华中科技大学《激光原理》学习指导经典例题
- 格式:pdf
- 大小:705.94 KB
- 文档页数:10
激光原理课后习题第1章习题1. 简述激光器的基本结构及各部分的作用。
2. 从能级跃迁角度分析,激光是受激辐射的光经放大后输出的光。
但是在工作物质中,自发辐射、受激辐射和受激吸收三个过程是同时存在的,使受激辐射占优势的条件是什么?采取什么措施能满足该条件?3. 叙述激光与普通光的区别,并从物理本质上阐明造成这一区别的原因。
4. 什么是粒子数反转分布?如何实现粒子数反转分布?5. 由两个反射镜组成的稳定光学谐振腔腔长为m,腔内振荡光的中心波长为 nm,求该光的单色性/的近似值。
6. 为使He-Ne激光器的相干长度达到1 km,它的单色性/应是多少?7. 在2cm3的空腔内存在着带宽为 nm,波长为m的自发辐射光。
试问:(1)此光的频带范围是多少?(2)在此频带范围内,腔内存在的模式数是多少?(3)一个自发辐射光子出现在某一模式的几率是多少?8. 设一光子的波长为510-1 m,单色性/=10-7,试求光子位置的不确定量x。
若光子波长变为510-4 m(X射线)和510-8 m(射线),则相应的x又是多少?9. 设一对激光(或微波辐射)能级为E2和E1,两能级的简并度相同,即g1=g2,两能级间跃迁频率为(相应的波长为),能级上的粒子数密度分别为n2和n1。
试求在热平衡时:(1)当=3000 MHz,T=300 K时,n2/n1=?(2)当=1 m,T=300 K时,n2/n1=?(3)当=1 m,n2/n1=时,T=?为1kHz,输出功率P为1 mW的单模He-Ne 10. 有一台输出波长为 nm,线宽s为1 mrad,试问:激光器,如果输出光束直径为1 mm,发散角(1)每秒发出的光子数目N 0是多少?(2)该激光束的单色亮度是多少?(提示,单模激光束的单色亮度为20)(πθννs A PB ?=) 11. 在2cm 3的空腔内存在着带宽为110-4 m ,波长为510-1 m 的自发辐射光。
试问:(1)此光的频带范围是多少?(2)在此频带宽度范围内,腔内存在的模式数是多少?(3)一个自发辐射光子出现在某一模式的几率是多少?第2章习题1. 均匀加宽和非均匀加宽的本质区别是什么?2. 为什么原子(分子,离子)在能级上的有限寿命会造成谱线加宽?从量子理论出发,阐明当下能级不是基态时,自然线宽不仅和上能级的自发辐射寿命有关,而且和下能级的自发辐射寿命有关,并给出谱线宽度与激光上、下能级寿命的关系式。
1. 兰姆凹陷:单模输出功率P 与单模频率q v 的关系曲线,在单模频率等于0的时候有一凹陷,称作兰姆凹陷。
2. 反兰姆凹陷:在饱和吸收稳频中,把吸收管放在谐振腔内,并且腔内有一频率为ν1的模式振荡,若ν1 ≠ν0,购正向传播的行波及反向传播的行坡分别在吸收曲线的形成两个烧孔。
若ν1 =ν0 ,刚正反向传播的行波共同在吸收曲线的中心频率处烧一个孔。
若作出光强一定时吸收系数和振荡频率的关系曲线,则曲线出现凹陷,激光器输出功率出现一个尖锐的尖峰。
什么是激光工作物质的纵模和横模烧孔效应?他们对激光器工作模式的影响。
在非均匀加宽工作物质中,频率为v 1的强光只在v 1附近宽度约为I I v sv H 11+∆的范围内引起反转集聚数饱和,对表观中心频率处在烧孔范围外的反转集聚数没有影响。
若有一频率V 的弱光同时入射,如果频率V 处在强光造成的烧孔范围之内,则由于集聚数反转的减少,弱光增益系数将小于小信号增益系数。
如果频率V 在烧孔范围之外,则弱光增益系数不受强光的影响,、而仍等于小信号增益系数。
所以在增益系数-频率曲线上,频率为v 1处产生一个凹陷。
此现象称为增益曲线的烧孔效应。
烧孔效应一般使激光器工作于多纵模和多横模的情况,不利于提高光的相干性但有利于增加光的能量或功率。
