化工系统-第5章换热网络综合
- 格式:pptx
- 大小:1.45 MB
- 文档页数:91
换热网络与热集成我国国民经济正处于一个高速发展的时期,这就不可避免地出现能源消耗的大幅度上升。
当前我国的能源消费量已超过世界能源消费总量的10%,但是我国的人均能源消费量仅约为世界平均水平的50%,这种情况表明未来我国经济发展所面临的能源问题将更加突出、更加严峻。
为了保证国民经济持续、快速、健康地发展,必须合理、有效地利用能源,不断提高能源利用效率。
在大型过程系统中,存在大量需要换热的流股,一些物流需要被加热,一些物流需要被冷却。
大型过程系统可以提供的外部公用工程种类繁多,如不同压力等级的蒸汽,不同温度的冷冻剂、冷却水等。
为提高能量利用率,节约资源与能源,就要优先考虑系统中各流股之间的换热、各流股与不同公用工程种类的搭配,以实现最大限度的热量回收,尽可能提高工艺过程的热力学效率。
热集成网络的分析与合成,本质上是设计一个由热交换器组成的换热网络,使系统中所有需要加热和冷却的物流都达到工艺流程所规定的出口温度,使得基于热集成网络运行费用与换热设备投资费用的系统总费用最小。
1.1 热集成1.1.1 概述进行流程的冷热流股之间的能量匹配设计并构建换热网络。
热集成旨在最大程度的利用流程内部的能量,减少公用工程的消耗,从而减少操作费用,降低生产成本。
通过对流程流股的深入分析,利用Aspen Energy Analyzer 设计换热网络,其主要步骤如下:(1)确定流程中需要换热的冷流股和热流股;(2)利用物流数据做出冷热流股的温焓图和总组合曲线图(GCC);(3)确定最小传热温差;(4)找出夹点及最小冷、热公用工程用量;(5)构建优化换热网络。
由于跨车间换热对管道伴热要求较高,使用的管道经济投资较大,在换热网络处理中,本设计将原料预处理工段、反应工段、二氧化碳捕集工段和分离提纯工段分别进行换热网络设计。
夹点设计技术原则:(1)流股数目准则夹点以上只能用热公用工程进行加热,所有的热流股都要用冷流股冷却到热夹点温度,夹点以下只能用冷公用工程进行冷却,所有的冷流股都要用热流股加热到冷夹点温度。
换热网络集成1.分工段换热网络集成(1)异构化反应工段①物流信息提取Aspen plus 流程模拟提示“no error and warning”,通过Aspen HX-Net的自动导入功能对换热物流信息进行提取,手动检查物流信息,将提取有差异的信息输入至换热网络中,并补加部分物流,选择公用工程的类型及温度。
异构化反应工段物流提取信息见表1所示,热量回收及公用工程信息见表2所示。
表1 异构化反应工段物流提取信息物流名称类型入口温度(℃)出口温度(℃)热容流率(kj/℃·h)焓值(kj/h)流量(kg/h)异构化反应前20.0 140.0 1.575E067.057E06 8709 140.0 260.0 1.979E06260.0 380.0 2.326E06异构化反应后400.0 221.1 2.305E046.728E06 8709221.1 78.0 1.821E04表2 异构化反应工段热量回收及公用工程信息物流名称类型入口温度(℃)出口温度(℃)目标负荷(kj/h)目标流量(kg/h)生产高压蒸汽249.0 250.0 0 0高温炉气加热500.0 250.0 3.288E05 1315.02 空冷30.00 35.00 0 0②能量分析设定最小传热温差为10℃,利用Aspen HX-net 对能量进行分析,温焓图如图1所示,总组合曲线如图2所示。
图1异构化反应工段温焓图图2异构化反应工段总组合曲线图通过软件的计算,系统无夹点,所需热公用工程用量为6.406E05 KJ/H,冷公用工程用量为0。
③物流匹配本工段反应起始温度较高,需要加热量较大,为了更好的利用反应后气体温度,同时换热网络集成考虑了再生空气的换热,以及高温反应后气体的余热回收。
综合考虑工艺可行性、匹配原则、热量回收等原则,设计出异构化反应工段换热网络,如图3所示。
图3异构化反应工段换热网络(二) MTBE合成工段①物流信息提取Aspen plus 流程模拟提示“no error and warning”,通过Aspen HX-Net的自动导入功能对换热物流信息进行提取,手动检查物流信息,将提取有差异的信息输入至换热网络中,并补加部分物流,选择公用工程的类型及温度。
换热网络集成1.分工段换热网络集成(1)异构化反应工段①物流信息提取Aspen plus 流程模拟提示“no error and warning”,通过Aspen HX-Net的自动导入功能对换热物流信息进行提取,手动检查物流信息,将提取有差异的信息输入至换热网络中,并补加部分物流,选择公用工程的类型及温度。
异构化反应工段物流提取信息见表1所示,热量回收及公用工程信息见表2所示。
表1 异构化反应工段物流提取信息物流名称类型入口温度(℃)出口温度(℃)热容流率(kj/℃·h)焓值(kj/h)流量(kg/h)异构化反应前20.0 140.0 1.575E067.057E06 8709 140.0 260.0 1.979E06260.0 380.0 2.326E06异构化反应后400.0 221.1 2.305E046.728E06 8709221.1 78.0 1.821E04表2 异构化反应工段热量回收及公用工程信息物流名称类型入口温度(℃)出口温度(℃)目标负荷(kj/h)目标流量(kg/h)生产高压蒸汽249.0 250.0 0 0高温炉气加热500.0 250.0 3.288E05 1315.02 空冷30.00 35.00 0 0②能量分析设定最小传热温差为10℃,利用Aspen HX-net 对能量进行分析,温焓图如图1所示,总组合曲线如图2所示。
图1异构化反应工段温焓图图2异构化反应工段总组合曲线图通过软件的计算,系统无夹点,所需热公用工程用量为6.406E05 KJ/H,冷公用工程用量为0。
③物流匹配本工段反应起始温度较高,需要加热量较大,为了更好的利用反应后气体温度,同时换热网络集成考虑了再生空气的换热,以及高温反应后气体的余热回收。
综合考虑工艺可行性、匹配原则、热量回收等原则,设计出异构化反应工段换热网络,如图3所示。
图3异构化反应工段换热网络(二) MTBE合成工段①物流信息提取Aspen plus 流程模拟提示“no error and warning”,通过Aspen HX-Net的自动导入功能对换热物流信息进行提取,手动检查物流信息,将提取有差异的信息输入至换热网络中,并补加部分物流,选择公用工程的类型及温度。