华中师范大学数学教学论及历年考研试题
- 格式:pdf
- 大小:5.49 MB
- 文档页数:21
华中师范⼤学学科教学数学考研复试试卷华中师范⼤学⼆零⼀三年硕⼠研究⽣复试试题⼀、名词解释(每个题4分,共20分)接受学习有意义学习同化运算能⼒⼼智技能⼆、简单题(每个题10分,共40分)1.对于函数的概念,在义务教育阶段已经给出了“变量说”的函数的定义,为什么在⾼中阶段⼜以“对应说”重新对函数的概念进⾏定义?这样的教学安排体现了哪⼀教学原则的要求?2.命题2320x x -+=“的根是12x x ==或”是简单命题还是复合命题?为什么?3.请以“四边形”作为属概念,选择不同的种差,⾄少给出“平⾏四边形”三种不同的定义。
4.在数学概念教学中,数学概念引⼊的途径主要有那些?三、论述题(每题20分,共40分)1.数学教学⽬的即回答“为什么要学数学”,不同的⼈对此可能做出不同的回答,以下是⼏种有代表性的回答:(1)“数学是有⽤的”。
俗话说“学了语⾔会写信,学了数学会算账”.(2)“数学能训练⼈的思维”。
⼀句名⾔说“数学是思维的体操”。
(3)“数学是升学的主课”。
常⾔道“数学是筛选⼈才的过滤器”。
请结合实际对以上三种回答作出⼀定的评价,并就此论述⼀下⾃⼰的观点。
⼀、数学教育⽬标的确定(⼀)数学教育的基本功能思考与讨论:“为什么要学习数学”?可能回答是:答案A :“数学有⽤”。
俗话说:“学了语⽂会写信,学了数学会算帐。
”答案B :“数学能训练⼈的思维”。
⼀句名⾔说:“数学是思想的体操。
”答案C :“数学是升学的主课”。
常⾔道:“数学是筛选⼈才的过滤器”。
这是很有代表性的关于数学教育⽬标的回答。
代表着三种对数学教育功能的不同看法:1、实⽤性功能。
强调数学教育的实⽤性⽬标。
2、思维训练功能。
强调数学教育的思维训练和公民素质养成的⽬标。
3、选拔性功能。
强调数学教育在选拔⼈才中的特殊⽬标。
对于“教育⽬标”这个词,许多教育⽂件和论著都会提到,但提法却并⾮⼀致。
⽆论“教育⽬标”,还是“教学⽬标”,“课程⽬标”,提法上⼤同⼩异。
2004年数学分析1.求下列极限(共50分,第1,2小题各10分,第3,4小题各15分)(1)21sin 0lim(cos )xx x →(2)n(3)74limx x →∞(4)1limsin (sin)2nn k k nnππ→∞=∑ 2.(15)设)(),(x g x f 在],[b a 上连续,在),(b a 内可导,若12,x x 是)(x f 在区间],[b a 上的两个零点,证明:存在[,]a b ξ∈,使得'()()'()0f f g ξξξ+=3.(15)设)(x f 在)0](,[>>a b b a 上连续,在),(b a 内可导,证明:在),(b a 内存在,ξη使ba f f ⋅'⋅=')()(2ηηξ.4.(15)设)(x f 在],[b a 上黎曼可积,证明:()f x e在],[b a 上也是黎曼可积的.5.(15)'()(1,2,3,n f x n =…)在],[b a 上连续,函数)(x g 在],[b a 上也连续,且对],[b a 中任意的12,x x 和正整数n ,有1212|()()|||n n Mf x f x x x n -≤-(0>M ),证明:lim ().'()0bn n ag x f x dx →+∞=⎰.6.(15)设()n f x ( ,2,1=n )在],[b a 上连续,且{()}n f x 在],[b a 上一致收敛与)(x f .证明:(1)存在0>M ,使对任何自然数n ,有|()|,|()|n f x M f x M ≤≤及. (2)若)(x F 为-∞+∞(,)上连续函数,则(())n F f x 一致收敛于))((x f F .7.(10)设函数)(x f 在闭区间]1,1[-上具有三阶连续导数,且0)0(,1)1(,0)1(='==-f f f ,证明:在)1,1(-内至少存在一点ξ,使得(3)()3f ξ=.8.(15)函数),(y x F 在点00(,)x y 的某个邻域内有连续的二阶偏导数,且00000000(,)0,'(,)0,'(,)0,''(,)0x y xx F x y F x y F x y F x y ==><,证明:由方程),(y x F 确定的隐函数()y f x =在0x 点取得极小值.2005年数学分析1.求下列极限或指定函数的值: (1)1!2!3!!lim!n n n →∞++++(10分)(2)5(21)62n n n-(10分) (3)132lim[().2x x x x x e →+∞-+-(10分) (4)设)(x f 在0=x 的邻域二阶可导,且130()lim(1)x x f x x e x→++=,求(0),'(0),''(0)f f f 的值.