人教版七年级数字上册:4.2《直线、射线、线段》基础巩固题及答案
- 格式:docx
- 大小:58.82 KB
- 文档页数:8
人教版七年级数学上册《4.2直线、射线、线段》练习-带参考答案一、单选题1.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释正确的是()A.线段可以比较大小B.线段有两个端点C.两点之间线段最短D.过两点有且只有一条直线2.M、N两点的距离是20厘米,有一点P,如果PM+PN=30厘米,那么下面结论正确的是 ( ) A.点P必在线段MN上B.点P必在直线MN外C.点P必在直线MN上D.点P可能在直线MN上,也可能在直线 MN外3.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm4.如图,在数轴上,点A、B分别表示a、b,且,若,则点A表示的数为()A.B.0 C.3 D.5.杭衢高铁线上,要保证衢州、金华、义乌、诸暨、杭州每两个城市之间都有高铁可乘,需要印制不同的火车票()A.20种B.15种C.10种D.5种6.如图,点A、B在数轴上所表示的数分别是2和5,若点C与A、B在同一条数轴上且AC-AB=m(m >0),则点C所表示的数为()A.B.C.或D.或7.已知数轴上的三点A,B,C所对应的数a,b,c满足,和,那么线段AB与BC的大小关系是()A.B.C.D.不能确定8.数轴上,点对应的数是,点对应的数是,点对应的数是0.动点、从、同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是()A.B.C.D.二、填空题9.一条直线上有n个不同的点,则该直线上共有线段条.10.已知线段AB=3cm,点C在直线AB上,AC= AB,则BC的长为.11.数轴上,如果点 A所表示的数是 ,已知到点A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是.12.如图,点C,D为线段AB上两点,AC+BD=a,若AD+BC= AB,用含a代数式表示CD的长为.13.体育课上,小聪、小明、小智、小慧分别在点O处进行了一次铅球试投,若铅球分别落在图中的点A,B,C,D处,则他们四人中,成绩最好的是三、解答题14.已知,点A、B、C在同一直线上,且,点、分别是线段、的中点,求线段的长.15.如图,C,D两点将线段AB分成2:3:4三部分,E为线段AB的中点,AD=10cm.求:(1)线段AB的长;(2)线段DE的长.16.如图,点C在线段AB上,点M,N分别是AC,BC的中点.(1)若AC=24cm,CB=16cm,求线段MN的长.(2)若C为线段AB上任一点,且满足AC+BC=x(cm),其他条件不变,你能猜想MN的长度吗?请说明理由.(3)若点C在线段AB的延长线上,且满足AC﹣BC=y(cm),点M,N分别为AC,BC的中点,请画出图形,并求MN的长度.17.我们知道,若有理数、表示在数轴上得到点、且,则点点与点之间的距离为,现已知数轴上三点A、B、C,其中A表示的数为,B表示的数为3,C与A的距离等于m,C与B的距离等于n,请解答下列问题:(1)若点C在数轴上表示的数为,求的值(2)若,请你写出点C表示的数。
人教版七年级数学(上)第四章《几何图形初步》4.2直线、射线、线段同步练习题学校:___________姓名:___________班级:___________得分:___________一、选择题(本大题共10小题,共30分)1.有下列说法:①过两点有且只有一条直线;②连接两点的线段叫做两点间的距离;③若点B是线段AC 的中点,则AB=BC;④若AB=BC,则点B是线段AC的中点.其中正确的结论有()。
A.1个B.2个C.3个D.4个2.如图,下列说法中错误的是()。
A.图中共有6条线段B.线段AB与线段AC是指同一条线段C.线段AB与线段BA是指同一条线段D.点B在直线AC上3.下列说法中,正确的是()。
A.延长直线ABB.已知线段AB,作线段CD=ABC.延长线段AB到点C,使AC=BCD.画直线AB=5cm4.点B在线段AC上,AB=5,BC=3,则A,C两点间的距离是 ( )。
A.8B.2C.4D.无法确定5.按下列长度,A,B,C不在同一直线上的是 ( )。
A.AB=4,BC=7,AC=11B.AB=7,BC=24,AC=17C.AB=4,BC=5,AC=8D.AB=17,BC=11,AC=66.如图,点A,B,C是直线l上的三个点,图中共有线段 ( )。
A.1条B.2条C.3条D.4条7.把一条弯曲的公路改成直道,可以缩短路程,用几何知识解释其道理正确的是()。
A.两点确定一条直线B.两点之间,直线最短C.两点之间,线段最短D.两点之间,射线最短8.如图,AB=8cm,AD=BC=5cm,则CD等于()。
A.1cmB.2cmC.3cmD.4cm9.如图,若射线AB上有一点C,下列与射线AB是同一条射线的是()。
A.射线BAB.射线ACC.射线BCD.射线CB10.已知线段AB,延长线段AB至点C,使BC=3AB,取BC中点D,则()。
A.AD=CDB.AD=BCC.DC=2ABD.AB︰BD=2︰3二、填空题(本大题共5小题,共15分)11.如图,点A,B,C,D在同一条直线上,则图中共有线段______条;直线有_____条;射线有______条。
4.2 直线射线线段2一、单选题1.已知线段AB=5,C是直线AB上一点,BC=2,则线段AC长为( )A.3 B.7 C.3或7 D.以上都不对2.A,B,C三个车站在东西方向笔直的一条公路上,现要建一个加油站使其到三个车站的距离和最小,则加油站应建在( )A.在A的左侧B.在AB之间C.在BC之间D.B处3.如果线段AB=5cm,BC=4cm,且A、B、C在同一条直线上,那么A、C两点的距离是( )A.1cm B.9cmC.1cm或9cm D.以上答案都不正确4.如果一条直线上得到10条不同的线段,那么在这条直线上至少有点( )A.20个B.10个C.7个D.5个5.下列说法错误的是( )A.两点之间的所有连线中,线段最短B.经过一点有且只有一条直线与已知直线平行C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.经过一点有且只有一条直线与已知直线垂直6.在图中,线段的条数为( )A.9B.10 C.13D.157.如图,C是AB的中点,D是BC的中点,则下列等式不成立的是()A . CD =AD-ACB . CD =AB -BDC . CD =AB D . CD=AB 2141318.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A . 171B . 190C . 210D . 3809.如图,从A 地到B 地有多条道路,一般地,为了省时人们会走中间的一条直路而不会走其它的路,其理由是( )A . 两点确定一条直线B . 垂线段最短C . 两点之间,线段最短D . 两点之间,直线最短 10.如图所示的图形表示正确的有( )A . 3个B . 4个C . 5个D . 6个11.下列说法:①两点之间的所有连线中,线段最短;②在数轴上与表示﹣1的点距离是3的点表示的数是2;③连接两点的线段叫做两点间的距离;④射线AB 和射线BA 是同一条射线;⑤若AC=BC ,则点C 是线段AB 的中点;⑥一条射线把一个角分成两个相等的角,这条射线是这个角的平分线,其中错误的有( )A . 2个B . 3个C . 4个D . 5个二、填空题12.点C 在线段AB 上,下列条件中:①AC=BC②AC=2AB③AB=2BC④AC=0.5AB。
4.2 直线、射线、线段课后训练(基础巩固+能力提升)基础巩固1.如图所示,下列说法正确的是( ).A.直线OM与直线MN是同一条直线B.射线MO与射线MN是同一条射线C.射线OM与射线MN是同一条射线D.射线NO与射线MO是同一条射线2.下列说法正确的是( ).A.两点确定两条直线B.三点确定一条直线C.过一点只能作一条直线D.过一点可以作无数条直线3.M是线段AB上的一点,其中不能判定点M是线段AB中点的是( ).A.AM+BM=AB B.AM=BMC.AB=2BM D.AM=12 AB4.A,B两点的距离是( ).A.连接A,B两点的线段B.连接A,B两点的线段的长度C.过A,B两点的直线D.过A,B两点的线段5.若点B在线段AC上,AB=10 cm,BC=6 cm,则A,C两点的距离是( ).A.4 cm B.16 cmC.4 cm或16 cm D.不能确定6.如图所示,由A到B有(1),(2),(3)三条路线,最短的路线选(1)的理由是( ).A.因为它直B.两点确定一条直线C.两点间距离的定义D.两点之间,线段最短能力提升7.如图所示,AB=CD,则AC与BD的大小关系是( ).A.AC>BD B.AC<BDC.AC=BD D.无法确定8.C是线段AB的中点,D是线段BC上一点,则下列说法不正确的是( ).A.CD=AC-BD B.CD=12AB-BDC.CD=AD-BC D.CD=12 BC9.点C是线段AB延长线上的一点,点D是线段AB的中点,如果点B恰好是DC的中点,设AB=2 cm,则AC=__________cm.10.如图,AC=CD=DE=EB,图中和线段AD长度相等的线段是__________.以D为中点的线段是__________.11.已知线段AB=7 cm,在直线AB上画线段BC=1 cm,那么线段AC=________.12.有条小河l,点A,B表示在河两岸的两个村庄,现在要建造一座小桥,请你找出造桥的位置,使得到A,B两村的路程最短,并说明理由.13.