I)当12x <-时,()11222f x x x x =---=-,若112x -<<-;当1122x -≤≤时,()111222f x x x =-++=<恒成立;当12x >时,()2f x x =,若()2f x <,112x <<.综上可得,{}|11M x x =-<<.(Ⅱ)当()11a b ∈-,,时,有()()22110a b -->,即22221a b a b +>+,则2222212a b ab a ab b +++>++,则()()221ab a b +>+,即1a b ab +<+,证毕.24.(2015全国II 文理)设,,,a b c d 均为正数,且a b c d +=+,证明:(Ⅰ)若ab >cd ,则a b c d +>+;(Ⅱ)a b c d +>+是||||a b c d -<-的充要条件.【解析】(Ⅰ)∵2()2a b a b ab +=++,2()c d c d cd +=++由题设a b c d +=+,ab cd >得22()a b c d >+a b c d +>(Ⅱ)(ⅰ)若||||a b c d -<-,则22()()a b c d -<-,即22()4()4a b ab c d cd +-<+-.因为a b c d +=+,∴ab cd >,由(Ⅰ)得a b c d >(ⅱ)a b c d +>则22(a b c d >+,即a b ab c d cd ++>++因为a b c d +=+,∴ab cd >,于是2222()()4()4()a b a b ab c d cd c d -=+-<+-=-.因此||||a b c d -<-.a b c d +>||||a b c d -<-的充要条件.25.(2013全国II 文理)设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤;(Ⅱ)2221a b c b c a++≥.【解析】(Ⅰ)2222222,2,2a b ab b c bc c a ca +≥+≥+≥得222a b c ab bc ca ++≥++,由题设得()21a b c ++=,即2222221a b c ab bc ca +++++=,∴()31ab bc ca ++≤,即13ab bc ca ++≤.(Ⅱ)∵2222,2,2a b c b a c b a c b c a +≥+≥+≥,∴222()2()a b c a b c a b c b c a +++++≥++,即222a b c a b c b c a ++≥++,∴2221a b c b c a ++≥.。
2015年高考数学试卷一、选择题(每小题5分,共40分)1.(5分)(2015?原题)复数i(2﹣i)=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i2.(5分)(2015?原题)若x,y满足,则z=x+2y的最大值为()A.0 B.1 C.D.23.(5分)(2015?原题)执行如图所示的程序框图输出的结果为()A.(﹣2,2)B.(﹣4,0)C.(﹣4,﹣4)D.(0,﹣8)4.(5分)(2015?原题)设α,β是两个不同的平面,m是直线且m?α,“m∥β“是“α∥β”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件5.(5分)(2015?原题)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+B.4+C.2+2D.56.(5分)(2015?原题)设{a n}是等差数列,下列结论中正确的是()A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0C.若0<a1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>07.(5分)(2015?原题)如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是()A.{x|﹣1<x≤0} B.{x|﹣1≤x≤1} C.{x|﹣1<x≤1} D.{x|﹣1<x≤2}8.(5分)(2015?原题)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油二、填空题(每小题5分,共30分)9.(5分)(2015?原题)在(2+x)5的展开式中,x3的系数为(用数字作答)10.(5分)(2015?原题)已知双曲线﹣y2=1(a>0)的一条渐近线为x+y=0,则a= .+sinθ)=6的距离11.(5分)(2015?原题)在极坐标系中,点(2,)到直线ρ(cosθ为.12.(5分)(2015?原题)在△ABC中,a=4,b=5,c=6,则= .13.(5分)(2015?原题)在△ABC中,点M,N满足=2,=,若=x+y,则x= ,y= .14.(5分)(2015?原题)设函数f(x)=,①若a=1,则f(x)的最小值为;②若f(x)恰有2个零点,则实数a的取值范围是.三、解答题(共6小题,共80分)15.(13分)(2015?原题)已知函数f(x)=sin cos﹣sin.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[﹣π,0]上的最小值.16.(13分)(2015?原题)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组;12,13,15,16,17,14,a假设所有病人的康复时间相互独立,从A,B两组随机各选1人,A组选出的人记为甲,B 组选出的人记为乙.(Ⅰ)求甲的康复时间不少于14天的概率;(Ⅱ)如果a=25,求甲的康复时间比乙的康复时间长的概率;(Ⅲ)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)17.(14分)(2015?原题)如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF ⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(Ⅰ)求证:AO⊥BE.(Ⅱ)求二面角F﹣AE﹣B的余弦值;(Ⅲ)若BE⊥平面AOC,求a的值.18.(13分)(2015?原题)已知函数f(x)=ln,(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求证,当x∈(0,1)时,f(x)>;(Ⅲ)设实数k使得f(x)对x∈(0,1)恒成立,求k的最大值.19.(14分)(2015?原题)已知椭圆C:+=1(a>b>0)的离心率为,点P(0,1)和点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.(Ⅰ)求椭圆C的方程,并求点M的坐标(用m,n表示);(Ⅱ)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标,若不存在,说明理由.20.(13分)(2015?原题)已知数列{a n}满足:a1∈N*,a1≤36,且a n+1=(n=1,2,…),记集合M={a n|n∈N*}.(Ⅰ)若a1=6,写出集合M的所有元素;(Ⅱ)如集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数;(Ⅲ)求集合M的元素个数的最大值.2015年原题市高考数学试卷(理科)一、选择题(每小题5分,共40分)1.(5分)(2015?原题)复数i(2﹣i)=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i【分析】利用复数的运算法则解答.【解答】解:原式=2i﹣i2=2i﹣(﹣1)=1+2i;故选:A.【点评】本题考查了复数的运算;关键是熟记运算法则.注意i2=﹣1.2.(5分)(2015?原题)若x,y满足,则z=x+2y的最大值为()A.0 B.1 C.D.2【分析】作出题中不等式组表示的平面区域,再将目标函数z=x+2y对应的直线进行平移,即可求出z取得最大值.【解答】解:作出不等式组表示的平面区域,当l经过点B时,目标函数z达到最大值∴z最大值=0+2〓1=2.故选:D.【点评】本题给出二元一次不等式组,求目标函数z=x+2y的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.3.(5分)(2015?原题)执行如图所示的程序框图输出的结果为()A.(﹣2,2)B.(﹣4,0)C.(﹣4,﹣4)D.(0,﹣8)【分析】模拟程序框图的运行过程,即可得出程序运行后输出的结果.【解答】解:模拟程序框图的运行过程,如下;x=1,y=1,k=0时,s=x﹣y=0,t=x+y=2;x=s=0,y=t=2,k=1时,s=x﹣y=﹣2,t=x+y=2;x=s=﹣2,y=t=2,k=2时,s=x﹣y=﹣4,t=x+y=0;x=s=﹣4,y=t=0,k=3时,循环终止,输出(x,y)是(﹣4,0).故选:B.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,是基础题目.4.(5分)(2015?原题)设α,β是两个不同的平面,m是直线且m?α,“m∥β“是“α∥β”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【分析】m∥β并得不到α∥β,根据面面平行的判定定理,只有α内的两相交直线都平行于β,而α∥β,并且m?α,显然能得到m∥β,这样即可找出正确选项.【解答】解:m?α,m∥β得不到α∥β,因为α,β可能相交,只要m和α,β的交线平行即可得到m∥β;α∥β,m?α,∴m和β没有公共点,∴m∥β,即α∥β能得到m∥β;∴“m∥β”是“α∥β”的必要不充分条件.故选B.【点评】考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念.5.(5分)(2015?原题)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+B.4+C.2+2D.5【分析】根据三视图可判断直观图为:OA⊥面ABC,AC=AB,E为BC中点,EA=2,EA=EB=1,OA=1,:BC⊥面AEO,AC=,OE=判断几何体的各个面的特点,计算边长,求解面积.【解答】解:根据三视图可判断直观图为:OA⊥面ABC,AC=AB,E为BC中点,EA=2,EC=EB=1,OA=1,∴可得AE⊥BC,BC⊥OA,运用直线平面的垂直得出:BC⊥面AEO,AC=,OE=∴S△ABC=2〓2=2,S△OAC=S△OAB=〓1=.S△BCO=2〓=.故该三棱锥的表面积是2,故选:C.【点评】本题考查了空间几何体的三视图的运用,空间想象能力,计算能力,关键是恢复直观图,得出几何体的性质.6.(5分)(2015?原题)设{a n}是等差数列,下列结论中正确的是()A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0C.若0<a1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0【分析】对选项分别进行判断,即可得出结论.【解答】解:若a1+a2>0,则2a1+d>0,a2+a3=2a1+3d>2d,d>0时,结论成立,即A不正确;若a1+a3<0,则a1+a2=2a1+d<0,a2+a3=2a1+3d<2d,d<0时,结论成立,即B不正确;{a n}是等差数列,0<a1<a2,2a2=a1+a3>2,∴a2>,即C正确;若a1<0,则(a2﹣a1)(a2﹣a3)=﹣d2≤0,即D不正确.故选:C.【点评】本题考查等差数列的通项,考查学生的计算能力,比较基础.7.(5分)(2015?原题)如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是()A.{x|﹣1<x≤0} B.{x|﹣1≤x≤1} C.{x|﹣1<x≤1} D.{x|﹣1<x≤2}【分析】在已知坐标系内作出y=log2(x+1)的图象,利用数形结合得到不等式的解集.【解答】解:由已知f(x)的图象,在此坐标系内作出y=log2(x+1)的图象,如图满足不等式f(x)≥log2(x+1)的x范围是﹣1<x≤1;所以不等式f(x)≥log2(x+1)的解集是{x|﹣1<x≤1};故选C.【点评】本题考查了数形结合求不等式的解集;用到了图象的平移.8.(5分)(2015?原题)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油【分析】根据汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,以及图象,分别判断各个选项即可.【解答】解:对于选项A,从图中可以看出当乙车的行驶速度大于40千米每小时时的燃油效率大于5千米每升,故乙车消耗1升汽油的行驶路程远大于5千米,故A错误;对于选项B,以相同速度行驶相同路程,三辆车中,甲车消耗汽油最小,故B错误,对于选项C,甲车以80千米/小时的速度行驶1小时,里程为80千米,燃油效率为10,故消耗8升汽油,故C错误,对于选项D,因为在速度低于80千米/小时,丙的燃油效率高于乙的燃油效率,故D正确.【点评】本题考查了函数图象的识别,关键掌握题意,属于基础题.二、填空题(每小题5分,共30分)9.(5分)(2015?原题)在(2+x)5的展开式中,x3的系数为40 (用数字作答)【分析】写出二项式定理展开式的通项公式,利用x的指数为3,求出r,然后求解所求数值.【解答】解:(2+x)5的展开式的通项公式为:T r+1=25﹣r x r,所求x3的系数为:=40.故答案为:40.【点评】本题考查二项式定理的应用,二项式系数的求法,考查计算能力.10.(5分)(2015?原题)已知双曲线﹣y2=1(a>0)的一条渐近线为x+y=0,则a= .【分析】运用双曲线的渐近线方程为y=〒,结合条件可得=,即可得到a的值.【解答】解:双曲线﹣y2=1的渐近线方程为y=〒,由题意可得=,解得a=.故答案为:.【点评】本题考查双曲线的方程和性质,主要考查双曲线的渐近线方程的求法,属于基础题.+sinθ)=6的距离11.(5分)(2015?原题)在极坐标系中,点(2,)到直线ρ(cosθ为 1 .【分析】化为直角坐标,再利用点到直线的距离公式距离公式即可得出.【解答】解:点P(2,)化为P.+sinθ)=6化为.直线ρ(cosθ∴点P到直线的距离d==1.故答案为:1.【点评】本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.12.(5分)(2015?原题)在△ABC中,a=4,b=5,c=6,则= 1 .【分析】利用余弦定理求出cosC,cosA,即可得出结论.【解答】解:∵△ABC中,a=4,b=5,c=6,∴cosC==,cosA==∴sinC=,sinA=,∴==1.故答案为:1.【点评】本题考查余弦定理,考查学生的计算能力,比较基础.13.(5分)(2015?原题)在△ABC中,点M,N满足=2,=,若=x+y,则x= ,y= ﹣.【分析】首先利用向量的三角形法则,将所求用向量表示,然后利用平面向量基本定理得到x,y值.