(完整word版)2016年河南省中考数学试题及答案(Word版),推荐文档
- 格式:doc
- 大小:401.51 KB
- 文档页数:11
、、、,画树状图如图:【解析】设四个小组分别记作A B C D36033332πn R25111111x x x x xx x x x ++=-=-+--. 得,512x -≤<.(2)频数分布直方图如下图所示:所以ODE △,DEM △都是等边三角形,所以OD OE EM DM ===,所以四边形OEMD 是菱形。
tan379CD ︒≈秒的速度匀速上升【解析】(1)设一只A 型节能灯的售价是x 元,一只B 型节能灯的售价是y 元.根据题意,得:3263229x y x y +=⎧⎨+=⎩,解得:57x y =⎧⎨=⎩. 答:一只A 型节能灯的售价是5元,一只B 型节能灯的售价是7元;(2)设购进A 型节能灯m 只,总费用为W 元,根据题意,得:57(50)2350W m m m =+-=-+, 因为20-<,所以W 随x 的增大而减小.因为3(50)m m ≤-,解得:37.5m ≤,而m 为正整数, 所以当37m =时,237350276W =-⨯+=最小,此时503713-=. 答:当购买A 型灯37只,B 型灯13只时,最省钱. 【提示】此题根据题意得出正确的等量关系是解题关键. 【考点】二元一次方程组的应用 21.【答案】(1)0 (2)见解析 (3)见解析 (4)①3 3 ②2 ③10a -<<【分析】(1)根据函数的对称性即可得到结论; (2)描点、连线即可得到函数的图象;(3)根据函数图象得到函数22||y x x -=的图象关于y 轴对称;当1x >时,y 随x 的增大而增大; (4)①根据函数图象与x 轴的交点个数,即可得到结论;②如图,根据22y x =-的图象与直线2y =的交点个数,即可得到结论;③根据函数的图象即可得到a 的取值范围是10a ﹣<< . 【解析】(1)根据函数的对称性可得0m =,故答案为0. (2)该函数图象的另一部分如下图所示:33832。
2015年河南省中招考试数学试题及答案解析一、选择题(每小题3分,共24分) 1.下列各数中最大的数是( )C.πD.-8【答案】:A【解析】:根据有理数的定义,很容易得到最大的数是5,选A 。
2.如图所示的几何体的俯视图是( )【答案】:B【解析】:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,找到从上面看所得到的图形即可,选B 。
3.据统计,2014年我国高新产品出口总额达40570亿元,将数据40570亿用科学记数法表示为( )A.4.0570×109B. 0.40570×1010C. 40.570×1011D. 4.0570×1012【答案】:D【解析】: 科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数。
确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同。
当原数绝对值>1时,n 是正数; 当原数的绝对值<1时,n 是负数。
将40570亿用科学记数法表示4.0570×1012元,选D 。
4.如图,直线a ,b 被直线c ,d 所截,若∠1=∠2,∠3=1250,则∠4的度数为( )a cC DB A 正面第2题A.550B.600 C .700 D.750【答案】:A【解析】:本题考查了三线八角,因为∠1=∠2,所以a∥b,又∠3=1250,∠3与∠4互补,则∠4的度数为550。
选A。
5.不等式组x503x1+≥⎧⎨-⎩>的解集在数轴上表示为()GURUILIND CB A【答案】:C【解析】:本题考查了不等式组的解集,有①得x≥-5,有②得x<2,这里注意空心和实心;所以选C。
6.小王参加某企业招聘测试,他的笔试,面试,技能操作得分分别为85分,80分,90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分【答案】:D【解析】:本题主要考察加权平均数的计算方法,(85×2+80×3+90×5)÷(2+3+5)=86分,所以选D.7.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD 的平分线AG ,交BC 于点E ,若BF=6,AB=5,则AE 的长为( )A.4B.6C.8D.10【答案】:C【解析】:本题主要考察平行四边形和等腰三角形三线合一定理。
2016年河南省初中学业水平暨高级中等学校招生考试试卷数 学一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.31-的相反数是 (A )31- (B )31(C)3-(D )32.某种细胞的直径是0.00000095米,将0。
00000095用科学记数法表示为(A )7105.9-⨯(B )8105.9-⨯(C)71095.0-⨯(D )51095-⨯3.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是(A ) (B )(C )(D )4.下列计算正确的是 (A )228=- (B )()632=-(C )22423a a a =- (D )()523a a =-5.如图,过反比例函数)0(>=x xky 的图像上一点A 作AB ⊥x 轴 于点B ,连接AO,若S △AOB =2,则k 的值为(A )2 (B)3 (C )4 (D )56.如图,在△ABC 中,∠ACB=90°,AC=8,AB=10。
DE 垂直平分AC 交AB 于点E ,则DE 的长为 (A )6 (B )5 (C )4 (D )37.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数甲 乙 丙 丁 平均数(cm )185 180 185 180 方差3。
63.67。
48。
1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择【 】 (A )甲 (B)乙 (C)丙 (D )丁8.如图,已知菱形OABC 的顶点O (0,0),B (2,2), 若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时, 菱形的对角线交点D 的坐标为【 】 (A )(1,—1) (B )(-1,-1)(C)(2,0)(D )(0,-2)二、填空题(每小题3分,共21分)9.计算:._________8)2(30=--10。
2016年河南省中考数学试卷一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的.1.(3分)﹣的相反数是()A.﹣ B.C.﹣3 D.32.(3分)某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣7D.95×10﹣83.(3分)下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()A.B.C.D.4.(3分)下列计算正确的是()A.﹣= B.(﹣3)2=6 C.3a4﹣2a2=a2D.(﹣a3)2=a55.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,=2,则k的值为()连接AO,若S△AOBA.2 B.3 C.4 D.56.(3分)如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为()A.6 B.5 C.4 D.37.(3分)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差 3.6 3.67.48.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁8.(3分)如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A.(1,﹣1)B.(﹣1,﹣1)C.(,0)D.(0,﹣)二、填空题(每小题3分,共21分)9.(3分)计算:(﹣2)0﹣=.10.(3分)如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为.11.(3分)若关于x的一元二次方程x2+3x﹣k=0有两个不相等的实数根,则k 的取值范围是.12.(3分)在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行活动,该班小明和小亮同学被分在一组的概率是.13.(3分)已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是.14.(3分)如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作交于点C,若OA=2,则阴影部分的面积为.15.(3分)如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:(﹣1)÷,其中x的值从不等式组的整数解中选取.17.(9分)在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 73258430 8215 7453 7446 67547638 6834 7326 6830 86488753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分组统计表组别步数分组频数A5500≤x<65002B6500≤x<750010C7500≤x<8500mD8500≤x<95003E9500≤x<10500n请根据以上信息解答下列问题:(1)填空:m=,n=;(2)补全频数发布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在组;(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.18.(9分)如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E.(1)求证:MD=ME;(2)填空:①若AB=6,当AD=2DM时,DE=;②连接OD,OE,当∠A的度数为时,四边形ODME是菱形.19.(9分)如图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)20.(9分)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.21.(10分)某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…﹣3﹣﹣2﹣10123…y…3m﹣10﹣103…其中,m=.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x轴有个交点,所以对应的方程x2﹣2|x|=0有个实数根;②方程x2﹣2|x|=2有个实数根;③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是.22.(10分)(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.23.(11分)如图1,直线y=﹣x+n交x轴于点A,交y轴于点C(0,4),抛物线y=x2+bx+c经过点A,交y轴于点B(0,﹣2).点P为抛物线上一个动点,过点P作x轴的垂线PD,过点B作BD⊥PD于点D,连接PB,设点P的横坐标为m.(1)求抛物线的解析式;(2)当△BDP为等腰直角三角形时,求线段PD的长;(3)如图2,将△BDP绕点B逆时针旋转,得到△BD′P′,且旋转角∠PBP′=∠OAC,当点P的对应点P′落在坐标轴上时,请直接写出点P的坐标.2016年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的.1.(3分)﹣的相反数是()A.﹣ B.C.﹣3 D.3【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣的相反数是.故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣7D.95×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000095=9.5×10﹣7,故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【解答】解:A、主视图是第一层三个小正方形,第二层中间一个小正方形,左视图是第一层一个小正方形,第二层一个小正方形,故A错误;B、主视图是第一层两个小正方形,第二层中间一个小正方形,第三层中间一个小正方形,左视图是第一层一个小正方形,第二层一个小正方形,第三层一个小正方形,故B错误;C、主视图是第一层两个小正方形,第二层左边一个小正方形,左视图是第一层两个小正方形,第二层左边一个小正方形,故C正确;D、主视图是第一层两个小正方形,第二层右边一个小正方形,左视图是第一层一个小正方形,第二层左边一个小正方形,故D错误;故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.4.(3分)下列计算正确的是()A.﹣= B.(﹣3)2=6 C.3a4﹣2a2=a2D.(﹣a3)2=a5【分析】分别利用有理数的乘方运算法则以及积的乘方运算法则、二次根式的加减运算法则化简求出答案.【解答】解:A、﹣=2﹣=,故此选项正确;B、(﹣3)2=9,故此选项错误;C、3a4﹣2a2,无法计算,故此选项错误;D、(﹣a3)2=a6,故此选项错误;故选:A.【点评】此题主要考查了有理数的乘方运算以及积的乘方运算、二次根式的加减运算等知识,正确化简各式是解题关键.5.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S=2,则k的值为()△AOBA.2 B.3 C.4 D.5【分析】根据点A在反比例函数图象上结合反比例函数系数k的几何意义,即可得出关于k的含绝对值符号的一元一次方程,解方程求出k值,再结合反比例函数在第一象限内有图象即可确定k值.【解答】解:∵点A是反比例函数y=图象上一点,且AB⊥x轴于点B,=|k|=2,∴S△AOB解得:k=±4.∵反比例函数在第一象限有图象,∴k=4.故选C.【点评】本题考查了反比例函数的性质以及反比例函数系数k的几何意义,解题的关键是找出关于k的含绝对值符号的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数系数k的几何意义找出关于k的含绝对值符号的一元一次方程是关键.6.(3分)如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为()A.6 B.5 C.4 D.3【分析】在Rt△ACB中,根据勾股定理求得BC边的长度,然后由三角形中位线定理知DE=BC.【解答】解:∵在Rt△ACB中,∠ACB=90°,AC=8,AB=10,∴BC=6.又∵DE垂直平分AC交AB于点E,∴DE∥BC,∴DE是△ACB的中位线,∴DE=BC=3.故选:D.【点评】本题考查了三角形中位线定理、勾股定理.三角形中位线的性质:三角形的中位线平行于第三边且等于第三边的一半.7.(3分)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差 3.6 3.67.48.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【解答】解:∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选:A.【点评】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.8.(3分)如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A.(1,﹣1)B.(﹣1,﹣1)C.(,0)D.(0,﹣)【分析】根据菱形的性质,可得D点坐标,根据旋转的性质,可得D点的坐标.【解答】解:菱形OABC的顶点O(0,0),B(2,2),得D点坐标为(1,1).每秒旋转45°,则第60秒时,得45°×60=2700°,2700°÷360=7.5周,OD旋转了7周半,菱形的对角线交点D的坐标为(﹣1,﹣1),故选:B.【点评】本题考查了旋转的性质,利用旋转的性质是解题关键.二、填空题(每小题3分,共21分)9.(3分)计算:(﹣2)0﹣=﹣1.【分析】分别进行零指数幂、开立方的运算,然后合并.【解答】解:原式=1﹣2=﹣1.故答案为:﹣1.【点评】本题考查了实数的运算,涉及了零指数幂、开立方等知识,属于基础题.10.(3分)如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为110°.【分析】首先由在▱ABCD中,∠1=20°,求得∠BAE的度数,然后由BE⊥AB,利用三角形外角的性质,求得∠2的度数.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAE=∠1=20°,∵BE⊥AB,∴∠ABE=90°,∴∠2=∠BAE+∠ABE=110°.故答案为:110°.【点评】此题考查了平行四边形的性质以及三角形外角的性质.注意平行四边形的对边互相平行.11.(3分)若关于x的一元二次方程x2+3x﹣k=0有两个不相等的实数根,则k 的取值范围是k>﹣.【分析】由方程有两个不相等的实数根即可得出△>0,代入数据即可得出关于k的一元一次不等式,解不等式即可得出结论.【解答】解:∵关于x的一元二次方程x2+3x﹣k=0有两个不相等的实数根,∴△=32﹣4×1×(﹣k)=9+4k>0,解得:k>﹣.故答案为:k>﹣.【点评】本题考查了根的判别式以及解一元一次不等式,解题的关键是根据根的个数结合根的判别式得出关于k的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出方程(不等式或不等式组)是关键.12.(3分)在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行活动,该班小明和小亮同学被分在一组的概率是.【分析】利用画树状图法列出所有等可能结果,然后根据概率公式进行计算即可求解.【解答】解:设四个小组分别记作A、B、C、D,画树状图如图:由树状图可知,共有16种等可能结果,其中小明、小亮被分到同一个小组的结果由4种,∴小明和小亮同学被分在一组的概率是=,故答案为:.【点评】本题考查了列表法与树状图,解题的关键在于用列表法或画树状图法列出所有等可能结果,根据:概率=所求情况数与总情况数之比计算是基础.13.(3分)已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是(1,4).【分析】把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.