如图所示,已知线段AB=80厘米,M为AB的中点,P在MB上,N为PB 的中点,且NB=14厘米,求PM的长.参考答案1答案:A 点拨:射线只有端点相同,在同一条线上才相同,因此B、C、D都不正确.故选A.2答案:D 点拨:过一点可以作无数条直线正确,故选D.3答案:A 点拨:A不能判定,并且A中点M的位置都不确定.4答案:B 点拨:距离是线段的长度,不是线段,所以B正确,故选B.5答案:B 点拨:因为点B在线段AC上,所以只有一点,AC=AB+BC=16(cm).故选B.6答案:D7答案:C 点拨:因为AB=CD,所以AB+BC=CD+BC,即AC=BD.8答案:D 点拨:如图所示:CD=BC-BD=AC-BD=12AB-BD,CD=AD-AC=AD-BC,所以A、B、C都正确,因为D不是BC的中点,所以CD≠12 BC,故选D.9答案:3 点拨:B恰好是DC的中点,D是AB的中点,所以AD=DB,DB=BC,所以AD=DB=BC=12AB=1(cm),所以AC=3 cm.10答案:DB,CE AB,CE点拨:AD=2AC,只要是2段基本线段的和的线段都与AD的长度相等.11答案:6 cm或8 cm 点拨:两种情况如图:AC=AB-BC=7-1=6(cm);AC=AB+BC=7+1=8(cm).12解:如图:过点A,B作线段AB,与直线l的交点P为所求的点,因为两点之间,线段最短.点拨:由“两点之间,线段最短”可知,到A,B两村的路程最短的点在AB 上任一点都可,这点还要在直线l上,所以就是AB与l的交点.13解:∵N是BP中点,M是AB中点,∴PB=2NB=2×14=28(厘米),∵AM=MB=12AB=12×80=40(厘米),∴MP=MB-PB=40-28=12(厘米).答:PM的长为12厘米.点拨:根据NB=14厘米,N为PB的中点,求出PB,再根据AB=80厘米,M 为AB的中点,求出MB,由MP=MB-PB,求出PM.。
人教版七年级数学上册《4.2直线、射线、线段》同步练习题-含有答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列直线、射线、线段中,能相交的是()A.B.C.D.2.任意画三条不重合的直线,交点的个数是()A.1B.1或3C.0或1或2或3D.不能确定3.如图,用适当的语句表述图中点与直线的关系,错误..的是()A.点P在直线AB外B.点C在直线AB外C.直线AC不经过点M D.直线AC经过点B4.晚上,小明拿起手电筒射向远方,他发现电筒光线是一条()A.线段B.射线C.直线D.不能确定5.如图,下列不正确的说法是()A.直线AB与直线BA是同一条直线;B.射线OA与射线AB是同一条射线C.线段AB与线段BA是同一条线段;D.射线OA与射线OB是同一条射线6.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间,线段最短C.过一点有无数条直线D.线段是直线的一部分7.已知:A、B、C是同一直线上的三点,点D为AB的中点,若12AB=,BC=7,则CD的长为()A.1B.13C.13或1D.9.531二、填空题三、解答题15.如图,点C在线段上,,AC=12,点M,N分别是,的中点,点P在线段上,点Q为的中点.(1)分别求出、的长度;(2)若,求的长度.16.如图,点A,C,N,B在同一条直线上.(1)图中共有______条线段;(2)AB=______+______+______;(3)若点N是线段BC的中点,35cm=求线段AN的长.AB=,3AC CN参考答案:1.A2.C3.B4.B5.B6.A7.C8.D9.C10.2 直线上直线外直线外直线上11.312.AB13.314.3或1315.(1)CN=9 MN=6(2)AP=616.(1)6 (2)AC,CN,NB (3)28cm。
4.2直线、射线、线段第1课时直线、射线、线段1.可近似看作直线的是()A.绷紧的琴弦B.探照灯射出的光线C.孙悟空的金箍棒D.太阳光线2.下列对于如图所示直线的表示,其中正确的是()①直线A;②直线b;③直线AB;④直线Ab;⑤直线Bb.A.①③B.②③C.③④D.②⑤3.下列说法中,正确的是()A.点A在直线M上B.直线AB,CD相交于点MC.直线ab,cd相交于点MD.延长直线AB4.用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,这说明;用两个钉子把细木条钉在木板上,就能固定细木条,这说明 .5.如图,完成下列填空:(1)直线a经过点,但不经过点;(2)点B在直线上,在直线外;(3)点A既在直线上,又在直线上.6.生活中我们看到手电筒的光线类似于()A.点B.直线C.线段D.射线7.如图所示,A,B,C是同一直线上的三点,下面说法正确的是()A.射线AB与射线BA是同一条射线B.射线AB与射线BC是同一条射线C.射线AB与射线AC是同一条射线D.射线BA与射线BC是同一条射线8.如图,能用O,A,B,C中的两个字母表示的不同射线有条.9.如图,在直线l上有A,B,C三点,则图中线段共有()A.1条B.2条C.3条D.4条10.如图所示,下列表述正确的是()A.射线ABB.延长线段ABC.延长线段BAD.反向延长线段BA11.经过任意三点中的两点共可以画出()A.一条直线B.一条或三条直线C.两条直线D.三条直线12.如图,对于直线AB,线段CD,射线EF,其中能相交的是()13.下列关于作图的语句中,正确的是()A.画直线AB=10 cmB.画射线OB=10 cmC.已知A,B,C三点,过这三点画一条直线D.画线段OB=10 cm14.直线a上有5个不同的点A,B,C,D,E,则该直线上共有条线段.15.已知平面上四点A,B,C,D,如图:(1)画直线AB,射线CD;(2)直线AB与射线CD相交于点E;(3)画射线AD,连接BC;(4)连接AC,BD相交于点F.16.如图,已知数轴上的原点为O,点A表示3,点B表示-1,回答下列问题:(1)数轴在原点O左边的部分(包括原点)是一条什么线?怎样表示?(2)射线OB上的点表示什么数?(3)数轴上表示不大于3且不小于-1的部分的数是什么图形?怎样表示?17.往返于甲、乙两地的客车,中途有三个站.其中每两站的票价不同.问:(1)要有多少种不同的票价?(2)要准备多少种车票?18.如图:(1)试验观察:如果每过两点可以画一条直线,那么:第①组最多可以画条直线;第②组最多可以画条直线;第③组最多可以画条直线;(2)探索归纳:如果平面上有n(n≥3)个点,且任意3个点均不在一条直线上,那么最多可以画条直线;(用含n的代数式表示)(3)解决问题:某班45名同学在毕业后的一次聚会中,如果每两人握1次手问好,那么共握次手.第2课时比较线段的长短1.尺规作图的工具是()A.刻度尺和圆规B.三角板和量角器C.直尺和量角器D.没有刻度的直尺和圆规2.作图:已知线段a,b,画一条线段使它等于2a+b.(要求:不写作法,保留作图痕迹)3.为了比较线段AB,CD的大小,小明将点A与点C重合使两条线段在一条直线上,结果点B在CD的延长线上,则()A.AB<CDB.AB>CDC.AB=CDD.无法确定4.已知线段AB和点P,如果PA+PB=AB,那么()A.点P为AB中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上5.如图,C是线段AB上的一点,M是线段AC的中点,若AB=8 cm,MC=3 cm,则BC的长是( )A.2 cmB.3 cmC.4 cmD.6 cm 6.如图所示,则:(1)AC =BC + ; (2)CD =AD - ; (3)CD = -BC ; (4)AB +BC = -CD.7.在直线上顺次取A ,B ,C 三点,使得AB =5 cm ,BC =3 cm.如果O 是线段AC 的中点,那么线段OC 的长度是 .8.如图,AB =2,AC =5,延长BC 到D ,使BD =3BC ,则AD 的长为 .9.如图,已知O 是线段AB 的中点,C 是AB 的三等分点,AB =12 cm ,则OC = cm.10.如图,已知线段AB ,反向延长AB 到点C ,使AC =12AB ,D 是AC 的中点,若CD =2,求AB的长.11.已知A,B,C是直线MN上的点,若AC=8 cm,BC=6 cm,点D是AC的中点,则BD的长等于 .12.已知线段AB=2 cm,延长AB到C,使BC=AB,再延长BA到D,使BD=2AB,则线段DC 的长为()A.4 cmB.5 cmC.6 cmD.2 cm13.点A,B,C在同一条数轴上,其中点A,B表示的数分别为-3,1,若BC=2,则AC等于()A.3B.2C.3或5D.2或614.已知线段AB=10 cm,点C是直线AB上一点,BC=4 cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7 cmB.3 cmC.7 cm或3 cmD.5 cm15.如图,点C,D,E都在线段AB上,已知AD=BC,E是线段AB的中点,则CE DE.(填“>”“<”或“=”)16.如图,已知线段a,b,c,用圆规和直尺画线段,使它等于2a+b-c.17.如图所示,点C,D为线段AB的三等分点,点E为线段AC的中点,若ED=9,求线段AB 的长度.18.线段AB上有两点P,Q,点P将AB分成两部分,AP∶PB=2∶3;点Q将AB也分成两部分,AQ∶QB=4∶1,且PQ=3 cm.求AP,QB的长.19.已知:如图,点C在线段AB上,且AC=6 cm,BC=14 cm,点M,N分别是AC,BC 的中点.(1)求线段MN的长度;(2)在(1)中,如果AC=a cm,BC=b cm,其他条件不变,你能猜测出MN的长度吗?请说出你发现的结论,并说明理由.第3课时关于线段的基本事实及两点的距离1.