【解答】解:由已知得到===;由平面向量基本定理,得到x=,y=;故答案为:.【点评】本题考查了平面向量基本定理的运用,一个向量用一组基底表示,存在唯一的实数对(x,y)使,向量等式成立.14.(5分)(2015?原题)设函数f(x)=,①若a=1,则f(x)的最小值为﹣1 ;②若f(x)恰有2个零点,则实数a的取值范围是≤a<1或a≥2.【分析】①分别求出分段的函数的最小值,即可得到函数的最小值;②分别设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a),分两种情况讨论,即可求出a的范围.【解答】解:①当a=1时,f(x)=,当x<1时,f(x)=2x﹣1为增函数,f(x)>﹣1,当x>1时,f(x)=4(x﹣1)(x﹣2)=4(x2﹣3x+2)=4(x﹣)2﹣1,当1<x<时,函数单调递减,当x>时,函数单调递增,故当x=时,f(x)min=f()=﹣1,②设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a)若在x<1时,h(x)=与x轴有一个交点,所以a>0,并且当x=1时,h(1)=2﹣a>0,所以0<a<2,而函数g(x)=4(x﹣a)(x﹣2a)有一个交点,所以2a≥1,且a<1,所以≤a<1,若函数h(x)=2x﹣a在x<1时,与x轴没有交点,则函数g(x)=4(x﹣a)(x﹣2a)有两个交点,当a≤0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),当h(1)=2﹣a≤0时,即a≥2时,g(x)的两个交点满足x1=a,x2=2a,都是满足题意的,综上所述a的取值范围是≤a<1,或a≥2.【点评】本题考查了分段函数的问题,以及函数的零点问题,培养了学生的转化能力和运算能力以及分类能力,属于中档题.三、解答题(共6小题,共80分)15.(13分)(2015?原题)已知函数f(x)=sin cos﹣sin.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[﹣π,0]上的最小值.【分析】(Ⅰ)运用二倍角公式和两角和的正弦公式,化简f(x),再由正弦函数的周期,即可得到所求;(Ⅱ)由x的范围,可得x+的范围,再由正弦函数的图象和性质,即可求得最小值.【解答】解:(Ⅰ)f(x)=sin cos﹣sin=sinx﹣(1﹣cosx)=sinxcos+cosxsin﹣=sin(x+)﹣,则f(x)的最小正周期为2π;(Ⅱ)由﹣π≤x≤0,可得﹣≤x+≤,即有﹣1,则当x=﹣时,sin(x+)取得最小值﹣1,则有f(x)在区间[﹣π,0]上的最小值为﹣1﹣.【点评】本题考查二倍角公式和两角和的正弦公式,同时考查正弦函数的周期和值域,考查运算能力,属于中档题.16.(13分)(2015?原题)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组;12,13,15,16,17,14,a假设所有病人的康复时间相互独立,从A,B两组随机各选1人,A组选出的人记为甲,B 组选出的人记为乙.(Ⅰ)求甲的康复时间不少于14天的概率;(Ⅱ)如果a=25,求甲的康复时间比乙的康复时间长的概率;(Ⅲ)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)【分析】设事件A i为“甲是A组的第i个人”,事件B i为“乙是B组的第i个人”,由题意可知P(A i)=P(B i)=,i=1,2,??,7(Ⅰ)事件等价于“甲是A组的第5或第6或第7个人”,由概率公式可得;(Ⅱ)设事件“甲的康复时间比乙的康复时间长”C=A4B1∪A5B1∪A6B1∪A7B1∪A5B2∪A6B2∪A7B2∪A7B3∪A6B6∪A7B6,易得P(C)=10P(A4B1),易得答案;(Ⅲ)由方差的公式可得.【解答】解:设事件A i为“甲是A组的第i个人”,事件B i为“乙是B组的第i个人”,由题意可知P(A i)=P(B i)=,i=1,2,??,7(Ⅰ)事件“甲的康复时间不少于14天”等价于“甲是A组的第5或第6或第7个人”∴甲的康复时间不少于14天的概率P(A5∪A6∪A7)=P(A5)+P(A6)+P(A7)=;(Ⅱ)设事件C为“甲的康复时间比乙的康复时间长”,则C=A4B1∪A5B1∪A6B1∪A7B1∪A5B2∪A6B2∪A7B2∪A7B3∪A6B6∪A7B6,∴P(C)=P(A4B1)+P(A5B1)+P(A6B1)P+(A7B1)+P(A5B2)+P(A6B2)+P(A7B2)+P(A7B3)+P(A6B6)+P(A7B6)=10P(A4B1)=10P(A4)P(B1)=(Ⅲ)当a为11或18时,A,B两组病人康复时间的方差相等.【点评】本题考查古典概型及其概率公式,涉及概率的加法公式和方差,属基础题.17.(14分)(2015?原题)如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF ⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(Ⅰ)求证:AO⊥BE.(Ⅱ)求二面角F﹣AE﹣B的余弦值;(Ⅲ)若BE⊥平面AOC,求a的值.【分析】(Ⅰ)根据线面垂直的性质定理即可证明AO⊥BE.(Ⅱ)建立空间坐标系,利用向量法即可求二面角F﹣AE﹣B的余弦值;(Ⅲ)利用线面垂直的性质,结合向量法即可求a的值【解答】证明:(Ⅰ)∵△AEF为等边三角形,O为EF的中点,∴AO⊥EF,∵平面AEF⊥平面EFCB,AO?平面AEF,∴AO⊥平面EFCB∴AO⊥BE.(Ⅱ)取BC的中点G,连接OG,∵EFCB是等腰梯形,∴OG⊥EF,由(Ⅰ)知AO⊥平面EFCB,∵OG?平面EFCB,∴OA⊥OG,建立如图的空间坐标系,则OE=a,BG=2,GH=a,(a≠2),BH=2﹣a,EH=BHtan60°=,则E(a,0,0),A(0,0,a),B(2,,0),=(﹣a,0,a),=(a﹣2,﹣,0),设平面AEB的法向量为=(x,y,z),则,即,令z=1,则x=,y=﹣1,即=(,﹣1,1),平面AEF的法向量为,则cos<>==即二面角F﹣AE﹣B的余弦值为;(Ⅲ)若BE⊥平面AOC,则BE⊥OC,即=0,∵=(a﹣2,﹣,0),=(﹣2,,0),∴=﹣2(a﹣2)﹣3(a﹣2)2=0,解得a=.【点评】本题主要考查空间直线和平面垂直的判定以及二面角的求解,建立坐标系利用向量法是解决空间角的常用方法.18.(13分)(2015?原题)已知函数f(x)=ln,(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求证,当x∈(0,1)时,f(x)>;(Ⅲ)设实数k使得f(x)对x∈(0,1)恒成立,求k的最大值.【分析】(1)利用函数的导数求在曲线上某点处的切线方程.(2)构造新函数利用函数的单调性证明命题成立.(3)对k进行讨论,利用新函数的单调性求参数k的取值范围.【解答】解答:(1)因为f(x)=ln(1+x)﹣ln(1﹣x)所以又因为f(0)=0,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=2x.(2)证明:令g(x)=f(x)﹣2(x+),则g'(x)=f'(x)﹣2(1+x2)=,因为g'(x)>0(0<x<1),所以g(x)在区间(0,1)上单调递增.所以g(x)>g(0)=0,x∈(0,1),即当x∈(0,1)时,f(x)>2(x+).(3)由(2)知,当k≤2时,f(x)>对x∈(0,1)恒成立.当k>2时,令h(x)=f(x)﹣,则h'(x)=f'(x)﹣k(1+x2)=,所以当时,h'(x)<0,因此h(x)在区间(0,)上单调递减.当时,h(x)<h(0)=0,即f(x)<.所以当k>2时,f(x)>并非对x∈(0,1)恒成立.综上所知,k的最大值为2.【点评】本题主要考查切线方程的求法及新函数的单调性的求解证明.在高考中属常考题型,难度适中.19.(14分)(2015?原题)已知椭圆C:+=1(a>b>0)的离心率为,点P(0,1)和点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.(Ⅰ)求椭圆C的方程,并求点M的坐标(用m,n表示);(Ⅱ)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标,若不存在,说明理由.【分析】(I)根据椭圆的几何性质得出求解即可.(II)求解得出M(,0),N(,0),运用图形得出tan∠OQM=tan∠ONQ,=,求解即可得出即y Q2=x M?x N,+n2,根据m,m的关系整体求解.【解答】解:(Ⅰ)由题意得出解得:a=,b=1,c=1∴+y2=1,∵P(0,1)和点A(m,n),﹣1<n<1∴PA的方程为:y﹣1=x,y=0时,x M=∴M(,0)(II)∵点B与点A关于x轴对称,点A(m,n)(m≠0)∴点B(m,﹣n)(m≠0)∵直线PB交x轴于点N,∴N(,0),∵存在点Q,使得∠OQM=∠ONQ,Q(0,y Q),∴tan∠OQM=tan∠ONQ,∴=,即y Q2=x M?x N,+n2=12==2,yQ∴y Q=,故y轴上存在点Q,使得∠OQM=∠ONQ,Q(0,)或Q(0,﹣)【点评】本题考查了直线圆锥曲线的方程,位置关系,数形结合的思想的运用,运用代数的方法求解几何问题,难度较大,属于难题.20.(13分)(2015?原题)已知数列{a n}满足:a1∈N*,a1≤36,且a n+1=(n=1,2,…),记集合M={a n|n∈N*}.(Ⅰ)若a1=6,写出集合M的所有元素;(Ⅱ)如集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数;(Ⅲ)求集合M的元素个数的最大值.【分析】(Ⅰ)a1=6,利用a n+1=可求得集合M的所有元素为6,12,24;(Ⅱ)因为集合M存在一个元素是3的倍数,所以不妨设a k是3的倍数,由a n+1=(n=1,2,…),可归纳证明对任意n≥k,a n是3的倍数;(Ⅲ)分a1是3的倍数与a1不是3的倍数讨论,即可求得集合M的元素个数的最大值.【解答】解:(Ⅰ)若a1=6,由于a n+1=(n=1,2,…),M={a n|n∈N*}.故集合M的所有元素为6,12,24;(Ⅱ)因为集合M存在一个元素是3的倍数,所以不妨设a k是3的倍数,由a n+1=(n=1,2,…),可归纳证明对任意n≥k,a n是3的倍数.如果k=1,M的所有元素都是3的倍数;如果k>1,因为a k=2a k﹣1,或a k=2a k﹣1﹣36,所以2a k﹣1是3的倍数;于是a k﹣1是3的倍数;类似可得,a k﹣2,…,a1都是3的倍数;从而对任意n≥1,a n是3的倍数;综上,若集合M存在一个元素是3的倍数,则集合M的所有元素都是3的倍数(Ⅲ)对a1≤36,a n=(n=1,2,…),可归纳证明对任意n≥k,a n<36(n=2,3,…)因为a1是正整数,a2=,所以a2是2的倍数.从而当n≥2时,a n是2的倍数.如果a1是3的倍数,由(Ⅱ)知,对所有正整数n,a n是3的倍数.因此当n≥3时,a n∈{12,24,36},这时M的元素个数不超过5.如果a1不是3的倍数,由(Ⅱ)知,对所有正整数n,a n不是3的倍数.因此当n≥3时,a n∈{4,8,16,20,28,32},这时M的元素个数不超过8.当a1=1时,M={1,2,4,8,16,20,28,32},有8个元素.综上可知,集合M的元素个数的最大值为8.【点评】本题考查数列递推关系的应用,突出考查分类讨论思想与等价转化思想及推理、运算能力,属于难题.参与本试卷答题和审题的老师有:changq;qiss;742048;wkl197822;sdpyqzh;刘长柏;whgcn;双曲线;沂蒙松;lincy;maths;雪狼王;wfy814(排名不分先后)菁优网2016年8月29日。
2015年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分1.(5分)(2015•新课标Ⅱ)已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2)D.(2,3)2.(5分)(2015•新课标Ⅱ)若为a实数,且=3+i,则a=()A.﹣4B.﹣3C.3D.43.(5分)(2015•新课标Ⅱ)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.(5分)(2015•新课标Ⅱ)=(1,﹣1),=(﹣1,2)则(2+)=()A.﹣1B.0C.1D.25.(5分)(2015•新课标Ⅱ)已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.116.(5分)(2015•新课标Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.7.(5分)(2015•新课标Ⅱ)已知三点A(1,0),B(0,),C(2,)则△ABC外接圆的圆心到原点的距离为()A.B.C.D.8.(5分)(2015•新课标Ⅱ)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0B.2C.4D.149.(5分)(2015•新课标Ⅱ)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.10.(5分)(2015•新课标Ⅱ)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π11.(5分)(2015•新课标Ⅱ)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.12.(5分)(2015•新课标Ⅱ)设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x ﹣1)成立的x的取值范围是()A.(﹣∞,)∪(1,+∞)B.(,1)C.()D.(﹣∞,﹣,)二、填空题13.(3分)(2015•新课标Ⅱ)已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=.14.(3分)(2015•新课标Ⅱ)若x,y满足约束条件,则z=2x+y的最大值为.15.(3分)(2015•新课标Ⅱ)已知双曲线过点且渐近线方程为y=±x,则该双曲线的标准方程是.16.(3分)(2015•新课标Ⅱ)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=.三.解答题17.(2015•新课标Ⅱ)△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC (Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.18.(2015•新课标Ⅱ)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100)频数2814106(1)做出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.19.