【解答】解:∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,∴代入得:,解得:b=2,c=3,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,顶点坐标为(1,4),故答案为:(1,4).【点评】本题考查了二次函数的性质,二次函数图象上点的坐标特征的应用,能求出函数的解析式是解此题的关键.14.(3分)如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作交于点C,若OA=2,则阴影部分的面积为﹣.【分析】连接OC、AC,根据题意得到△AOC为等边三角形,∠BOC=30°,分别求出扇形COB的面积、△AOC的面积、扇形AOC的面积,计算即可.【解答】解:连接OC、AC,由题意得,OA=OC=AC=2,∴△AOC为等边三角形,∠BOC=30°,∴扇形COB的面积为:=,△AOC的面积为:×2×=,扇形AOC的面积为:=,则阴影部分的面积为:+﹣=﹣,故答案为:﹣.【点评】本题考查的是扇形面积计算,掌握等边三角形的性质、扇形的面积公式S=是解题的关键.15.(3分)如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为或.【分析】根据勾股定理,可得EB′,根据相似三角形的性质,可得EN的长,根据勾股定理,可得答案.【解答】解:如图,由翻折的性质,得AB=AB′,BE=B′E.①当MB′=2,B′N=1时,设EN=x,得B′E=.△B′EN∽△AB′M,=,即=,x2=,BE=B′E==.②当MB′=1,B′N=2时,设EN=x,得B′E=,△B′EN∽△AB′M,=,即=,解得x2=,BE=B′E==,故答案为:或.【点评】本题考查了翻折的性质,利用翻折的性质得出AB=AB′,BE=B′E是解题关键,又利用了相似三角形的性质,要分类讨论,以防遗漏.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:(﹣1)÷,其中x的值从不等式组的整数解中选取.【分析】先算括号里面的,再算除法,求出x的取值范围,选出合适的x的值代入求值即可.【解答】解:原式=•=﹣•=,解不等式组得,﹣1≤x<,当x=2时,原式==﹣2.【点评】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.17.(9分)在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 73258430 8215 7453 7446 67547638 6834 7326 6830 86488753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分组统计表组别步数分组频数A5500≤x<65002B6500≤x<750010C7500≤x<8500mD8500≤x<95003E9500≤x<10500n请根据以上信息解答下列问题:(1)填空:m=4,n=1;(2)补全频数发布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在B组;(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.【分析】(1)根据题目中的数据即可直接确定m和n的值;(2)根据(1)的结果即可直接补全直方图;(3)根据中位数的定义直接求解;(4)利用总人数乘以对应的比例即可求解.【解答】解:(1)m=4,n=1.故答案是:4,1;(2);(3)行走步数的中位数落在B组,故答案是:B;(4)一天行走步数不少于7500步的人数是:120×=48(人).答:估计一天行走步数不少于7500步的人数是48人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.18.(9分)如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E.(1)求证:MD=ME;(2)填空:①若AB=6,当AD=2DM时,DE=2;②连接OD,OE,当∠A的度数为60°时,四边形ODME是菱形.【分析】(1)先证明∠A=∠ABM,再证明∠MDE=∠MBA,∠MED=∠A即可解决问题.(2)①由DE∥AB,得=即可解决问题.②当∠A=60°时,四边形ODME是菱形,只要证明△ODE,△DEM都是等边三角形即可.【解答】(1)证明:∵∠ABC=90°,AM=MC,∴BM=AM=MC,∴∠A=∠ABM,∵四边形ABED是圆内接四边形,∴∠ADE+∠ABE=180°,又∠ADE+∠MDE=180°,∴∠MDE=∠MBA,同理证明:∠MED=∠A,∴∠MDE=∠MED,∴MD=ME.(2)①由(1)可知,∠A=∠MDE,∴DE∥AB,∴=,∵AD=2DM,∴DM:MA=1:3,∴DE=AB=×6=2.故答案为2.②当∠A=60°时,四边形ODME是菱形.理由:连接OD、OE,∵OA=OD,∠A=60°,∴△AOD是等边三角形,∴∠AOD=60°,∵DE∥AB,∴∠ODE=∠AOD=60°,∠MDE=∠MED=∠A=60°,∴△ODE,△DEM都是等边三角形,∴OD=OE=EM=DM,∴四边形OEMD是菱形.故答案为60°.【点评】本题考查圆内接四边形性质、直角三角形斜边中线性质、菱形的判定等知识,解题的关键是灵活运用这些知识解决问题,记住菱形的三种判定方法,属于中考常考题型.19.(9分)如图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】通过解直角△BCD和直角△ACD分别求得BD、CD以及AD的长度,则易得AB的长度,则根据题意得到整个过程中旗子上升高度,由“速度=”进行解答即可.【解答】解:在Rt△BCD中,BD=9米,∠BCD=45°,则BD=CD=9米.在Rt△ACD中,CD=9米,∠ACD=37°,则AD=CD•tan37°≈9×0.75=6.75(米).所以,AB=AD+BD=15.75米,整个过程中旗子上升高度是:15.75﹣2.25=13.5(米),因为耗时45s,所以上升速度v==0.3(米/秒).答:国旗应以0.3米/秒的速度匀速上升.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题.解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.20.(9分)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.【分析】(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据:“1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B 型节能灯共需29元”列方程组求解即可;(2)首先根据“A型节能灯的数量不多于B型节能灯数量的3倍”确定自变量的取值范围,然后得到有关总费用和A型灯的只数之间的关系得到函数解析式,确定函数的最值即可.【解答】解:(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y 元,根据题意,得:,解得:,答:一只A型节能灯的售价是5元,一只B型节能灯的售价是7元;(2)设购进A型节能灯m只,总费用为W元,根据题意,得:W=5m+7(50﹣m)=﹣2m+350,∵﹣2<0,∴W随m的增大而减小,又∵m≤3(50﹣m),解得:m≤37.5,而m为正整数,∴当m=37时,W=﹣2×37+350=276,最小此时50﹣37=13,答:当购买A型灯37只,B型灯13只时,最省钱.【点评】此题主要考查了二元一次方程组的应用以及一次函数的应用等知识,根据题意得出正确的等量关系是解题关键.21.(10分)某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…﹣3﹣﹣2﹣10123…y…3m﹣10﹣103…其中,m=0.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x轴有3个交点,所以对应的方程x2﹣2|x|=0有3个实数根;②方程x2﹣2|x|=2有2个实数根;③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是﹣1<a<0.【分析】(1)把x=﹣2代入函数解释式即可得m的值;(2)描点、连线即可得到函数的图象;(3)根据函数图象得到函数y=x2﹣2|x|的图象关于y轴对称;当x>1时,y随x的增大而增大;(4)①根据函数图象与x轴的交点个数,即可得到结论;②如图,根据y=x2﹣2|x|的图象与直线y=2的交点个数,即可得到结论;③根据函数的图象即可得到a的取值范围是﹣1<a<0.【解答】解:(1)把x=﹣2代入y=x2﹣2|x|得y=0,即m=0,故答案为:0;(2)如图所示;(3)由函数图象知:①函数y=x2﹣2|x|的图象关于y轴对称;②当x>1时,y 随x的增大而增大;(4)①由函数图象知:函数图象与x轴有3个交点,所以对应的方程x2﹣2|x|=0有3个实数根;②如图,∵y=x2﹣2|x|的图象与直线y=2有两个交点,∴x2﹣2|x|=2有2个实数根;③由函数图象知:∵关于x的方程x2﹣2|x|=a有4个实数根,∴a的取值范围是﹣1<a<0,故答案为:3,3,2,﹣1<a<0.【点评】本题考查了二次函数的图象和性质,正确的识别图象是解题的关键.22.(10分)(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为a+b(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.【分析】(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60°,推出△CAD≌△EAB,根据全等三角形的性质得到CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+3;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可得到结论.【解答】解:(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为:CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,,∴△CAD≌△EAB,∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=4;(3)连接BM,∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=AP=2,∴最大值为2+3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=,∴OE=BO﹣AB﹣AE=5﹣3﹣=2﹣,∴P(2﹣,).【点评】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.23.(11分)如图1,直线y=﹣x+n交x轴于点A,交y轴于点C(0,4),抛物线y=x2+bx+c经过点A,交y轴于点B(0,﹣2).点P为抛物线上一个动点,过点P作x轴的垂线PD,过点B作BD⊥PD于点D,连接PB,设点P的横坐标为m.(1)求抛物线的解析式;(2)当△BDP为等腰直角三角形时,求线段PD的长;(3)如图2,将△BDP绕点B逆时针旋转,得到△BD′P′,且旋转角∠PBP′=∠OAC,当点P的对应点P′落在坐标轴上时,请直接写出点P的坐标.【分析】(1)先确定出点A的坐标,再用待定系数法求出抛物线解析式;(2)方法1、由△BDP为等腰直角三角形,判断出BD=PD,建立m的方程计算出m,从而求出PD;方法2、分点P在直线BD上方和下方,两种情况讨论计算即可.方法3、先判断出直线PD的解析式为y=﹣x﹣2或y=x﹣2即可求出点P的坐标,即可得出结论;(3)分点P′落在x轴和y轴两种情况计算即可.【解答】解:(1)∵点C(0,4)在直线y=﹣x+n上,∴n=4,∴y=﹣x+4,令y=0,∴x=3,∴A(3,0),∵抛物线y=x2+bx+c经过点A,交y轴于点B(0,﹣2).∴c=﹣2,6+3b﹣2=0,∴b=﹣,∴抛物线解析式为y=x2﹣x﹣2,(2)解法一:∵点P的横坐标为m,且点P在抛物线上,∴P(m,m2﹣m﹣2),∵PD⊥x轴,BD⊥PD∴点D坐标为(m,﹣2)∴|BD|=|m|,|PD|=|m2﹣m﹣2+2||,当△BDP为等腰直角三角形时,PD=BD.∴|m|=|m2﹣m﹣2+2|=|m2﹣m|∴m2=(m2﹣m)2解得:m1=0(舍去),m2=,m3=∴当△BDP为等腰直角三角形时,线段PD的长为或.解法二:∵点P的横坐标为m.∴P(m,m2﹣m﹣2),当△BDP为等腰直角三角形时,PD=BD.①当点P在直线BD上方时,PD=m2﹣m(i)若点P在y轴左侧,则m<0,BD=﹣m.∴m2﹣m=﹣m,解得m1=0(舍去),m2=(舍去)(ii)若点P在y轴右侧,则m>0,BD=m.∴m2﹣m=m,解得m1=0(舍去),m2=.②当点P在直线BD下方时,m>0,BD=m,PD=﹣m2+m.∴﹣m2+m=m,解得m1=0(舍去),m2=.综上所述,m=或即当△BDP为等腰直角三角形时,线段PD的长为或.方法3、∵△BDP为等腰直角三角形,且PD⊥x轴,BD⊥PD,∴∠PBD=45°,∴直线BP的解析式为y=﹣x﹣2①或y=x+2②,∵点P在抛物线y=x2﹣x﹣2③上,∴联立①③解得,或,∴P(,﹣),∴D(,﹣2),∴PD=|﹣2﹣(﹣)|=联立②③解得,或,∴m=,∴P(,),∴D(,﹣2),∴PD=|﹣(﹣2)|=,即当△BDP为等腰直角三角形时,线段PD的长为或.(3)∵∠PBP'=∠OAC,OA=3,OC=4,∴AC=5,∴sin∠PBP'=,cos∠PBP'=,①当点P'落在x轴上时,过点D'作D'N⊥x轴,垂足为N,交BD于点M,∠DBD'=∠ND'P'=∠PBP',如图1,由旋转知,P'D'=PD=m2﹣m,在Rt△P'D'N中,cos∠ND'P'==cos∠PBP'=,∴ND'=(m2﹣m),在Rt△BD'M中,BD'=﹣m,sin∠DBD'==sin∠PBP'=,∴D'M=﹣m,∴ND'﹣MD'=2,∴(m2﹣m)﹣(﹣m)=2,∴m=(舍),或m=﹣,如图2,同①的方法得,ND'=(m2﹣m),MD'=mND'+MD'=2,∴(m2﹣m)+m=2,∴m=,或m=﹣(舍),∴P(﹣,)或P(,),②当点P'落在y轴上时,如图3,过点D′作D′M⊥x轴,交BD于M,过点P′作P′N⊥y轴,交MD'的延长线于点N,。
2016年河南省中考数学试卷一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的. 1.(3分)(2016•河南)﹣的相反数是()A.﹣ B.C.﹣3 D.32.(3分)(2016•河南)某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣7D.95×10﹣83.(3分)(2016•河南)下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()A.B.C.D.4.(3分)(2016•河南)下列计算正确的是()A.﹣=B.(﹣3)2=6 C.3a4﹣2a2=a2D.(﹣a3)2=a55.(3分)(2016•河南)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2 B.3 C.4 D.56.(3分)(2016•河南)如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为()A.6 B.5 C.4 D.37.(3分)(2016•河南)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的A.甲B.乙C.丙D.丁8.(3分)(2016•河南)如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A.(1,﹣1)B.(﹣1,﹣1)C.(,0)D.(0,﹣)二、填空题(每小题3分,共21分)9.(3分)(2016•河南)计算:(﹣2)0﹣=______.10.(3分)(2016•河南)如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为______.11.(3分)(2016•河南)若关于x的一元二次方程x2+3x﹣k=0有两个不相等的实数根,则k的取值范围是______.12.(3分)(2016•河南)在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行活动,该班小明和小亮同学被分在一组的概率是______.13.(3分)(2016•河南)已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是______.14.(3分)(2016•河南)如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作交于点C,若OA=2,则阴影部分的面积为______.15.(3分)(2016•河南)如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为______.三、解答题(本大题共8小题,满分75分)16.(8分)(2016•河南)先化简,再求值:(﹣1)÷,其中x的值从不等式组的整数解中选取.17.(9分)(2016•河南)在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 73258430 8215 7453 7446 67547638 6834 7326 6830 86488753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:(1)填空:m=______,n=______;(2)补全频数发布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在______组;(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.18.(9分)(2016•河南)如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB 为直径作⊙O分别交AC,BM于点D,E.(1)求证:MD=ME;(2)填空:①若AB=6,当AD=2DM时,DE=______;②连接OD,OE,当∠A的度数为______时,四边形ODME是菱形.19.(9分)(2016•河南)如图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)20.(9分)(2016•河南)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.21.