(15分) 2.(15)设函数)(),(x g x f 在],[b a 上可导,且在),(b a 上'()0g x ≠,证明:存在)()'()(,)()()'()f a f f a bg g b g ξξξξξ-∈=-(使.3.(15)设函数()f x 在]4,2[上有连续的一阶导函数,且(2)(4)0f f ==,证明:4242max |'()||()|x f x f x dx ≤≤≥⎰.4.(13)设有方程.sin (01)x m q x q =+<<.若0101,.sin ,,sin ,,n n x m x m q x x m q x +==+=+证明:{}n x 收敛;设lim n n x l →+∞=,再证明l 是方程.sin x m q x =+的唯一解. 5.(13)证明:函数项级数11((1))x n n xe nn ∞=-+∑在任何有穷区间[,]a b 上一致收敛.6.(13)设()f x 在[,]a b 上二阶可导,且''()0f x >,证明:1()()2baa b f f x dx b a +≤-⎰. 7.(13)设12,,,,n a a a 均为常数,证明:函数项级数101..!xn tn n a t e dt n ∞-=∑⎰在[,]a b 上一致收敛. 8.(13)设()f x 在[,]a b 上黎曼可积,()0,f x c ≥≥用可积准则证明:函数ln ()f x 在[,]a b 上黎曼可积. 9.(10)设()f x 在[,]a b 上具有连续的二阶导数,证明:在(,)a b 内存在ξ,使得31()()()().''()224baa b f x dx b a f b a f ξ+=-+-⎰2006年数学分析1.(30) (1)111sin)1(sin lim121----→x x e x x . (2) 设x x a x y +=,求y '. (3) dx xx ⎰+ln 1ln ln .(4)设yxy x y x f y arcsin)1(),(2-+=,求)1,(x f x '. (5)dxdy e y x y xD22)(+⎰⎰+,其中}1),{(22≤+=y x y x D . (6) 求⎰-=Lydx ydy x I cos sin ,其中L 是从点)0,0(O 到点)0,(πA 的正弦曲线有x y sin =.2.(20)设)(x f 在(,)a +∞上可导,且'()f x 在(,)a +∞上有界,证明:(1) )(x f 在(,)a +∞上一致连续. (2)()lim ()lim ()x x a f a f x f x ++→∞→=存在,但不一定存在.(3)若)(lim x f x +∞→存在,且)(lim )(lim x f x f a x x +→+∞→=,则)(x f '在(,)a +∞上至少有一个零点。
华中师范大学数学分析考研真题以上是01年数分2003年数学分析(综合卷)1.(16)求下列极限:(1))/1(2)!(lim n n n +∞→. (2))(x f 在]1,1[-上连续,恒不为0,求131sin )(1lim 30--+→x x x x f2.(15)设)(x f 在],[b a 上二阶可导,过点))(,(a f a A 与))(,(b f b B 的直线与曲线)(x f y =相较于))(,(c f c C ,其中b c a <<,证明:在),(b a 中至少存在一点ξ,使0)(=''ξf .3.(15) 证明:x x n n 21ln ∑∞=在]1,0(上一致收敛.4.(15) 设))}({(x f n 是],[b a 上的函数序列,满足对每一个],[b a x ∈导函数)(x f n '存在),2,1( =n 并且满足下列条件:(1)存在某一个],[0b a x ∈,使))}({(0x f n 收敛;(2)导函数列)}({x f n '在],[b a 上一致收敛. 证明: )}({x f n 在],[b a 上一致收敛.5.(14)设)(x f 在],[b a 上可导,其导函数)(x f '在],[b a 可积,对任意的自然数n .记⎰∑---+==b a ni n dx x f n a b n a b i a f )()(1σ , 证明:)]()([2lim a f b f a b n n n --=+∞→σ.2004年数学分析1.求下列极限(共50分,第1,2小题各10分,第3,4小题各15分)(1)21sin 0lim(cos )x x x → (2)11lim 123n n →∞+++1…+n (3)74444lim (112)x x x x x →∞++-- (4)1limsin (sin)2n n k k n nππ→∞=∑ 2.