20.激光器的谐振腔由一面曲率半径为1m 的凸面镜和曲率半径为2m 的凹面镜组成,工作物质长0.5m ,其折射率1.52,求腔长L 在什么范围内是稳定腔?解:设两腔镜1M 和2M 的曲率半径分别为1R 和2R ,121,2R m R m =-=,工作物质长0.5l m =,折射率 1.52η=根据稳定条件判据: 120(1)(1)1L L R R ''<--<即0(1)(1)1(1)12L L ''<--<- 其中()(2)l L L l η'=-+由(1)式解得12m L m '<<,由(2)式得10.5(1)0.171.52L L L ''=+⨯-=+ 结合(1)(2)式得 1.17 2.17m L m <<21.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
第一章激光原理练习题第一章激光原理练习题一、填空题(本大题共4个小题,每题3分,共12分)1.光学谐振腔的稳定与否是由谐振腔的决定的。
2.平凹腔是由一块平面镜和一块曲率半径为R的凹面镜组成的光学谐振腔,按照两镜之间距离可分为半共焦腔和。
3.一般情况下粒子数密度反转分布与的线型函数有关。
4.小信号粒子数密度反转与能级寿命有关。
二、选择题(本大题共4个小题,每题3分,共12分)1. 粒子数密度反转分布的表达式表明了粒子数密度按照谐振腔内光波频率分布,与有关。
A光强B饱和光强C中心频率D小信号粒子数密度反转2.光学谐振腔的作用是。
A倍增工作介质作用长度提高单色光能密度B控制光束传播方向。
C对激光进行选频D改变激光频率3. 饱和光强I s是激光工作物质的光学性质,不同物质差别很大,氦氖激光器(632.8nm谱线)I s大约为。
A. 0.3W/mm2B. 7.0W/mm2C. 0.6W/mm2D. 0.5W/mm24.平凹腔按照两镜之间距离可分为。
A半共焦腔B半共心腔C共焦腔D共心腔三、简答题(本大题共4个小题,每题5分,共20分)1.请解释增益饱和的物理意义。
2.请解释什么是不稳定腔。
3.什么是平行平面腔?4 .请解释粒子数密度反转分布值的饱和效应。
四、计算题(本大题共4个小题,共56分)1.四能级激光器中,激光上能级寿命为τ3 =10-3 s,总粒子数密度n0 =3×108m-3 ,当抽运几率达到W14 =500/s时,求小信号反转粒子数密度为多少?(10分)2.某激光介质的增益系数G=2/m,初始光强为I0 ,求光在介质中传播z=0.5m后的光强。
(不考虑损耗与增益饱和)(14分)3.激光器为四能级系统,已知3能级是亚稳态能级,基态泵浦上来的粒子通过无辐射跃迁到2能级,激光在3能级和2能级之间跃迁的粒子产生。
1能级与基态(0能级)之间主要是无辐射跃迁。
(1)在能级图上划出主要跃迁线。
(2)若2能级能量为4eV,1能级能量为2eV,求激光频率;(16分)4.求非均匀加宽激光器入射强光频率为1012Hννν=-?,光强为13sI Iν=时,该强光大信号增益系数下降到峰值增益系数的多少倍?(16分)一、填空题1. 几何形状2. 半共心腔3. 激光工作物质4. 抽运速率二.选择题1.ABCD 2.ABC 3. A 4. AB三.简答题1.介质中粒子数密度反转分布值因受激辐射的消耗而下降,光强越强,受激辐射几率越大,上能级粒子数密度减少得越多,使粒子数密度反转分布值下降越多,进而使增益系数也同时下降,直到达到饱和光强,光放大过程停止。
第二章5)激发态的原子从能级E2跃迁到E1时,释放出m μλ8.0=的光子,试求这两个能级间的能量差。
若能级E1和E2上的原子数分别为N1和N2,试计算室温(T=300K )时的N2/N1值。
【参考例2-1,例2-2】 解:(1)J hcE E E 206834121098.310510310626.6---⨯=⨯⨯⨯⨯==-=∆λ (2)52320121075.63001038.11098.3exp ---∆-⨯=⎪⎪⎭⎫ ⎝⎛⨯⨯⨯-==T k Eb e N N10)激光在0.2m 长的增益物质中往复运动过程中,其强度增加饿了30%。