(10分)(2016•河南)某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x轴有______个交点,所以对应的方程x2﹣2|x|=0有______个实数根;②方程x2﹣2|x|=2有______个实数根;③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是______.22.(10分)(2016•河南)(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于______时,线段AC的长取得最大值,且最大值为______(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.23.(11分)(2016•河南)如图1,直线y=﹣x+n交x轴于点A,交y轴于点C(0,4),抛物线y=x2+bx+c经过点A,交y轴于点B(0,﹣2).点P为抛物线上一个动点,过点P作x轴的垂线PD,过点B作BD⊥PD于点D,连接PB,设点P的横坐标为m.(1)求抛物线的解析式;(2)当△BDP为等腰直角三角形时,求线段PD的长;(3)如图2,将△BDP绕点B逆时针旋转,得到△BD′P′,且旋转角∠PBP′=∠OAC,当点P的对应点P′落在坐标轴上时,请直接写出点P的坐标.2016年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的. 1.(3分)(2016•河南)﹣的相反数是()A.﹣ B.C.﹣3 D.3【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣的相反数是.故选:B.2.(3分)(2016•河南)某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣7D.95×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000095=9.5×10﹣7,故选:A.3.(3分)(2016•河南)下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【解答】解:A、主视图是第一层三个小正方形,第二层中间一个小正方形,左视图是第一层一个小正方形,第二层一个小正方形,故A错误;B、主视图是第一层两个小正方形,第二层中间一个小正方形,第三层中间一个小正方形,左视图是第一层一个小正方形,第二层一个小正方形,第三层一个小正方形,故B错误;C、主视图是第一层两个小正方形,第二层左边一个小正方形,左视图是第一层两个小正方形,第二层左边一个小正方形,故C正确;D、主视图是第一层两个小正方形,第二层右边一个小正方形,左视图是第一层一个小正方形,第二层左边一个小正方形,故D错误;故选:C.4.(3分)(2016•河南)下列计算正确的是()A.﹣=B.(﹣3)2=6 C.3a4﹣2a2=a2D.(﹣a3)2=a5【分析】分别利用有理数的乘方运算法则以及积的乘方运算法则、二次根式的加减运算法则化简求出答案.【解答】解:A、﹣=2﹣=,故此选项正确;B、(﹣3)2=9,故此选项错误;C、3a4﹣2a2,无法计算,故此选项错误;D、(﹣a3)2=a6,故此选项错误;故选:A.5.(3分)(2016•河南)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2 B.3 C.4 D.5【分析】根据点A在反比例函数图象上结合反比例函数系数k的几何意义,即可得出关于k 的含绝对值符号的一元一次方程,解方程求出k值,再结合反比例函数在第一象限内有图象即可确定k值.【解答】解:∵点A是反比例函数y=图象上一点,且AB⊥x轴于点B,∴S△AOB=|k|=2,解得:k=±4.∵反比例函数在第一象限有图象,∴k=4.故选C.6.(3分)(2016•河南)如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为()A.6 B.5 C.4 D.3【分析】在Rt△ACB中,根据勾股定理求得BC边的长度,然后由三角形中位线定理知DE=BC.【解答】解:∵在Rt△ACB中,∠ACB=90°,AC=8,AB=10,∴BC=6.又∵DE垂直平分AC交AB于点E,∴DE是△ACB的中位线,∴DE=BC=3.故选:D.7.(3分)(2016•河南)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的A.甲B.乙C.丙D.丁【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【解答】解:∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选:A.8.(3分)(2016•河南)如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A.(1,﹣1)B.(﹣1,﹣1)C.(,0)D.(0,﹣)【分析】根据菱形的性质,可得D点坐标,根据旋转的性质,可得D点的坐标.【解答】解:菱形OABC的顶点O(0,0),B(2,2),得D点坐标为(1,1).每秒旋转45°,则第60秒时,得45°×60=2700°,2700°÷360=7.5周,OD旋转了7周半,菱形的对角线交点D的坐标为(﹣1,﹣1),故选:B.二、填空题(每小题3分,共21分)9.(3分)(2016•河南)计算:(﹣2)0﹣=﹣1.【分析】分别进行零指数幂、开立方的运算,然后合并.【解答】解:原式=1﹣2=﹣1.故答案为:﹣1.10.(3分)(2016•河南)如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为110°.【分析】首先由在▱ABCD中,∠1=20°,求得∠BAE的度数,然后由BE⊥AB,利用三角形外角的性质,求得∠2的度数.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAE=∠1=20°,∵BE⊥AB,∴∠ABE=90°,∴∠2=∠BAE+∠ABE=110°.故答案为:110°.11.(3分)(2016•河南)若关于x的一元二次方程x2+3x﹣k=0有两个不相等的实数根,则k的取值范围是k>﹣.【分析】由方程有两个不相等的实数根即可得出△>0,代入数据即可得出关于k的一元一次不等式,解不等式即可得出结论.【解答】解:∵关于x的一元二次方程x2+3x﹣k=0有两个不相等的实数根,∴△=32﹣4×1×(﹣k)=9+4k>0,解得:k>﹣.故答案为:k>﹣.12.(3分)(2016•河南)在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行活动,该班小明和小亮同学被分在一组的概率是.【分析】利用画树状图法列出所有等可能结果,然后根据概率公式进行计算即可求解.【解答】解:设四个小组分别记作A、B、C、D,画树状图如图:由树状图可知,共有16种等可能结果,其中小明、小亮被分到同一个小组的结果由4种,∴小明和小亮同学被分在一组的概率是=,故答案为:.13.(3分)(2016•河南)已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是(1,4).【分析】把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.【解答】解:∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,∴代入得:,解得:b=2,c=3,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,顶点坐标为(1,4),故答案为:(1,4).14.(3分)(2016•河南)如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作交于点C,若OA=2,则阴影部分的面积为﹣.【分析】连接OC、AC,根据题意得到△AOC为等边三角形,∠BOC=30°,分别求出扇形△COB的面积、△AOC的面积、扇形AOC的面积,计算即可.【解答】解:连接OC、AC,由题意得,OA=OC=AC=2,∴△AOC为等边三角形,∠BOC=30°,∴扇形△COB的面积为:=,△AOC的面积为:×2×=,扇形AOC的面积为:=,则阴影部分的面积为:+﹣=﹣,故答案为:﹣.15.(3分)(2016•河南)如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为或.【分析】根据勾股定理,可得EB′,根据相似三角形的性质,可得EN的长,根据勾股定理,可得答案.【解答】解:如图,由翻折的性质,得AB=AB′,BE=B′E.①当MB′=2,B′N=1时,设EN=x,得B′E=.△B′EN∽△AB′M,=,即=,x2=,BE=B′E==.②当MB′=1,B′N=2时,设EN=x,得B′E=,△B′EN∽△AB′M,=,即=,解得x2=,BE=B′E==,故答案为:或.三、解答题(本大题共8小题,满分75分)16.(8分)(2016•河南)先化简,再求值:(﹣1)÷,其中x的值从不等式组的整数解中选取.【分析】先算括号里面的,再算除法,求出x的取值范围,选出合适的x的值代入求值即可.【解答】解:原式=•=﹣•=,解不等式组得,﹣1≤x<,当x=2时,原式==﹣2.17.(9分)(2016•河南)在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 73258430 8215 7453 7446 67547638 6834 7326 6830 86488753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:(1)填空:m=4,n=1;(2)补全频数发布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在B组;(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.【分析】(1)根据题目中的数据即可直接确定m和n的值;(2)根据(1)的结果即可直接补全直方图;(3)根据中位数的定义直接求解;(4)利用总人数乘以对应的比例即可求解.【解答】解:(1)m=4,n=1.故答案是:4,1;(2);(3)行走步数的中位数落在B组,故答案是:B;(4)一天行走步数不少于7500步的人数是:120×=48(人).答:估计一天行走步数不少于7500步的人数是48人.18.(9分)(2016•河南)如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB 为直径作⊙O分别交AC,BM于点D,E.(1)求证:MD=ME;(2)填空:①若AB=6,当AD=2DM时,DE=2;②连接OD,OE,当∠A的度数为60°时,四边形ODME是菱形.【分析】(1)先证明∠A=∠ABM,再证明∠MDE=∠MBA,∠MED=∠A即可解决问题.(2)①由DE∥AB,得=即可解决问题.②当∠A=60°时,四边形ODME是菱形,只要证明△ODE,△DEM都是等边三角形即可.【解答】(1)证明:∵∠ABC=90°,AM=MC,∴BM=AM=MC,∴∠A=∠ABM,∵四边形ABED是圆内接四边形,∴∠ADE+∠ABE=180°,又∠ADE+∠MDE=180°,∴∠MDE=∠MBA,同理证明:∠MED=∠A,∴∠MDE=∠MED,∴MD=ME.(2)①由(1)可知,∠A=∠MDE,∴DE∥AB,∴=,∵AD=2DM,∴DM:MA=1:3,∴DE=AB=×6=2.故答案为2.②当∠A=60°时,四边形ODME是菱形.理由:连接OD、OE,∵OA=OD,∠A=60°,∴△AOD是等边三角形,∴∠AOD=60°,∵DE∥AB,∴∠ODE=∠AOD=60°,∠MDE=∠MED=∠A=60°,∴△ODE,△DEM都是等边三角形,∴OD=OE=EM=DM,∴四边形OEMD是菱形.故答案为60°.19.(9分)(2016•河南)如图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】通过解直角△BCD和直角△ACD分别求得BD、CD以及AD的长度,则易得AB的长度,则根据题意得到整个过程中旗子上升高度,由“速度=”进行解答即可.【解答】解:在Rt△BCD中,BD=9米,∠BCD=45°,则BD=CD=9米.在Rt△ACD中,CD=9米,∠ACD=37°,则AD=CD•tan37°≈9×0.75=6.75(米).所以,AB=AD+BD=15.75米,整个过程中旗子上升高度是:15.75﹣2.25=13.5(米),因为耗时45s,所以上升速度v==0.3(米/秒).答:国旗应以0.3米/秒的速度匀速上升.20.(9分)(2016•河南)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.【分析】(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据:“1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元”列方程组求解即可;(2)首先根据“A型节能灯的数量不多于B型节能灯数量的3倍”确定自变量的取值范围,然后得到有关总费用和A型灯的只数之间的关系得到函数解析式,确定函数的最值即可.【解答】解:(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据题意,得:,解得:,答:一只A型节能灯的售价是5元,一只B型节能灯的售价是7元;(2)设购进A型节能灯m只,总费用为W元,根据题意,得:W=5m+7(50﹣m)=﹣2m+350,∵﹣2<0,∴W随m的增大而减小,又∵m≤3(50﹣m),解得:m≤37.5,而m为正整数,∴当m=37时,W最小=﹣2×37+350=276,此时50﹣37=13,答:当购买A型灯37只,B型灯13只时,最省钱.21.(10分)(2016•河南)某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.m=0.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x轴有3个交点,所以对应的方程x2﹣2|x|=0有3个实数根;②方程x2﹣2|x|=2有2个实数根;③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是﹣1<a<0.【分析】(1)把x=﹣2代入函数解释式即可得m的值;(2)描点、连线即可得到函数的图象;(3)根据函数图象得到函数y=x2﹣2|x|的图象关于y轴对称;当x>1时,y随x的增大而增大;(4)①根据函数图象与x轴的交点个数,即可得到结论;②如图,根据y=x2﹣2|x|的图象与直线y=2的交点个数,即可得到结论;③根据函数的图象即可得到a的取值范围是﹣1<a<0.【解答】解:(1)把x=﹣2代入y=x2﹣2|x|得y=0,即m=0,故答案为:0;(2)如图所示;(3)由函数图象知:①函数y=x2﹣2|x|的图象关于y轴对称;②当x>1时,y随x的增大而增大;(4)①由函数图象知:函数图象与x轴有3个交点,所以对应的方程x2﹣2|x|=0有3个实数根;②如图,∵y=x2﹣2|x|的图象与直线y=2有两个交点,∴x2﹣2|x|=2有2个实数根;③由函数图象知:∵关于x的方程x2﹣2|x|=a有4个实数根,∴a的取值范围是﹣1<a<0,故答案为:3,3,2,﹣1<a<0.22.(10分)(2016•河南)(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为a+b(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.【分析】(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60°,推出△CAD ≌△EAB,根据全等三角形的性质得到CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+3;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可得到结论.【解答】解:(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为:CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,,∴△CAD≌△EAB,∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=4;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=AP=2,∴最大值为2+3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=,∴OE=BO﹣﹣3=2﹣,∴P(2﹣,).23.(11分)(2016•河南)如图1,直线y=﹣x+n交x轴于点A,交y轴于点C(0,4),抛物线y=x2+bx+c经过点A,交y轴于点B(0,﹣2).点P为抛物线上一个动点,过点P作x轴的垂线PD,过点B作BD⊥PD于点D,连接PB,设点P的横坐标为m.(1)求抛物线的解析式;(2)当△BDP为等腰直角三角形时,求线段PD的长;(3)如图2,将△BDP绕点B逆时针旋转,得到△BD′P′,且旋转角∠PBP′=∠OAC,当点P的对应点P′落在坐标轴上时,请直接写出点P的坐标.【分析】(1)先确定出点A的坐标,再用待定系数法求出抛物线解析式;(2)由△BDP为等腰直角三角形,判断出BD=PD,建立m的方程计算出m,从而求出PD;(3)分点P′落在x轴和y轴两种情况计算即可.【解答】解:(1)∵点C(0,4)在直线y=﹣x+n上,∴n=4,∴y=﹣x+4,令y=0,∴x=3,∴A(3,0),∵抛物线y=x2+bx+c经过点A,交y轴于点B(0,﹣2).∴c=﹣2,6+3b﹣2=0,∴b=﹣,∴抛物线解析式为y=x2﹣x﹣2,(2)∵点P的横坐标为m.∴P(m,m2﹣m﹣2),当△BDP为等腰直角三角形时,PD=BD.①当点P在直线BD上方时,PD=m2﹣m(i)若点P在y轴左侧,则m<0,BD=﹣m.∴m2﹣m=﹣m,解得m1=0(舍去),m2=(舍去)(ii)若点P在y轴右侧,则m>0,BD=m.∴m2﹣m=m,解得m1=0(舍去),m2=.②当点P在直线BD下方时,m>0,BD=m,PD=﹣m2+m.∴﹣m2+m=m,解得m1=0(舍去),m2=.综上所述,m=或即当△BDP为等腰直角三角形时,线段PD的长为或.(3)∵∠PBP'=∠OAC,OA=3,OC=4,∴AC=5,∴sin∠PBP'=,cos∠PBP'=,①当点P'落在x轴上时,过点D'作D'N⊥x轴,垂足为N,交BD于点M,∠DBD'=∠ND'P'=∠PBP',如图1,ND'﹣MD'=2,∴(m2﹣m)﹣(﹣m)=2,∴m=(舍),或m=﹣,如图2,ND'+MD'=2,∴(m2﹣m)+m=2,∴m=,或m=﹣(舍),∴P(﹣,)或P(,),②当点P'落在y轴上时,如图3,过点D′作D′M⊥x轴,交BD于M,过点P′作P′N⊥y轴,交MD'的延长线于点N,∴∠DBD′=∠ND′P′=∠PBP′,∵P′N=BM,∴(m2﹣m)=m,∴m=,∴P(,).∴P(﹣,)或P(,)或P(,).参与本试卷答题和审题的老师有:HLing;gbl210;2300680618;曹先生;HJJ;sd2011;caicl;zcx;三界无我;zjx111;1286697702;CJX;zhjh;弯弯的小河;nhx600;王学峰;星月相随(排名不分先后)菁优网2016年9月19日。