(15)设)(),(x g x f 在],[b a 上连续,在),(b a 内可导,若12,x x 是)(x f 在区间],[b a 上的两个零点,证明:存在[,]a b ξ∈,使得'()()'()0f f g ξξξ+=3.(15)设)(x f 在)0](,[>>a b b a 上连续,在),(b a 内可导,证明:在),(b a 内存在,ξη使b a f f ⋅'⋅=')()(2ηηξ.4.(15)设)(x f 在],[b a 上黎曼可积,证明:()f x e 在],[b a 上也是黎曼可积的.5.(15)'()(1,2,3,n f x n =…)在],[b a 上连续,函数)(x g 在],[b a 上也连续,且对],[b a 中任意的12,x x 和正整数n ,有1212|()()|||n n M f x f x x x n -≤-(0>M ),证明:lim ().'()0b n n a g x f x dx →+∞=⎰. 6.(15)设()n f x ( ,2,1=n )在],[b a 上连续,且{()}n f x 在],[b a 上一致收敛与)(x f .证明:(1)存在0>M ,使对任何自然数n ,有|()|,|()|n f x M f x M ≤≤及. (2)若)(x F 为-∞+∞(,)上连续函数,则(())n F f x 一致收敛于))((x f F .7.(10)设函数)(x f 在闭区间]1,1[-上具有三阶连续导数,且0)0(,1)1(,0)1(='==-f f f ,证明:在)1,1(-内至少存在一点ξ,使得(3)()3fξ=.8.(15)函数),(y x F 在点00(,)x y 的某个邻域内有连续的二阶偏导数,且00000000(,)0,'(,)0,'(,)0,''(,)0x y xx F x y F x y F x y F x y ==><,证明:由方程),(y x F 确定的隐函数()y f x =在0x 点取得极小值. 2005年数学分析1.求下列极限或指定函数的值:(1)1!2!3!!lim !n n n →∞++++ (10分) (2)135(21)lim 2462n n n n →∞- (10分) (3)1326lim[().1]2x x x x x e x →+∞-+-+(10分) (4)设)(x f 在0=x 的邻域二阶可导,且130()lim(1)x x f x x e x →++=,求(0),'(0),''(0)f f f 的值.(15分) 2.(15)设函数)(),(x g x f 在],[b a 上可导,且在),(b a 上'()0g x ≠,证明:存在)()'()(,)()()'()f a f f a bg g b g ξξξξξ-∈=-(使. 3.(15)设函数()f x 在]4,2[上有连续的一阶导函数,且(2)(4)0f f ==,证明:4242max |'()||()|x f x f x dx ≤≤≥⎰. 4.(13)设有方程.sin (01)x m q x q =+<<.若0101,.sin ,,sin ,,n n x m x m q x x m q x +==+=+ 证明:{}n x 收敛; 设lim n n x l →+∞=,再证明l 是方程.sin x m q x =+的唯一解. 5.(13)证明:函数项级数11((1))x n n x e n n ∞=-+∑在任何有穷区间[,]a b 上一致收敛. 6.(13)设()f x 在[,]a b 上二阶可导,且''()0f x >,证明:1()()2ba ab f f x dx b a +≤-⎰. 7.(13)设12,,,,n a a a 均为常数,证明:函数项级数101..!x n t n n a t e dt n ∞-=∑⎰在[,]a b 上一致收敛. 8.(13)设()f x 在[,]a b 上黎曼可积,()0,f x c ≥≥用可积准则证明:函数ln ()f x 在[,]a b 上黎曼可积.9.(10)设()f x 在[,]a b 上具有连续的二阶导数,证明:在(,)a b 内存在ξ,使得31()()()().''()224ba ab f x dx b a f b a f ξ+=-+-⎰ 2006年数学分析 1.(30) (1)111sin )1(sin lim 121----→x x e x x . (2) 设x x a x y +=,求y '. (3) dx x x ⎰+ln 1ln ln . (4)设yx y x y x f y arcsin )1(),(2-+=,求)1,(x f x '.(5)dxdy e y x y xD 22)(+⎰⎰+,其中}1),{(22≤+=y x y x D . (6) 求⎰-=Lydx ydy x I cos sin ,其中L 是从点)0,0(O 到点)0,(πA 的正弦曲线有x y sin =. 2.(20)设)(x f 在(,)a +∞上可导,且'()f x 在(,)a +∞上有界,证明:(1) )(x f 在(,)a +∞上一致连续. (2)()lim ()lim ()x x a f a f x f x ++→∞→=存在,但不一定存在. (3)若)(lim x f x +∞→存在,且)(lim )(lim x f x f ax x +→+∞→=,则)(x f '在(,)a +∞上至少有一个零点。