(12分)(2015•新课标Ⅱ)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.20.(2015•新课标Ⅱ)椭圆C:=1,(a>b>0)的离心率,点(2,)在C 上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.21.(2015•新课标Ⅱ)设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.四、选修4-1:几何证明选讲22.(10分)(2015•新课标Ⅱ)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.五、选修4-4:坐标系与参数方程23.(10分)(2015•新课标Ⅱ)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.六、选修4-5不等式选讲24.(10分)(2015•新课标Ⅱ)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.2015年全国统一高考数学试卷(文科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分1.(5分)(2015•新课标Ⅱ)已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2)D.(2,3)【分析】根据集合的基本运算进行求解即可.【解答】解:∵A={x|﹣1<x<2},B={x|0<x<3},∴A∪B={x|﹣1<x<3},故选:A.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)(2015•新课标Ⅱ)若为a实数,且=3+i,则a=()A.﹣4B.﹣3C.3D.4【分析】根据复数相等的条件进行求解即可.【解答】解:由,得2+ai=(1+i)(3+i)=2+4i,则a=4,故选:D.【点评】本题主要考查复数相等的应用,比较基础.3.(5分)(2015•新课标Ⅱ)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【分析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.【解答】解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选:D.【点评】本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5分)(2015•新课标Ⅱ)=(1,﹣1),=(﹣1,2)则(2+)=()A.﹣1B.0C.1D.2【分析】利用向量的加法和数量积的坐标运算解答本题.【解答】解:因为=(1,﹣1),=(﹣1,2)则(2+)=(1,0)•(1,﹣1)=1;故选:C.【点评】本题考查了向量的加法和数量积的坐标运算;属于基础题目.5.(5分)(2015•新课标Ⅱ)已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.11【分析】由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3.再利用等差数列的前n项和公式即可得出.【解答】解:由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3=1.则S5==5a3=5.故选:A.【点评】本题考查了等差数列的通项公式及其性质、前n项和公式,考查了推理能力与计算能力,属于中档题.6.(5分)(2015•新课标Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5分)(2015•新课标Ⅱ)已知三点A(1,0),B(0,),C(2,)则△ABC外接圆的圆心到原点的距离为()A.B.C.D.【分析】利用外接圆的性质,求出圆心坐标,再根据圆心到原点的距离公式即可求出结论.【解答】解:因为△ABC外接圆的圆心在直线BC垂直平分线上,即直线x=1上,可设圆心P(1,p),由PA=PB得|p|=,得p=圆心坐标为P(1,),所以圆心到原点的距离|OP|===,故选:B.【点评】本题主要考查圆性质及△ABC外接圆的性质,了解性质并灵运用是解决本题的关键.8.(5分)(2015•新课标Ⅱ)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0B.2C.4D.14【分析】模拟执行程序框图,依次写出每次循环得到的a,b的值,当a=b=2时不满足条件a≠b,输出a的值为2.【解答】解:模拟执行程序框图,可得a=14,b=18满足条件a≠b,不满足条件a>b,b=4满足条件a≠b,满足条件a>b,a=10满足条件a≠b,满足条件a>b,a=6满足条件a≠b,满足条件a>b,a=2满足条件a≠b,不满足条件a>b,b=2不满足条件a≠b,输出a的值为2.故选:B.【点评】本题主要考查了循环结构程序框图,属于基础题.9.(5分)(2015•新课标Ⅱ)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵,a3a5=4(a4﹣1),∴=4,化为q3=8,解得q=2则a2==.故选:C.【点评】本题考查了等比数列的通项公式,属于基础题.10.(5分)(2015•新课标Ⅱ)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体=V C﹣AOB===36,故积最大,设球O的半径为R,此时V O﹣ABCR=6,则球O的表面积为4πR2=144π,故选:C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.11.(5分)(2015•新课标Ⅱ)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当0≤x≤时,BP=tan x,AP==,此时f(x)=+tan x,0≤x≤,此时单调递增,当P在CD边上运动时,≤x≤且x≠时,如图所示,tan∠POB=tan(π﹣∠POQ)=tan x=﹣tan∠POQ=﹣=﹣,∴OQ=﹣,∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,∴PA+PB=,当x=时,PA+PB=2,当P在AD边上运动时,≤x≤π,PA+PB=﹣tan x,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.12.(5分)(2015•新课标Ⅱ)设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x ﹣1)成立的x的取值范围是()A.(﹣∞,)∪(1,+∞)B.(,1)C.()D.(﹣∞,﹣,)【分析】根据函数的奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.【解答】解:∵函数f(x)=ln(1+|x|)﹣为偶函数,且在x≥0时,f(x)=ln(1+x)﹣,导数为f′(x)=+>0,即有函数f(x)在[0,+∞)单调递增,∴f(x)>f(2x﹣1)等价为f(|x|)>f(|2x﹣1|),即|x|>|2x﹣1|,平方得3x2﹣4x+1<0,解得:<x<1,所求x的取值范围是(,1).故选:B.【点评】本题主要考查函数奇偶性和单调性的应用,综合考查函数性质的综合应用,运用偶函数的性质是解题的关键.二、填空题13.(3分)(2015•新课标Ⅱ)已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=﹣2.【分析】f(x)是图象过点(﹣1,4),从而该点坐标满足函数f(x)解析式,从而将点(﹣1,4)带入函数f(x)解析式即可求出a.【解答】解:根据条件得:4=﹣a+2;∴a=﹣2.故答案为:﹣2.【点评】考查函数图象上的点的坐标和函数解析式的关系,考查学生的计算能力,比较基础.14.(3分)(2015•新课标Ⅱ)若x,y满足约束条件,则z=2x+y的最大值为8.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即A(3,2)将A(3,2)的坐标代入目标函数z=2x+y,得z=2×3+2=8.即z=2x+y的最大值为8.故答案为:8.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.15.(3分)(2015•新课标Ⅱ)已知双曲线过点且渐近线方程为y=±x,则该双曲线的标准方程是x2﹣y2=1.【分析】设双曲线方程为y2﹣x2=λ,代入点,求出λ,即可求出双曲线的标准方程.【解答】解:设双曲线方程为y2﹣x2=λ,代入点,可得3﹣=λ,∴λ=﹣1,∴双曲线的标准方程是x2﹣y2=1.故答案为:x2﹣y2=1.【点评】本题考查双曲线的标准方程,考查学生的计算能力,正确设出双曲线的方程是关键.16.(3分)(2015•新课标Ⅱ)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=8.【分析】求出y=x+lnx的导数,求得切线的斜率,可得切线方程,再由于切线与曲线y =ax2+(a+2)x+1相切,有且只有一切点,进而可联立切线与曲线方程,根据△=0得到a的值.【解答】解:y=x+lnx的导数为y′=1+,曲线y=x+lnx在x=1处的切线斜率为k=2,则曲线y=x+lnx在x=1处的切线方程为y﹣1=2x﹣2,即y=2x﹣1.由于切线与曲线y=ax2+(a+2)x+1相切,故y=ax2+(a+2)x+1可联立y=2x﹣1,得ax2+ax+2=0,又a≠0,两线相切有一切点,所以有△=a2﹣8a=0,解得a=8.故答案为:8.【点评】本题考查导数的运用:求切线方程,主要考查导数的几何意义:函数在某点处的导数即为曲线在该点处的导数,设出切线方程运用两线相切的性质是解题的关键.三.解答题17.(2015•新课标Ⅱ)△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC (Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.【分析】(Ⅰ)由题意画出图形,再由正弦定理结合内角平分线定理得答案;(Ⅱ)由∠C=180°﹣(∠BAC+∠B),两边取正弦后展开两角和的正弦,再结合(Ⅰ)中的结论得答案.【解答】解:(Ⅰ)如图,由正弦定理得:,∵AD平分∠BAC,BD=2DC,∴;(Ⅱ)∵∠C=180°﹣(∠BAC+∠B),∠BAC=60°,∴,由(Ⅰ)知2sin∠B=sin∠C,∴tan∠B=,即∠B=30°.【点评】本题考查了内角平分线的性质,考查了正弦定理的应用,是中档题.18.(2015•新课标Ⅱ)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100)频数2814106(1)做出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.【分析】(I)根据分布表的数据,画出频率直方图,求解即可.(II)计算得出∁A表示事件:“A地区用户的满意度等级为不满意”,∁B表示事件:“B地区用户的满意度等级为不满意”,P(∁A),P(∁B),即可判断不满意的情况.【解答】解:(Ⅰ)通过两个地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值,B地区的用户满意度评分的比较集中,而A地区的用户满意度评分的比较分散.(Ⅱ)A地区用户的满意度等级为不满意的概率大.记∁A表示事件:“A地区用户的满意度等级为不满意”,∁B表示事件:“B地区用户的满意度等级为不满意”,由直方图得P(∁A)=(0.01+0.02+0.03)×10=0.6得P(∁B)=(0.005+0.02)×10=0.25∴A地区用户的满意度等级为不满意的概率大.【点评】本题考查了频率直方图,频率表达运用,考查了阅读能力,属于中档题.19.(12分)(2015•新课标Ⅱ)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.【分析】(Ⅰ)利用平面与平面平行的性质,可在图中画出这个正方形;(Ⅱ)求出MH==6,AH=10,HB=6,即可求平面a把该长方体分成的两部分体积的比值.【解答】解:(Ⅰ)交线围成的正方形EFGH如图所示;(Ⅱ)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EFGH为正方形,所以EH=EF=BC=10,于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为.【点评】本题考查平面与平面平行的性质,考查学生的计算能力,比较基础.20.(2015•新课标Ⅱ)椭圆C:=1,(a>b>0)的离心率,点(2,)在C 上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.【分析】(1)利用椭圆的离心率,以及椭圆经过的点,求解椭圆的几何量,然后得到椭圆的方程.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),联立直线方程与椭圆方程,通过韦达定理求解K OM,然后推出直线OM的斜率与l的斜率的乘积为定值.【解答】解:(1)椭圆C:=1,(a>b>0)的离心率,点(2,)在C上,可得,,解得a2=8,b2=4,所求椭圆C方程为:.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),把直线y=kx+b代入可得(2k2+1)x2+4kbx+2b2﹣8=0,故x M==,y M=kx M+b=,于是在OM的斜率为:K OM==,即K OM•k=.∴直线OM的斜率与l的斜率的乘积为定值.【点评】本题考查椭圆方程的综合应用,椭圆的方程的求法,考查分析问题解决问题的能力.21.(2015•新课标Ⅱ)设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.【分析】(Ⅰ)先求导,再分类讨论,根据导数即可判断函数的单调性;(2)先求出函数的最大值,再构造函数(a)=lna+a﹣1,根据函数的单调性即可求出a 的范围.【解答】解:(Ⅰ)f(x)=lnx+a(1﹣x)的定义域为(0,+∞),∴f′(x)=﹣a=,若a≤0,则f′(x)>0,∴函数f(x)在(0,+∞)上单调递增,若a>0,则当x∈(0,)时,f′(x)>0,当x∈(,+∞)时,f′(x)<0,所以f(x)在(0,)上单调递增,在(,+∞)上单调递减,(Ⅱ),由(Ⅰ)知,当a≤0时,f(x)在(0,+∞)上无最大值;当a>0时,f(x)在x=取得最大值,最大值为f()=﹣lna+a﹣1,∵f()>2a﹣2,∴lna+a﹣1<0,令g(a)=lna+a﹣1,∵g(a)在(0,+∞)单调递增,g(1)=0,∴当0<a<1时,g(a)<0,当a>1时,g(a)>0,∴a的取值范围为(0,1).【点评】本题考查了导数与函数的单调性最值的关系,以及参数的取值范围,属于中档题.四、选修4-1:几何证明选讲22.(10分)(2015•新课标Ⅱ)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.