2016年河南省普通高中招生数学试题及答案解析一、选择题(每小题3分,共24分)1.-13的相反数是( )A. -13B. 13C.-3D.3【答案】:B【解析】:根据相反数的定义,很容易得到-13的相反数是13,选B 。
2.某种细胞的直径是0.00000095米,将0.00000095用科学计数法表示为( )A.9.5×10-7B. 9.5×10-8C.0.95×10-7D. 95×10-8【答案】:A【解析】: 科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数。
确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同。
当原数绝对值>1时,n 是正数; 当原数的绝对值<1时,n 是负数。
将0.00000095用科学记数法表示9.5×10-7,选A 。
3.下面几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是( )DCBA【答案】:C【解析】:本题考查了三视图的知识,主视图是从物体的前面看得到的视图,左视图是从物,选C 。
4.下列计算正确的是( )B.(-3)2=6C.3a 4-2a 2=a 2D.(-a 3)2=a 5【答案】:A【解析】:根据有理数的定义幂的运算性质,运算正确的是A ,选A 。
5.如图,过反比例函数y=kx (x >0)的图像上一点A 作AB ⊥x 轴于点B ,连接AO ,若S △AOB =2,则k 的值为( )根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( )A.甲B.乙C.丙D.丁【答案】:A【解析】:本题考查了平均数与方差对运动员发挥稳定性的因素,方差越小越稳定,故选A 。
8.如图,已知菱形OABC 的顶点是O (0,0),B (2,2),若菱形绕点O 逆时针旋转,每秒旋转450,则第60秒时,菱形的对角线交点D 的坐标为( )A.(1,-1)B.(-1,-1)C.,0)D.(0,)【答案】:B【解析】:本题考查了中点坐标的求法及旋转的知识,每秒旋转450,8秒旋转一周,60秒÷8=7周余4秒,正好又转1800,由第一象限转到第三象限,前后是中心对称,点D 坐标是(1,1),所求坐标是(-1,-1),故选B 。
2016年河南省普通高中招生考试试卷数 学注意事项:1.本试卷共8页,三个大题,满分120分,考试时间100分钟,请用蓝、黑色水笔或圆珠笔直接答在试卷上.2.答卷前请将密封线内的项目填写清楚.题号 一 二 三总分 1~8 9~15 16 17 18 19 20 21 22 23分数一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.31-的相反数是( ) (A )31- (B )31(C )-3 (D )32.某种细胞的直径是0.00000095米,将0.00000095用科学计数法表示为 ( )A.9.5×10-7B. 9.5×10-8C.0.95×10-7D. 95×10-83. 下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是( )4.下列计算正确的是 ( )(A ) = (B )(-3)2=6 (C )3a 4-2a 3 = a 2 (D )(-a 3)2=a 55. 如图,过反比例函数y=(x> 0)的图象上一点A ,作AB ⊥x 轴于点B ,S △AOB =2,则k 的值为( ) (A )2 (B )3 (C )4 (D )56. 如图,在ABC 中,∠ACB=90°,AC=8,AB=10. DE 垂直平分AC 交AB 于点E ,则DE 的长为( )(A )6(B )5(C )4(D )37、下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185 180 185 180方差 3.6 3.6 7.4 8.1根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁8.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()(A)(1,-1) (B)(-1,-1) (C)(√2,0) (D)(0,√2)二、填空题(每小题3分,共21分)9.计算:(-2)0-=.10.如图,在□ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数是.11.关于x的一元二次方程x2+3x-k=0有两个不相等的实数根.则k的取值范围=.12.在“阳光体育”活动时间,班主任将全班同学随机分成了四组进行活动,该班小明和小亮同学被分在同一组的概率是.13.已知A(0,3),B(2,3)抛物线y=-x2+bx+c上两点,则该抛物线的顶点坐标是.14.如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作交于点C.若OA=2,则阴影部分的面积为______.15.如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上的一个动点,连接AE,将△ABE沿AE折叠,点B落在点B'处,过点B'作AD的垂线,分别交AD、BC于点M、N,当点B'为线段MN的三等份点时,BE的长为 .三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:)121()1(222++-÷-+x x x x x x ,其中x 的值从不等式组 的整数解中选取。
2016年河南省中考真题数学一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的.1.13-的相反数是( )A.1 3 -B.1 3C.-3D.3解析:根据只有符号不同的两个数互为相反数,可得13-的相反数是13.答案:B.2.某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为( )A.9.5×10-7B.9.5×10-8C.0.95×10-7D.95×10-8解析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.0.00000095=9.5×10-7.答案:A.3.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是( )A.B.C.D.解析:从正面看得到的图形是主视图,从左边看得到的图形是左视图.A、主视图是第一层三个小正方形,第二层中间一个小正方形,左视图是第一层一个小正方形,第二层一个小正方形,故A错误;B、主视图是第一层两个小正方形,第二层中间一个小正方形,第三层中间一个小正方形,左视图是第一层一个小正方形,第二层一个小正方形,第三层一个小正方形,故B错误;C、主视图是第一层两个小正方形,第二层左边一个小正方形,左视图是第一层两个小正方形,第二层左边一个小正方形,故C正确;D、主视图是第一层两个小正方形,第二层右边一个小正方形,左视图是第一层一个小正方形,第二层左边一个小正方形,故D错误.答案:C.4.下列计算正确的是( )=B.(-3)2=6C.3a4-2a2=a2D.(-a3)2=a5解析:分别利用有理数的乘方运算法则以及积的乘方运算法则、二次根式的加减运算法则化简求出答案.A==B、(-3)2=9,故此选项错误;C、3a4-2a2,无法计算,故此选项错误;D、(-a3)2=a6,故此选项错误.答案:A.5.如图,过反比例函数kyx=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为( )A.2B.3C.4D.5解析:∵点A是反比例函数kyx图象上一点,且AB⊥x轴于点B,∴S△AOB=12|k|=2,解得:k=±4.∵反比例函数在第一象限有图象,∴k=4.答案:C.6.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为( )A.6B.5C.4D.3解析:∵在Rt△ACB中,∠ACB=90°,AC=8,AB=10,∴BC=6.又∵DE垂直平分AC交AB于点E,∴DE是△ACB的中位线,∴DE=12BC=3.答案:D.7.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( ) A.甲 B.乙 C.丙 D.丁解析:∵x x x x ==甲乙丁丙>,∴从甲和丙中选择一人参加比赛, ∵S 2甲=S 2乙<S 2丙<S 2乙, ∴选择甲参赛, 答案:A.8.如图,已知菱形OABC 的顶点O(0,0),B(2,2),若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D 的坐标为( )A.(1,-1)B.(-1,-1),0)D.(0,)解析:菱形OABC 的顶点O(0,0),B(2,2),得 D 点坐标为(1,1).每秒旋转45°,则第60秒时,得 45°×60=2700°, 2700°÷360=7.5周,OD 旋转了7周半,菱形的对角线交点D 的坐标为(-1,-1). 答案:B.二、填空题(每小题3分,共21分)9.计算:()02-= .解析:分别进行零指数幂、开立方的运算,然后合并.原式=1-2=-1.答案:-1.10.如图,在Y ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为 .解析:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAE=∠1=20°,∵BE⊥AB,∴∠ABE=90°,∴∠2=∠BAE+∠ABE=110°.答案:110°.11.若关于x的一元二次方程x2+3x-k=0有两个不相等的实数根,则k的取值范围是 . 解析:∵关于x的一元二次方程x2+3x-k=0有两个不相等的实数根,∴△=32-4×1×(-k)=9+4k>0,解得:94k->.答案:94k->.12.在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行活动,该班小明和小亮同学被分在一组的概率是 .解析:设四个小组分别记作A、B、C、D,画树状图如图:由树状图可知,共有16种等可能结果,其中小明、小亮被分到同一个小组的结果由4种,∴小明和小亮同学被分在一组的概率是41614=.答案:14.13.已知A(0,3),B(2,3)是抛物线y=-x2+bx+c上两点,该抛物线的顶点坐标是 . 解析:∵A(0,3),B(2,3)是抛物线y=-x2+bx+c上两点,∴代入得:3423 cb c⎧⎨-++⎩==,解得:b=2,c=3,∴y=-x2+2x+3=-(x-1)2+4,顶点坐标为(1,4).答案:(1,4).14.如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作»OC交»AB于点C,若OA=2,则阴影部分的面积为 .解析:连接OC、AC,由题意得,OA=OC=AC=2,∴△AOC为等边三角形,∠BOC=30°,∴扇形△COB的面积为:230236013ππ⨯⨯=,△AOC的面积为:122⨯=扇形AOC 的面积为:260223603ππ⨯⨯=,则阴影部分的面积为:313321πππ+=.13π.15.如图,已知AD ∥BC ,AB ⊥BC ,AB=3,点E 为射线BC 上一个动点,连接AE ,将△ABE 沿AE 折叠,点B 落在点B ′处,过点B ′作AD 的垂线,分别交AD ,BC 于点M ,N.当点B ′为线段MN 的三等分点时,BE 的长为 .解析:如图,由翻折的性质,得 AB=AB ′,BE=B ′E.①MB ′=2,B ′N=1时,设EN=x ,得B E '△B ′EN ∽△AB ′M ,EN B EB M AB '='',即23x =, 245x =,BE B E ='==. ②当MB ′=1,B ′N=2时,设EN=x ,得B E '=△B ′EN ∽△AB ′M ,EN B EB M AB '='',即1x =,解得212x =,2BE B E ='==.答案:5或2.三、解答题(本大题共8小题,满分75分)16.先化简,再求值:2221121x x x x x x ⎛⎫⎪-÷⎭+⎝-++,其中x 的值从不等式组1214x x -≤⎧⎨-⎩<的整数解中选取.解析:先算括号里面的,再算除法,求出x 的取值范围,选出合适的x 的值代入求值即可.答案:原式()21111111x x x x x x xx x x x x x--++==-=+-+--g g , 解不等式组1214x x -≤⎧⎨-⎩<得,512x -≤<,当x=2时,原式2212==--.17.在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 7325 8430 8215 7453 7446 6754 7638 6834 7326 6830 8648 8753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:请根据以上信息解答下列问题:(1)填空:m= ,n= .解析:(1)根据题目中的数据即可直接确定m和n的值:m=4,n=1. 答案:(1)4,4.(2)补全频数发布直方图.解析:(2)根据(1)的结果即可直接补全直方图.答案:(2)(3)这20名“健步走运动”团队成员一天行走步数的中位数落在组. 解析:(3)根据中位数的定义可知行走步数的中位数落在B组.答案:(3)B.(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数. 解析:(4)利用总人数乘以对应的比例即可求解.答案:(4)一天行走步数不少于7500步的人数是:4311204820++⨯=(人).答:估计一天行走步数不少于7500步的人数是48人.18.如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E.(1)求证:MD=ME.解析:(1)先证明∠A=∠ABM,再证明∠MDE=∠MBA,∠MED=∠A即可解决问题.答案:(1)∵∠ABC=90°,AM=MC,∴BM=AM=MC,∴∠A=∠ABM,∵四边形ABED是圆内接四边形,∴∠ADE+∠ABE=180°,又∠ADE+∠MDE=180°,∴∠MDE=∠MBA,同理证明:∠MED=∠A,∴∠MDE=∠MED,∴MD=ME.(2)填空:①若AB=6,当AD=2DM时,DE= .②连接OD,OE,当∠A的度数为时,四边形ODME是菱形.解析:(2)①由DE∥AB,得DE MDAB MA=即可解决问题.②当∠A=60°时,四边形ODME是菱形,只要证明△ODE,△DEM都是等边三角形即可. 答案:(2)①由(1)可知,∠A=∠MDE,∴DE∥AB,∴DE MD AB MA=,∵AD=2DM,∴DM:MA=1:3,∴132136DE AB==⨯=.故答案为2.②当∠A=60°时,四边形ODME是菱形.理由:连接OD、OE,∵OA=OD,∠A=60°,∴△AOD是等边三角形,∴∠AOD=60°,∵DE∥AB,∴∠ODE=∠AOD=60°,∠MDE=∠MED=∠A=60°,∴△ODE,△DEM都是等边三角形,∴OD=OE=EM=DM,∴四边形OEMD是菱形.即当∠A=60°时,四边形OEMD是菱形.故答案为60°.19.如图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)解析:通过解直角△BCD和直角△ACD分别求得BD、CD以及AD的长度,则易得AB的长度,则根据题意得到整个过程中旗子上升高度,由“=上升的高度速度时间”进行解答即可.答案:在Rt△BCD中,BD=9米,∠BCD=45°,则BD=CD=9米.在Rt△ACD中,CD=9米,∠ACD=37°,则AD=CD?tan37°≈9×0.75=6.75(米).所以,AB=AD+BD=15.75米,整个过程中旗子上升高度是:15.75-2.25=13.5(米),因为耗时45s,所以上升速度13.50.345v==(米/秒).答:国旗应以0.3米/秒的速度匀速上升.20.学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元.解析:(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据:“1只A 型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元”列方程组求解即可.答案:(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据题意,得:326 3229 x yx y+⎧⎨+⎩==,解得:57 xy⎧⎨⎩==,答:一只A型节能灯的售价是5元,一只B型节能灯的售价是7元.(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.解析:(2)首先根据“A型节能灯的数量不多于B型节能灯数量的3倍”确定自变量的取值范围,然后得到有关总费用和A型灯的只数之间的关系得到函数解析式,确定函数的最值即可.答案:(2)设购进A型节能灯m只,总费用为W元,根据题意,得:W=5m+7(50-m)=-2m+350,∵-2<0,∴W随x的增大而减小,又∵m≤3(50-m),解得:m≤37.5,而m为正整数,∴当m=37时,W最小=-2×37+350=276,此时50-37=13,答:当购买A型灯37只,B型灯13只时,最省钱.21.某班“数学兴趣小组”对函数y=x2-2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:其中,m= .解析:(1)根据函数的对称性可得m=0.答案:(1)0.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.解析:(2)描点、连线即可得到函数的图象.答案:(2)如图所示.(3)观察函数图象,写出两条函数的性质.解析:(3)根据函数图象得到函数y=x2-2|x|的图象关于y轴对称;当x>1时,y随x的增大而增大.答案:(3)由函数图象知:①函数y=x2-2|x|的图象关于y轴对称;②当x>1时,y随x的增大而增大.(4)进一步探究函数图象发现:①函数图象与x轴有个交点,所以对应的方程x2-2|x|=0有个实数根;②方程x2-2|x|=2有个实数根;③关于x的方程x2-2|x|=a有4个实数根时,a的取值范围是 .解析:(4)①根据函数图象与x轴的交点个数,即可得到结论;②如图,根据y=x2-2|x|的图象与直线y=2的交点个数,即可得到结论;③根据函数的图象即可得到a的取值范围是-1<a<0.答案:(4)①由函数图象知:函数图象与x轴有3个交点,所以对应的方程x2-2|x|=0有3个实数根.②如图,∵y=x2-2|x|的图象与直线y=2有两个交点,∴x2-2|x|=2有2个实数根;③由函数图象知:∵关于x的方程x2-2|x|=a有4个实数根,∴a的取值范围是-1<a<0,答案:3,3,2,-1<a<0.22.