如图,为抄近路践踏草坪是一种不文明的现象.请你用数学知识解释出现这一现象的原因: .2.如图,我们可以把弯曲的河道改直,这样做的数学依据是 .改直后A,B两地间的河道长度会 .(填“变短”“变长”或“不变”),其原因是 .3.如图,A,B是公路l两旁的两个村庄,若两村要在公路上合修一个汽车站P,使它到A,B两村的距离之和最小,试在l上标注出点P的位置,并说明理由.4.下列说法正确的是()A.连接两点的直线的长度叫做这两点的距离B.画出A,B两点间的距离C.连接点A与点B的线段,叫A,B两点间的距离D.两点之间的距离是一个数,不是指线段本身5.若数轴上点A,B分别表示数2,-2,则A,B两点之间的距离可表示为()A.2+(-2)B.2-(-2)C.(-2)+2D.(-2)-26.如图,线段AB=8 cm,延长AB到C,若线段BC的长是AB长的一半,则A,C两点的距离为()A.4 cmB.6 cmC.8 cmD.12 cm7.若A,O,B三点在同一条直线上,OA=3,OB=5,则A,B两点的距离为()A.2B.8C.3D.8或28.如图所示,从A地到达B地,最短的路线是()A.A→C→E→BB.A→F→E→BC.A→D→E→BD.A→C→G→E→B9.如图,平面上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备修建一个蓄水池,不考虑其他因素,请你画出蓄水池P的位置,使它与4个村庄的距离之和最小.10.如图,一只壁虎要从圆柱体A点沿着表面爬到B点,因为B点处有它想吃的一只蚊子,而它饿得快不行了,怎样爬行路线最短?参考答案:4.2直线、射线、线段第1课时直线、射线、线段1.D2.B3.B4. 经过一点可以画无数条直线;明两点确定一条直线.5.(1)直线a经过点A,C,但不经过点B,D;(2)点B在直线b上,在直线a外;(3)点A既在直线a上,又在直线b上.6.D7.C8. 有7条.9.C10.C11.B12.B13.D14. 10.15.解:如图所示.16.解:(1)是一条射线,表示为射线OB. (2)负数和零(非正数). (3)线段,线段AB.17.解:根据线段的定义:可知图中线段有AC ,AD ,AE ,AB ,CD ,CE ,CB ,DE ,DB ,EB ,共10条.(1)有10种不同的票价.(2)因车票需要考虑方向性,如“A→C”与“C→A”票价相同,但方向不同,故需要准备20种车票.18.(1)试验观察:如果每过两点可以画一条直线,那么: 第①组最多可以画3条直线; 第②组最多可以画6条直线; 第③组最多可以画10条直线; (2)探索归纳:如果平面上有n(n≥3)个点,且任意3个点均不在一条直线上,那么最多可以画n (n -1)2条直线;(用含n 的代数式表示) (3)解决问题:某班45名同学在毕业后的一次聚会中,如果每两人握1次手问好,那么共握990次手.第2课时比较线段的长短1.D2.解:如图,AC即为所求线段.3.B4.B5.A6.(1)AC=BC+AB;(2)CD=AD-AC;(3)CD=BD-BC;(4)AB+BC=AD-CD.7.4__cm.8.11.9.210.解:因为D是AC的中点,所以AC=2CD.因为CD=2,所以AC=4.因为AC =12AB ,所以AB =2AC. 所以AB =2×4=8. 11.10__cm 或2__cm. 12. C 13.D 14.D 15.=16.解:(1)作射线AF ;(2)在射线AF 上顺次截取AB =BC =a ,CD =b ; (3)在线段AD 上截取DE =c.线段AE 即为所求.17.解:因为C ,D 为线段AB 的三等分点, 所以AC =CD =DB. 又因为点E 为AC 的中点, 所以AE =EC =12AC.所以CD +EC =DB +AE. 因为ED =EC +CD =9, 所以DB +AE =EC +CD =ED =9. 所以AB =2ED =18.18.解:画出图形,如图:设AP =2x cm ,PB =3x cm ,则AB =5x cm. 因为AQ∶QB=4∶1, 所以AQ =4x cm ,QB =x cm. 所以PQ =PB -QB =2x cm. 因为PQ =3 cm , 所以2x =3. 所以x =1.5.所以AP =3 cm ,QB =1.5 cm.19.解:(1)因为AC =6 cm ,BC =14 cm ,点M ,N 分别是AC ,BC 的中点, 所以MC =3 cm ,CN =7 cm. 所以MN =MC +CN =10 cm. (2)MN =12(a +b)cm.理由:因为AC =a cm ,BC =b cm ,点M ,N 分别是AC ,BC 的中点, 所以MC =12a cm ,CN =12b cm.所以MN =MC +CN =12(a +b)cm.第3课时 关于线段的基本事实及两点的距离1.两点之间,线段最短.2.两点确定一条直线. 变短. 两点之间,线段最短.3.解:点P的位置如图所示.作法:连接AB交l于点P,则P点即为汽车站位置.理由:两点之间,线段最短.4.D5.B6.D7.D8.B9.解:连接AC,BD,AC与BD的交点即为P点的位置,图略.10.解:将圆柱体的侧面展开,如图所示,连接AB,则线段AB是壁虎爬行的最短路线.。
第四章图形认识初步4.2 直线、射线、线段●目标导航1、认识直线、射线、线段的联系和区别,能根据语句画出相应的图形,会用语句描述简单的图形。
在图形的基础上发展数学语言。
2、会画一条线段等于已知线段,知道两点之间的距离和线段中点的含义。
3、结合实例,了解两点确定一条直线的性质和两点之间线段最短的性质,并能初步应用。
4、初步体验图形是有效描述现实世界的重要手段,并能初步应用空间与图形的知识解释生活中的现象以及解决简单的实际问题,体会研究几何图形的意义。
●名师引领1、线段、直线的表示与字母顺序无关;2、射线的表示有方向性,端点字母在前,射线上其它任意一点字母在后;3、正确表示直线、射线和线段:(1)直线的表示有两种:一个小写字母或两个大写字母。
但前面必须加"直线"两字,如:直线l;直线m直线AB;直线CD。
(2)线段的表示也有两种:一个小写字母或用端点的两个大写字母。
但前面必须加"线段"两字。
如:线段a;线段AB。
(3)射线的表示同样有两种:一个小写字母或端点的大写字母和射线上的一个大写字母,前面必须加"射线"两字。
如:射线a;射线OA。
4、●师生互动共解难题例1.填空:⑴在直线a上取一个点,图中共有________条射线;⑵在直线a上取二个点,图中共有________条射线;⑶在直线a上取三个点,图中共有________条射线;⑷在直线a上取四个点,图中共有________条射线;⑸在直线a上取m(m是自然数)个点,图中共有________条射线;⑹在直线a上取________个点,图中共有10条射线;⑺在直线a上取________个点,图中共有2n(n为自然数)条射线;⑻在直线a上取________个点,图中共有p(p为偶数)条射线;⑼在射线a上取一个点,图中共有________条射线;⑽在射线a上取二个点,图中共有________条射线;⑾在射线a上取三个点,图中共有________条射线;⑿在射线a上取四个点,图中共有________条射线;⒀在射线a上取m(m为正整数)个点,图中共有________条射线;⒁在射线a上取________个点,图中共有m(m为大于1的正整数)条射线。
人教版七年级数学 4.2 直线、射线、线段针对训练一、选择题1. 经过同一平面内A,B,C三点可连接直线的条数为()A.一条B.三条C.三条或一条D.不能确定2. 如图所示,下列对图形描述不正确的是()A.直线ABB.直线BCC.射线ACD.射线AB3. 下列说法正确的是()A.画一条长3 cm的射线B.射线、线段、直线中直线最长C.射线是直线的一部分D.延长直线AB到点C4. 下列各选项中,点A,B,C不在同一直线上的是 ()A.AB=5 cm,BC=15 cm,AC=20 cmB.AB=8 cm,BC=6 cm,AC=10 cmC.AB=11 cm,BC=21 cm,AC=10 cmD.AB=30 cm,BC=16 cm,AC=14 cm5. 下列说法错误的是()A.图①中直线l经过点AB.图②中直线a,b相交于点AC.图③中点C在线段AB上D.图④中射线CD与线段AB有公共点6. 如图,对于直线AB,线段CD,射线EF,其中能相交的是()7. 如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店B,请你帮助他选择一条最近的路线()A.A→C→D→BB.A→C→F→BC.A→C→E→F→BD.A→C→M→B8. 下列说法不正确的是()A.因为M是线段AB的中点,所以AM=MB=ABB.在线段AM延长线上取一点B,如果AB=2AM,那么M是线段AB的中点C.因为点A,M,B(互不重合)在同一直线上,且AM=MB,所以M是线段AB的中点D.因为AM=MB,所以M是线段AB的中点9. 如图,点B,C,D依次在射线AP上,则下列结论中错误的是()A.AD=2aB.BC=a-bC.BD=a-bD.AC=2a-b10. 如图,在数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD.若A,D两点表示的数分别为-5和6,E为BD的中点,则下列选项中,离线段BD的中点E最近的整数是()A.-1B.0C.-2D.3二、填空题11. 建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上.这样做的依据是.12. 线段AB被依次分成2∶3∶4的三部分,第一部分和第三部分的中点的距离为4.2 cm,则最长的一部分的长为cm.13. 