【分析】(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;﹣S (2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC计算即可.△AEF【解答】(1)证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30°,∴△ABC与△AEF都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN=,∴OD=1,∴AD=5,AB=,∴四边形EBCF的面积为×﹣××=.【点评】本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.五、选修4-4:坐标系与参数方程23.(10分)(2015•新课标Ⅱ)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.【分析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把代入可得直角坐标方程.同理由C3:ρ=2cosθ.可得直角坐标方程,联立解出可得C2与C3交点的直角坐标.(2)由曲线C1的参数方程,消去参数t,化为普通方程:y=x tanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),利用|AB|=即可得出.【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2cosθ.可得直角坐标方程:,联立,解得,,∴C2与C3交点的直角坐标为(0,0),.(2)曲线C1:(t为参数,t≠0),化为普通方程:y=x tanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B都在C1上,∴A(2sinα,α),B.∴|AB|==4,当时,|AB|取得最大值4.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、曲线的交点、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.六、选修4-5不等式选讲24.(10分)(2015•新课标Ⅱ)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【分析】(1)运用不等式的性质,结合条件a,b,c,d均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.【点评】本题考查不等式的证明,主要考查不等式的性质的运用,同时考查充要条件的判断,属于基础题.。
全国卷历年高考不等式选讲真题归类分析(含答案)(2015年-2019年,共14题)说明:这类题难点在第2问,以下是根据此类题的第2问进行归类及分析.一、绝对值函数及不等式(9题) (一)一次函数(6题)1.(2016年1卷)已知函数f(x)=|x+1|-|2x-3|. (1)画出y=f(x)的图象.(2)求不等式|f(x)|>1的解集.【解析】(1)去绝对值得:f(x)=x 4,x 1,33x 2,1x ,234x,x ,2⎧⎪-≤-⎪⎪--<<⎨⎪⎪-≥⎪⎩所以,y=f(x)的图象如图右图所示:(2) 解法1:由|f(x)|>1,当x≤-1时,|x-4|>1,解得x>5或x<3,∴x≤-1.当-1<x<32时,|3x-2|>1,解得x>1或x<13,∴-1<x<13或1<x<32.当x≥32时,|4-x|>1,解得x>5或x<3,∴32≤x<3或x>5.综上,x<13或1<x<3或x>5,∴|f(x)|>1的解集为1∞,3⎛⎫- ⎪⎝⎭∪(1,3)∪(5,+∞).解法2:|f(x)|>1()()11>-<⇔x f x f 或,由3x-2=-1,得x=31; 由3x-2=1,得x=1;由4-x=1,得x=3;由4-x=-1,得x=5;由函数图象可知,|f(x)|>1的解集为1∞,3⎛⎫- ⎪⎝⎭∪(1,3)∪(5,+∞).2.(2018年3卷)设函数.(1)画出的图象; (2)当,,求的最小值.【解析】(1)去绝对值得:所以,的图象如图所示.(2)由(1)知,的图象与轴交点的纵坐标为,且各部分所在直线斜率的最大值为,故当且仅当且时,在成立,因此的最小值为.3.(2018年2卷)设函数.(1)当时,求不等式的解集;(2)若,求的取值范围.【解析】(1)当时,图象如图所示由2x+4=0,得x=-2;由-2x+6=0,得x=3;由图象知,的解集为.(2)等价于.而,故等价于.由可得或,所以的取值范围是.4.(2015年1卷)已知函数=|x+1|-2|x-a|,a>0.(1)当a=1时,求不等式f(x)>1的解集;(2)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围. 【解析】:(1)当a=1时,不等式f(x)>1化为|x+1|-2|x-1|>1,等价于11221xx x≤-⎧⎨--+->⎩或111221xx x-<<⎧⎨++->⎩或11221xx x≥⎧⎨+-+>⎩,解得223x<<,所以不等式f(x)>1的解集为2{|2}3x x<<.(2)由题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--≤≤⎨⎪-++>⎩, 所以函数()f x 的图象与x 轴围成的三角形的三个顶点分别为21(,0)3a A -, (21,0)B a +,(,+1)C a a ,所以△ABC 的面积为22(1)3a +. 由题设得22(1)3a +>6,解得2a >. 所以a 的取值范围为(2,+∞).5.(2016年3卷)已知函数f(x)=|2x-a|+a. (1)当a=2时,求不等式f(x)≤6的解集.(2)设函数g(x)=|2x-1|,当x ∈R 时,f(x)+g(x)≥3,求a 的取值范围.【解析】(1)当a=2时,f(x)= |2x-2| +2,解不等式|2x-2|+2≤6得-1≤x≤3. 因此f(x)≤6的解集为{}x 1x 3-≤≤.(2)当x ∈R 时,f(x)+g(x)=2x a - +a+12x -≥2x a 12x -+-+a=1a -+a, 所以当x ∈R 时,f(x)+g(x)≥3等价于1a -+a≥3, ① 当a 1时,①等价于 ≤1a 3,无解a -+≥当a 1时,①等价于 a 1a 3,解得a 2.>-+≥≥所以a 的取值范围是)2,∞.⎡+⎣ 6.(2018年1卷)已知.(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围.【解析】(1)当时,,即故不等式的解集为.(2)解法1:当时成立等价于当时成立,即111<-<-ax 成立. 若,则当时;若,由的解得,即()⎪⎭⎫⎝⎛⊆a 201,0,,所以,故.综上,的取值范围为.解法2:当时成立等价于当时成立,即111<-<-ax 成立.因为,所以xa 20<<,又因为时,2122=<x,所以.即的取值范围为.解法3:当时成立等价于当时成立,令()1-=ax x g ,若0=a ,()11<-=ax x g 不成立, 若0≠a ,由()1-=ax x g 图象特征知,则只需⎩⎨⎧≤≤1)1(1)0(g g ,即⎩⎨⎧≤-≤-11110a ,解之得.所以,的取值范围为.【小结】该类问题在近年高考中比较常见题型,第一问大多数是解绝对值不等式,常用的方法是“零点分段法”和“图象法”,从教学实践来看,“零点分段法”学生容易算错,而“图象法”通过数形结合,将不等式问题转化为方程及图象位置关系问题,比较直观,运算量小。
专练1.已知函数f (x )=|2x -1|+|x -2a |.(1)当a =1时,求f (x )≤3的解集;(2)当x ∈[1,2]时,f (x )≤3恒成立,求实数a 的取值范围.2.已知函数f (x )=|2x +1|+|2x -3|.(1)求不等式f (x )≤6的解集;(2)若关于x 的不等式f (x )<|a -1|的解集不是空集,求实数a 的取值范围.3.已知函数f (x )=|x +3|-|x -2|.(1)求不等式f (x )≥3的解集;(2)若f (x )≥|a -4|有解,求a 的取值范围.4.设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M .(1)证明:|13a +16b |<14;(2)比较|1-4ab |与2|a -b |的大小,并说明理由.5.设函数f (x )=|x -3|-|x +1|,x ∈R .(1)解不等式f (x )<-1;(2)设函数g (x )=|x +a |-4,且g (x )≤f (x )在x ∈[-2,2]上恒成立,求实数a 的取值范围.6.已知a >0,b >0,a +b =1,求证:(1)1a +1b +1ab ≥8;7.已知关于x 的不等式m -|x -2|≥1,其解集为[0,4].(1)求m 的值;(2)若a ,b 均为正实数,且满足a +b =m ,求a 2+b 2的最小值.8.已知a ,b 均为正数,且a +b =1,证明:(1)(ax +by )2≤ax 2+by 2;≥252.9.已知二次函数f (x )=x 2+ax +b (a ,b ∈R )的定义域为[-1,1],且|f (x )|的最大值为M .(1)证明:|1+b|≤M;(2)证明:M≥12.10.已知a,b,c为非零实数,且a2+b2+c2+1-m=0,1a2+4b2+9c2+1-2m=0.(1)求证:1a2+4b2+9c2≥36a2+b2+c2;(2)求实数m的取值范围.11.已知函数f(x)=m-|x-1|-|x-2|,m∈R,且f(x+1)≥0的解集为[0,1].(1)求m的值;(2)若a,b,c,x,y,z∈R,且x2+y2+z2=a2+b2+c2=m,求证:ax+by+cz≤1. 12.已知函数f(x)=|x-a|,其中a>1.(1)当a=2时,求不等式f(x)≥4-|x-4|的解集;(2)已知关于x的不等式|f(2x+a)-2f(x)|≤2的解集为{x|1≤x≤2},求a的值.13.设函数f(x)=|x+1a|+|x-a|(a>0).(1)证明:f(x)≥2;(2)若f(3)<5,求a的取值范围.14.设函数f(x)=2|x-1|+x-1,g(x)=16x2-8x+1.记f(x)≤1的解集为M,g(x)≤4的解集为N.(1)求M;(2)当x∈M∩N时,证明:x2f(x)+x[f(x)]2≤14.15.设不等式-2<|x-1|-|x+2|<0的解集为M,a,b∈M.(1)证明:|13a+16b|<14(2)比较|1-4ab|与2|a-b|的大小,并说明理由.16.已知函数f(x)=|x+1|+|x-3|,g(x)=a-|x-2|.(1)若关于x的不等式f(x)<g(x)有解,求实数a的取值范围;(2)若关于x的不等式f(x)<g(x)a+b的值.17.已知函数f(x)=|x-a|.(1)若对x∈[0,4]不等式f(x)≤3恒成立,求实数a的取值范围;(2)当a=2时,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.18.已知x,y∈R,m+n=7,f(x)=|x-1|-|x+1|.(1)解不等式f (x )≥(m +n )x ;(2)设max{a ,b },a ≥b ,,a <b ,求F =max{|x 2-4y +m |,|y 2-2x +n |}的最小值.19.已知x ,y ∈R .(1)若x ,y 满足|x -3y |<12,|x +2y |<16,求证:|x |<310;(2)求证:x 4+16y 4≥2x 3y +8xy 3.20.已知a ,b ,c ,m ,n ,p 都是实数,且a 2+b 2+c 2=1,m 2+n 2+p 2=1.(1)证明:|am +bn +cp |≤1;(2)若abc ≠0,证明:m 4a 2+n 4b 2+p 4c 2≥1.21.已知函数f (x )=|x -1|.(1)求不等式2f (x )-x ≥2的解集;(2)对∀x ∈R ,a ,b ,c ∈(0,+∞),求证:|x -1|-|x +5|≤1a 3+1b 3+1c 3+3abc .22.已知函数f (x )=4-|x |-|x -3|.(1)求不等式f 的解集;(2)若p ,q ,r 为正实数,且13p +12q +1r =4,求3p +2q +r 的最小值.23.设函数f (x )=|x +a |-|x -1-a |.(1)当a =1时,解不等式f (x )≥12;(2)若对任意a ∈[0,1],不等式f (x )≥b 的解集不为空集,求实数b 的取值范围.高考押题专练1.已知函数f (x )=|2x -1|+|x -2a |.(1)当a =1时,求f (x )≤3的解集;(2)当x ∈[1,2]时,f (x )≤3恒成立,求实数a 的取值范围.【解析】(1)当a =1时,由f (x )≤3,可得|2x -1|+|x -2|≤3,<12,-2x +2-x ≤3x <2,-1+2-x ≤3≥2,x -1+x -2≤3.解①得0≤x <12,解②得12≤x <2,解③得x =2.综上可得,0≤x ≤2,即不等式的解集为[0,2].(2)∵当x ∈[1,2]时,f (x )≤3恒成立,即|x -2a |≤3-|2x -1|=4-2x ,故2x -4≤2a -x ≤4-2x ,即3x -4≤2a ≤4-x .再根据3x -4在x ∈[1,2]上的最大值为6-4=2,4-x 的最小值为4-2=2,∴2a =2,∴a =1,即a 的取值范围为{1}.2.已知函数f (x )=|2x +1|+|2x -3|.(1)求不等式f (x )≤6的解集;(2)若关于x 的不等式f (x )<|a -1|的解集不是空集,求实数a 的取值范围.【解析】(1)原不等式等价于>32,2x +1)+(2x -3)≤6-12≤x ≤32,2x +1)-(2x -3)≤6或<-12,2x +1)-(2x -3)≤6,解得32<x ≤2或-12≤x ≤32或-1≤x <-12.∴原不等式的解集为{x |-1≤x ≤2}.(2)∵f (x )=|2x +1|+|2x -3|≥|(2x +1)-(2x -3)|=4,∴|a -1|>4,∴a <-3或a >5,∴实数a的取值范围为(-∞,-3)∪(5,+∞).3.已知函数f(x)=|x+3|-|x-2|.(1)求不等式f(x)≥3的解集;(2)若f(x)≥|a-4|有解,求a的取值范围.【解析】(1)f(x)=|x+3|-|x-2|≥3,当x≥2时,有x+3-(x-2)≥3,解得x≥2;当x≤-3时,-x-3+(x-2)≥3,解得x∈∅;当-3<x<2时,有2x+1≥3,解得1≤x<2.综上,f(x)≥3的解集为{x|x≥1}.(2)由绝对值不等式的性质可得,||x+3|-|x-2||≤|(x+3)-(x-2)|=5,则有-5≤|x+3|-|x-2|≤5.若f(x)≥|a-4|有解,则|a-4|≤5,解得-1≤a≤9.所以a的取值范围是[-1,9].4.设不等式-2<|x-1|-|x+2|<0的解集为M,a,b∈M.(1)证明:|13a+16b|<14;(2)比较|1-4ab|与2|a-b|的大小,并说明理由.【解析】(1)证明:记f(x)=|x-1|-|x+2|,x≤-2,2x-1,-2<x<1,3,x≥1.