试求该物质的小信号增益系数0G .假设激光在往复运动中没有损耗。
104.0*)(0)(0m 656.03.1,3.13.014.02*2.0z 0000---=∴===+=====G e e I I me I I G z G ZzG Z ααα即且解:第三章2.CO 2激光器的腔长L=100cm ,反射镜直径D=1.5cm ,两镜的光强反射系数分别为r 1=0.985,r 2=0.8。
求由衍射损耗及输出损耗分别引起的δ、τc 、Q 、∆νc (设n=1) 解:衍射损耗:1880107501106102262.).(.a L =⨯⨯⨯=λ=δ-- s ..c L c 881075110318801-⨯=⨯⨯=δ=τ输出损耗:1190809850502121.)..ln(.r r ln =⨯⨯-=-=δ s ..c L c 881078210311901-⨯=⨯⨯=δ=τ4.分别按图(a)、(b)中的往返顺序,推导旁轴光线往返一周的光学变换矩阵⎪⎪⎭⎫ ⎝⎛D C B A ,并证明这两种情况下的)(21D A +相等。
(a )(b )解: 矩阵乘法的特点:1、只有当乘号左边的矩阵(称为左矩阵)的列数和乘号右边的矩阵(右矩阵)的行数相同时,两个矩阵才能相乘;这条可记为左列=右行才能相乘。
华中科技大学《激光原理》考研题库及答案1.试计算连续功率均为1W 的两光源,分别发射λ=0.5000μm ,ν=3000MHz 的光,每秒从上能级跃迁到下能级的粒子数各为多少?答:粒子数分别为:188346341105138.21031063.6105.01063.61⨯=⨯⨯⨯⨯=⨯⨯==---λνc h qn 239342100277.51031063.61⨯=⨯⨯⨯==-νh q n2.热平衡时,原子能级E 2的数密度为n 2,下能级E 1的数密度为n 1,设21g g =,求:(1)当原子跃迁时相应频率为ν=3000MHz ,T =300K 时n 2/n 1为若干。
(2)若原子跃迁时发光波长λ=1μ,n 2/n 1=0.1时,则温度T 为多高?答:(1)(//m n E E m mkTn nn g en g --=)则有:1]3001038.11031063.6exp[2393412≈⨯⨯⨯⨯⨯-==---kTh e n n ν(2)K T Te n n kT h 3623834121026.61.0]1011038.11031063.6exp[⨯=⇒=⨯⨯⨯⨯⨯⨯⨯-==----ν3.已知氢原子第一激发态(E 2)与基态(E 1)之间能量差为1.64×l0-18J ,设火焰(T =2700K)中含有1020个氢原子。
设原子按玻尔兹曼分布,且4g 1=g 2。
求:(1)能级E 2上的原子数n 2为多少?(2)设火焰中每秒发射的光子数为l08 n 2,求光的功率为多少瓦?答:(1)1923181221121011.3]27001038.11064.1exp[4----⨯=⨯⨯⨯-⨯=⇒=⋅⋅n n e g n g n kTh ν且202110=+n n 可求出312≈n(2)功率=W 918810084.51064.13110--⨯=⨯⨯⨯4.(1)普通光源发射λ=0.6000μm 波长时,如受激辐射与自发辐射光功率体密度之比q q 激自1=2000,求此时单色能量密度νρ为若干?(2)在He —Ne 激光器中若34/100.5m s J ⋅⨯=-νρ,λ为0.6328μm ,设μ=1,求q q 激自为若干?答:(1)3173436333/10857.31063.68)106.0(2000188m s J h h c q q ⋅⨯=⇒⨯⨯⨯=⇒=---ννννρρπρπλρνπ=自激(2)943436333106.71051063.68)106328.0(88⨯=⨯⨯⨯⨯⨯==---πρπλρνπννh h c q q =自激5.在红宝石Q 调制激光器中,有可能将全部Cr 3+(铬离子)激发到激光上能级并产生巨脉冲。