如图,已知O是线段AB的中点,C是AB的三等分点,OC=2 cm,则AB=.14. 如图,已知三点A,B,C.(1)画出直线AC,线段BC,射线AB;(2)在线段BC上任取一点D(不同于点B,C),画线段AD;(3)数数看,此时图中共有条线段.命题点3点与直线、直线与直线的位置关系15. 图中可用字母表示出的射线有条.三、解答题16. 如图,一条直线上依次有A,B,C,D四点,C为AD的中点,BC-AB=AD,求BC是AB的多少倍.17. 如图9所示,A,B,C是一条笔直公路上的三个村庄,A,B之间的路程为100 km,A,C之间的路程为40 km,现要在A,B之间建一个车站P,设P,C 之间的路程为x km.(1)用含x的式子表示车站到三个村庄的路程之和;(2)若路程之和为102 km,则车站应设在何处?(3)若要使车站到三个村庄的路程之和最小,则车站应设在何处?最小值是多少?18. (1)观察思考:如图,线段AB上有C,D两点,计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),那么这条线段上以这m个点为端点的线段共有多少条?说明理由;(3)拓展应用:8名同学参加班级组织的象棋比赛,比赛采用单循环制(即每两名同学之间都要进行一场比赛),那么一共要进行多少场比赛?19. 实践与应用:一个西瓜放在桌子上,从上往下切,一刀可以切成2块,两刀最多可以切成4块,3刀最多可以切成7块,4刀最多可以切成11块(如图).上述实际问题可转化为数学问题:n条直线最多可以把平面分成几部分.请先进行操作,然后回答下列问题.(1)填表:直线条数 1 2 3 4 5 6 …最多可以把平面分成的2 4 7 11 …部分数(2)直接写出n条直线最多可以把平面分成几部分(用含n的式子表示).20. 已知M是线段AB上一点,点C在线段AM上,点D在线段BM上,C,D 两点分别同时从点M,B出发,以1 cm/s,3 cm/s的速度沿直线BA向左运动. (1)若AB=10 cm,当点C,D运动了2 s时,点C,D的位置如图0①所示,求AC+MD的值;(2)若点C,D在没有运动到点A和点M前,总有MD=3AC,试说明此时有AM=AB;(3)如图②,若AM=AB,N是直线AB上一点,且AN-BN=MN,求的值.人教版七年级数学 4.2 直线、射线、线段针对训练-答案一、选择题1. 【答案】C2. 【答案】B3. 【答案】C[解析] A.画一条长3 cm的射线,说法错误,射线可以向一个方向无限延伸;B.射线、线段、直线中直线最长说法错误,射线可以向一个方向无限延伸,直线可以向两个方向无限延伸;C.射线是直线的一部分,正确;D.延长直线AB到点C说法错误,直线可以向两个方向无限延伸.故选C.4. 【答案】B[解析] 选项B中,因为AB=8 cm,BC=6 cm,AC=10 cm,所以AB+BC≠AC.所以选项B符合题意.5. 【答案】C6. 【答案】B7. 【答案】B8. 【答案】D9. 【答案】C[解析] 由题图可知BD=a,所以选项C是错误的.10. 【答案】D[解析] 因为AD=|6-(-5)|=11,2AB=BC=3CD,所以AB=1.5CD.所以1.5CD+3CD+CD=11.所以CD=2,所以AB=3.所以BD=8.所以ED=BD=4.所以点E所表示的数是6-4=2.所以离线段BD的中点E最近的整数是选项D中的3.二、填空题11. 【答案】两点确定一条直线12. 【答案】2.8[解析] 设第一部分的长为2x cm.由题意,得x+3x+2x=4.2,解得x=0.7,所以4x=2.8.13. 【答案】12 cm[解析] 因为AO=AB,AC=AB,所以OC=AO-AC=AB=2 cm.所以AB=12 cm.14. 【答案】解:(1)(2)如图所示:(3)图中共有6条线段.故答案为6.15. 【答案】5[解析] 有OA,AB,BC,OP,PE,共5条射线.三、解答题16. 【答案】解:因为C为AD的中点,所以AC=AD,即AB+BC=AD.所以2AB+2BC=AD.又因为BC-AB=AD,所以4BC-4AB=AD.所以2AB+2BC=4BC-4AB,即BC=3AB.故BC是AB的3倍.17. 【答案】解:(1)若车站P在B,C之间,则路程之和为P A+PC+PB=PC+AC+PC+PB=PC+AB=(100+x)km;若车站P在A,C之间,则路程之和为P A+PB+PC=P A+PC+CB+PC=AB+PC=(100+x)km.故车站到三个村庄的路程之和为(100+x)km.(2)由题意得100+x=102,故x=2,即车站应设在C村左侧或右侧2 km的地方.(3)当x=0时,x+100=100,即车站建在C处时到三个村庄的路程之和最小,最小值为100 km.18. 【答案】解:(1)因为以点A为左端点的线段有线段AB,AC,AD,以点C为左端点的线段有线段CD,CB,以点D为左端点的线段有线段DB,所以共有3+2+1=6(条)线段.(2)有条.理由:线段上有m个点(包括线段的两个端点),每一个点都可以与其他点构成(m-1)条线段,一共能构成m(m-1)条,但由于线段端点的无序性,所有线段都被重复计算了一次,所以该条线段上以这m个点为端点的线段共有条.(3)把8名同学看作直线上的8个点,每两名同学之间的一场比赛看作一条线段,直线上以这8个点为端点所构成的线段条数就等于比赛的场数,因此一共要进行=28(场)比赛.19. 【答案】解:(1)设n条直线最多可以把平面分成的部分数是S n.当n=5时,S5=1+1+2+3+4+5=16,当n=6时,S6=1+1+2+3+4+5+6=22.故表内从左到右依次填16,22.(2)S n=1+1+2+3+…+n=1+=.故n条直线最多可以把平面分成部分.20. 【答案】解:(1)当点C,D运动了2 s时,CM=2 cm,BD=6 cm.因为AB=10 cm,所以AC+MD=AB-CM-BD=10-2-6=2(cm).(2)因为C,D两点的速度分别为1 cm/s,3 cm/s,所以当运动时间为t s时,BD=3t cm,CM=t cm.又因为MD=3AC,所以BD+MD=3t+3AC=3(CM+AC),即BM=3AM,所以AM=AB.(3)分以下两种情况讨论:①若点N在线段AB上,如图(a)所示:因为AN-BN=MN,且AN-AM=MN,所以BN=AM=AB.所以MN=AB,即=.②若点N在线段AB的延长线上,如图(b)所示:因为AN-BN=MN,AN-BN=AB,所以MN=AB,即=1.综上所述,的值为或1.。
直线、射线、线段测试题时间:45分钟一、选择题(本大题共11小题,共33.0分)1.如图,下列语句错误的是A. 射线CA和CD不是同一条射线B.C. 射线AC和AB是同一条射线D. 直线BC和BD是不同的直线2.已知线段AB,C是直线AB上的一点,,,点M是线段AC的中点,则线段AM的长为A. 2cmB. 4cmC. 2cm或6cmD. 4cm或6cm3.一辆客车往返于A,B两地之间,中途有三个停靠站,那么在A、B两地之间最多需要印制不同的车票有A. 10种B. 15种C. 18种D. 20种4.下列说法中,正确的有射线与其反向延长线成一条直线;直线a,b相交于点m;两直线交于两点;三条直线两两相交,一定有3个交点.A. 3个B. 2个C. 1个D. 0个5.下列说法中正确的个数有经过一点有且只有一条直线;连接两点的线段叫做两点之间的距离;射线比直线短;三点在同一直线上且,则B是线段AC的中点;在同一平面内,两条直线的位置关系有两种:平行与相交;在8:30时,时钟上时针和分针的夹角是.A. 1个B. 2个C. 3个D. 4个6.乘特快列车从济南西站出发,沿途经过泰安站、曲阜东站、滕州东站,最后到达枣庄站,那么从济南西站到枣庄站这段线路的火车票价格最多有A. 8种B. 9种C. 10种D. 11种7.如图,点A,点B,点C在直线l上,则直线,线段,射线的条数分别为A. 3,3,3B. 1,2,3C. 1,3,6D. 3,2,68.如图,,,则CD等于A. 1cmB. 2cmC. 3cmD. 4cm9.下列说法中正确的是A. 画一条长3cm的射线B. 直线、线段、射线中直线最长C. 延长线段BA到C,使D. 延长射线OA到点C10.对于线段的中点,有以下几种说法:若,则M是AB的中点;若,则M是AB的中点;若,则M是AB的中点;若A,M,B在一条直线上,且,则M是AB的中点其中正确的是A. B. C. D.11.三条互不重合的直线的交点个数可能是A. 0,1,3B. 0,2,3C. 0,1,2,3D. 0,1,2二、填空题(本大题共10小题,共30.0分)12.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画______ 条直线.13.平面内两两相交的三条直线,如果它们最多有a个交点,最少有b个交点,则______ .14.往返于A、B两地的客车,中途停靠四个站,共有______种不同的票价,要准备______种车票.15.平面内有n条直线两两相交最多有______个交点.16.平面内有四个点A,B,C,D,过其中每两个点画直线可以画出直线的条数为______ .17.平面上有5个点,过其中每两个点画直线,可以画条______条18.两条直线相交有1个交点,三条直线两两相交有3个交点,四条直线两两相交有6个交点,n条直线两两相交有______ 个交点.19.下列说法两条不同的直线可能有无数个公共点;两条不同的射线可能有无数个公共点;两条不同的线段可能有无数个公共点;一条直线和一条线段可能有无数个公共点,其中正确说法的序号为______ .20.如图,该图中不同的线段共有______ 条21.