1.(36)计算题: (1) n n n n n n)12()1(1lim -+∞→ (2)dxdydz z y x t t z y x t ⎰⎰⎰≤++→+++22222224sin 1lim (3) 求曲线积分⎰+-Ly x ydxxdy 229,其中L 为平面内任意一条不经过原点的正向光滑封闭简单曲线.2.(15)设函数)(x f 在),0[+∞上具有连续的导函数,且)(lim x f x '∞→存在有限,10<<α,是一个常数,证明:)(αx f 在),0[+∞上一致连续.3.(15)设)(x f 和)(x g 在],[b a 上连续且在),(b a 内可导,试证:在),(b a 内存在点ξ,使得)()]()([)()]()([ξξf a g b g g a f b f '-='-.4.(20)证明:函数项级数∑∞=-=1)(n nx ne x f 在),0(+∞上收敛,但不一致收敛,而和函数)(x f 在),0(+∞上可以任意次求导.5.(20)证明:方程)sin(2xy y x =+在原点的某个邻域内可以唯一确定隐函数)(x f y =,并)0(y '计算的值.6.(14)证明:若函数)(x f 在],[b a 上无界,则必存在],[b a 上的某点,使得)(x f 在该点的任何邻域内无界.7.(12)设函数u 在),0[+∞上连续可微且+∞<'+⎰dx x u x u ))()((22,试证:(1)存在),0[+∞中的子列∞=1}{n n x 使得当∞→n 时, +∞→n x 且0)(→n x u(2)存在某常数0>C ,使得2122},0[)))()((()(sup dx x u x u C x u x ⎰∞++∞∈'+≤8.(18)设3R ⊂Ω为有界闭区域,且具有光滑边界+∞<<Ω∂T 0,.(1)设v u ,是Ω上具有连续二阶偏导数的函数,试证:dS n u v dxdydz v u dxdydz u v ⎰⎰⎰⎰⎰⎰⎰⎰Ω∂ΩΩ∂∂+∇∇-=∆,其中222222z u y u x u u ∂∂+∂∂+∂∂=∆,u ∇为u 的梯度, n u∂∂为u 沿区域的边界的外法向n的方向导数;(2)设),,,(t z y x u 在),0[T ⨯Ω上具有连续一阶偏导数,试证:),0[,),,,(),,,(T t dxdydz t z y x t udxdydz t z y x u dt d ∈∀∂∂=⎰⎰⎰⎰⎰⎰ΩΩ;(3)设),,,(t z y x u 在),0[T ⨯Ω上具有连续二阶偏导数且满足3u u tu+∆=∂∂若u 在 ),0[T ⨯Ω上恒为零记2222)()()(z u y u x u u ∂∂+∂∂+∂∂=∇,试证dxdydz u u t E ⎰⎰⎰Ω-∇=)4121()(42在),0[T 上是减函数.1.(30)计算题: (1)1)1()]ln 1cos[sin()sin(lim 0-++→βαx x x x (2) 计算二重积分dxdy y yD⎰⎰sin ,其中D 是由0,1,===x y x y 围成的区域.(3) 求曲线积分⎰-+----C y x dxy dy x 22)2()1(4)2()1(其中C 为平面内任意一条不经过点)2,1(得正向光滑封闭简单曲线2.(12)设函数)(x f 定义在开区间),(b a 内,若对任意的),(b a c ∈,都有)(lim x f cx →存在,且)(lim x f ax +→和)(lim x f bx +→也存在,则)(x f 在开区间),(b a 内有界.3.(12)证明:含参量反常积分dy xe xy ⎰+∞-0在),[+∞δ上一致收敛)0(>δ,但在),0(+∞内不一致收敛.4.(20)设函数)(x f 在]1,0[上连续,在)1,0(内可微,且存在0>M ,使得M x x f x f x x 2)()(),1,0(<-'∈∀,证明: (1)xx f )(在]1,0[内一致连续. (2))(lim 0x f x +→存在.5.(20)证明下面结论: (1)若)(x f 在]1,0[上连续,则⎰=∞→10)(lim dx x f x n x . (2)若)(x f 在]1,0[上连续可微,则⎰=∞→1)1()(lim f dx x f x n n n .6.