1、试证明:由于自发辐射,原子在E2能级的平均寿命211/s A τ=。
(20分)证明:根据自发辐射的性质,可以把由高能级E2的一个原子自发地跃迁到E1的自发跃迁几率21A 表示为212121()spdn A dt n = (1)式中21()spdn 表示由于自发跃迁引起的由E2向E1跃迁的原子数因在单位时间内能级E2所减少的粒子数为221()sp dn dn dt dt =- (2)把(1)代入则有2212dn A n dt =- (3)故有22021()exp()n t n A t =- (4)自发辐射的平均寿命可定义为22001()s n t dt n τ∞=⎰ (5)式中2()n t dt为t 时刻跃迁的原子已在上能级上停留时间间隔dt 产生的总时间,因此上述广义积分为所有原子在激发态能级停留总时间,再按照激发态能级上原子总数平均,就得到自发辐射的平均寿命。
将(4)式代入积分(5)即可得出210211exp()s A t dt A τ∞=-=⎰2、一光束通过长度为1m 的均匀激励的工作物质,如果出射光强是入射光强的两倍,试求该物质的增益系数。
(20分)解: 若介质无损耗,设在光的传播方向上z 处的光强为I(z),则增益系数可表示为()1()dI z g dz I z =故()(0)exp()I z I gz =根据题意有(1)2(0)(0)exp(1)I I I g ==⨯解得1ln(2)0.693g cm -==3、某高斯光束0 1.2,10.6.mm um ωλ==今用F=2cm 的锗透镜来聚焦,当束腰与透镜的距离为10m,1m,0时,求焦斑大小和位置,并分析结果 (30分)解:由高斯光束q 参数的变化规律有(参书P77: 图2.10.3) 在z=0 处200(0)/q q i πωλ== (1)在A 处(紧挨透镜L 的“左方”)(0)A q q l=+ (2)在B 处(紧挨透镜L 的“右方”)111B A q q F =-(3)在C 处C B Cq q l =+ (4)又高斯光束经任何光学系统变换时服从所谓ABCD 公式,由此得00C Aq Bq Cq D +=+ (5)其中1101011/101C A B l l C D F ⎡⎤⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦ (6)则222220022222200()()()()()()()C C l F l F q l F i F l F l πωπωλλπωπωλλ--=++-+-+ (7)在像方高斯光束的腰斑处有{}Re 1/0C q =,得2202220()()0()()C l F l l F F l πωλπωλ--+=-+ (8)解得像方束腰到透镜的距离2'2220()()()C F l F l l F F l πωλ-==+-+ (9)将(9)代入(8)得出22220()()()C F l F q iF l πωλ-=-+ (10)由此求得220'222001111Im (1)()C l q F F πωπωλωλ⎧⎫=-=-+⎨⎬⎩⎭ (11。
《激光原理及应用》习题参考答案思考练习题11.解答:设每秒从上能级跃迁到下能级的粒子数为n 。