由-2<-2x-1<0,解得-12<x<12,则M-12,所以|13a+16b|≤13|a|+16|b|<13×12+16×12=14.(2)由(1)得a2<14,b2<14.因为|1-4ab|2-4|a-b|2=(1-8ab+16a2b2)-4(a2-2ab+b2)=(4a2-1)(4b2-1)>0,所以|1-4ab|2>4|a-b|2,故|1-4ab|>2|a-b|.5.设函数f(x)=|x-3|-|x+1|,x∈R.(1)解不等式f(x)<-1;(2)设函数g(x)=|x+a|-4,且g(x)≤f(x)在x∈[-2,2]上恒成立,求实数a的取值范围.【解析】(1)函数f(x)=|x-3|-|x+1|,x<-1-2x,-1≤x≤3,4,x>3,故由不等式f(x)<-1可得,x>3-2x<-1,1≤x≤3.解得x>32.(2)函数g(x)≤f(x)在x∈[-2,2]上恒成立,即|x+a|-4≤|x-3|-|x+1|在x∈[-2,2]上恒成立,在同一个坐标系中画出函数f(x)和g(x)的图象,如图所示.故当x∈[-2,2]时,若0≤-a≤4,则函数g(x)的图象在函数f(x)的图象的下方,g(x)≤f(x)在x∈[-2,2]上恒成立,求得-4≤a≤0,故所求的实数a的取值范围为[-4,0].6.已知a>0,b>0,a+b=1,求证:(1)1a+1b+1ab≥8;【解析】证明:(1)∵a+b=1,a>0,b>0,∴1a+1b+1ab=1a+1b+a+bab==4≥4ba ·ab+4=8(当且仅当a=b=12时,等号成立),∴1a+1b+1ab≥8.(2)=1a+1b+1ab+1,由(1)知1a+1b+1ab≥8.7.已知关于x的不等式m-|x-2|≥1,其解集为[0,4].(1)求m的值;(2)若a,b均为正实数,且满足a+b=m,求a2+b2的最小值.【解析】(1)不等式m-|x-2|≥1可化为|x-2|≤m-1,∴1-m≤x-2≤m-1,即3-m≤x≤m+1.∵其解集为[0,4]-m=0,+1=4,∴m=3.(2)由(1)知a+b=3,∵(a2+b2)(12+12)≥(a×1+b×1)2=(a+b)2=9,∴a2+b2≥92,∴a2+b2的最小值为92.8.已知a,b均为正数,且a+b=1,证明:(1)(ax+by)2≤ax2+by2;≥252.【解析】证明:(1)(ax+by)2-(ax2+by2)=a(a-1)x2+b(b-1)y2+2abxy,因为a+b=1,所以a-1=-b,b-1=-a.又a ,b 均为正数,所以a (a -1)x 2+b (b -1)y 2+2abxy=-ab (x 2+y 2-2xy )=-ab (x -y )2≤0,当且仅当x =y 时等号成立.所以(ax +by )2≤ax 2+by 2.=4+a 2+b 24+a 2+b 2+(a +b )2a 2+(a +b )2b 2=4+a 2+b 2+1+2b a +b 2a 2+a 2b 2+2a b +1=4+(a 2+b 2)+2++(a +b )22+2+4+2=252.当且仅当a =b 时等号成立.9.已知二次函数f (x )=x 2+ax +b (a ,b ∈R )的定义域为[-1,1],且|f (x )|的最大值为M .(1)证明:|1+b |≤M ;(2)证明:M ≥12.【解析】证明:(1)∵M ≥|f (-1)|=|1-a +b |,M ≥|f (1)|=|1+a +b |,∴2M ≥|1-a +b |+|1+a +b |≥|(1-a +b )+(1+a +b )|=2|1+b |,∴M ≥|1+b |.(2)依题意,M ≥|f (-1)|,M ≥|f (0)|,M ≥|f (1)|.又|f (-1)|=|1-a +b |,|f (1)|=|1+a +b |,|f (0)|=|b |.∴4M ≥|f (-1)|+2|f (0)|+|f (1)|=|1-a +b |+2|b |+|1+a +b |≥|(1-a +b )-2b +(1+a +b )|=2.∴M ≥12.10.已知a ,b ,c 为非零实数,且a 2+b 2+c 2+1-m =0,1a 2+4b 2+9c 2+1-2m =0.(1)求证:1a 2+4b 2+9c 2≥36a 2+b 2+c2;(2)求实数m 的取值范围.【解析】(1)证明:由柯西不等式得2(a 2+b 2+c 2a +2b ·b +3c·,2(a2+b2+c2)≥36.∴1a2+4b2+9c2≥36a2+b2+c2.(2)由已知得a2+b2+c2=m-1,1a2+4b2+9c2=2m-1,∴(m-1)(2m-1)≥36,即2m2-3m-35≥0,解得m≤-72或m≥5.又a2+b2+c2=m-1>0,1a2+4b2+9c2=2m-1>0,∴m≥5.即实数m的取值范围是[5,+∞).11.已知函数f(x)=m-|x-1|-|x-2|,m∈R,且f(x+1)≥0的解集为[0,1].(1)求m的值;(2)若a,b,c,x,y,z∈R,且x2+y2+z2=a2+b2+c2=m,求证:ax+by+cz≤1.【解析】(1)由f(x+1)≥0得|x|+|x-1|≤m.∵|x|+|x-1|≥1恒成立,∴若m<1,不等式|x|+|x-1|≤m的解集为∅,不合题意.若m≥1,①当x<0时,得x≥1-m2,则1-m2≤x<0;②当0≤x≤1时,得x+1-x≤m,即m≥1恒成立;③当x>1时,得x≤m+12,则1<x≤m+12.综上可知,不等式|x|+|x-1|≤m的解集为1-m2,m+12.由题意知,原不等式的解集为[0,1],0,1,解得m=1.(2)证明:∵x2+a2≥2ax,y2+b2≥2by,z2+c2≥2cz,三式相加,得x2+y2+z2+a2+b2+c2≥2ax+2by+2cz.由题设及(1),知x2+y2+z2=a2+b2+c2=m=1,∴2≥2(ax +by +cz ),即ax +by +cz ≤1,得证.12.已知函数f (x )=|x -a |,其中a >1.(1)当a =2时,求不等式f (x )≥4-|x -4|的解集;(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值.【解析】(1)当a =2时,f (x )+|x -4|=2x +6,x ≤2,,2<x <4,x +6,x ≥4.当x ≤2时,由f (x )≥4-|x -4|得-2x +6≥4,解得x ≤1;当2<x <4时,f (x )≥4-|x -4|无解;当x ≥4时,由f (x )≥4-|x -4|得2x -6≥4.解得x ≥5.所以f (x )≥4-|x -4|的解集为{x |x -1或x ≥5}.(2)记h (x )=f (2x +a )-2f (x ),则h (x )2a ,x ≤0,x -2a ,0<x <a ,a ,x ≥a .由|h (x )|≤2,解得a -12≤x ≤a +12.又已知|h (x )|≤2的解集为{x |1≤x ≤2}.1,2,∴a =3.13.设函数f (x )=|x +1a |+|x -a |(a >0).(1)证明:f (x )≥2;(2)若f (3)<5,求a 的取值范围.【解析】(1)证明:由a >0,有f (x )=|x +1a |+|x -a |≥|x +1a -x -a |=1a +a ≥2.所以f (x )≥2.(2)f (3)=|3+1a |+|3-a |.当a >3时,f (3)=a +1a ,由f (3)<5得3<a <5+212.当0<a ≤3时,f (3)=6-a +1a ,由f (3)<5得1+52<a ≤3.综上,a 14.设函数f (x )=2|x -1|+x -1,g (x )=16x 2-8x +1.记f (x )≤1的解集为M ,g (x )≤4的解集为N .(1)求M ;(2)当x ∈M ∩N 时,证明:x 2f (x )+x [f (x )]2≤14.【解析】(1)f (x )x -3,x ∈[1,+∞ ,-x ,x ∈-∞,1 .当x ≥1时,由f (x )=3x -3≤1得x ≤43,故1≤x ≤43;当x <1时,由f (x )=1-x ≤1得x ≥0,故0≤x <1.所以f (x )≤1的解集M ={x |0≤x ≤43}.(2)证明:由g (x )=16x 2-8x +1≤4得≤4,解得-14≤x ≤34,因此N ={x |-14≤x ≤324},故M ∩N ={x |0≤x ≤34}.当x ∈M ∩N 时,f (x )=1-x ,于是x 2f (x )+x ·[f (x )]2=xf (x )[x +f (x )]=xf (x )=x (1-x )=14-≤14.15.设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M .(1)证明:|13a +16b |<14(2)比较|1-4ab |与2|a -b |的大小,并说明理由.【解析】(1)证明:设f (x )=|x -1|-|x +2|,x ≤-12x -1,-1<x <13,x ≥1由-2<-2x -1<0,解得-12<x <12,则M -12,所以|13a +16b |≤13|a |+16|b |<13×12+16×12=14.(2)由(1)得a 2<14,b 2<14.因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2)=(4a 2-1)(4b 2-1)>0,所以|1-4ab |2>4|a -b |2,故|1-4ab |>2|a -b |.16.已知函数f (x )=|x +1|+|x -3|,g (x )=a -|x -2|.(1)若关于x 的不等式f (x )<g (x )有解,求实数a 的取值范围;(2)若关于x 的不等式f (x )<g (x )a +b 的值.【解析】(1)当x =2时,g (x )=a -|x -2|取得最大值a ,∵f (x )=|x +1|+|x -3|≥4,当且仅当-1≤x ≤3,f (x )取得最小值4,又∵关于x 的不等式f (x )<g (x )有解,∴a >4,即实数a 的取值范围是(4,+∞).(2)当x =72时,f (x )=5,则=-72+a +2=5,解得a =132,∴当x <2时,g (x )=x +92,令g (x )=x +92=4,得x =-12∈(-1,3),∴b =-12,则a +b =6.17.已知函数f (x )=|x -a |.(1)若对x ∈[0,4]不等式f (x )≤3恒成立,求实数a 的取值范围;(2)当a =2时,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.【解析】(1)由f (x )≤3,得|x -a |≤3,解得a -3≤x ≤a +3,∴不等式f (x )≤3的解集M =[a -3,a +3],根据题意知[0,4]⊆M -3≤0,+3≥4,∴1≤a ≤3.(2)当a =2时,f (x )=|x -2|,设g (x )=f (x )+f (x +5)=|x -2|+|x +3|.由|x -2|+|x +3|≥|(x -2)-(x +3)|=5(当且仅当-3≤x ≤2时等号成立),∴g (x )的最小值为5,因此,若g (x )=f (x )+f (x +5)≥m 对x ∈R 恒成立,则实数m 的取值范围是(-∞,5].18.已知x ,y ∈R ,m +n =7,f (x )=|x -1|-|x +1|.(1)解不等式f (x )≥(m +n )x ;(2)设max{a ,b },a ≥b ,,a <b ,求F =max{|x 2-4y +m |,|y 2-2x +n |}的最小值.【解析】(1)f (x )≥(m +n )x ⇔|x -1|-|x +1|≥7x ,当x ≤-1时,2≥7x ,恒成立,当-1<x <1时,-2x ≥7x ,即-1<x ≤0;当x ≥1时,-2≥7x ,即x ∈∅,综上可知,不等式的解集为{x |x ≤0}.(2)∵F ≥|x 2-4y +m |,F ≥|y 2-2x +n |,∴2F ≥|x 2-4y +m |+|y 2-2x +n |≥|(x -1)2+(y -2)2+m +n -5|=|(x -1)2+(y -2)2+2|≥2,∴F ≥1,F min =1.19.已知x ,y ∈R .(1)若x ,y 满足|x -3y |<12,|x +2y |<16,求证:|x |<310;(2)求证:x 4+16y 4≥2x 3y +8xy 3.【证明】(1)∵|5x |=|2(x -3y )+3(x +2y )|≤|2(x -3y )|+|3(x +2y )|<2×12+3×16=32,∴|x |<310.(2)∵x 4+16y 4-(2x 3y +8xy 3)=x 3(x -2y )-8y 3(x -2y )=(x -2y )(x 3-8y 3)=(x -2y )2(x 2+2xy +4y 2)=(x -2y )2[(x 2+2xy +y 2)+3y 2]≥0,∴x 4+16y 4≥2x 3y +8xy 3.20.已知a ,b ,c ,m ,n ,p 都是实数,且a 2+b 2+c 2=1,m 2+n 2+p 2=1.(1)证明:|am +bn +cp |≤1;(2)若abc ≠0,证明:m 4a 2+n 4b 2+p 4c 2≥1.【证明】(1)因为|am +bn +cp |≤|am |+|bn |+|cp |,a 2+b 2+c 2=1,m 2+n 2+p 2=1,所以|am |+|bn |+|cp |≤a 2+m 22+b 2+n 22+c 2+p 22=a 2+b 2+c 2+m 2+n 2+p 22=1,即|am +bn +cp |≤1.(2)因为a 2+b 2+c 2=1,m 2+n 2+p 2=1,所以m 4a 2+n 4b 2+p 4c 2+n 4b 2+a 2+b 2+c 2)a +n 2b ·b +p 2c ·=(m 2+n 2+p 2)2=1.所以m 4a 2+n 4b 2+p 4c 2≥1.21.已知函数f (x )=|x -1|.(1)求不等式2f (x )-x ≥2的解集;(2)对∀x ∈R ,a ,b ,c ∈(0,+∞),求证:|x -1|-|x +5|≤1a 3+1b 3+1c 3+3abc .(1)【解析】令g (x )=2f (x )-x =2|x -1|-x-2,x ≥1,3x +2,x <1,当x ≥1时,由x -2≥2,得x ≥4,当x <1时,由-3x +2≥2,得x ≤0,∴不等式的解集为(-∞,0]∪[4,+∞).(2)【证明】|x -1|-|x +5|≤|x -1-(x +5)|=6,又∵a ,b ,c >0,∴1a 3+1b 3+1c 3+3abc≥331a 3·1b 3·1c 3+3abc=3abc +3abc ≥23abc ·3abc =6,当且仅当a =b =c =1时取等号,∴|x -1|-|x +5|≤1a 3+1b 3+1c 3+3abc .22.已知函数f (x )=4-|x |-|x -3|.(1)求不等式f 的解集;(2)若p ,q ,r 为正实数,且13p +12q +1r =4,求3p +2q +r 的最小值.【解析】(1)f 4-|x +32|-|x -32|≥0,根据绝对值的几何意义,得|x +32|+|x -32|表示点(x,0)到-32,B 接下来找出到A ,B 距离之和为4的点.将点A 向左移动12个单位长度到点A 1(-2,0),这时有|A 1A |+|A 1B |=4;同理,将点B 向右移动12个单位长度到点B 1(2,0),这时有|B 1A |+|B 1B |=4.∴当x ∈[-2,2]时,|x +32|+|x -32|≤4,即f 的解集为[-2,2].(2)令a 1=3p ,a 2=2q ,a 3=r ,由柯西不等式,得a 21+a 22+a 23)a 1+1a 2·a 2+1a 3·+12q +p +2q +r )≥9,∵13p +12q +1r =4,∴3p +2q +r ≥94.上述不等式当且仅当13p =12q =1r =43,即p =14,q =38,r =34时取等号.∴3p +2q +r 的最小值为94.23.设函数f (x )=|x +a |-|x -1-a |.(1)当a =1时,解不等式f (x )≥12;(2)若对任意a ∈[0,1],不等式f (x )≥b 的解集不为空集,求实数b 的取值范围.【解析】(1)当a =1时,不等式f (x )≥12等价于|x +1|-|x |≥12,①当x ≤-1时,不等式化为-x -1+x ≥12,无解;②当-1<x <0时,不等式化为x +1+x ≥12,解得-14≤x <0;③当x ≥0时,不等式化为x +1-x ≥12,解得x ≥0.综上所述,不等式f (x )≥12的解集为-14,+(2)∵不等式f (x )≥b 的解集不为空集,∴b ≤f (x )max ,∵f (x )=|x +a |-|x -1-a |≤|x +a -x +1-a |=|a +1-a |=a +1-a ,当且仅当x ≥1-a 时取等号,∴f (x )max =a +1-a ,对任意a ∈[0,1],不等式f (x )≥b 的解集不为空集,∴b ≤[a +1-a ]min ,令g (a )=a +1-a ,∴g 2(a )=1+2a ·1-a =1+2a (1-a )=1+2∵当a ∈0,12时单调递增,a ∈12,1时单调递减,当且仅当a =0或a =1,g (a )min =1,∴b的取值范围为(-∞,1].。