如图:(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为 (用含a,b的式子表示)解析:(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论.答案:(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为:CB的延长线上,a+b.(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.解析:(2)①根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60°,推出△CAD≌△EAB,根据全等三角形的性质得到CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果.答案:(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,AD ABCAD EAB AC AE⎧⎪∠∠⎨⎪⎩===,∴△CAD≌△EAB,∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=4.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P 为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.解析:(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为3;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可得到结论.答案:(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,AM最大值=BN最大值=AB+AN,∵AN==,∴BN 最大值为3,即AM 最大值为3. 如图2,过P 作PE ⊥x 轴于E ,∵△APN 是等腰直角三角形,∴,∴32OE BO ==,∴P(22).23.如图1,直线43y x n =-+交x 轴于点A ,交y 轴于点C(0,4),抛物线223y x bx c =++经过点A ,交y 轴于点B(0,-2).点P 为抛物线上一个动点,过点P 作x 轴的垂线PD ,过点B 作BD ⊥PD 于点D ,连接PB ,设点P 的横坐标为m.(1)求抛物线的解析式.解析:(1)先确定出点A 的坐标,再用待定系数法求出抛物线解析式. 答案:(1)∵点C(0,4)在直线43y x n =-+上, ∴n=4, ∴443y x =-+,令y=0, ∴x=3, ∴A(3,0), ∵抛物线223y x bx c =++经过点A ,交y 轴于点B(0,-2). ∴c=-2,6+3b-2=0, ∴43b =-, ∴抛物线解析式为242233y x x =--.(2)当△BDP 为等腰直角三角形时,求线段PD 的长. 解析:(2)由△BDP 为等腰直角三角形,判断出BD=PD ,建立m 的方程计算出m ,从而求出PD. 答案:(2)∵点P 的横坐标为m. ∴P(m ,243322m m --), 当△BDP 为等腰直角三角形时,PD=BD. ①当点P 在直线BD 上方时,24323PD m m =-. (i)若点P 在y 轴左侧,则m <0,BD=-m. ∴24323m m m -=-, 解得m 1=0(舍去),m 2=12(舍去) (ii)若点P 在y 轴右侧,则m >0,BD=m. ∴24233m m m -=, 解得m 1=0(舍去),m 2=72. ②当点P 在直线BD 下方时,m >0,BD=m ,23432PD m m =-+. ∴2234=3m m m -+,解得m 1=0(舍去),m 2=12. 综上所述,m=72或12. 即当△BDP 为等腰直角三角形时,线段PD 的长为72或12.(3)如图2,将△BDP 绕点B 逆时针旋转,得到△BD ′P ′,且旋转角∠PBP ′=∠OAC ,当点P 的对应点P ′落在坐标轴上时,请直接写出点P 的坐标. 解析:(3)分点P ′落在x 轴和y 轴两种情况计算即可. 答案:(3)∵∠PBP'=∠OAC ,OA=3,OC=4, ∴AC=5, ∴4'5sin PBP ∠=,3'5cos PBP ∠=, ①当点P'落在x 轴上时,过点D'作D'N ⊥x 轴,垂足为N ,交BD 于点M ,∠DBD'=∠ND'P'=∠PBP', 如图1,ND'-MD'=2, ∴2344232535m m m ---=()(),∴m =(舍),或m = 如图2,ND'+MD'=2, ∴2344253523m m m -+=(),∴m =,或m =舍),∴P(43)或43-), ②当点P'落在y 轴上时,如图3,过点D ′作D ′M ⊥x 轴,交BD 于M ,过点P ′作P ′N ⊥y 轴,交MD'的延长线于点N ,∴∠DBD ′=∠ND ′P ′=∠PBP ′, ∵P ′N=BM , ∴443253253m m m -=(), ∴258m =, ∴P(258,1132).综上所述:P(43)或43-)或P(258,1132).。
2018年7月23日数学试卷一、选择题(共8小题;共24分)1. 的相反数是A. B. C. D.2. 某种细胞的直径是米,将用科学记数法表示为A. B. C. D.3. 下面几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是A. B.C. D.4. 下列计算正确的是A. B. C. D.5. 如图,过反比例函数的图象上一点作轴于点,连接,若,则的值为A. B. C. D.6. 如图,在中,,,,垂直平分交于点,则的长是A. B. C. D.7. 下面记录了甲、乙、丙、丁四名跳高运动员最好几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择A. 甲B. 乙C. 丙D. 丁8. 如图,已知菱形的顶点,,若菱形绕点逆时针旋转,每秒旋转,则第秒时,菱形的对角线交点的坐标为A. B. C. D.二、填空题(共7小题;共21分)9. 计算:.10. 如图,在平行四边形中,交对角线于点,若,则的度数为.11. 若关于的一元二次方程有两个不相等的实数根,则的取值范围是.12. 在“阳光体育”活动时间,班主任将全班同学随机分成了四组进行活动,该班小明和小亮同学被分在同一组的概率是.13. 已知,是抛物线上两点,该抛物线的顶点坐标是.14. 如图,在扇形中,,以点为圆心,的长为半径作交于点,若,则阴影部分的面积是.15. 如图,已知,,,点为射线上的一个动点,连接,将沿折叠,点落在点处,过点作的垂线,分别交,于点,,当点为线段的三等份点时,的长为.三、解答题(共8小题;共75分)16. 先化简,再求值.,其中的值从不等式组的整数解中选取.17. 在一次社会调查活动中,小华收集到某“健步走运动”团队中名成员一天行走的步数,记录如下:对这名数据按组距进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分布统计图根据以上信息解答下列问题.(1)填空:,.(2)请补全条形统计图.(3)这名“健步走运动”团队成员一天行走的步数的中位数落在组.(4)若该团队共有人,请估计其中一天行走步数不少于步的人数.18. 如图,小东在教学楼距地面米高的窗口处,测得正前方旗杆顶部点的仰角为,旗杆底部的俯角为,升旗时,国旗上端悬挂在距地面米处,若国旗随国歌声冉冉升起,并在国歌播放秒结束时到达旗杆顶端,则国旗应以多少米秒的速度匀速上升?(参考数据:,,)19. 学校准备购进一批节能灯,已知只A型节能灯和只B型节能灯共需元,只A型节能灯和只B型节能灯共需元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种节能灯共只,并且A型节能灯的数量不多于B型节能灯数量的倍,请设计出最省钱的购买方案,并说明理由.20. 某班“数学兴趣小组”对函数的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量的取值范围是全体实数,与的几组对应数值如下表:其中.(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出来函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与轴有个交点,所以对应的方程有个实数根;②方程有个实数根;③关于的方程有个实数根,的取值范围是.21. 如图,在中,,点是的中点,以为直径作分别交,于点,.(1)求证:.(2)填空:①若,当时,;②连接,,当的度数为时,四边形是菱形.22. (1)问题如图1,点为线段外一动点,且,.填空:当点位于时线段的长取得最大值,且最大值为.(用含,的式子表示)(2)应用:点为线段外一动点,且,.如图2所示,分别以,为边,作等边三角形和等边三角形,连接,.①请找出图中与相等的线段,并说明理由;②直接写出线段长的最大值.(3)拓展:如图3,在平面直角坐标系中,点的坐标为,点的坐标为,点为线段外一动点,且,,.请直接写出线段长的最大值及此时点的坐标.23. 如图1,直线交轴于点,交轴于点,抛物线经过点,交轴于点.点为抛物线上的一个动点,过点作轴的垂线,过点作于点,连接.(1)求抛物线的解析式. (2)当为等腰直角三角形时,求线段的长.(3)如图2,将 绕点 逆时针旋转,得到,且,当点 的对应点 落在坐标轴上时,请直接写出 点的坐标.答案第一部分1. A2. A3. C 【解析】本题考查了三视图的知识,主视图是从物体的前面看得到的视图,左视图是从物体的左面看得到的视图,找到主视图和左视图相同的是.4. A 【解析】本题考查有理数的乘方、整式的加减、幂的乘方、二次根式的加减.,选项A正确;,选项B错误;与不是同类项,无法合并,选项C错误;,选项D错误.5. C【解析】本题考查了反比例函数的图象上一点作轴于点,连接,已知的面积求的方法是:,.6. D 【解析】本题考查了直角三角形中勾股定理的应用及垂直平分线的性质,先求,再得到,且等于的一半,即.7. A 【解析】本题考查了平均数与方差对运动员发挥稳定性的因素,方差越小越稳定.8. B 【解析】四边形为菱形,为的中点,点,点,在第一象限夹角的角平分线上,点,.当时,菱形绕点逆时针旋转,点在轴上,;当时,菱形绕点逆时针旋转,点在第二象限夹角的角平分线上,;当时,菱形绕点逆时针旋转,点在轴上,;当时,菱形绕点逆时针旋转,点在第三象限夹角的角平分线上,;当时,菱形绕点逆时针旋转,点在轴上,;当时,菱形绕点逆时针旋转,点在第四象限夹角的角平分线上,;当时,菱形绕点逆时针旋转,点在轴上,;当时,菱形绕点逆时针旋转,点在第一象限夹角的角平分线上,.由此可知,每秒一循环,.故第秒时点的坐标与第秒时点的坐标相同,故点的坐标为.第二部分9.10.【解析】本题考查平行四边形的性质,三角形外角的性质.四边形为平行四边形,..,..掌握平行四边形的性质及三角形外角的性质是解题的关键.三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角的和.平行四边形的性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等,邻角互补;④平行四边形的对角线互相平分.11.【解析】本题考查了一元二次方程根的判别式,,因为方程有两个不相等的实数根,所以,即,解得.12.【解析】.13.【解析】函数,顶点坐标是.14.【解析】连接, .是等边三角形,扇形的圆心角是,阴影部分的面积等于扇形的面积减去弓形的面积;扇形的面积是,弓形的面积是,.15. 或【解析】本题分两种情况:(1)若,因为,为线段的三等分点,则,,;,可证,,设,,解得.(2)若,因为,为线段的三等分点,则,,;,可证,,设,,解得,解得.第三部分16.解得.不等式组的整数解为,,,.若分式有意义,只能取.原式.17. (1);(2)(3) B(4)(人)答:该团队一天行走步数不少于步的人数为人.18. 过点作于,则,在中,,.在,,,,(米秒).国旗以米秒的速度匀速上升.19. (1)设一只A型节能灯售价元,一只B型节能灯售价元.由题意解得所以一只A型节能灯售价元,一只B型节能灯售价元.(2)设购进A型节能灯只,总费用为元..,随的增大而减小,当取最大值时,最小.又,解得:,又为正整数,当最大时,最小.此时.所以最省钱的购买方案是购进只A型节能灯,只B型节能灯.20. (1)(2)正确补全图象.(3)由函数图象知:①函数的图象关于轴对称;②当时,随的增大而增大;(可从函数的最值,增减性,图象对称性等方面阐述,答案不唯一,合理即可)(4)①;②③21. (1)在中,点是的中点,,.四边形是圆内接四边形,,又,.同理可证:,,.(2);【解析】①由,又,,,又,,,.②当时,是等边三角形,这时,和都是等边三角形,且全等.四边形是菱形.22. (1)的延长线上;(2)①,理由如下.和都是等边三角形,,,,,即,..②长的最大值是.(3)的最大值为,点的坐标为.【解析】如图3,构造,则.由(1)知,当点在的延长线上时,有最大值(如备用图).易得是等腰直角三角形,,,.过点作轴于点,,又,.23. (1)由过点,得,则.当时,得,解得:,点坐标是经过点,.解得:抛物线的解析式是.(2)点的横坐标为,,若为等腰直角三角形时,则.①当点在直线上方时,,(ⅰ)若在轴左侧,则,.,解得:或(舍去).(ⅱ)若在轴右侧,则,.,解得:或(舍去).②当点在直线下方时,,则,.,解得:或(舍去).综上:或.即当为等腰直角三角形时,的长为或.(3)或或.【解析】,,,,,.①当点落在轴上时,过点作轴于,交于点,,如图①,,即.如图②,,即解得:或.②当点落在轴上时,如图③,过点作轴交于点,过点作轴,交的延长线于点,,,即,.。
河南省2016年中考数学试卷注意事项:1.本试卷共8页,三个大题,满分120分,考试时间100分钟,请用蓝、黑色水笔或圆珠笔直接答在试卷上.2.答卷前请将密封线内的项目填写清楚.题号一二三总分1~89~15 16 17 18 19 20 21 22 23 分数一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.31-的相反数是【 】 (A )31- (B )31(C )3-(D )【答案】B. 【解析】试题分析:根据相反数的定义可得31-的相反数是31,故答案选B. 考点:相反数.2.某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示为【 】 (A )7105.9-⨯ (B )8105.9-⨯(C )71095.0-⨯(D )51095-⨯【答案】A.考点:科学记数法.3.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是【 】【答案】C. 【解析】试题分析:观察可得,只有选项C 的主视图和左视图相同,都为,故答案选C.考点:简单几何体的三视图. 4.下列计算正确的是【 】 (A )228=- (B )()632=-(C )22423a a a =- (D )()523a a =-【答案】A.考点:二次根式的运算;乘方的运算;积的乘方. 5.如图,过反比例函数)0(>=x xky 的图像上一点A 作AB ⊥x 轴于点B ,连接AO ,若S △AOB=2,则k 的值为【 】(A )2(B )3(C )4(D )5【答案】C.【解析】试题分析:观察图象可得,k>0,已知S△AOB=2,根据反比例函数k的几何意义可得k=4,故答案选C.考点:反比例函数k的几何意义.6.如图,在△ABC中,∠ACB=90°,AC=8,AB=10. DE垂直平分AC交AB于点E,则DE 的长为【】(A)6 (B)5 (C)4 (D)3【答案】D.考点:勾股定理;三角形的中位线定理.7.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185 180 185 180方差 3. 6 3.6 7.4 8.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择【 】 (A )甲 (B )乙(C )丙(D )丁【答案】A. 【解析】试题分析:在平均数一样的情况下,方差越小,数据的波动越小,由此可得应该选择甲,故答案选A. 考点:方差.8.如图,已知菱形OABC 的顶点O (0,0),B (2,2),若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D 的坐标为【 】 (A )(1,-1)(B )(-1,-1)(C )(2,0)(D )(0,-2)【答案】B.考点:规律探究题.二、填空题(每小题3分,共21分)9.计算:._________8)2(30=--【答案】-1. 【解析】试题分析:原式=1-2=-1. 考点:实数的运算.10. 如图,在□ABCD 中,BE ⊥AB 交对角线AC 于点E ,若∠1=20°,则∠2的度数是_________.【答案】110°. 【解析】试题分析:由平行四边形的性质可得AB ∥CD ,所以∠1=∠3=20°,根据三角形外角的性质可得∠2=∠3+∠ABE=20°+90°=110°.考点:平行四边形的性质;三角形外角的性质.11.若关于x 的一元二次方程032=-+k x x 有两个不相等的实数根,则k 的取值范围__________________. 【答案】k >49-. 【解析】试题分析:已知一元二次方程032=-+k x x 有两个不相等的实数根,由此可得△=9+4k >0,解得k >49-. 考点:根的判别式.12.在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行活动,则该班小明和小亮被分在同一组的概率是_________. 【答案】41.考点:概率.13.已知A (0,3),B (2,3)是抛物线c bx x y ++-=2上两点,该抛物线的顶点坐标是_________. 【答案】(1,4). 【解析】试题分析:把A (0,3),B (2,3)代入抛物线c bx x y ++-=2可得b=2,c=3,所以322++-=x x y =4)12+--x (,即可得该抛物线的顶点坐标是(1,4).考点:抛物线的顶点.14.如图,在扇形AOB 中,∠AOB=90°,以点A 为圆心,OA 的长为半径作⌒OC 交⌒AB 于点C. 若OA=2,则阴影部分的面积为___________.【答案】33π-.考点:扇形的面积.15.如图,已知AD ∥BC ,AB ⊥BC ,AB=3. 点E 为射线BC 上一个动点,连接AE ,将△ABE 沿AE 折叠,点B 落在点B ′处,过点B ′作AD 的垂线,分别交AD ,BC 于点M ,N. 当点B ′为线段MN 的三等分点时,BE 的长为__________________.【答案】223或553.考点:矩形的性质;勾股定理;折叠的性质. 三、解答题(本大题共8个小题,满分75分) 16. (8分)先化简,再求值:121)1(222++-÷-+x x x x x x ,其中x 的值从不等式组⎩⎨⎧<-≤-4121x x 的整数解中选取。