单个光子的能量:λνε/hc h == 连续功率:εn p =则,ε/p n =a. 对发射m μλ5000.0=的光: )(10514.2100.31063.6105000.01188346个⨯=⨯⨯⨯⨯⨯==--hc p n λ b. 对发射MHz 3000=ν的光)(10028.51030001063.6123634个⨯=⨯⨯⨯==-νh p n 2.解答:νh E E =-12……………………………………………………………………..(a)TE E en nκ1212--=……………………………………………………………………….(b)λν/c =…………………………………………………………………………….(c) (1)由(a ),(b )式可得:112==-T h e n n κν(2)由(a ),(b ),(c)式可得: )(1026.6ln312K n n hcT ⨯=-=κλ3.解答:(1) 由玻耳兹曼定律可得TE E e g n g n κ121122//--=,且214g g =,202110=+n n 代入上式可得:≈2n 30(个)(2))(10028.5)(1091228W E E n p -⨯=-= 4.解答:(1) 由教材(1-43)式可得317336343/10860.3/)106000.0(1063.68200018q m s J m s J h q ⋅⋅=⋅⋅⋅⋅⋅⋅=⋅=---πλπρν自激 (2)9344363107.5921063.68100.5)106328.0(8q ⋅=⋅⋅⋅⋅⋅==---ππρλνh q 自激5.解答:(1)红宝石半径cm r 4.0=,长cm L 8=,铬离子浓度318102-⋅=cm ρ,发射波长m 6106943.0-⋅=λ,巨脉冲宽度ns T 10=∆则输出最大能量)(304.2)(106943.0100.31063.684.0102)(68342182J J hcL r E =⋅⋅⋅⋅⋅⋅⋅⋅⋅==--πλπρ 脉冲的平均功率: )(10304.2)(1010304.2/89W W T E p ⋅=⋅=∆=- (2)自发辐射功率)(10304.2)(10106943.0)84.0102(100.31063.6)(22621883422W W L r hc hcN Q ⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅==---πλτπρλτ=自6.解答:由λν/c =,λλνd cd 2=及λρνρλd d v =可得1185-==kThcehcd d λνλλπλνρρ7.解答: 由0)(=ννρd d 可得: 31=-kTh kTh m m mee kTh υυυ;令x kTh m=υ,则)1(3-=x x e xe ;解得:82.2=x 因此:1182.2--=kh T m ν 同样可求得:96.4=kThcm λ 故c m m 568.0=λν8解答:)]4(2[)(11)](4[114)(04042)(4202000πτνππτπτπτνννπττννπτνπτνννπτ--==+=-+=∞-∞∞-=-∞⎰⎰⎰arctg A x arctg A dxx A d A d f xN 令又04πτν数量级在810,所以2~)4(0ππτν--arctg ,代入上式得:τ/1=A9解答:由教材的(1-26)式可得:t A e n t n 21202)(-=,令en t n 1)(202=,则 21211,1A A ==ττ 10解答:相对论四维波矢量为:),(cik k ωμ = 对沿x 方向的特殊洛伦兹变换,有).(,,),(1'3'32'221'1k k k k k c k k υωγωωυγ-===-= (1)其中2211c υγ-=假设波矢量k 与x 轴的夹角为θ,'k 与x 轴的夹角为'θ,有'''11cos ,cos θωθωck ck == (2)代入(1)式可得)cos 1('θνωγωc-= (3)若'∑为光源的静止参考系,则0'ωω=。
华中科技大学《激光原理》考研题库及答案在考研的征程中,《激光原理》这门课程对于许多学子来说,既是挑战,也是机遇。
为了帮助大家更好地应对华中科技大学《激光原理》的考研,我们精心准备了这份题库及答案,希望能为大家的复习之路点亮一盏明灯。
一、选择题1、以下关于激光的特点,错误的是()A 方向性好B 单色性好C 相干性好D 能量分布均匀答案:D解析:激光具有方向性好、单色性好、相干性好的特点,但能量分布并不均匀,通常在光束中心处能量较高。
