综合题:3.如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=1,求 △ABC的周长.
小贴士
为什么叫勾股定理这个名称呢? 在中国古代,人们把弯曲成直角的手臂的上半部分称 为“勾”,下半部分称为“股”.我国古代学者把直角三 角形较短的直角边称为“勾”,较长的直角边称为 “股”,斜边称为“弦”.由于命题1反映的正好是直 角三角形三边的关系,所以叫做勾股定理.
勾
股
勾2+股2=弦2 国外又叫毕达哥拉斯定理
当BC为斜边时,如图,BC 42 32 5.
B B
4
3
C 图 A
4
A
3
图
C
归纳 当直角三角形中所给的两条边没有指明是斜边或 直角边时,其中一较长边可能是直角边,也可能是斜 边,这种情况下一定要进行分类讨论,否则容易丢解.
当堂练习
1.下列说法中,正确的是
( C)
A.已知a,b,c是三角形的三边,则a2+b2=c2
新知应用
例1 如图,在Rt△ABC中, ∠C=90°.
(1)若a=b=5,求c;
B
(2)若a=1,c=2,求b.
a
解:(1)在Rt△ABC中, ∠C=90°
C
c a2 b2 52 52 50 5 2;
c
A
b
(2)在Rt△ABC中, ∠C=90°
b c2 a2 22 12 3.
注意:1.看好哪个角是直角,选择正确的公式来求边长
C
问题2 图中正方形A、B、C所围成的等腰直角三角 形三边之间有什么数量关系?
AB C
S正方形A S正方形B S正方形C
一直角边2 +
另一直角边2 =
斜边2