乘法公式定理(题型扩展)

  • 格式:doc
  • 大小:716.15 KB
  • 文档页数:20

下载文档原格式

  / 20
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乘法公式的复习

一、复习:

(a+b)(a-b)=a2-b2(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2 (a+b)(a2-ab+b2)=a3+b3(a-b)(a2+ab+b2)=a3-b3

归纳小结公式的变式,准确灵活运用公式:

①位置变化,(x+y)(-y+x)=x2-y2

②符号变化,(-x+y)(-x-y)=(-x)2-y2= x2-y2

③指数变化,(x2+y2)(x2-y2)=x4-y4

④系数变化,(2a+b)(2a-b)=4a2-b2

⑤换式变化,[xy+(z+m)][xy-(z+m)]

=(xy)2-(z+m)2

=x2y2-(z+m)(z+m)

=x2y2-(z2+zm+zm+m2)

=x2y2-z2-2zm-m2

⑥增项变化,(x-y+z)(x-y-z)

=(x-y)2-z2

=(x-y)(x-y)-z2

=x2-xy-xy+y2-z2

=x2-2xy+y2-z2

⑦连用公式变化,(x+y)(x-y)(x2+y2)

=(x2-y2)(x2+y2)

=x 4-y 4

⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2

=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz

例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+

∵2=+b a ,1=ab ∴22b a +=21222=⨯-

例2.已知8=+b a ,2=ab ,求2)(b a -的值。 解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-

∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -

∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-

例3:计算19992-2000×1998

〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。 解:19992-2000×1998 =19992-(1999+1)×(1999-1) =19992-(19992-12)=19992-19992+1 =1

例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。 〖解析〗此题可用完全平方公式的变形得解。 解:a 2+b 2=(a+b)2-2ab=4-2=2 (a-b)2=(a+b)2-4ab=4-4=0

例5:已知x-y=2,y-z=2,x+z=14。求x 2-z 2的值。

〖解析〗此题若想根据现有条件求出x、y、z的值,比较麻烦,考虑到x2-z2是由x+z和x-z的积得来的,所以只要求出x-z的值即可。

解:因为x-y=2,y-z=2,将两式相加得x-z=4,所以x2-z2=(x+z)(x-z)=14×4=56。

例6:判断(2+1)(22+1)(24+1)……(22048+1)+1的个位数字是几?

〖解析〗此题直接计算是不可能计算出一个数字的答案,故有一定的规律可循。观察到1=(2-1)和上式可构成循环平方差。

解:(2+1)(22+1)(24+1)……(22048+1)+1

=(2-1)(22+1)(24+1)……(22048+1)+1

=24096

=161024

因为当一个数的个位数字是6的时候,这个数的任意正整数幂的个位数字都是6,所以上式的个位数字必为6。

例7.运用公式简便计算

(1)1032(2)1982

解:(1)1032=(100+3)2 =1002+2⨯100⨯3+32=10000+600+9 =10609

(2)1982=(200-2)2 =2002-2⨯200⨯2+22=40000-800+4 =39204

例8.计算

(1)(a+4b-3c)(a-4b-3c)(2)(3x+y-2)(3x-y+2)

解:(1)原式=[(a-3c)+4b][(a-3c)-4b]=(a-3c)2-(4b)2=a2-6ac+9c2-16b2

(2)原式=[3x +(y -2)][3x -(y -2)]=9x 2-( y 2-4y +4)=9x 2-y 2+4y -4

例9.解下列各式

(1)已知a 2+b 2=13,ab =6,求(a +b )2,(a -b )2的值。 (2)已知(a +b )2=7,(a -b )2=4,求a 2+b 2,ab 的值。 (3)已知

a (a -1)-(a 2-

b )=2,求

22

2

a b ab +-的值。 (4)已知13x x

-=,求44

1

x x +

的值。 分析:在公式(a +b )2=a 2+b 2+2ab 中,如果把a +b ,a 2+b 2和ab 分别看作是一个整体,则公式中有三个未知数,知道了两个就可以求出第三个。 解:(1)∵a 2+b 2=13,ab =6

∴(a +b )2=a 2+b 2+2ab =13+2⨯6=25 (a -b )2=a 2+b 2-2ab =13-2⨯6=1 (2)∵(a +b )2=7,(a -b )2=4

∴ a 2+2ab +b 2=7 ① a 2-2ab +b 2=4 ② ①+②得 2(a 2+b 2)=11,即2211

2

a b += ①-②得 4ab =3,即34

ab =

(3)由a (a -1)-(a 2-b )=2 得a -b =-2

()22221222a b ab a b ab +∴-=+-()()22112222

a b =-=⨯-=

(4)由13x x -=,得19x x 2

⎛⎫-= ⎪

⎝⎭ 即22129x x +-= 2

2111x x ∴+= 221121x x 2

⎫∴+= ⎪⎝

⎭ 即4412121x x ++= 441119x x +=

例10.四个连续自然数的乘积加上1,一定是平方数吗?为什么? 分析:由于1⨯2⨯3⨯4+1=25=52