已知线段MN,在MN上逐一画点所画点与M、N不重合,当线段上有1个点时,共有3条线段,当线段上有2个点时,共有6条线段;当线段上有3个点时,共有10条线段;直接写出当线段上有20个点时,共有线段______条三、计算题(本大题共2小题,共12.0分)22.如图1直线l上有2个点,则图中有2条可用图中字母表示的射线,有1条线段;如图2直线l上有3个点,则图中有______ 条可用图中字母表示的射线,有______ 条线段;如图3直线上有n个点,则图中有______ 条可用图中字母表示的射线,有______ 条线段;应用中发现的规律解决问题:某校七年级共有6个班进行足球比赛,准备进行循环赛即每两队之间赛一场,预计全部赛完共需______ 场比赛.23.如图所示,数一数图中有多少条不同的线段?四、解答题(本大题共3小题,共24.0分)24.如图,平面上有四个点A、B、C、D,根据下列语句画图:画线段AB;连接CD,并将其反向延长至E,使得;在平面内找到一点F,使F到A、B、C、D四点距离最短.25.如图,已知线段AC与BC交于点C,M,N分别为线段AC与BC上的点,,若.图中的线段共有______条;若,求的长度.26.如图,点C是线段AB上一点,D、E分别是AC、BC的中点,已知,求AB的长;若中改为点C是射线AB上一点不在线段AB上,其它条件不变,请画出图形,并直接写出相应的AB长.答案和解析【答案】1. D2. C3. D4. C5. C6. C7. C8. B9. C10. B11. C12. 1条或4条或6条13. 414. 15;3015.16. 1条、4条或6条17. 1,5,6,8,1018.19.20. 1021. 21022. 4;3;;;1523. 解:对于两条线段,只要有一个端点不同,就是不同的线段,我们以左端点为标准,将线段分5类分别计数:以A为左端点的线段有AB,AC,AD,AE,AF共5条;以B为左端点的线段有BC,BD,BE,BF共4条;以C为左端点的线段有CD,CE,CF共3条;以D为左端点的线段有DE,DF共2条;以E为左端点的线段只有EF一条.所以,不同的线段一共有条.24. 解:线段AB即为所求;如图所示:;如图所示:F点即为所求.25. 626. 解:,E分别是AC,BC的中点,,,;当点C在AB的延长线上时,如图所示,,E分别是AC,BC的中点,,,.【解析】1. 解:A、射线CA和CD不是同一条射线,正确不合题意;B、,正确不合题意;C、射线AC和AB是同一条射线,正确不合题意;D、直线BC和BD是不同的直线,错误,符合题意.故选:D.直接利用射线、直线、线段的定义分别分析得出答案.此题主要考查了射线、直线、线段的定义,正确区分各定义是解题关键.2. 解:当点C在线段AB上时,由线段的和差,得,由线段中点的定义,得;点C在线段BC的延长线上,由线段的和差,得,由线段中点的定义,得;故选:C.分类讨论:点C在线段AB上,点C在线段BC的延长线上,根据线段的和差,可得AC 的长,根据线段中点的性质,可得AM的长.本题考查了两点间的距离,利用了线段的和差,线段中点的定义;进行分类讨论是解决问题的关键.3. 解:根据线段的定义:可知图中共有线段有AC,AD,AE,AB,CD、CE、CB、DE、DB、EB共10条,因车票需要考虑方向性,如,“”与“”票价相同,但车票不同,故需要准备20种车票.故选D.先求出线段的条数,再计算票价和车票的种数.本题考查线段的定义,要求学生准确应用;学会查找线段的条数.4. 解:射线与其反向延长线成一条直线,正确;直线a,b相交于点m,错误,点应该用大写字母表示;两直线交于两点,错误;三条直线两两相交,一定有3个交点,错误,三条直线可以经过同一个点.综上所述,正确的有1个.故选C.根据直线、射线和线段的定义以及点的表示对各小题分析判断即可得解.本题考查了直线、射线和线段,是基础题,熟记相关概念是解题的关键.5. 解:经过两点有且只有一条直线,故本小题错误;应为连接两点的线段的长度叫做两点的距离,故本小题错误;射线与直线不能比较长短,故本小题错误;因为A、B、C三点在同一直线上,且,所以点B是线段AC的中点,故本小题正确;在同一平面内,两条直线的位置关系有两种:平行,相交,故本小题正确;在8:30时,时钟上时针和分针的夹角是,正确.综上所述,正确的有共3个.故选C.根据直线的性质,两点间距离的概念,射线与直线的意义,线段中点的概念,同一平面内两条直线的位置关系,钟面角的计算,对各小题逐一分析判断后,利用排除法求解.本题考查了直线的性质,两点间距离的定义,射线与直线的意义,线段中点的定义,两条直线的位置关系,钟面角,是基础题,熟记性质与概念是解题的关键.6. 解:根据题意得:从济南西站到枣庄站这段线路的火车票价格最多有种,故选C根据题意确定出数学模型,五点确定出线段条数,计算即可得到结果.此题考查了直线、射线、线段、从实际问题中抽象出数学模型是解本题的关键.7. 解:图中有直线l,共1条;图中有线段AB、AC、BC,共3条;射线以A为端点的有2条,以B为端点的有2条,以C为端点的有2条,共6条.故选C.根据射线、线段的定义分别数出条数即可.本题考查了直线、射线、线段,关键是掌握线段有2个端点、射线有1个端点,直线没有端点.8. 【分析】此题主要考查了线段的和差关系、两点间的距离的知识点,关键是求出CB的长度先根据已知条件求出线段DB的长度,再求出线段CD长度即可.【解答】解:,,,,.故选B.9. 解:A、画一条长3cm的射线,射线没有长度,故此选项错误;B、直线、线段、射线中直线最长,错误,射线、直线都没有长度,故此选项错误;C、延长线段BA到C,使,正确;D、延长射线OA到点C,错误,可以反向延长射线.故选:C.分别利用直线、射线、线段的性质分析得出答案.此题主要考查了直线、射线、线段,正确把握相关性质是解题关键.10. 解:若,则M是AB的中点;错误,因为点A,B,M要在一条直线上,若,则M是AB的中点;正确,若,则M是AB的中点;错误,若A,M,B在一条直线上,且,则M是AM的中点正确.所以正确的有.故选:B.利用数形结合方法即可判定.本题主要考查了线段的中点,解题的关键是数形结合.11. 解:分四种情况:1、三条直线平行,有0个交点,2、三条直线相交于同一点,有1个交点,3、一条直线截两条平行线有2个交点,4、三条直线两两相交有3个交点.如图所示:故选C.在同一平面内,两条直线的位置关系有两种,平行和相交,三条直线互相平行无交点,两条直线平行,第三条直线与它相交,有2个交点,三条直线两两相交,最多有3个交点,最少有1个交点.此类题没有明确平面上三条不重合直线的相交情况,需要运用分类讨论思想,解答时要分各种情况解答,要考虑到可能出现的所有情形,不要遗漏,否则讨论的结果就不全面.12. 解:分三种情况:四点在同一直线上时,只可画1条;当三点在同一直线上,另一点不在这条直线上,可画4条;当没有三点共线时,可画6条;故答案为:1条或4条或6条.分四点在同一直线上,当三点在同一直线上,另一点不在这条直线上,当没有三点共线时三种情况讨论即可.本题考查了直线、射线、线段,在没有明确平面上四点是否在同一直线上时,需要运用分类讨论思想,解答时要分各种情况解答,要考虑到可能出现的所有情形,不要遗漏,否则讨论的结果就不全面.13. 解:平面内两两相交的三条直线,它们最多有3个交点,最少有1个交点,;先求出a、b的值,再代入求解.当三条直线都交于一点时,只有一个交点,两两相交不在同一点,有3个交点,注意掌握数学基础知识.14. 解:如图:则共有AC,AD,AE,AF,AB,CD,CE,CF,CB,DE,DF,DB,EF,EB,FB,15种不同的票价,又题中是往返列车,往返的车票都不相同,所以共有票,故答案为:15,30.可先作出一简单的图形,进而结合图形进行分析.本题主要考查运用直线、射线、线段知识解决生活中的问题,需要掌握正确数线段的方法.15. 解:2条直线相交最多有1个交点;3条直线相交最多有个交点;4条直线相交最多有个交点;5条直线相交最多有个交点;6条直线相交最多有个交点;n条直线相交最多有个交点.故答案为:.分别求出2条、3条、4条、5条、6条直线相交时最多的交点个数,找出规律即可解答.本题考查的是多条直线相交的交点问题,解答此题的关键是根据2条、3条、4条、5条、6条直线相交时最多的交点个数发现规律.16. 解:如果4个点,点A、B、C、D在同一直线上,那么只能确定一条直线,如图:如果4个点中有3个点不妨设点A、B、在同一直线上,而第4个点,点D不在此直线上,那么可以确定4条直线,如图:如果4个点中,任何3个点都不在同一直线上,那么点A分别和点B、C、D确定3条直线,点B分别与点C、D确定2条直线,最后点C、D确定一条直线,这样共确定6条直线,如图:综上所述,过其中2个点可以画1条、4条或6条直线.故答案为:1条、4条或6条.由直线公理,两点确定一条直线,但题中没有明确指出已知点中,是否有3个点,或者4个点在同一直线上,因此要分三种情况加以讨论.本题考查了直线的定义在解题过程中,注意分情况讨论,这样才能将各种情况考虑到.17. 当五点在同一条直线上时,可以做出一条直线;当四点在一条直线上,另一点在直线外时,可以做出5条直线;当三点在一条直线上,另两点在直线外时,可以做出8条直线,如下图所示;当三点在一条直线上,另两点与原来的期中一个点在一条直线上时,可以做出六条直线如下图当任意三点都不在一条直线上,可以做条直线.答案:1、5、6、8、10.分情况讨论:当五点都在同一条直线上时;当四点在一条直线上,另一点在直线外时;当三点在一条直线上,另两点在直线外时;当任何三点都不在同一条直线上时.本题考查了直线的相关知识,计算直线条数时,注意分类讨论,勿重勿漏若平面上有n 个点,且任何三个点都不在同一条直线上时,最多可以得到条直线.18. 解:如图,可得三条直线两两相交,最多有3个交点;如图,可得4条直线两两相交,最多有6个交点;,;可得,n条直线两两相交,最多有个交点为正整数,且.