2、实现粒子数反转的必要条件是()A 工作物质具有亚稳态B 激励能源足够强C 工作物质具有三能级结构D 工作物质具有四能级结构答案:A解析:要实现粒子数反转,工作物质必须具有亚稳态,这样才能使处于高能级的粒子数多于低能级的粒子数。
3、下列哪种激光器属于气体激光器()A 红宝石激光器B 氦氖激光器C 半导体激光器D 染料激光器答案:B解析:氦氖激光器是常见的气体激光器,红宝石激光器是固体激光器,半导体激光器属于半导体激光器,染料激光器是液体激光器。
4、激光的纵模频率间隔与()有关A 谐振腔长度B 工作物质的折射率C 激光波长D 以上都是答案:D解析:激光的纵模频率间隔与谐振腔长度、工作物质的折射率以及激光波长都有关系。
5、激光的阈值条件与()有关A 增益系数B 损耗系数C 谐振腔长度D 以上都是答案:D解析:激光的阈值条件取决于增益系数、损耗系数和谐振腔长度等因素。
二、填空题1、激光产生的必要条件是________、________和________。
答案:工作物质、激励能源、光学谐振腔2、激光的三个主要特性是________、________和________。
答案:方向性好、单色性好、相干性好3、常见的固体激光器有________、________等。
答案:红宝石激光器、Nd:YAG 激光器4、光学谐振腔的品质因数 Q 与谐振腔的________和________有关。
《激光原理》习题解答 第一章1 为了使氦氖激光器的相干长度达到1KM ,它的单色性0λλ∆应为多少? 解答:设相干时间为τ,则相干长度为光速与相干时间的乘积,即c L c ⋅=τ根据相干时间和谱线宽度的关系 cL c ==∆τν1又因为γνλλ∆=∆,00λνc=,nm 8.6320=λ由以上各关系及数据可以得到如下形式: 单色性=ννλλ∆=∆=c L 0λ=101210328.61018.632-⨯=⨯nmnm 解答完毕。
2 如果激光器和微波激射器分别在10μm、500nm 和Z MH 3000=γ输出1瓦连续功率,问每秒钟从激光上能级向下能级跃迁的粒子数是多少。
解答:功率是单位时间内输出的能量,因此,我们设在dt 时间内输出的能量为dE ,则 功率=dE/dt激光或微波激射器输出的能量就是电磁波与普朗克常数的乘积,即d νnh E =,其中n 为dt 时间内输出的光子数目,这些光子数就等于腔内处在高能级的激发粒子在dt 时间辐射跃迁到低能级的数目(能级间的频率为ν)。
由以上分析可以得到如下的形式:ννh dth dE n ⨯==功率 每秒钟发射的光子数目为:N=n/dt,带入上式,得到:()()()13410626.61--⨯⋅⨯====s s J h dt n N s J νν功率每秒钟发射的光子数根据题中给出的数据可知:z H mms c13618111031010103⨯=⨯⨯==--λν z H mms c1591822105.110500103⨯=⨯⨯==--λν z H 63103000⨯=ν把三个数据带入,得到如下结果:19110031.5⨯=N ,18210006.1⨯=N ,23310031.5⨯=N解答完毕。
3 设一对激光能级为E1和E2(f1=f2),相应的频率为ν(波长为λ),能级上的粒子数密度分别为n2和n1,求(a)当ν=3000兆赫兹,T=300K 的时候,n2/n1=? (b)当λ=1μm ,T=300K 的时候,n2/n1=? (c)当λ=1μm ,n2/n1=0.1时,温度T=?解答:在热平衡下,能级的粒子数按波尔兹曼统计分布,即 (统计权重21f f =)其中1231038062.1--⨯=jk k b 为波尔兹曼常数,T 为热力学温度。