不等式--历届高考真题一、单选题1.(2019·全国高考真题(文))记不等式组620x y x y +⎧⎨-≥⎩…表示的平面区域为D ,命题:(,),29p x y D x y ∃∈+…;命题:(,),212q x y D x y ∀∈+„.给出了四个命题:①p q ∨;②p q ⌝∨;③p q ∧⌝;④p q ⌝∧⌝,这四个命题中,所有真命题的编号是( ) A .①③B .①②C .②③D .③④2.(2012·全国高考真题(理))已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( ) A .7B .5C .5-D .7-3.(2017·全国高考真题(文))设x,y 满足约束条件{2x+3y −3≤02x −3y +3≥0y +3≥0 ,则z =2x +y 的最小值是( ) A .−15B .−9C .1D .94.(2018·天津高考真题(文))(2018年天津卷文)设变量x ,y 满足约束条件{x +y ≤5,2x −y ≤4,−x +y ≤1,y ≥0, 则目标函数z =3x +5y 的最大值为 A .6 B .19 C .21 D .455.(2018·全国高考真题(理))已知集合A ={x |x 2−x −2>0 },则∁R A = A .{x |−1<x <2 } B .{x |−1≤x ≤2 }C .{x|x <−1}∪ {x|x >2}D .{x|x ≤−1}∪ {x|x ≥2} 6.(2018·全国高考真题(理))设a =log 0.20.3,b =log 20.3,则 A .a +b <ab <0 B .ab <a +b <0 C .a +b <0<ab D .ab <0<a +b7.(2016·北京高考真题(理))袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( )A .乙盒中黑球不多于丙盒中黑球B .乙盒中红球与丙盒中黑球一样多C .乙盒中红球不多于丙盒中红球D .乙盒中黑球与丙盒中红球一样多8.(2017·浙江高考真题)若x,y 满足约束条件x 0{x+y-30 z 2x-2y 0x y ≥≥=+≤,则的取值范围是A .[0,6]B .[0,4]C .[6, +∞)D .[4, +∞)9.(2017·山东高考真题(理))若a>b>0,且ab=1,则下列不等式成立的是A .()21log 2a b a a b b +<<+ B . ()21log 2a b a b a b <+<+ C . ()21log 2a b a a b b +<+< D . ()21log 2a ba b a b +<+<10.(2017·山东高考真题(文))已知x ,y 满足约束条件250{302x y x y -+≤+≥≤,则z =x +2y 的最大值是A .-3B .-1C .1D .311.(2017·天津高考真题(理))已知函数()23,1,{ 2, 1.x x x f x x x x-+≤=+>设a R ∈,若关于x 的不等式()2xf x a ≥+在R 上恒成立,则a 的取值范围是 A .47,216⎡⎤-⎢⎥⎣⎦ B .4739,1616⎡⎤-⎢⎥⎣⎦ C.2⎡⎤-⎣⎦ D.3916⎡⎤-⎢⎥⎣⎦12.(2017·全国高考真题(文))设x ,y 满足约束条件{x +3y ≤3,x −y ≥1,y ≥0, 则z =x +y 的最大值为( )A .0B .1C .2D .313.(2015·上海高考真题(文))下列不等式中,与不等式解集相同的是( ). A .B .C .D .14.(2015·广东高考真题(文))若变量x ,y 满足约束条件22{04x y x y x +≤+≥≤,则23z x y=+的最大值为( ) A .10B .8C .5D .215.(2015·浙江高考真题(文))有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:2m )分别为x ,y ,z ,且x y z <<,三种颜色涂料的粉刷费用(单位:元/2m )分别为a ,b ,c ,且a b c <<.在不同的方案中,最低的总费用(单位:元)是( ) A .ax by cz ++B .az by cx ++C .ay bz cx ++D .ay bx cz ++16.(2015·湖南高考真题(文))某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工作的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积/原工件的体积)A .8π9B .827πC .24(√2−1)2πD .8(√2−1)2π17.(2015·安徽高考真题(文))已知x ,y 满足约束条件0{401x y x y y -≥+-≤≥,则的最大值是( ) A .-1B .-2C .-5D .118.(2015·湖南高考真题(文))若变量x ,y 满足约束条件{x +y ≥1y −x ≤1x ≤1 ,则z =2x −y 的最小值为( )A .−1B .0C .1D .219.(2015·湖南高考真题(理))某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(=新工件的体积材料利用率原工件的体积)( )A .89πB .169πC .31)πD .31)π20.(2015·四川高考真题(文)) 设实数x ,y 满足{2x +y ≤10x +2y ≤14x +y ≥6 ,则xy 的最大值为( ) A .252 B .492 C .12D .1421.(2015·重庆高考真题(文))若不等式组{x +y −2≤0x +2y −2≥0x −y +2m ≥0 ,表示的平面区域为三角形,且其面积等于43,则m 的值为( )A .-3B .1C .43 D .322.(2015·天津高考真题(文))设变量x,y 满足约束条件,则目标函数的最大值为( )A .7B .8C .9D .1423.(2015·天津高考真题(理))(2015天津,文2)设变量x,y 满足约束条件{x +2≥0x −y +3≥02x +y −3≤0 ,则目标函数z =x +6y 的最大值为( ) A .3B .4C .18D .4024.(2015·山东高考真题(理))已知x ,y 满足约束条件0,2,0,x y x y y -≥⎧⎪+≤⎨⎪≥⎩若z =ax +y 的最大值为4,则a = ( ) A .3 B .2 C .-2D .-325.(2015·福建高考真题(理))若变量x,y 满足约束条件{x +2y ≥0,x −y ≤0,x −2y +2≥0, 则z =2x −y的最小值等于 ( ) A .−52B .−2C .−32D .226.(2014·四川高考真题(理))已知F 是抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =2(其中O 为坐标原点),则ΔABO 与ΔAFO 面积之和的最小值是( )A .2B .3C .17√28D .√1027.(2014·全国高考真题(文))设x ,y 满足约束条件1x y ax y +≥⎧⎨-≤-⎩,且z x ay =+的最小值为7,则a =( ) A .5-B .3C .5-或3D .5或3-28.(2014·山东高考真题(理))已知 x y ,满足约束条件10{230x y x y --≤--≥,当目标函数()0? 0z ax by a b =+>>,在约束条件下取到最小值22a b +的最小值为( )A .5B .4 CD .229.(2014·北京高考真题(理))若x ,y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩,且z y x =-的最小值为4-,则k 的值为( ) A .2B .2-C .12D .12-30.(2014·重庆高考真题(文))若的最小值是A.B.C.D.31.(2011·广东高考真题(文))已知平面直角坐标系xOy上的区域D由不等式组给定.若M(x,y)为D上的动点,点A的坐标为,则z=•的最大值为()A.3 B.4 C.3D.4 32.(2011·湖北高考真题(文))(5分)(2011•湖北)直线2x+y﹣10=0与不等式组表示的平面区域的公共点有()A.0个B.1个C.2个D.无数个33.(2011·重庆高考真题(理))已知a>0,b>0,a+b=2,则的最小值是()A.B.4 C.D.5 34.(2011·重庆高考真题(文))(5分)(2011•重庆)若函数f(x)=x+(x>2),在x=a处取最小值,则a=()A.1+B.1+C.3 D.4 35.(2013·重庆高考真题(文))关于x的不等式x2﹣2ax﹣8a2<0(a>0)的解集为(x1,x2),且:x2﹣x1=15,则a=()A.B.C.D.36.(2011·湖北高考真题(理))已知向量=(x+z,3),=(2,y﹣z),且⊥,若x,y满足不等式|x|+|y|≤1,则z的取值范围为()A.[﹣2,2] B.[﹣2,3] C.[﹣3,2] D.[﹣3,3] 37.(2011·浙江高考真题(理))设实数x、y满足不等式组,若x、y为整数,则3x+4y的最小值是()A.14 B.16 C.17 D.1938.(2011·山东高考真题(文))设变量x ,y 满足约束条件,则目标函数z=2x+3y+1的最大值为( ) A .11B .10C .9D .8.539.(2012·广东高考真题(理))已知变量满足约束条件,则的最大值为( ) A .12B .11C .3D .-140.(2013·浙江高考真题(文))(2013•浙江)设a ,b ∈R ,定义运算“∧”和“∨”如下: a ∧b=a ∨b=若正数a 、b 、c 、d 满足ab≥4,c+d≤4,则( )A .a ∧b≥2,c ∧d≤2B .a ∧b≥2,c ∨d≥2C .a ∨b≥2,c ∧d≤2D .a ∨b≥2,c ∨d≥2 41.(2013·湖北高考真题(文))(2013•湖北)某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为( )A .31200元B .36000元C .36800元D .38400元42.(2010·安徽高考真题(文))设x,y 满足约束条件{2x +y −6≥0,x +2y −6≤0,y ≥0, 则目标函数z=x+y的最大值是A .3B .4C .6D .8 43.(2013·山东高考真题(文))设正实数满足,则当zxy取得最大值时,x +2y −z 的最大值为( ) A .0B .98C .2D .9444.(2013·山东高考真题(理))设正实数x,y,z 满足x 2−3xy +4y 2−z =0,则当取得最大值时,的最大值为( )A .0B .1C .D .345.(2013·全国高考真题(理))已知a >0,x ,y 满足约束条件1{3(3)x x y y a x ≥+≤≥-,若z=2x+y的最小值为1,则a= A .B .C .1D .246.(2013·安徽高考真题(理))已知一元二次不等式的解集为,则的解集为( )A .B .C .{x|lg 2x >-}D .{x|lg 2x <-}47.(2010·陕西高考真题(理))“a =18”是“对任意的正数x ,2x +ax ≥1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件48.(2010·天津高考真题(文))设变量x ,y 满足约束条件{x +y ≤3,x −y ≥−1,y ≥1, 则目标函数z=4x+2y 的最大值为A .12B .10C .8D .249.(2012·江西高考真题(理))某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为A .50,0B .30.0C .20,30D .0,5050.(2011·浙江高考真题(文))若实数x y 、满足不等式组250{2700,0x y x y x y +-≥+-≥≥≥,则34x y +的最小值是 A .13B .15C .20D .2851.(2010·重庆高考真题(理))已知x>0,y>0,x+2y+2xy=8,则x+2y 的最小值是 A .3B .4C .92D .11252.(2010·重庆高考真题(文))设变量满足约束条件则的最大值为A .0B .2C .4D .653.(2010·全国高考真题(文))已知Y ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在Y ABCD 的内部,则z=2x-5y 的取值范围是 A .(-14,16) B .(-14,20) C .(-12,18) D .(-12,20)54.(2010·浙江高考真题(理))若实数,x y 满足不等式330{23010x y x y x my +-≥--≥-+≥,且x y +的最大值为9,则实数m =( ) A .2-B .1-C .1D .255.(2010·福建高考真题(文))若1,,{230 x x y R x y y x≥∈-+≥≥,则2z x y =+的最小值等于( )A .2B .3C .5D .956.(2008·江西高考真题(文))若01x y <<<,则 A .33y x < B .log 3log 3x y <C .44log log x y <D .1144x y⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭57.