故答案为:.通过以上已知点的个数与直线条数的关系,找出规律解答即可.本题考查了图形的变化,是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.19. 解:两条不同的直线可能有无数个公共点,错误,直线不能重合;两条不同的射线可能有无数个公共点,正确;两条不同的线段可能有无数个公共点,正确;一条直线和一条线段可能有无数个公共点,正确.故答案为:.直接利用直线、射线、线段的定义进而判断得出答案.此题主要考查了直线、射线、线段的定义,正确把握相关定义是解题关键.20. 解:从点C到B,D,E,A有4条线段;同一直线上的B,D,E,A四点之间有条;所以共10条线段.本题只要确定了AB之间的线段即可确定图中线段的条数.注意本题是两种情况下的线段条数的和.21. 解:由题意可得:当在MN上有20个点时,共有线段:,故答案为:210.根据题意在MN上1个点有条线段,2个点可组成条线段,进而可得答案.本题考查了直线、射线、线段,任意两点有一条线段,根据规律是解题关键.22. 解:射线有:、、、共4条,线段有:、、共3条;,;.写出射线和线段后再计算个数;根据规律,射线是每个点用两次,但第一个和最后一个只用一次;线段是从所有点中,任取两个;代入中规律即可.本题是信息给予题,读懂题目信息,并学会准确查出射线、线段的条数,做到不重不漏是解题的关键.23. 分别以A、B、C、D、E为起点查找,注意不要漏查.本题考查直线射线及线段的知识,属于基础题,注意从左至右依次查找避免漏解.24. 利用线段的定义得出答案;利用反向延长线段进而结合得出答案;连接AC、BD,其交点即为点F.本题考查的是直线、射线、线段的定义及性质,解答此题的关键是熟知以下知识,即直线向两方无限延伸;射线向一方无限延伸;线段有两个端点画出图形即可.25. 解:图中的线段共有条;,,,,,.故答案为:6.根据线段的定义数出图中的线段共有多少条即可;根据线段的倍分关系可求AM,再根据线段的和差关系可求的长度.此题考查了两点间的距离,线段的定义,关键是熟练掌握线段的倍分和线段的和差计算.26. 先根据D、E分别是线段AC、BC的中点得出,,再由线段即可得出结论.根据线段中点定义和线段的和差即可得到结论.本题考查的是两点间的距离,熟知中点的定义是解答此题的关键.第11页,共11页。
前言:
该同步练习题由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。
以高质量的同步练习题助力考生查漏补缺,在原有基础上更进一步。
(最新精品同步练习题)
4.2直线、射线、线段
基础巩固
1. (题型一)如图4-2-1,下列说法正确的是()
图4-2-1
A.图中共有5条线段
B.直线AB与直线AC是同一条直线
C.射线AB与射线BA是同一条射线
D.点O在直线AC上
2. (知识点1)木工师傅用刨子可将木板刨平,如图4-2-2,经过刨平的木板上的两个点,就能弹出一条笔直的墨线,而且只能弹出一条墨线,用数学知识解释其道理正确的是()
图4-2-2
A.两点确定一条直线
B.两点之间,线段最短
C.两条直线相交,只有一个交点
D.不在同一条直线上的三点,确定一个平面
3. (知识点6)已知C是线段AB上的一点,不能确定C是AB的中点的条件是()
A. AC=CB
B. AC=1
2
AB C. AB=2BC D. AC+CB=AB
4. (题型三)已知线段AB=8 cm,在直线AB上画线段BC,使它等于3 cm,则线段AC等
1。
人教版七年级数学上册《4.2 直线、射线、线段》练习题-附带有答案一、单选题1.下列说法正确的是()A.过一个已知点B,只可作一条直线B.一条直线上有两个点C.两条直线相交,只有一个交点D.一条直线经过平面上所有的点2.如图,下列说法错误的是()A.直线AC与射线BD相交于点A B.BC是线段C.直线AC经过点A D.点D在直线AB上3.经过同一平面内A、B、C三点可连结直线的条数为()A.只能一条B.只能三条C.三条或一条D.不能确定4.已知A,B,C三点在同一条直线上,M,N分别为线段AB,BC的中点,且AB=60,BC=40,则MN的长为()A.10 B.50 C.10或50 D.无法确定5.已知A,B,C三点在数轴上从左向右依次排列,且AC=3AB=6,若B为原点,则点A所表示的数是()A.-4 B.4 C.-2 D.26.已知数轴上A、B两点对应的数分别为−3、−6,若在数轴上找一点C,使得点A、C之间的距离为4;再在数轴找一点D,使得点B、D之间的距离为1,则C、D两点间的距离不可能为()A.0 B.2 C.4 D.67.如图,数轴上有若干个点,每相邻两点相距1个单位长度.其中点 A, B ,C , D 对应的数分别是整数 a ,b ,c ,d ,且d−2a=12,则b+c的值为()A.-3 B.-1 C.3 D.1AB;③CD= 8.如图,点C是AB的中点,点D是BC的中点,下列结论:①CD=AC−BD;②CD=14AD−BC;④BD=2AD−AB,正确的有()A.1个B.2个C.3个D.4个二、填空题9.一条直线上有A、B、C三个点,AB=7cm,BC=4cm,则AC= .10.已知 A, B, C为直线l上的三点,如果线段AB=3cm,BC=6cm那么A,C两点间的距离为.11.如图,D是AB的中点,E是BC的中点,若AC=10,EC=3,则AD=.12.如图,点C是线段AB上一点,D是线段CB的中点,已知图中所有的线段的长度之和为23,线段AC 的长度与线段CB的长度都是正整数,则线段AC长.13.如图,已知点A、B、C、D在同一直线上,且线段AB=BC=CD=1cm,那么图中所有线段的长度之和是cm.三、解答题14.已知线段CD,按要求画出图形并计算:延长线段CD到B,使得DB= 1CB,延长DC到点A,使AC=2DB,2若AB=8cm,求出CD与AD的长.AB,E是AC的中点,求BE的长. 15.已知A、B、C三点在同一条直线上AB=80cm,BC=3416.如图,点C在线段AB上,AC=8cm,CB=6cm,点M,N分别是AC,BC的中点.求线段MN的长.17.如图,平面上四个点A、B、C、D按要求完成下列问题:(1)①画线段AC,连接BD;②画直线AB与射线DC相交于点E;(2)用量角器度量∠AED的大小为(精确到度).18.数轴上两点之间的距离等于这两个点所对应的数的差的绝对值,例如:点A、B在数轴上对应的数分别是a、b,则A、B两点间的距离表示为AB=|a−b|.利用上述结论,回答以下问题:(1)若点A在数轴上表示15,点B在数轴上表示2,则AB= .(2)在数轴上表示x的点与-2的距离是3,那么x=.(3)若数轴上表示a的点位于2和5之间,则|a−2|+|a−5|= .答案1.C2.D3.C4.C5.C6.C7.A8.C9.11cm或3cm10.3cm或9cm11.212.313.1014.解:如图所示:设CD=xCB∵DB= 12∴CD=BD=x∵AC=2DB=2x∵AB=AC+CD+BD=8∴2x+x+x=8x=2∴CD=2,AD=AC+CD=4+2=6答:CD的长为2cm.AD的长为6cm.15.解:①如解图,点C在线段AB上.AB因为AB=80cm BC=34所以 BC =60cm所以 AC =AB −BC =20cm .因为 E 是 AC 的中点所以 EC =10cm .所以 BE =BC +EC =60+10=70(cm) ;②如解图,点 C 在线段 AB 的延长线上.因为 AB =80cm BC =34AB所以 BC =60cm所以 AC =AB +BC =140cm因为 E 是 AC 的中点所以 EC =70cmBE =EC −BC =70−60=10(cm) .所以 BE 的长为 70cm 或 10cm .16.解:由AC=8cm ,CB=6cm ,点M ,N 分别是AC ,BC 的中点,得 MC= 12 AC= 12 ×8=4cm ,CN= 12 BC= 12 ×6=3cm .由线段的和差,得MN=MC+NC=4+3=7cm线段MN 的长7cm17.(1)解:①②如图所示:(2)31°18.(1)13(2)1或-5(3)3。
人教版七年级数学上册4.2 直线、射线、线段同步测试一.选择题(共8小题)1.下列数学语言,不正确的是()A.画直线MN,在直线MN上任取一点PB.以点M为端点画射线MAC.直线a,b相交于点mD.延长线段MN到点P,使NP=MN2.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.两点之间直线最短3.如图,C,D,E是线段AB的四等分点,下列等式不正确的是()A.AB=4AC B.CE=AB C.AE=AB D.AD=CB4.下列说法正确的有()①过两点只能画一条直线;②过两点只能画一条射线;③过两点只能画一条线段.A.1个B.2个C.3个D.0个5.经过平面上的三点中的任两点可以画直线()A.3条B.1条C.1条或3条D.以上都不对6.如图,点A,B,C,D在同一条直线上,如果AB=CD,那么比较AC与BD的大小关系为()A.AC>BD B.AC<BD C.AC=BD D.不能确定7.如图,下列关于图中线段之间的关系一定正确的是()A.x=2x+2b﹣c B.c﹣b=2a﹣2b C.x+b=2a+c﹣b D.x+2a=3c+2b8.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm二.填空题(共6小题)9.在同一个平面内任意的四个点,可以确定条直线.10.直线AB,BC,CA的位置关系如图所示,则下列语句:①点B在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC的交点,以上语句正确的有(只填写序号)11.