华科考研激光原理2002-2015真题2015 年(839)一、简单1、 激光产生的必要条件?2、 激光的四种特性?选择一种说明其用途4、四能级系统速率方程和图示 二、共焦腔与一般稳定腔的对应计算 三、行波腔的均匀加宽和多普勒加宽的最大输出功率计算2015激光原理(900)一、简答题均匀加宽与非均匀加宽的特点连续激光器从开始振荡到产生稳定输出增益系数的变化情况二、三能级四能级的本质区别,以及为什么四能级更容易产生粒 3、 谐振腔的稳区图,并写明稳定腔和非稳腔的位置1、A n 大于0,激光器是否能够产生自激振荡? 2、 光学谐振腔的结构和作用3、 共焦腔与一般腔的等价性5、6、 光学模式以及横模和纵模子数反转三、三能级能级示意图,速率方程四、稳定腔,非稳腔,临界腔计算判断(很简单)五,光线传输矩阵相关的题2014 年一.解释题1•描述自然加宽和多普勒加宽的成因,说明他们属于什么加宽类型。
(15)2.描述一般稳定腔和对称共焦腔的等价性。
(15)3.增益饱和在连续激光器稳定输出中起什么作用?谱线加宽是怎样影响增益饱和特性的?(15)4.说明三能级系统和四能级系统的本质区别,哪个系统更容易形成粒子数反转,为什么?(15)二.解答题1.一个折射率为〃,厚度为d的介质放在空气中,界面是曲率半径为R的凹面镜和平面镜。
(1)求光线从空气入射到凹面镜并被凹面镜反射的光线变换矩阵。
(2)求光线从凹面镜进入介质经平面镜反射再从凹面镜射出介质的光线变换矩阵。
(3)求光线从凹面镜进入介质再从平面镜折射出介质的光线变换矩阵。
(25)2.圆形镜共焦腔的腔长L二lm, (1)求纵模间隔横模间隔⑵ 若在增益阈值之上的增益线宽为60Mhz,问腔内是否可能存在两个以上的纵模震荡,为什么?(25)3.虚共焦型非稳腔的腔长L二0.25m,山凹面镜Ml和凸面镜M2组成,M2的曲率半径和直径为R2=-\m, 2a2=3cm,若M2的尺寸不变,要求从H2单端输出,则Ml的尺寸为多少;腔的往返放大率为多少。
第四章思考与练习题1.光学谐振腔的作用。
是什么?2.光学谐振腔的构成要素有哪些,各自有哪些作用?3.CO2激光器的腔长L=1.5m,增益介质折射率n=1,腔镜反射系数分别为r1=0.985,r2=0.8,忽略其它损耗,求该谐振腔的损耗δ,光子寿命Rτ,Q值和无源腔线宽ν∆。
4.证明:下图所示的球面折射的传播矩阵为⎥⎥⎦⎤⎢⎢⎣⎡-212121ηηηηηR。
折射率分别为21,ηη的两介质分界球面半径为R。
5.证明:下图所示的直角全反射棱镜的传播矩阵为⎥⎥⎦⎤⎢⎢⎣⎡---121ηd。
折射率为n的棱镜高d。
6. 导出下图中1、2、3光线的传输矩阵。
R7. 已知两平板的折射系数及厚度分别为n 1,d 1,n 2,d 2。
(1)两平板平行放置,相距l ,(2)两平板紧贴在一起,光线相继垂直通过空气中这两块平行平板的传输矩阵,是什么?8. 光学谐振腔的稳定条件是什么,有没有例外?谐振腔稳定条件的推导过程中,只是要求光线相对于光轴的偏折角小于90度。
因此,谐振腔稳定条件是不是一个要求较低的条件,为什么?9. 有两个反射镜,镜面曲率半径,R 1=-50cm ,R 2=100cm ,试问:(1)构成介稳腔的两镜间距多大?(2)构成稳定腔的两镜间距在什么范围?(3)构成非稳腔的两镜间距在什么范围?10.共焦腔是不是稳定腔,为什么? 11. 腔内有其它元件的两镜腔中,除两腔镜外的其余部分所对应传输矩阵元为ABCD ,腔镜曲率半径为1R 、2R ,证明:稳定性条件为1201g g <<,其中11/g D B R =-;22/g A B R =-。
12.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。
13. 激光器谐振腔由一面曲率半径为1m 的凸面镜和曲率半径为2m 的凹面镜组成,工作物质长0.5m ,其折射率为1.52,求腔长L 在什么范围内是稳定腔。
14. 如下图所示三镜环形腔,已知l ,试画出其等效透镜序列图,并求球面镜的曲率半径R 在什么范围内该腔是稳定腔。