2016年河南省中考数学试卷一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的. 1.(3分)﹣的相反数是()A.﹣ B.C.﹣3 D.32.(3分)某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣7D.95×10﹣83.(3分)下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()A.B.C.D.4.(3分)下列计算正确的是()A.﹣=B.(﹣3)2=6 C.3a4﹣2a2=a2D.(﹣a3)2=a55.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2 B.3 C.4 D.56.(3分)如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为()A.6 B.5 C.4 D.3A.甲B.乙C.丙D.丁8.(3分)如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A.(1,﹣1)B.(﹣1,﹣1)C.(,0)D.(0,﹣)二、填空题(每小题3分,共21分)9.(3分)计算:(﹣2)0﹣=.10.(3分)如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为.11.(3分)若关于x的一元二次方程x2+3x﹣k=0有两个不相等的实数根,则k的取值范围是.12.(3分)在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行活动,该班小明和小亮同学被分在一组的概率是.13.(3分)已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是.14.(3分)如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作交于点C,若OA=2,则阴影部分的面积为.15.(3分)如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:(﹣1)÷,其中x的值从不等式组的整数解中选取.17.(9分)在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 73258430 8215 7453 7446 67547638 6834 7326 6830 86488753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:(1)填空:m=,n=;(2)补全频数发布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在组;(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.18.(9分)如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O 分别交AC,BM于点D,E.(1)求证:MD=ME;(2)填空:①若AB=6,当AD=2DM时,DE=;②连接OD,OE,当∠A的度数为时,四边形ODME是菱形.19.(9分)如图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)20.(9分)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.21.(10分)某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.﹣m=.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x轴有个交点,所以对应的方程x2﹣2|x|=0有个实数根;②方程x2﹣2|x|=2有个实数根;③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是.22.(10分)(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.23.(11分)如图1,直线y=﹣x+n交x轴于点A,交y轴于点C(0,4),抛物线y=x2+bx+c经过点A,交y轴于点B(0,﹣2).点P为抛物线上一个动点,过点P作x轴的垂线PD,过点B作BD⊥PD于点D,连接PB,设点P的横坐标为m.(1)求抛物线的解析式;(2)当△BDP为等腰直角三角形时,求线段PD的长;(3)如图2,将△BDP绕点B逆时针旋转,得到△BD′P′,且旋转角∠PBP′=∠OAC,当点P的对应点P′落在坐标轴上时,请直接写出点P的坐标.2016年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的. 1.(3分)(2016•河南)﹣的相反数是()A.﹣ B.C.﹣3 D.3【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣的相反数是.故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2016•河南)某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣7D.95×10﹣8【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000095=9.5×10﹣7,故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)(2016•河南)下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【解答】解:A、主视图是第一层三个小正方形,第二层中间一个小正方形,左视图是第一层一个小正方形,第二层一个小正方形,故A错误;B、主视图是第一层两个小正方形,第二层中间一个小正方形,第三层中间一个小正方形,左视图是第一层一个小正方形,第二层一个小正方形,第三层一个小正方形,故B错误;C、主视图是第一层两个小正方形,第二层左边一个小正方形,左视图是第一层两个小正方形,第二层左边一个小正方形,故C正确;D、主视图是第一层两个小正方形,第二层右边一个小正方形,左视图是第一层一个小正方形,第二层左边一个小正方形,故D错误;故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.4.(3分)(2016•河南)下列计算正确的是()A.﹣=B.(﹣3)2=6 C.3a4﹣2a2=a2D.(﹣a3)2=a5【考点】二次根式的加减法;有理数的乘方;合并同类项;幂的乘方与积的乘方.【分析】分别利用有理数的乘方运算法则以及积的乘方运算法则、二次根式的加减运算法则化简求出答案.【解答】解:A、﹣=2﹣=,故此选项正确;B、(﹣3)2=9,故此选项错误;C、3a4﹣2a2,无法计算,故此选项错误;D、(﹣a3)2=a6,故此选项错误;故选:A.【点评】此题主要考查了有理数的乘方运算以及积的乘方运算、二次根式的加减运算等知识,正确化简各式是解题关键.5.(3分)(2016•河南)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2 B.3 C.4 D.5【考点】反比例函数系数k的几何意义;反比例函数的性质.【分析】根据点A在反比例函数图象上结合反比例函数系数k的几何意义,即可得出关于k 的含绝对值符号的一元一次方程,解方程求出k值,再结合反比例函数在第一象限内有图象即可确定k值.【解答】解:∵点A是反比例函数y=图象上一点,且AB⊥x轴于点B,∴S△AOB=|k|=2,解得:k=±4.∵反比例函数在第一象限有图象,∴k=4.故选C.【点评】本题考查了反比例函数的性质以及反比例函数系数k的几何意义,解题的关键是找出关于k的含绝对值符号的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数系数k的几何意义找出关于k的含绝对值符号的一元一次方程是关键.6.(3分)(2016•河南)如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为()A.6 B.5 C.4 D.3【考点】三角形中位线定理;线段垂直平分线的性质.【分析】在Rt△ACB中,根据勾股定理求得BC边的长度,然后由三角形中位线定理知DE=BC.【解答】解:∵在Rt△ACB中,∠ACB=90°,AC=8,AB=10,∴BC=6.又∵DE垂直平分AC交AB于点E,∴DE是△ACB的中位线,∴DE=BC=3.故选:D.【点评】本题考查了三角形中位线定理、勾股定理.三角形中位线的性质:三角形的中位线平行于第三边且等于第三边的一半.7.(3分)(2016•河南)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的A.甲B.乙C.丙D.丁【考点】方差;算术平均数.【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【解答】解:∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选:A.【点评】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.8.(3分)(2016•河南)如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A.(1,﹣1)B.(﹣1,﹣1)C.(,0)D.(0,﹣)【考点】坐标与图形变化-旋转;菱形的性质.【专题】规律型.【分析】根据菱形的性质,可得D点坐标,根据旋转的性质,可得D点的坐标.【解答】解:菱形OABC的顶点O(0,0),B(2,2),得D点坐标为(1,1).每秒旋转45°,则第60秒时,得45°×60=2700°,2700°÷360=7.5周,OD旋转了7周半,菱形的对角线交点D的坐标为(﹣1,﹣1),故选:B.【点评】本题考查了旋转的性质,利用旋转的性质是解题关键.二、填空题(每小题3分,共21分)9.(3分)(2016•河南)计算:(﹣2)0﹣=﹣1.【考点】实数的运算;零指数幂.【分析】分别进行零指数幂、开立方的运算,然后合并.【解答】解:原式=1﹣2=﹣1.故答案为:﹣1.【点评】本题考查了实数的运算,涉及了零指数幂、开立方等知识,属于基础题.10.(3分)(2016•河南)如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为110°.【考点】平行四边形的性质.【分析】首先由在▱ABCD中,∠1=20°,求得∠BAE的度数,然后由BE⊥AB,利用三角形外角的性质,求得∠2的度数.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAE=∠1=20°,∵BE⊥AB,∴∠ABE=90°,∴∠2=∠BAE+∠ABE=110°.故答案为:110°.【点评】此题考查了平行四边形的性质以及三角形外角的性质.注意平行四边形的对边互相平行.11.(3分)(2016•河南)若关于x的一元二次方程x2+3x﹣k=0有两个不相等的实数根,则k的取值范围是k>﹣.【考点】根的判别式;解一元一次不等式.【分析】由方程有两个不相等的实数根即可得出△>0,代入数据即可得出关于k的一元一次不等式,解不等式即可得出结论.【解答】解:∵关于x的一元二次方程x2+3x﹣k=0有两个不相等的实数根,∴△=32﹣4×1×(﹣k)=9+4k>0,解得:k>﹣.故答案为:k>﹣.【点评】本题考查了根的判别式以及解一元一次不等式,解题的关键是根据根的个数结合根的判别式得出关于k的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出方程(不等式或不等式组)是关键.12.(3分)(2016•河南)在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行活动,该班小明和小亮同学被分在一组的概率是.【考点】列表法与树状图法.【分析】利用画树状图法列出所有等可能结果,然后根据概率公式进行计算即可求解.【解答】解:设四个小组分别记作A、B、C、D,画树状图如图:由树状图可知,共有16种等可能结果,其中小明、小亮被分到同一个小组的结果由4种,∴小明和小亮同学被分在一组的概率是=,故答案为:.【点评】本题考查了列表法与树状图,解题的关键在于用列表法或画树状图法列出所有等可能结果,根据:概率=所求情况数与总情况数之比计算是基础.13.(3分)(2016•河南)已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是(1,4).【考点】二次函数的性质;二次函数图象上点的坐标特征.【分析】把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.【解答】解:∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,∴代入得:,解得:b=2,c=3,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,顶点坐标为(1,4),故答案为:(1,4).【点评】本题考查了二次函数的性质,二次函数图象上点的坐标特征的应用,能求出函数的解析式是解此题的关键.14.(3分)(2016•河南)如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作交于点C,若OA=2,则阴影部分的面积为﹣.【考点】扇形面积的计算.【分析】连接OC、AC,根据题意得到△AOC为等边三角形,∠BOC=30°,分别求出扇形COB的面积、△AOC的面积、扇形AOC的面积,计算即可.【解答】解:连接OC、AC,由题意得,OA=OC=AC=2,∴△AOC为等边三角形,∠BOC=30°,∴扇形COB的面积为:=,△AOC的面积为:×2×=,扇形AOC的面积为:=,则阴影部分的面积为:+﹣=﹣,故答案为:﹣.【点评】本题考查的是扇形面积计算,掌握等边三角形的性质、扇形的面积公式S=是解题的关键.15.(3分)(2016•河南)如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为或.【考点】翻折变换(折叠问题).【分析】根据勾股定理,可得EB′,根据相似三角形的性质,可得EN的长,根据勾股定理,可得答案.【解答】解:如图,由翻折的性质,得AB=AB′,BE=B′E.①当MB′=2,B′N=1时,设EN=x,得B′E=.△B′EN∽△AB′M,=,即=,x2=,BE=B′E==.②当MB′=1,B′N=2时,设EN=x,得B′E=,△B′EN∽△AB′M,=,即=,解得x2=,BE=B′E==,故答案为:或.【点评】本题考查了翻折的性质,利用翻折的性质得出AB=AB′,BE=B′E是解题关键,又利用了相似三角形的性质,要分类讨论,以防遗漏.三、解答题(本大题共8小题,满分75分)16.(8分)(2016•河南)先化简,再求值:(﹣1)÷,其中x的值从不等式组的整数解中选取.【考点】分式的化简求值;一元一次不等式组的整数解.【分析】先算括号里面的,再算除法,求出x的取值范围,选出合适的x的值代入求值即可.【解答】解:原式=•=﹣•=,解不等式组得,﹣1≤x<,当x=2时,原式==﹣2.【点评】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.17.(9分)(2016•河南)在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 73258430 8215 7453 7446 67547638 6834 7326 6830 86488753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:(1)填空:m=4,n=1;(2)补全频数发布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在B组;(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;中位数.【分析】(1)根据题目中的数据即可直接确定m和n的值;(2)根据(1)的结果即可直接补全直方图;(3)根据中位数的定义直接求解;(4)利用总人数乘以对应的比例即可求解.【解答】解:(1)m=4,n=1.故答案是:4,1;(2);(3)行走步数的中位数落在B组,故答案是:B;(4)一天行走步数不少于7500步的人数是:120×=48(人).答:估计一天行走步数不少于7500步的人数是48人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.18.(9分)(2016•河南)如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB 为直径作⊙O分别交AC,BM于点D,E.(1)求证:MD=ME;(2)填空:①若AB=6,当AD=2DM时,DE=2;②连接OD,OE,当∠A的度数为60°时,四边形ODME是菱形.【考点】菱形的判定.【分析】(1)先证明∠A=∠ABM,再证明∠MDE=∠MBA,∠MED=∠A即可解决问题.(2)①由DE∥AB,得=即可解决问题.②当∠A=60°时,四边形ODME是菱形,只要证明△ODE,△DEM都是等边三角形即可.【解答】(1)证明:∵∠ABC=90°,AM=MC,∴BM=AM=MC,∴∠A=∠ABM,∵四边形ABED是圆内接四边形,∴∠ADE+∠ABE=180°,又∠ADE+∠MDE=180°,∴∠MDE=∠MBA,同理证明:∠MED=∠A,∴∠MDE=∠MED,∴MD=ME.(2)①由(1)可知,∠A=∠MDE,∴DE∥AB,∴=,∵AD=2DM,∴DM:MA=1:3,∴DE=AB=×6=2.故答案为2.②当∠A=60°时,四边形ODME是菱形.理由:连接OD、OE,∵OA=OD,∠A=60°,∴△AOD是等边三角形,∴∠AOD=60°,∵DE∥AB,∴∠ODE=∠AOD=60°,∠MDE=∠MED=∠A=60°,∴△ODE,△DEM都是等边三角形,∴OD=OE=EM=DM,∴四边形OEMD是菱形.故答案为60°.【点评】本题考查圆内接四边形性质、直角三角形斜边中线性质、菱形的判定等知识,解题的关键是灵活运用这些知识解决问题,记住菱形的三种判定方法,属于中考常考题型.19.(9分)(2016•河南)如图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【考点】解直角三角形的应用-仰角俯角问题.【分析】通过解直角△BCD和直角△ACD分别求得BD、CD以及AD的长度,则易得AB 的长度,则根据题意得到整个过程中旗子上升高度,由“速度=”进行解答即可.【解答】解:在Rt△BCD中,BD=9米,∠BCD=45°,则BD=CD=9米.在Rt△ACD中,CD=9米,∠ACD=37°,则AD=CD•tan37°≈9×0.75=6.75(米).所以,AB=AD+BD=15.75米,整个过程中旗子上升高度是:15.75﹣2.25=13.5(米),因为耗时45s,所以上升速度v==0.3(米/秒).