已知线段AB和BC在同一条直线上,若AC=6cm,BC=2cm,则线段AC和BC中点间的距离为.12.已知线段AB,延长AB到C,使BC=AB,D为AC的中点,若AB=9cm,则DC的长为.13.如图所示,在一条笔直公路l的两侧,分别有A、B两个小区,为了方便居民出行,现要在公路l上建一个公共自行车存放点,使存放点到A、B小区的距离之和最小,你认为存放点应该建在处(填“C”“E”或“D”),理由是.14.点A、B、C在直线l上,AB=4cm,BC=6cm,点E是AB中点,点F是BC的中点,EF=.三.解答题(共4小题)15.(1)如图1,已知三点A,B,C,按要求画图:画直线AB;画射线AC;画线段BC.(2)如图2,用适当的语句表述点A,P与直线l的关系.16.已知,点A、B、C在同一条直线上,点M为线段AC的中点、点N为线段BC的中点(1)如图,当点C在线段AB上时:①若线段AC=8,BC=6,求MN的长度②若AB=a,求MN的长度(2)若AC=m,BC=n,求M的长度(m>n用含mn的代数式表示)17.如图,延长AB至D,使B为AD的中点,点C在BD上,CD=2BC.(1)AB=AD,AB﹣CD=;(2)若BC=3,求AD的长.18.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.参考答案与试题解析一.选择题(共8小题)1.下列数学语言,不正确的是()A.画直线MN,在直线MN上任取一点PB.以点M为端点画射线MAC.直线a,b相交于点mD.延长线段MN到点P,使NP=MN解:A、画直线MN,在直线MN上任取一点P,正确;B、以点M为端点画射线MA,正确;C、直线a,b相交于点M,故错误;D、延长线段MN到点P,使NP=MN,正确;故选:C.2.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.两点之间直线最短解:把一根木条固定在墙面上,至少需要两枚钉子,是因为两点确定一条直线.故选:B.3.如图,C,D,E是线段AB的四等分点,下列等式不正确的是()A.AB=4AC B.CE=AB C.AE=AB D.AD=CB 解:由C,D,E是线段AB的四等分点,得AC=CD=DE=EB=AB,选项A,AC=AB⇒AB=4AC,选项正确选项B,CE=2CD⇒CE=AB,选项正确选项C,AE=3AC⇒AE=AB,选项正确选项D,因为AD=2AC,CB=3AC,所以AD=,选项错误故选:D.4.下列说法正确的有()①过两点只能画一条直线;②过两点只能画一条射线;③过两点只能画一条线段.A.1个B.2个C.3个D.0个解:①过两点只能画一条直线,故正确;②过两点可以画2条射线,故错误;③过两点只能画一条线段,故正确.综上所述,正确的结论有2个.故选:B.5.经过平面上的三点中的任两点可以画直线()A.3条B.1条C.1条或3条D.以上都不对解:当三点在同一直线上时经过此三点可以画一条直线,当三点不在同一直线上时经过此三点可以画三条直线,所以经过三点中的任两点可以画1或3条直线,故选:C.6.如图,点A,B,C,D在同一条直线上,如果AB=CD,那么比较AC与BD的大小关系为()A.AC>BD B.AC<BD C.AC=BD D.不能确定解:根据题意和图示可知AB=CD,而CB为AB和CD共有线段,故AC=BD.故选:C.7.如图,下列关于图中线段之间的关系一定正确的是()A.x=2x+2b﹣c B.c﹣b=2a﹣2b C.x+b=2a+c﹣b D.x+2a=3c+2b解:∵x﹣c+2b=2a,∴x+2a=2x+2b﹣c,故选项A错误;∵2a﹣2b=x﹣c,故选项B错误;∵x+b=2a+c﹣b,故选项C正确;∵2a﹣2b=x﹣c,∴﹣x+2a=﹣c+2b,故选项D错误,故选:C.8.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm解:(1)当点C在线段AB上时,则MN=AC+BC=AB=5cm;(2)当点C在线段AB的延长线上时,则MN=AC﹣BC=7﹣2=5cm.综合上述情况,线段MN的长度是5cm.故选:D.二.填空题(共6小题)9.在同一个平面内任意的四个点,可以确定1或4或6条直线.解:如图所示:(1)四点在一条直线上,1条,如图1;(2)三点在一条直线上,4条,如图2;(3)两点在一条直线上,6条,如图3;故答案为:1或4或6.10.直线AB,BC,CA的位置关系如图所示,则下列语句:①点B在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC的交点,以上语句正确的有①③④(只填写序号)解:由图可得,①点B在直线BC上,正确;②直线AB不经过点C,错误;③直线AB,BC,CA两两相交,正确;④点B是直线AB,BC的交点,正确;故答案为:①③④.11.已知线段AB和BC在同一条直线上,若AC=6cm,BC=2cm,则线段AC和BC中点间的距离为4cm或1cm.解:设AC、BC的中点分别为E、F,∵AC=6cm,BC=2cm,∴CE=AC=3cm,CF=BC=1cm,如图1,点B不在线段AC上时,EF=CE+CF=3+1=4(cm),如图2,点B在线段AC上时,EF=CE﹣CF=3﹣1=1(cm),综上所述,AC和BC中点间的距离为4cm或1cm.故答案为:4cm或1cm.12.已知线段AB,延长AB到C,使BC=AB,D为AC的中点,若AB=9cm,则DC的长为6cm.解:∵BC=AB,AB=9cm,∴BC=3cm,AC=AB+BC=12cm,又因为D为AC的中点,所以DC=AC=6cm.故答案为:6cm.13.如图所示,在一条笔直公路l的两侧,分别有A、B两个小区,为了方便居民出行,现要在公路l上建一个公共自行车存放点,使存放点到A、B小区的距离之和最小,你认为存放点应该建在E 处(填“C”“E”或“D”),理由是两点之间线段最短.解:公共自行车存放点应该建在E处,理由是两点之间线段最短.故答案为:E,两点之间线段最短.14.点A、B、C在直线l上,AB=4cm,BC=6cm,点E是AB中点,点F是BC的中点,EF=5cm 或1cm.解:如图,∵AB=4cm,BC=6cm,点E是AB中点,点F是BC的中点,∴BE=AB=2cm,BF=BC=3cm,①点B在A、C之间时,EF=BE+BF=2+3=5cm;②点A在B、C之间时,EF=BF﹣BE=3﹣2=1cm.∴EF的长等于5cm或1cm.故答案为:5cm或1cm.三.解答题(共4小题)15.(1)如图1,已知三点A,B,C,按要求画图:画直线AB;画射线AC;画线段BC.(2)如图2,用适当的语句表述点A,P与直线l的关系.解:(1)如图所示:(2)点A在直线l上,点P在直线l外.16.已知,点A、B、C在同一条直线上,点M为线段AC的中点、点N为线段BC的中点(1)如图,当点C在线段AB上时:①若线段AC=8,BC=6,求MN的长度②若AB=a,求MN的长度(2)若AC=m,BC=n,求M的长度(m>n用含mn的代数式表示)解:(1)当C在线段AB上时①∵点M、N分别是AC、BC的中点,AC=8,BC=6∴CM=AC=4,CN=BC=3∴MN=CM+CN=4+3=7;②∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=AC+BC=(AC+BC)=AB=a;(2)当点C在线段AB上时,MN=m n,当点C在线段AB的延长线时,MN=m﹣n,当点C在线段BA的延长线时,MN=n﹣m.17.如图,延长AB至D,使B为AD的中点,点C在BD上,CD=2BC.(1)AB=AD,AB﹣CD=BC;(2)若BC=3,求AD的长.解:(1)因为B为AD的中点,所以AB=BD=AD,所以AB﹣CD=BD﹣CD=BC,故答案为:,BC.(2)因为BC=3,CD=2BC,所以CD=2BC=6,所以BD=BC+CD=3+6=9因为B是AD中点,∴AB=BD=9,∴AD=AB+BD=9+9=18,即AD的长是18.18.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.解:(1)∵AC=9cm,点M是AC的中点,∴CM=0.5AC=4.5cm,∵BC=6cm,点N是BC的中点,∴CN=0.5BC=3cm,∴MN=CM+CN=7.5cm,∴线段MN的长度为7.5cm,(2)MN=a,当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=a,(3)当点C在线段AB的延长线时,如图:则AC>BC,∵M是AC的中点,∴CM=AC,∵点N是BC的中点,∴CN=BC,∴MN=CM﹣CN=(AC﹣BC)=b.。
4.2 直线、射线、线段
基础巩固
1.(题型一)如图 4-2-1,下列说法正确的是()
图 4-2-1
A.图中共有 5 条线段
B.直线 AB 与直线 AC 是同一条直线
C.射线 AB 与射线 BA 是同一条射线
D.点 O 在直线 AC 上
2.(知识点 1)木工师傅用刨子可将木板刨平,如图 4-2-2,经过刨平的
木板上的两个点,就能弹出一条笔直的墨线,而且只能弹出一
条墨线,用数学知识解释其道理正确的是()
图 4-2-2
A.两点确定一条直线
B.两点之间,线段最短
C.两条直线相交,只有一个交点
D.不在同一条直线上的三点,确定一个平面
3.(知识点 6)已知 C 是线段 AB 上的一点,不能确定 C 是 AB 的中点
的条件是()
A. AC=CB
B. AC= 1 AB
C. AB=2BC
D. AC+CB=AB
2
4.(题型三)已知线段 AB=8 cm,在直线 AB 上画线段 BC,使它等于
3 cm,则线段 AC 等于 _______.