(2008·福建高考真题(理))若实数x 、y 满足10,{0,x y x -+≤>则yx的取值范围是( ) A .(0,1)B .(]0,1C .(1,+∞)D .[)1,+∞58.(2008·湖北高考真题(理))函数f (x )=的定义域为A .(- ∞,-4)[∪2,+ ∞]B .(-4,0) ∪(0,1)C .[-4,0]∪(0,1)]D .[-4,0∪(0,1)59.(2008·广东高考真题(理))若变量,x y 满足则32z x y =+的最大值是 A .90B .80C .70D .4060.(2015·四川高考真题(理))如果函数f(x)=12(m −2)x 2+(n −8)x +1(m ≥0 ,n ≥0)在区间[12,2]上单调递减,则mn 的最大值为( ) A .16B .18C .25D .81261.(2014·湖北高考真题(理))由不等式组确定的平面区域记为,不等式组,确定的平面区域记为,在中随机取一点,则该点恰好在内的概率为( ) A .B .C .D .62.(2011·重庆高考真题(理))设m ,k 为整数,方程mx 2﹣kx+2=0在区间(0,1)内有两个不同的根,则m+k 的最小值为( )A .﹣8B .8C .12D .1363.(2010·北京高考真题(理))设不等式组{x +y −11≥03x −y +3≥05x −3y +9≤0 表示的平面区域为D ,若指数函数y=a x 的图像上存在区域D 上的点,则a 的取值范围是 A .(1,3] B .[2,3] C .(1,2] D .[ 3,+∞]64.(2011·全国高考真题(理))下面四个条件中,使a >b 成立的充分而不必要的条件是A .a >b +1B .a >b −1C .a 2>b 2D .a 3>b 365.(2007·辽宁高考真题(理))已知变量x y ,满足约束条件20170x y x x y -+⎧⎪⎨⎪+-⎩≤,≥,≤,则y x 的取值范围是( )A .965⎛⎫ ⎪⎝⎭,B .[)965⎛⎤-∞+∞ ⎥⎝⎦U ,,C .(][)36-∞+∞U ,,D .[36],66.(2009·天津高考真题(理))已知0<b<1+a ,若关于x 的不等式(x -b )2>(ax )2的解集中的整数恰有3个,则( ) A .-1<a<0 B .0<a<1 C .1<a<3 D .3<a<6二、填空题67.(2019·天津高考真题(文)) 设0x >,0y >,24x y +=,则(1)(21)x y xy++的最小值为__________.68.(2019·天津高考真题(理))设0,0,25x y x y >>+=最小值为______.69.(2018·浙江高考真题)若x,y 满足约束条件{x −y ≥0,2x +y ≤6,x +y ≥2, 则z =x +3y 的最小值是___________,最大值是___________.70.(2018·天津高考真题(文))已知,R a b ∈,且360a b -+=,则128ab +的最小值为_____________.71.(2018·全国高考真题(理))若x ,y 满足约束条件{x −2y −2≤0x −y +1≥0y ≤0 ,则z =3x +2y 的最大值为_____________.72.(2017·全国高考真题(理))已知实数,x y 满足0{20 0x y x y y -≥+-≤≥,则34z x y =-最小值为________.73.(2017·山东高考真题(理))已知,x y 满足30{350 30x y x y x -+≤++≤+≥,则2z x y =+的最大值是__________.74.(2017·全国高考真题(文))设函数10()20xx x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是____________.75.(2017·天津高考真题(理))若,a b R ∈,0ab >,则4441a b ab++的最小值为___________.76.(2017·江苏高考真题)76.(2017·江苏高考真题)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是__________.77.(2017·山东高考真题(文))若直线xa +yb =1(a >0,b >0)过点(1,2),则2a+b 的最小值为______.78.(2016·全国高考真题(文))若x,y 满足约束条件{2x −y +1≥0,x −2y −1≤0,x ≤1, 则z =2x +3y −5的最小值为_________.79.(2016·全国高考真题(文))若x ,y 满足约束条件{x −y +1≥0,x +y −3≥0,x −3≤0, 则z=x−2y 的最小值为__________.80.(2016·上海高考真题(文))设a >0,b >0. 若关于x,y 的方程组{ax +y =1,x +by =1无解,则a +b 的取值范围是 .81.(2016·江苏高考真题)已知实数x,y 满足{x −2y +4≥0,2x +y −2≥0,3x −y −3≤0,则x 2+y 2的取值范围是 .82.(2016·上海高考真题(理))设若关于x,y 的方程组{ax +y =1,x +by =1无解,则的取值范围是____________.83.(2015·浙江高考真题(文))已知实数x ,y 满足221x y +≤,则2463x y x y +-+--的最大值是 .84.(2015·山东高考真题(文))定义运算“⊗”:x ⊗y =x 2−y 2xy(x ,y ∈R,xy ≠0).当x >0,y >0时,x ⊗y +(2y)⊗x 的最小值是 .85.(2015·湖北高考真题(文))若变量x, y 满足约束条件{x +y ≤4,x −y ≤2,3x −y ≥0, 则3x +y 的最大值是_________.86.(2015·山东高考真题(文))若x,y 满足约束条件{y −x ≤1x +y ≤3y ≥1 ,则z =x +3y 的最大值为 .87.(2015·上海高考真题(文))若满足,则目标函数的最大值为 .88.(2015·全国高考真题(理))若x ,y 满足约束条件{x −1≥0,x −y ≤0,x +y −4≤0, 则yx 的最大值 .89.(2015·天津高考真题(文))已知a >0,b >0,ab =8,则当a 的值为 时log 2a ⋅log 2(2b)取得最大值.90.(2015·浙江高考真题(理))已知函数223,1(){lg(1),1x x f x x x x +-≥=+<,则((3))f f -= ,()f x 的最小值是 .91.(2014·四川高考真题(理))设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(),P x y ,则PA PB ⋅的最大值是 .92.(2014·陕西高考真题(文))设,且,则的最小值为______.93.(2014·全国高考真题(文))设函数113,1(){,1x e x f x x x -<=≥,则使得()2f x ≤成立的x的取值范围是_______________.94.(2014·湖北高考真题(文))某项研究表明,在考虑行车安全的情况下,某路段车流量(单位时间内测量点的车辆数,单位:辆/小时)与车流速度(假设车辆以相同速度行驶,单位:米/秒)平均车长(单位:米)的值有关,其公式为(1)如果不限定车型,,则最大车流量为_______辆/小时;(2)如果限定车型,,则最大车流量比(1)中的最大车流量增加 辆/小时.95.(2014·全国高考真题(理))设x,y 满足约束条件{x −y ≥0x +2y ≤3x −2y ≤1 ,则z =x +4y 的最大值为 .96.(2014·浙江高考真题(理))当实数,x y 满足240{101x y x y x +-≤--≤≥时,14ax y ≤+≤恒成立,则实数a 的取值范围是 .97.(2014·浙江高考真题(文))若、满足和240{101x y x y x +-≤--≤≥,则的取值范围是________.98.(2014·辽宁高考真题(文))对于0c >,当非零实数,a b 满足22420a ab b c -+-=且使2a b +最大时,124a b c++的最小值为________. 99.(2014·湖南高考真题(理))若变量满足约束条件,且的最小值为,则100.(2011·重庆高考真题(文))(5分)(2011•重庆)若实数a ,b ,c 满足2a +2b =2a+b ,2a +2b +2c =2a+b+c ,则c 的最大值是 .101.(2013·全国高考真题(文))若x y 、满足约束条件0,{34,34,x x y x y ≥+≥+≤则z x y =-+的最小值为 .102.(2013·广东高考真题(文))已知变量,x y 满足约束条件30{111x y x y -+≥-≤≤≥,则z x y=+的最大值是 .103.(2008·山东高考真题(理))若不等式的解集中的整数有且仅有1,2,3,则的取值范围是104.(2008·广东高考真题(理))(不等式选讲选做题)已知,a ∈R 若关于x 的方程2104x x a a ++-+=有实根,则a 的取值范围是 。
2019年新课标全国卷(1、2、3卷)理科数学备考宝典15.不等式选讲一、考试大纲1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:(1)a b a b +≤+ (2)a b a c c b -≤-+-(3)会利用绝对值的几何意义求解以下类型的不等式:ax b c +≤;ax b c +≥;x a x b c -+-≥2.了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明.(1)a b a b ⋅≥⋅;(2)22222()()()a b c d ac bd ++≥+;(3≥(此不等式通常称为平面三角不等式.) 3.会用参数配方法讨论柯西不等式的一般情形:222111()n nni ii i i i i a ba b ===⋅≥∑∑∑4.会用向量递归方法讨论排序不等式.5.了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题. 6.会用数学归纳法证明伯努利不等式:(1)1n x nx +>+ (1x >-,0x ≠,n 为大于1的正整数),了解当n 为大于1的实数时伯努利不等式也成立.7.会用上述不等式证明一些简单问题.能够利用平均值不等式、柯西不等式求一些特定函数的极值. 8.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.二、新课标全国卷命题分析不等式选讲部分主要以考查以考查绝对值不等式的解法为主,偶尔也考查不等式证明的方法,经常与函数结合,考查数形结合和转化与化归思想是,考查去绝对值的方法是试题变化中不变的规律,基本不等式是考查不等式证明方法的主要依据;在求解过程中考查绝对值三角不等式的灵活应用能力。
分析问题的方法是不等式证明的关键,关于不等式证明的方法,没有具体的知识点,只有方法要求,因此它的载体丰富多彩. 三、典型高考试题讲评题型1 绝对值不等式的解法与恒成立问题例1 (2018·新课标I 卷,23)已知()11f x x ax =+--.(I )当1a =时,求不等式()1f x >的解集;(II )若()0,1x ∈时不等式()f x x >成立,求a 的取值范围. 解析:(I )依题意,111x x +-->,该不等式等价于1,111,x x x <-⎧⎨--+->⎩11,111,x x x -≤≤⎧⎨++->⎩或1,111,x x x >⎧⎨+-+>⎩解得12x >,即等式()1f x >的解集为12x x ⎧⎫>⎨⎬⎩⎭; (II )依题意,11x ax x +-->;当()0,1x ∈时,该式化为 11x ax x +-->,即11ax -<,即111ax -<-<,即02ax <<,故0,2,ax ax >⎧⎨<⎩在()0,1上恒成立,故02a <≤,即a 的取值范围为(]0,2.【解题技巧】形如||||x a x b c -+-≥(或c ≤)型的不等式主要有两种解法:(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(,]a -∞,(,]a b ,(,)b +∞ (此处设a b <)三个部分,将每部分去掉绝对值号并分别列出对应的不等式求解,然后取各个不等式解集的并集;(2)图像法:作出函数1||||y x a x b =-+-和2y c =的图像,结合图像求解. 不等式的恒成立问题是高考的重难点,此类问题一般有两种解法: (1)利用函数思想转化为函数的最值问题进行分析;(2)通过数形结合构造出两个函数,通过寻找临界状态得到参数的取值范围.题型2 证明不等式例2 (2017·新课标Ⅱ,23)已知330,0,2a b a b >>+=,证明:(1)33()()4a b a b ++≥;(2)2a b +≤. 解析:(1)解法一:由柯西不等式得:55222222332()()))()4a b a b a b a b ⎡⎤⎡⎤++=+⋅+≥+=⎣⎦⎣⎦解法二:5566553325533()()()2a b a b a b ab a b a b ab a b a b ++=+++=+++-33233332()2()4a b a b a b ≥++=+=解法三:()()()()()2555533553342a b a b a b a b a b ab a b a b ++-=++-+=+-又0,0a b >>,所以()255332220ab a b a b ab a b+-=-≥.当a b =时,等号成立.所以,()()5540a b a b ++-≥,即55()()4a b a b ++≥.(2)解法一:由332a b +=及2()4a b ab +≤得2222()()()()3a b a b ab a b a b ab ⎡⎤=+⋅+-=+⋅+-⎣⎦2323()()()()44a b a b a b a b ⎡⎤++≥+⋅+-=⎢⎥⎣⎦所以2a b +≤.解法二:(反证法)假设2a b +>,则2a b >-,两边同时立方得:3323(2)8126a b b b b >-=-+-,即3328126a b b b +>-+,因为332a b +=,所以261260b b -+<,即26(1)0b -<,矛盾,所以假设不成立,即2a b +≤. 解法三:因为332a b +=,所以:()()()3333322333843344a b a b a b a a b ab b a b +-=+-+=+++--()()()()222333a b a b a b a b a b =-+-=-+-.又0,0a b >>,所以: ()()230a b a b -+-≤,所以,()38a b +≤,即2a b +≤.解法四:因为33113,113a a b b ++≥=++≥=,所以3311113()a b a b +++++≥+,即63()a b ≥+,即2a b +≤(当且仅当1a b ==时取等号). 【解题技巧】利用基本不等式证明不等式是综合法证明不等式的一种情况,证明思路是从已知不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理最后转化为需证问题,若不等式恒等变形之后与二次函数有关,可用配方法。