答:国旗应以0.3米/秒的速度匀速上升.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题.解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.20.(9分)(2016•河南)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.【考点】二元一次方程组的应用.【分析】(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据:“1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元”列方程组求解即可;(2)首先根据“A型节能灯的数量不多于B型节能灯数量的3倍”确定自变量的取值范围,然后得到有关总费用和A型灯的只数之间的关系得到函数解析式,确定函数的最值即可.【解答】解:(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据题意,得:,解得:,答:一只A型节能灯的售价是5元,一只B型节能灯的售价是7元;(2)设购进A型节能灯m只,总费用为W元,根据题意,得:W=5m+7(50﹣m)=﹣2m+350,∵﹣2<0,∴W随m的增大而减小,又∵m≤3(50﹣m),解得:m≤37.5,而m为正整数,∴当m=37时,W最小=﹣2×37+350=276,此时50﹣37=13,答:当购买A型灯37只,B型灯13只时,最省钱.【点评】此题主要考查了二元一次方程组的应用以及一次函数的应用等知识,根据题意得出正确的等量关系是解题关键.21.(10分)(2016•河南)某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.﹣m=0.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x轴有3个交点,所以对应的方程x2﹣2|x|=0有3个实数根;②方程x2﹣2|x|=2有2个实数根;③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是﹣1<a<0.【考点】二次函数的图象;根的判别式.【分析】(1)把x=﹣2代入函数解释式即可得m的值;(2)描点、连线即可得到函数的图象;(3)根据函数图象得到函数y=x2﹣2|x|的图象关于y轴对称;当x>1时,y随x的增大而增大;(4)①根据函数图象与x轴的交点个数,即可得到结论;②如图,根据y=x2﹣2|x|的图象与直线y=2的交点个数,即可得到结论;③根据函数的图象即可得到a的取值范围是﹣1<a<0.【解答】解:(1)把x=﹣2代入y=x2﹣2|x|得y=0,即m=0,故答案为:0;(2)如图所示;(3)由函数图象知:①函数y=x2﹣2|x|的图象关于y轴对称;②当x>1时,y随x的增大而增大;(4)①由函数图象知:函数图象与x轴有3个交点,所以对应的方程x2﹣2|x|=0有3个实数根;②如图,∵y=x2﹣2|x|的图象与直线y=2有两个交点,∴x2﹣2|x|=2有2个实数根;③由函数图象知:∵关于x的方程x2﹣2|x|=a有4个实数根,∴a的取值范围是﹣1<a<0,故答案为:3,3,2,﹣1<a<0.【点评】本题考查了二次函数的图象和性质,正确的识别图象是解题的关键.22.(10分)(2016•河南)(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为a+b(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.【考点】三角形综合题.【分析】(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60°,推出△CAD ≌△EAB,根据全等三角形的性质得到CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+3;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可得到结论.【解答】解:(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为:CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,,∴△CAD≌△EAB,∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=4;(3)连接BM,∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=AP=2,∴最大值为2+3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=,∴OE=BO﹣AB﹣AE=5﹣3﹣=2﹣,∴P(2﹣,),如图3,将△APM绕着点P逆时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=AP=2,∴最大值为2+3;∵P点与点′(2﹣,)关于x轴的对称,∴P′(2﹣,﹣).综上所述:点P坐标是(2﹣,)或(2﹣,﹣).【点评】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.23.(11分)(2016•河南)如图1,直线y=﹣x+n交x轴于点A,交y轴于点C(0,4),抛物线y=x2+bx+c经过点A,交y轴于点B(0,﹣2).点P为抛物线上一个动点,过点P作x轴的垂线PD,过点B作BD⊥PD于点D,连接PB,设点P的横坐标为m.(1)求抛物线的解析式;(2)当△BDP为等腰直角三角形时,求线段PD的长;(3)如图2,将△BDP绕点B逆时针旋转,得到△BD′P′,且旋转角∠PBP′=∠OAC,当点P的对应点P′落在坐标轴上时,请直接写出点P的坐标.【考点】二次函数综合题.【分析】(1)先确定出点A的坐标,再用待定系数法求出抛物线解析式;(2)由△BDP为等腰直角三角形,判断出BD=PD,建立m的方程计算出m,从而求出PD;(3)分点P′落在x轴和y轴两种情况计算即可.【解答】解:(1)∵点C(0,4)在直线y=﹣x+n上,∴n=4,∴y=﹣x+4,令y=0,∴x=3,∴A(3,0),∵抛物线y=x2+bx+c经过点A,交y轴于点B(0,﹣2).∴c=﹣2,6+3b﹣2=0,∴b=﹣,∴抛物线解析式为y=x2﹣x﹣2,(2)解法一:∵点P的横坐标为m,且点P在抛物线上,∴P(m,m2﹣m﹣2),∵PD⊥x轴,BD⊥PD∴点D坐标为(m,﹣2)∴|BD|=|m|,|PD|=|m2﹣m﹣2+2||,当△BDP为等腰直角三角形时,PD=BD.∴|m|=|m2﹣m﹣2+2|=|m2﹣m|∴m2=(m2﹣m)2解得:m1=0(舍去),m2=,m3=∴当△BDP为等腰直角三角形时,线段PD的长为或.解法二:∵点P的横坐标为m.∴P(m,m2﹣m﹣2),当△BDP为等腰直角三角形时,PD=BD.①当点P在直线BD上方时,PD=m2﹣m(i)若点P在y轴左侧,则m<0,BD=﹣m.。
一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的. 1.(3分)﹣的相反数是()A.﹣B.C.﹣3 D.32.(3分)某种细胞的直径是0。
00000095米,将0.00000095米用科学记数法表示为()A.9。
5×10﹣7B.9。
5×10﹣8C.0。
95×10﹣7D.95×10﹣83.(3分)下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()A.B.C.D.4.(3分)下列计算正确的是()A.﹣=B.(﹣3)2=6 C.3a4﹣2a2=a2D.(﹣a3)2=a55.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2 B.3 C.4 D.56.(3分)如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为()A.6 B.5 C.4 D.37.(3分)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185 180 185 180 方差 3.6 3.6 7。
4 8。
1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁8.(3分)如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A.(1,﹣1) B.(﹣1,﹣1) C.(,0)D.(0,﹣)二、填空题(每小题3分,共21分)9.(3分) 计算:(﹣2)0﹣=.10.(3分)如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为.11.(3分)若关于x的一元二次方程x2+3x﹣k=0有两个不相等的实数根,则k的取值范围是.12.(3分) 在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行活动,该班小明和小亮同学被分在一组的概率是.13.(3分)已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是.14.(3分)如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作交于点C,若OA=2,则阴影部分的面积为.15.(3分)如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:(﹣1)÷,其中x的值从不等式组的整数解中选取.17.(9分)在一次社会调查活动中,小华收集到某“健步走运动"团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 73258430 8215 7453 7446 67547638 6834 7326 6830 86488753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分组统计表组别步数分组频数A 5500≤x<6500 2B 6500≤x<7500 10C 7500≤x<8500 mD 8500≤x<9500 3E 9500≤x<10500 n请根据以上信息解答下列问题:(1)填空:m=,n=;(2)补全频数发布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在组;(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.18.(9分)如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E.(1)求证:MD=ME;(2)填空:①若AB=6,当AD=2DM时,DE=;②连接OD,OE,当∠A的度数为时,四边形ODME是菱形.19.(9分)如图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°,升旗时,国旗上端悬挂在距地面2。
2016年河南省普通高中招生考试试卷数 学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效。
一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.31-的相反数是 (A )31- (B )31(C )3-(D )32.某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示为(A )7105.9-⨯(B )8105.9-⨯(C )71095.0-⨯(D )51095-⨯3.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是(A ) (B )(C )(D )4.下列计算正确的是 (A )228=- (B )()632=-(C )22423a a a =- (D )()523a a =-5.如图,过反比例函数)0(>=x xky 的图像上一点A 作AB ⊥x 轴 于点B ,连接AO ,若S △AOB =2,则k 的值为(A )2 (B )3 (C )4 (D )56.如图,在△ABC 中,∠ACB=90°,AC=8,AB=10. DE 垂直平分AC 交AB 于点E ,则DE 的长为 (A )6 (B )5 (C )4 (D )37.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择【 】 (A )甲 (B )乙 (C )丙 (D )丁8.如图,已知菱形OABC 的顶点O (0,0),B (2,2),若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时, 菱形的对角线交点D 的坐标为【 】 (A )(1,-1) (B )(-1,-1) (C )(2,0)(D )(0,-2)二、填空题(每小题3分,共21分)9.计算:._________8)2(30=--10. 如图,在□ABCD 中,BE ⊥AB 交对角线AC 于点E , 若∠1=20°,则∠2的度数是_________.11.若关于x 的一元二次方程032=-+k x x 有两个不相等的实数根,则k 的取值范围__________________.12.在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行活动,则该班小明和小亮被分在同一组的概率是_________.13.已知A (0,3),B (2,3)是抛物线c bx x y ++-=2上两点, 该抛物线的顶点坐标是_________.14.如图,在扇形AOB 中,∠AOB=90°,以点A 为圆心, OA 的长为半径作⌒OC 交⌒AB 于点C. 若OA=2,则阴影 部分的面积为___________.15.如图,已知AD ∥BC ,AB ⊥BC ,AB=3. 点E 为射线BC 上 一个动点,连接AE ,将△ABE 沿AE 折叠,点B 落在点B ′处, 过点B ′作AD 的垂线,分别交AD ,BC 于点M ,N. 当点B ′ 为线段MN 的三等分点时,BE 的长为__________________. 三、解答题(本大题共8个小题,满分75分) 16. (8分)先化简,再求值:121)1(222++-÷-+x x x x x x ,其中x 的值从不等式组⎩⎨⎧<-≤-4121x x 的整数解中选取。
数学试卷 第1页(共28页) 数学试卷 第2页(共28页)绝密★启用前河南省2016年普通高中招生考试数 学本试卷满分120分,考试时间100分钟.第Ⅰ卷(选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.13-的相反数是( ) A .13-B .13C .3-D .32.某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示为( ) A .79.510-⨯B .89.510-⨯C .70.9510-⨯D .9510⨯-83.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是( )AB CD4.下列计算正确的是( )AB .2(3)6-=C .42232a a a -=D .325()a a -=5.如图,过反比例函数(0)ky x x =>的图象上一点A 作AB x ⊥轴于点B ,连接AO ,若2AOB S =△,则k 的值为( )A .2B .3C .4D .56.如图,在ABC △中,90ACB ∠=,8AC =,10AB =.DE 垂直平分AC 交AB 于点E ,则DE 的长为( )A .6B .5C .4D .37.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A .甲B .乙C .丙D .丁8.如图,已知菱形OABC 的顶点(0,0)O ,(2,2)B ,若菱形绕点O 逆时针旋转,每秒旋转45,则第60秒时,菱形的对角线交点D 的坐标为( )A .(1,1)-B .(1,1)--C .D .(0,第Ⅱ卷(非选择题 共96分)二、填空题(本大题共7小题,每小题3分,共21分.请把答案填写在题中的横线上) 9.计算:0(2)-= .10.如图,在□ABCD 中,BE AB ⊥交对角线AC 于点E ,若120∠=,则2∠的度数为 .11.若关于x 的一元二次方程230x x k +-=有两个不相等的实数根,则k 的取值范围是 .毕业学校_____________姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共28页) 数学试卷 第4页(共28页)12.在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行活动,该班小明和小亮被分在同一组的概率是 .13.已知(0,3)A ,(2,3)B 是抛物线2y x b x c =-++上两点,该抛物线的顶点坐标是 .14.如图,在扇形AOB 中,90AOB ∠=,以点A 为圆心,OA 的长为半径作OC 交AB 于点C .若2OA =,则阴影部分的面积为 .15.如图,已知AD BC ∥,AB BC ⊥,3AB =.点E 为射线BC 上一个动点,连接AE ,将ABE △沿AE 折叠,点B 落在点B '处,过点B '作AD 的垂线,分别交AD ,BC 于点M ,N .当点B '为线段MN 的三等分点时,BE 的长为 .三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分8分)先化简,再求值:2221(1)21x x x x x x --÷+++,其中x 的值从不等式组1,214x x -⎧⎨-⎩≤<的整数解中选取.17.(本小题满分9分)在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 73258430 8215 7453 7446 6754 7638 6834 7326 6830 8648 8753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分组统计表请根据以上信息解答下列问题:(1)填空:m = ,n =;(2)补全频数分布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在 组; (4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.18.(本小题满分9分)如图,在Rt ABC △中,90ABC ∠=,点M 是AC 的中点,以AB 为直径作O 分别交AC ,BM 于点D ,E . (1)求证:M D M E =;(2)填空:①若6AB =,当2AD D M =时,=DE ;②连接OD ,OE ,当A ∠的度数为 时,四边形ODME 是菱形.数学试卷 第5页(共28页) 数学试卷 第6页(共28页)19.