5.(题型四)经过任意三点中的两点可以画出的直线共有 _____条.
6.(题型六)如图 4-2-3,由泰山到青岛的某一次单程列车,运行途
中停靠的车站依次是泰山、济南、淄博、潍坊、青岛,那么需要为这次列车制作的火车票有 _____种.
图 4-2-3
7.(题型三)如图 4-2-4,线段 AC=6 cm,线段 BC=15 cm,M 是 AC
的中点,在 CB 上取一点 N,使得 CN∶NB=1∶2,求 MN 的长 .
图 4-2-4
8.(题型六)如图 4-2-5,设 A,B,C,D 为四个居民小区,现要在
四边形 ABCD 内建一个购物中心,试问应把购物中心建在何处,才能使 4 个居民小区到购物中心的距离之和最小?请用一句话说明理由.
图 4-2-5
9.(题型二)如图 4-2-6,已知线段 a,b,利用直尺和圆规画一条线
段 c,使它的长度等于3a-b.
图 4-2-6
能力提升
10. (题型三)如图4-2-7,在线段 AF 中, AB=a,BC=b ,CD=c ,
DE=d ,EF=e ,则分别以A,B,C,D,E,F 为端点的所有线段长度之和为()
图 4-2-7
A.5a+8b+9c+8d+5e
B.5a+8b+10c+8d+5e
C.5a+9b+9c+9d+5e
D.10a+16b+18c+16d+10e
11.(题型五)如图 4-2-8,试确定各图中分别有几条线段、几条射线 .
(1)如图 4-2-8(1),直线 l 上有 1 个点 P1;
(2)如图 4-2-8(2),直线 l 上有 2 个点 P1,P2;
(3)如图 4-2-8(3),直线 l 上有 3 个点 P1,P2,P3;
(4)如图 4-2-8(4),直线 l 上有 4 个点 P1,P2,P3,P4;
(5)如图 4-2-8(5),直线 l 上有 n 个点 P1,P2,P3,, P n.
图 4-2-8
12.(题型三)如图 4-2-9,线段 AB=12,动点 P 从点 A 出发,以每
秒 2 个单位长度的速度沿射线AB 运动, M 为 AP 的中点.(1)出发多少秒后, PB=2AM?
(2)若点 P 在线段 AB 上运动时,试说明 2BM-PB 的值为定
值.(3)当点 P 在 AB 的延长线上运动时, N 为 PB 的中点,其他条件不变,下列两个结论:①MN 的长度不变;②AM+NP 的值不变 . 请选择正确的结论,并说明理由.
图 4-2-9
答案
基础巩固
1.B 解析:A. 图中共有 6 条线段,故 A 错误;B.直线 AB 与直线 AC
是同一条直线,故 B 正确; C.射线 AB 与射线 BA 不是同一条射线,
故 C 错误; D.点 O 在直线 AC 外,故 D 错误 .故选 B.
2.A 解析:经过刨平的木板上的两个点,就能弹出一条笔直的墨线,
此操作的依据是两点确定一条直线 .故选 A.
3.D 解析:A.若 AC=CB,则 C 是线段 AB 的中点; B.若 AC=1/2AB,
则 C 是线段 AB 的中点; C.若 AB=2BC,则 C 是线段 AB 的中点; D.
若 AC+BC=AB ,则 C 是线段 AB 上任意一点,故不能确定 C 是 AB
的中点 .故选 D.
4. 11 cm 或 5 cm解析:根据题意可知,AB=8 cm,BC=3 cm.因为点C
的位置不确定,所以要分两种情况分别进行讨论:如图 D4-2-1(1),当点 C 在点 B 的右侧时, AC=AB+BC =8+3=11(cm);如图 D4-2-1
(2),当点C 在点B 的左侧时,AC=AB-BC=8-3=5(cm).综上所述,线段 AC 等于 11 cm 或 5 cm.
图 D4-2-1
5.1 或 3 解析:如图 D4-2-2,可以画出 1 条或 3 条直线 .
图 D4-2-2
6.10 解析:如图 D4-2-3,将泰山、济南、淄博、潍坊、青岛这五站分别用 A,B,C,D,E 表示,则有线段 AB,AC,AD,AE,BC,BD,BE,CD,CE,DE,共 10 条,所以需要为这次列车制作的火车票有 10 种.
图 D4-2-3
7.解:因为 M 是 AC 的中点,线段 AC=6 cm,
所以 MC=AM= 1
AC=
1
×6=3(cm). 22
又因为 CN∶NB=1∶2,线段 BC=15 cm,
所以 CN= 1
BC=
1
×15=5(cm). 33
所以 MN=MC+NC =3+5=8(cm) .
8.解:应建在 AC,BD 连线的交点处 .理由:两点之间,线段最短 .
将 A,B,C,D 用线段连起来,在路程最短的两条线段的交点处建
超市,则使 4 个居民小区到购物中心的距离之和最小 .
9.解:(1)画射线 AP,在射线 AP 上顺次截取 AB=BC=CD=a ;(2)以 D 为端点,在线段 AD 上截取 DE=b .
如图 D4-2-4,线段 AE 的长度就是 3a-b,设 AE 的长度为 c,则 c=3a-b.
图 D4-2-4
能力提升
10.A 解析:以 A 为端点的线段有 AB,AC,AD,AE,AF,这些线段的
长度之和为 5a+4b+3c+2d+e;以 B 为端点的线段有 BC,BD,BE,
BF,这些线段的长度之和为4b+3c+2d+e;以 C 为端点的线段有CD,CE,CF,这些线段的长度之和为3c+2d+e;以 D 为端点的线段有DE,DF,这些线段长度之和为2d+e;以 E 为端点的线段有EF,线段的长度为 e.所以分别以A,B,C,D,E,F 为端点的所有线段的长度
之和为 5a+8b+9c+8d+5e.故选 A.
11.解:(1)题图( 1)中有 0 条线段, 2 条射线 .
(2)题图( 2)中有 1 条线段, 4 条射线 .
(3)题图( 3)中有 1+2=3(条)线段, 6 条射线 .
(4)题图( 4)中有 1+2+3=6(条)线段, 8 条射线 .
(5)题图( 5)中有 1+2+3+ +(n-1)= n n1
(条)线段, 2n 条2
射线 .
12.解:(1)设出发 t(t>0)秒后, PB=2AM.如图 D4-2-5(1),由题意,得 AP=2t,则 PB=12-2t.
因为 M 为 AP 的中点,所以 AM=t.
由 PB=2AM,得 12-2t=2t,解得 t=3.
故出发 3 秒后, PB=2AM.
(2)设点 P 在 AB 上运动的时间为t(t >0)秒.如图 D4-2-5(1),可
得 AP=2t,AM=t ,所以 BM=12-t.
所以 2BM-PB=2×( 12-t)-(12-2t)=24-2t-12+2t=12.
所以当点 P 在线段 AB 上运动时, 2BM-BP 的值为定值 12.(3)结论①是正确的 .理由如下:
如图 D4-2-5(2),设点 P 在 AB 的延长线上运动的时间为
1
则 AP=2t,则 AM=t ,PB=2 t- .t( t>0)秒,
2因为N 为PB 的中点,
所以 NP= 1
PB=
1
×( 2t-12) =t-6.
2 2
①M N=AP-AM-NP =2t-t-(t-6)=6.
所以当点 P 在 AB 的延长线上运动时, MN 的长度不变 .
所以结论①正确 .
②A M+NP =t+(t-6)=2t-6,
所以当点 P 在 AB 的延长线上运动时, AM+PN 的值会改变.所以结论②不正确.
(1)
(2)
图 D4-2-5。