2015年高考数学真题分类汇编:专题(07)不等式(理科)及答案D轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现.2.【2015高考北京,理2】若x ,y 满足010x y x y x -⎧⎪+⎨⎪⎩≤,≤,≥,则2z x y=+的最大值为( )A .0B .1 C.32D .2 【答案】D【解析】如图,先画出可行域,由于2zx y =+,则1122y x z =-+,令0Z =,作直线12y x =-,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z 取得最小值2.考点定位:本题考点为线性规划的基本方法【名师点睛】本题考查线性规划解题的基本方法,本题属于基础题,要求依据二元一次不等式组准确画出可行域,利用线性目标函数中直线的纵截距的几何意义,令0z =,画出直线12yx =-,在可行域内平移该直线,确定何时z 取得最大值,找出此时相应的最优解,依据线性目标函数求出最值,这是最基础的线性规划问题.3.【2015高考广东,理6】若变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≥+2031854y x y x 则y x z 23+=的最小值为( )A .531 B. 6 C. 523D. 4【答案】C .【考点定位】二元一次不等式的线性规划.【名师点睛】本题主要考查学生利用二元一次不等式组所表示的平面区域解决线性规划的应用,数形结合思想的应用和运算求解能力,本题关键在于正确作出二元一次不等式组所表示的可行域和准确判断目标函数直线出取得最小值的可行解,属于容易题.4.【2015高考陕西,理9】设()ln ,0f x x a b =<<,若(p f ab =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是( )A .q r p =<B .q r p =>C .p r q =<D .p r q =>【答案】C 【解析】(p f ab ab ==()ln 22a b a b q f ++==,11(()())ln ln 22r f a f b ab ab =+==()ln f x x =在()0,+∞上单调递增,因为2a b ab +>,所以()(2a b f f ab +>,所以q p r >=,故选C .【考点定位】1、基本不等式;2、基本初等函数的单调性.【名师点晴】本题主要考查的是基本不等式和基本初等函数的单调性,属于容易题.解题时一定要注意检验在使用基本不等式求最值中是否能够取得等号,否则很容易出现错误.本题先判断2a b +ab 即可比较大小.5.【2015高考湖北,理10】设x ∈R ,[]x 表示不超过x 的最大整数. 若存在实数t ,使得[]1t =,2[]2t =,…,[]nt n = 同时成立....,则正整数n 的最大值是( )A .3B .4C .5D .6【答案】B【解析】因为[]x 表示不超过x 的最大整数.由1][=t 得21<≤t ,由2][2=t 得322<≤t,由3][4=t 得544<≤t ,所以522<≤t ,所以522<≤t ,由3][3=t 得433<≤t ,所以5465<≤t ,由5][5=t 得655<≤t ,与5465<≤t 矛盾,故正整数n 的最大值是4. 【考点定位】函数的值域,不等式的性质.【名师点睛】这类问题一般有两种:[]x 表示不超过x 的最大整数;{}x 表示不小于x 的最大整数. 应注意区别.6.【2015高考天津,理2】设变量,x y满足约束条件2030230xx yx y+≥⎧⎪-+≥⎨⎪+-≤⎩,则目标函数6z x y=+的最大值为( )(A)3 (B)4 (C)18 (D)40【答案】C【考点定位】线性规划.【名师点睛】本题主要考查线性规划与二元一次不等式的几何意义,将二元一次不等式(组)的几何意义与求线性目标函数的最值问题结合在一起,考查线性相关问题和数形结合的数学思想,同时考查学生的作图能力与运算能力.本题中不等式所表示的平面区域为不封闭区域,与平时教学中的练习题有出入,是易错问题.7.【2015高考陕西,理10】某企业生产甲、乙两种产品均需用A,B两种原料.已知生产1吨每种产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为()A.12万元B.16万元C.17万元 D.18万元甲乙原料限额A(吨)3212B(吨)128【答案】D【解析】设该企业每天生产甲、乙两种产品分别为x、y吨,则利润34z x y=+由题意可列321228x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,其表示如图阴影部分区域:当直线340x y z+-=过点(2,3)A时,z取得最大值,所以max 324318z=⨯+⨯=,故选D.【考点定位】线性规划.【名师点晴】本题主要考查的是线性规划,属于容易题.线性规划类问题的解题关键是先正确画出不等式组所表示的平面区域,然后确定目标函数的几何意义,通过数形结合确定目标函数何时取得最值.解题时要看清楚是求“最大值”还是求“最小值”,否则很容易出现错误;画不等式组所表示的平面区域时要通过特殊点验证,防止出现错误.8.【2015高考山东,理5】不等式152x x---<的解集是()(A)(-,4)(B)(-,1)(C)(1,4)(D)(1,5)【答案】A【解析】原不等式同解于如下三个不等式解集的并集;1155()()()152152152x x x I II III x x x x x x <≤<≥⎧⎧⎧⎨⎨⎨-+-<-+-<--+<⎩⎩⎩解(I )得:1x < ,解(II )得:14x ≤< ,解(III )得:x φ∈ , 所以,原不等式的解集为{}4x x < .故选A.【考点定位】含绝对值的不等式的解法.【名师点睛】本题考查了含绝对值的不等式的解法,重点考查学生利用绝对值的意义将含绝对值的不等式转化为不含绝对值的不等式(组)从而求解的能力,本题属中档题.9.【2015高考福建,理5】若变量,x y 满足约束条件20,0,220,x y x y x y +≥⎧⎪-≤⎨⎪-+≥⎩ 则2z x y =- 的最小值等于 ( )A .52-B .2-C .32- D .2值,解该类题目时候,往往还要将目标直线的斜率和可行域边界的斜率比较,否则很容易出错,属于基础题.10.【2015高考山东,理6】已知,x y 满足约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,若z ax y =+的最大值为4,则a = ( )(A )3 (B )2(C )-2 (D )-3【答案】B【解析】不等式组020x y x y y -≥⎧⎪+≤⎨⎪≥⎩ 在直角坐标系中所表示的平面区域如下图中的阴影部分所示,若z ax y =+的最大值为4,则最优解可能为1,1x y == 或2,0x y == ,经检验,2,0x y ==是最优解,此时2a = ;1,1x y ==不是最优解.故选B.【考点定位】简单的线性规划问题.【名师点睛】本题考查了简单的线性规划问题,通过确定参数a 的值,考查学生对线性规划的方法理解的深度以及应用的灵活性,意在考查学生利用线性规划的知识分析解决问题的能力.11.【2015高考新课标1,理15】若,x y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则y x 的最大值为 .【答案】3【解析】作出可行域如图中阴影部分所示,由斜率的意义知,y x 是可行域内一点与原点连线的斜率,由图可知,点A (1,3)与原点连线的斜率最大,故y的最大值为3.x【考点定位】线性规划解法【名师点睛】对线性规划问题,先作出可行域,在作出目标函数,利用z的几何意义,结合可行域即可找出取最值的点,通过解方程组即可求出做最优解,代入目标函数,求出最值,要熟悉相关公式,确定目标函数的意义是解决最优化问题的关键,目标函数常有距离型、直线型和斜率型.12.【2015高考浙江,理14】若实数,x y满足221+≤,x y则2263+-+--的最小值是.x y x y【答案】3.【考点定位】1.线性规划的运用;2.分类讨论的数学思想;3.直线与圆的位置关系【名师点睛】本题主要考查了以线性规划为背景的运用,属于中档题根据可行域是圆及其内部的特点,结合直线与圆的位置关系的判定,首先可以将目标函数的两个绝对值号中去掉一个,再利用分类讨论的数学思想去掉其中一个绝对值号,利用线性规划知识求解,理科试卷的线性规划问题基本考查含参的线性规划问题或者是利用线性规划的知识解决一些非线性的目标函数或可行域的问题,常需考查目标函数或可行域的几何意义求解,在复习时应予以关注.13.【2015高考新课标2,理14】若x ,y 满足约束条件1020,220,x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,,则z x y =+的最大值为____________. 【答案】32【解析】画出可行域,如图所示,将目标函数变形为y x z =-+,当z 取到最大时,直线y x z =-+的纵截距最大,故将直线尽可能地向上平移到1(1,)2D ,则z x y =+的最大值为32. 【考点定位】线性规划.x y –1–2–3–41234–1–2–3–41234D CB O【名师点睛】本题考查线性规划,要正确作图,首先要对目标函数进行分析,什么时候目标函数取到最大值,解该类题目时候,往往还要将目标直线的斜率和可行域边界的斜率比较,否则很容易出错,属于基础题.14.【2015高考江苏,7】不等式224x x -<的解集为________.【答案】(1,2).-【解析】由题意得:2212x x x -<⇒-<<,解集为(1,2).-【考点定位】解指数不等式与一元二次不等式【名师点晴】指数不等式按指数与1的大小判断其单调性,决定其不等号是否变号;对于一元二次方程20(0)ax bx c a ++=>的解集,先研究ac b 42-=∆,按照0>∆,0=∆,0<∆三种情况分别处理,具体可结合二次函数图像直观写出解集.15.【2015高考湖南,理4】若变量x ,y 满足约束条件1211x yx yy+≥-⎧⎪-≤⎨⎪≤⎩,则3z x y=-的最小值为()A.-7B.-1C.1D.2【答案】A.【解析】如下图所示,画出线性约束条件所表示的区域,即可行域,作直线l:30x y-=,平移l,从而可知当2-=x,1=y时,min 3(2)17z=⨯--=-的最小值是7-,故选A.【考点定位】线性规划.【名师点睛】本题主要考查了利用线性规划求线性目标函数的最值,属于容易题,在画可行域时,首先必须找准可行域的范围,其次要注意目标函数对应的直线斜率的大小,从而确定目标函数取到最优解时所经过的点,切忌随手一画导致错解.【2015高考上海,理17】记方程①:2110xa x ++=,方程②:2220xa x ++=,方程③:2340x a x ++=,其中1a ,2a ,3a 是正实数.当1a ,2a ,3a 成等比数列时,下列选项中,能推出方程③无实根的是( )A .方程①有实根,且②有实根B .方程①有实根,且②无实根C .方程①无实根,且②有实根D .方程①无实根,且②无实根【答案】B【考点定位】不等式性质【名师点睛】不等式的基本性质:同向同正可乘性00a b ac bd c d >>⎧⇒>⎨>>⎩,可推:00a b a b c d d c >>⎧⇒>⎨>>⎩一元二次方程有解的充要性:0∆≥;一元二次方程无解的充要性:0∆<;利用不等式性质可以求某些代数式的取值范围,但应注意两点:一是必须严格运用不等式的性质;二是在多次运用不等式的性质时有可能扩大了变量的取值范围.解决的途径是先建立所求范围的整体与已知范围的整体的等量关系,最后通过“一次性”不等关系的运算求解范围.。
2015-2019高考数学全国卷真题(不等式选讲)
2019-3-23.设,,,x y z R ∈且1x y z +
+=. (1)求()()()222111x y z -++++的最小值;
(2)()()()2221213x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-.
2019-2-23.已知()|||2|().f x x a x x x a =-+--
(1)当1a =时,求不等式()0f x <的解集;
(2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围.
2019-1-23.已知a ,b ,c 为正数,且满足1=abc .证明: (1)22211
1
a b c a b c ++≤++;
(2)333()()()24a b b c c a +++≥++.
2018-3-23.已知函数()211f x x x =++-.
(1)画出()y f x =的图像;
(2)当[)0,x ∈+∞时,()f x ax b ≤+,求a b +的最小值.
2018-2-23.设函数()5|||2|f x x a x =-+--.
(1)当1a =时,求不等式()0f x ≥的解集;
(2)若()1f x ≤,求a 的取值范围.
2018-1-23.已知()|1||1|f x x ax =+--.
(1)当1a =时,求不等式()1f x >的解集;
(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范.
2017-3-23.已知函数21)(--+=x x x f .
(1)求不等式1)(≥x f 的解集;
(2)若不等式m x x x f +-≥2)(的解集非空,求m 的取值范围.
2017-2-23.已知20033=+b a b a ,>,>.证明:
(1)4))((55≥++b a b a ;
(2)2≤+b a .
2017-1-23.已知函数()()2411f x x ax g x x x =-++=++-,. (1)当1a =时,求不等式()()f x g x ≥的解集;
(2)若不等式()()f x g x ≥的解集包含[]11-,
,求a 的取值范围.
2016-3-23.已知函数()2f x x a a =-+.
(1)当2=a 时,求不等式()6f x ≤的解集;
(2)设函数()21g x x =-. 当x R ∈时,()()3f x g x +≥,求a 的取值范围。
2016-2-23.已知函数()1122
f x x x =-
++,M 为不等式()2f x <的解集. (I )求M ;
(II )证明:当a ,b M ∈时,1a b ab +<+.
2016-1-23.已知函数()123f x x x =+--.
(I )画出()y f x =的图像;
(II )求不等式()1f x >的解集.
2015-2-23.设d c b a 、、、均为正数,且d c b a +=+,证明: (I )若ab >cd ,则d c b a ++>;
(II )d c b a ++>是d c b a --<的充要条件.
2015-1-23.已知函数0,21)(>a a x x x f --+=. (Ⅰ)当1=a 时,求不等式1)(>
x f 的解集; (Ⅱ)若)(x f 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.。