(本小题满分9分)如图,小东在教学楼距地面9米高的窗口C 处,测得正前方旗杆顶部A 点的仰角为37,旗杆底部B 点的俯角为45.升旗时,国旗上端悬挂在距地面2.25米处.若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin 370.60≈,cos370.80≈,tan370.75≈)20.(本小题满分9分)学校准备购进一批节能灯,已知1只A 型节能灯和3只B 型节能灯共需26元;3只A 型节能灯和2只B 型节能灯共需29元.(1)求一只A 型节能灯和一只B 型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A 型节能灯的数量不多于B 型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.21.(本小题满分10分)某班“数学兴趣小组”对函数22||y x x =-的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x 的取值范围是全体实数,x 与y 的几组对应值列表如下:其中,m = .(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该图象的另一部分.(3)观察函数图象,写出两条函数的性质. (4)进一步探究函数图象发现:①函数图象与x 轴有 个交点,所以对应方程22||0x x -=有 个实数根;②方程22||2x x -=有 个实数根;③关于x 的方程22||x x a -=有4个实数根,a 的取值范围是 .毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共28页) 数学试卷 第8页(共28页)22.(本小题满分10分) (1)发现如图1,点A 为线段BC 外一动点,且BC a =,AB b =.填空:当点A 位于 时,线段AC 的长取得最大值,且最大值为 . (用含a ,b 的式子表示) (2)应用点A 为线段BC 外一动点,且3BC =,1AB =.如图2所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE . ①请找出图中与BE 相等的线段,并说明理由; ②直接写出线段BF 长的最大值. (3)拓展如图3,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(5,0),点P 为线段AB 外一动点,且2PA =,PM PB =,90BPM ∠=.请直接写出线段AM 长的最大值及此时点P 的坐标.图1图2图3备用图23.(本小题满分11分)如图1,直线43y x n =-+交x 轴于点A ,交y 轴于点(0,4)C ,抛物线223y x bx c=++经过点A ,交y 轴于点(0,2)B -.点P 为抛物线上一个动点,过点P 作x 轴的垂线PD ,过点B 作BD PD ⊥于点D ,连接PB ,设点P 的横坐标为m .图1图2备用图(1)求抛物线的解析式;(2)当BDP △为等腰直角三角形时,求线段PD 的长;(3)如图2,将BDP △绕点B 逆时针旋转,得到BD P ''△,且旋转角PBP OAC '∠=∠,当点P 的对应点P '落在坐标轴上时,请直接写出点P 的坐标.5 / 14数学试卷第11页(共28页)数学试卷第12页(共28页)【解析】设四个小组分别记作A B C D、、、,画树状图如图:7 / 14数学试卷 第15页(共28页)数学试卷 第16页(共28页)36033332π25111111x x x x xx x x x++=-=-+--.51x-≤<.(2)频数分布直方图如下图所示:9 / 14数学试卷 第19页(共28页)数学试卷 第20页(共28页)所以ODE △,DEM △都是等边三角形,所以OD OE EM DM ===,所以四边形OEMD 是菱形。
2016年河南省中考数 学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效。
一、选择题(每小题3分,共24分) 下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.31-的相反数是 (A )31- (B )31(C )3-(D )32.某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示为(A )7105.9-⨯(B )8105.9-⨯(C )71095.0-⨯(D )51095-⨯3.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是(A ) (B )(C )(D )4.下列计算正确的是 (A )228=- (B )()632=-(C )22423a a a =- (D )()523a a =-5.如图,过反比例函数)0(>=x xky 的图像上一点A 作AB ⊥x 轴 于点B ,连接AO ,若S △AOB =2,则k 的值为(A )2 (B )3 (C )4 (D )56.如图,在△ABC 中,∠ACB=90°,AC=8,AB=10. DE 垂直平分AC 交AB 于点E ,则DE 的长为 (A )6 (B )5 (C )4 (D )37.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数甲 乙 丙 丁 平均数(cm )185 180 185 180 方差3.63.67.48.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择【 】(A )甲 (B )乙 (C )丙 (D )丁8.如图,已知菱形OABC 的顶点O (0,0),B (2,2),若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时, 菱形的对角线交点D 的坐标为【 】 (A )(1,-1) (B )(-1,-1) (C )(2,0)(D )(0,-2)二、填空题(每小题3分,共21分)9.计算:._________8)2(30=--10. 如图,在□ABCD 中,BE ⊥AB 交对角线AC 于点E , 若∠1=20°,则∠2的度数是_________.11.若关于x 的一元二次方程032=-+k x x 有两个不相等的实数根,则k 的取值范围__________________.12.在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行活动,则该班小明和小亮被分在同一组的概率是_________.13.已知A (0,3),B (2,3)是抛物线c bx x y ++-=2上两点, 该抛物线的顶点坐标是_________.14.如图,在扇形AOB 中,∠AOB=90°,以点A 为圆心, OA 的长为半径作⌒OC 交⌒AB 于点C. 若OA=2,则阴影 部分的面积为___________.15.如图,已知AD ∥BC ,AB ⊥BC ,AB=3. 点E 为射线BC 上 一个动点,连接AE ,将△ABE 沿AE 折叠,点B 落在点B ′处, 过点B ′作AD 的垂线,分别交AD ,BC 于点M ,N. 当点B ′ 为线段MN 的三等分点时,BE 的长为__________________. 三、解答题(本大题共8个小题,满分75分) 16. (8分)先化简,再求值:121)1(222++-÷-+x x x x x x ,其中x 的值从不等式组⎩⎨⎧<-≤-4121x x 的整数解中选取。
17. (9分)在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 7325 8430 8215 7453 7446 6754 7638 6834 7326 6830 8648 8753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分组统计表组别步数分组频数A 5500≤x<6500 2B 6500≤x<750010C 7500≤x<8500mD 8500≤x<9500 3E 9500≤x<10500n请根据以上信息解答下列问题:(1)填空:m=__________,n=__________;(2)补全频数统计图;(3)这20名“健步走运动”团队成员一天步行步数的中位数落在_________组;(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.18.(9分)如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O 分别交AC,BM于点D,E.(1)求证:MD=ME(2)填空:①若AB=6,当AD=2DM时,DE=___________;②连接OD,OE,当∠A的度数为____________时,四边形ODME是菱形.19.(9分)如图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°.升旗时,国旗上端悬挂在距地面2.25米处. 若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sian37°=0.60,cos37°=0.80,tan37°=0.75)20. (9分)学校准备购进一批节能灯,已知1只A 型节能灯和3只B 型节能灯共需26元;3只A 型节能灯和2只B 型节能灯共需29元.(1)求一只A 型节能灯和一只B 型节能灯的售价各是多少元?(2)学校准备购进这两种型号的节能灯共50只,并且A 型节能灯的数量不多于B 型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.21. (10分)某班“数学兴趣小组”对函数x x y 22-=的图像和性质进行了探究,探究过程如下,请补充完整.(1)自变量x 的取值范围是全体实数,x 与y 的几组对应值列表如下:x…3- 25-2- 1- 0 1 2 3 4 …y (3)45 m1-1-45 3 …其中,m =____________.(2)根据上表数据,在如图所示的平面直角坐标系中描点, 并画出了函数图像的一部分,请画出该图像的另一部分.(3)观察函数图像,写出两条函数的性质:(4)进一步探究函数图像发现:①函数图像与x 轴有__________个交点,所以对应方程022=-x x 有___________个实数根;②方程222=-x x 有___________个实数根;③关于x 的方程a x x =-22有4个实数根,a 的取值范围是_______________________. 22. (10分)(1)发现如图1,点A 为线段BC 外一动点,且BC=a ,AB=b . 填空:当点A 位于__________________时,线段AC 的 长取得最大值,且最大值为_____________. (用含a ,b 的式子表示)(2)应用点A 为线段BC 外一动点,且BC=3,AB=1.如图2所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE. ①请找出图中与BE 相等的线段,并说明理由; ②直接写出线段BE 长的最大值.(3)拓展如图3,在平面直角坐标系中,点A 的坐标为(2 , 0),点B 的坐标为(5 , 0),点P 为线段AB 外一动点,且PA=2,PM=PB ,∠BPM=90°.请直接写出线段AM 长的最大值及此时点P 的坐标.23. (11分)如图1,直线n x y +-=34交x 轴于点A ,交y 轴于点C (0,4).抛物线c bx x y ++=232 经过点A ,交y 轴于点B (0,-2).点P 为抛物线上一个动点,经过点P 作x 轴的垂线PD ,过点B 作BD ⊥PD 于点D ,连接PB ,设点P 的横坐标为m . (1)求抛物线的解析式;(2)当△BDP 为等腰直角三角形时,求线段PD 的长;(3)如图2,将△BDP 绕点B 逆时针旋转,得到△BD ′P ′,且旋转角∠PBP ′=∠OAC ,当点P 的对应点P ′落在坐标轴上时,请直接写出点P 的坐标.2016年河南省中考数学试题参考答案及评分标准说明:1.如果考生的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分的多少,但原则上不超过后继部分应得分数之半.3.评分标准中,如无特殊说明,均为累计给分. 4.评分过程中,只给整数分数.二、填空题(每小题3分,共21分)三、解答题(本大题共8个小题,满分75分)16.原式=22)1()1)(1()1(+-+÷+-x x x x x x ……………………………………………………3分 =111-+•+-x x x x =1--x x……………………………………………………5分 解⎩⎨⎧<-≤-4121x x 得251<≤-x ,所以不等式组的整数解为-1,0,1,2 …………7分若使分式有意义,只能取x =2,∴原式=2122-=--…………………………8分 17.(1)4,1; ………………………………………………………………………………2分 (2)(按人数为4和1正确补全直方图); …………………………………………4分 (3)B ; ………………………………………………………………………………6分 (4))(4820134120人=++⨯. ………………………………………………………8分 18. (1)在Rt △ABC 中,点M 是AC 的中点,∴MA=MB ,∴∠A=∠MBA. ……………………………………………………………2分 ∵四边形ABED 是圆内接四边形, ∴∠ADE+∠ABE=180°, 又∠ADE+∠MDE=180°, ∴∠MDE=∠MBA.同理可证:∠MED=∠A. ………………………………………………………………4分 ∴∠MDE=∠MED, ∴MD=ME. ……………………………………………………………5分(2)①2; ………………………………………………………………………………7分 ②60°(或60). ………………………………………………………………………9分19. 过点C 作CD ⊥AB ,垂足为D ,则DB=9. ………………………………………………1分在Rt △CBD 中,∠BCD=45°, ∴CD=945tan =οDB. …………………………………………………………………………3分在Rt △ACD 中,∠ACD=37.5°,∴AD=CD ·tan37.5°=9×0.75=6.75. ……………………………………………………6分 ∴AB=AD+DB=6.75+9=15.75. …………………………………………………………7分(15.75-2.25)÷45=0.3(米/秒).∴国旗应以约0.3米/秒的速度匀速上升. …………………………………………………9分20.(1)设一只A 型节能灯的售价是x 元,一只B 型节能灯的售价是y 元. ………1分 依题意得⎩⎨⎧=+=+2923263y x y x ,解得⎩⎨⎧==75y x . ……………………………………………3分所以一只A 型节能灯的售价是5元,一只B 型节能灯的售价是7元. ……………4分(2)设购进A 型节能灯m 只,总费用为w 元.依题意得w =5m +7(50m -)=3502+-m .………………………………………5分 ∵02<-,∴当m 取最大值时w 有最小值. ………………………………………6分 又∵)50(3m m -≤,∴5.37≤m而m 为正整数,∴当m =37时,w 最小=276350372=+⨯-.……………………8分 此时133750=-.所以最省钱的购买方案是购进37只A 型节能灯,13只B 型节能灯. ……………9分21. (1)0;(2)(正确补全图像); (3)(可从函数的最值,增减性,图像的对称性等方面阐述,答案不惟一,合理即可) (4)① 3,3;② 2;③01<<-a .(注:本题不累计给分,除(3)中每条性质为2分外,其他每空1分)22. (1)CB 延长线上,b a +; …………………………………………………………2分(2)① DC=BE.理由如下:∵△ABD 和△ACE 为等边三角形, ∴AD=AB,AC=AE, ∠BAD=∠CAE=60°.∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB. …………………………………5分 ∴△CAD ≌△EAB. ∴DC=BE ……………………………………………………6分 ② BE 长的最大值是4. ………………………………………………………………8分(3)AM 的最大值为223+,点P的坐标为)2,22(-. …………………………10分【提示】如图1,构造△BNP ≌△MAP ,则NB=AM.由(1)知,当点N 在BA 的延长线上时,NB 有最大值(如图2),易得AN=22,∴AM=NB=223+.过点P 作PE ⊥x 轴于E ,PE=AE=2,∴P )2,22(-23.(1)由直线n x y +-=34过点C (0,4),得n =4. ∴434+-=x y 当y =0时,4340+-=x ,解得x =3. ∴A (3,0). …………………………1分 ∵抛物线c bx x y ++=232经过点A (3,0)、B (0,-2), ∴⎪⎩⎪⎨⎧=-++⨯=c c b 2333202,∴⎪⎩⎪⎨⎧-=-=234c b . ∴抛物线的解析式为234322--=x x y . …………………………………………3分 (2)∵点P 的横坐标为m ,∴P (23432,2--m m m ),D (m ,2-). ……………4分若△BDP 为等腰直角三角形,则PD=BD.①当点P 在直线BD 上方时,PD=m m 34322-. (I )若点P 在y 轴左侧,则m <0,BD=m -. ∴m m 34322-=m -,∴m 1=0(舍去),m 2=21(舍去). ………………………5分 (II )若点P 在y 轴右侧,则m >0,BD=m . ∴m m 34322-=m ,∴m 1=0(舍去),m 2=27. ……………………………………6分②当点P 在直线BD 下方时,m >0,BD=m ,PD=m m 34322+-. ∴m m 34322+-=m ,∴m 1=0(舍去),m 2=21. …………………………………7分 综上,m =27或21. 即当△BDP 为等腰直角三角形,PD 的长为27或21.……………8分(3))3454,5(1+-P ,)3454,5(2+-P ,)3211,825(3P . ……………………………11分【提示】∵∠PBP ′=∠OAC,OA=3,OC=4,∴AC=5, ∴sin ∠PBP ′=54,cos ∠PBP ′=53. ①当点P ′落在x 轴上时,过点D ′作D ′N ⊥x 轴,垂足为N ,交BD 于点M ,∠DBD ′=∠ND ′P ′=∠PBP ′.如图1,ND ′- MD ′=2,即2)54()3432(532=---m m m . 如图2,ND ′+ MD ′=2,即2)54()3432(532=-+-m m m .∴)3454,5(1+-P ,)3454,5(2+-P . ②当点P ′落在y 轴上时,如图3,过点D ′作D ′M ⊥x 轴,交BD 于点M ,过点P ′作P ′N ⊥y 轴,交MD ′的延长线于点N , ∠DBD ′=∠ND ′P ′=∠PBP ′. ∵P ′N=BM,即m m m 53)3432(542=- ∴)3211,825(3P .。