(18)设⎪⎩⎪⎨⎧=+≠+++=0 , 00,sin ),(222222222y x y x y x y x y x y x f ,讨论),(y x f 在原点)0,0(处的连续性,偏导的存在性以及可微性.7.(20)设函数列)}({x f n 中的每一项函数)(x f n 都是],[b a 上的单调函数,试证明:(1)若∑∞=1)(n n a f 和∑∞=1)(n n b f 都绝对收敛,则∑∞=1)(n n x f 在],[b a 上一致收敛.(2)若每一项函数)(x f n 的单调性相同,且∑∞=1)(n n a f 和∑∞=1)(n n b f 都收敛,则在上一致收敛.8.(18)设f 连续,证明:(1)证明:⎰⎰⎰⎰--=Vdx x x f dxdydz z f 112)1)(()(π,其中1:222≤++z y x V .(2)记函数dxdydz cz by ax f c b a F V⎰⎰⎰++=)(),,(,其中1:222≤++z y x V ,证明:球面1222=++c b a 为函数),,(c b a F 的等值面,即),,(c b a F 在球面1222=++c b a 上恒为常数,并求出此常数.2010年数学分析1.(30)计算题: (1)设函数)(x f 定义在),(+∞-∞上,满足:1)0()(lim ,cos )()2(0===→f x f x x f x f x ,求)(x f . (2)设⎰=40tan πxdx a nn ,求)(121+∞=+∑n n n a a n的值.(3) 求曲线积分dz y x dy x z dx z y L)()()(-+-+-⎰,其中L 为平面0=++z y x 与球面1222=++z y x 相交的交线,方向从z 轴正向看是逆时针的.2.(12)设0,)(>=ααx x f ,证明:当10≤<α时, )(x f 在),0(+∞上一致连续; 当1>α时, )(x f 在),0(+∞上不一致连续.3.(12)证明:含参量x 反常积分dy xe xy ⎰+∞-0在),[+∞δ上一致收敛)0(>δ,但在),0(+∞内不一致收敛.4.(20)函数)(x f 在],[b a 上连续,在),(b a 内二阶可导,且过点))(,(a f a 和))(,(b f b 的直线与曲线)(x f y =相交于点))(,(c f c (b c a <<),证明:存在),(b a ∈ξ,使得0)(=''x f .5.(20)设可微函数列)}({x f n 在],[b a 上逐点收敛,且对任意],[b a x ∈存在x 的邻域)(x U ,使得)}({x f n '在],[)(b a x U ⋂上一致有界,证明:(1))}({x f n '在]1,0[上一致有界. (2))}({x f n 在]1,0[上一致收敛.6.(20)设⎪⎩⎪⎨⎧=+≠++=0, 00),ln(),(222222y x y x y x xy y x f ,讨论),(y x f 在原点)0,0(处的连续性,偏导的存在性以及可微性. 7.(20)已知)(x f 是),0[+∞上的正值连续函数,且+∞<⎰+∞dx x f 0)(1,证明: (1)存在数列),2,1)(,0[ =+∞∈n x n 满足:}{n x 严格单调递增,+∞=+∞=∞→∞→)(lim ,lim n n n n x f x . (2)+∞=⎰+∞→dt t f xxx 02)(1lim .8.(16)已知),,(z y x f 和),,(z y x g 在1:222≤++z y x V 上具有二阶连续的偏导数,记z y x zy x ∂∂+∂∂+∂∂=∇∂∂+∂∂+∂∂=∆,222222(1)证明:⎰⎰⎰⎰⎰⎰⎰⎰∇⋅-∂∂=∇⋅∇VVSdxdydz f g dS n fgdxdydz f g )()(,其中n 表示S 的外法线方向,S 为球面1222=++z y x .(2)若222z y x f ++=∆,试计算:dxdydz z fzy x z y f z y x y x f z y x xI V)(222222222∂∂+++∂∂+++∂∂++=⎰⎰⎰.。
1.(36)计算题: (1) n n n n n n)12()1(1lim -+∞→ (2)dxdydz z y x t t z y x t ⎰⎰⎰≤++→+++22222224sin 1lim (3) 求曲线积分⎰+-Ly x ydxxdy 229,其中L 为平面内任意一条不经过原点的正向光滑封闭简单曲线.2.(15)设函数)(x f 在),0[+∞上具有连续的导函数,且)(lim x f x '∞→存在有限,10<<α,是一个常数,证明:)(αx f 在),0[+∞上一致连续.3.(15)设)(x f 和)(x g 在],[b a 上连续且在),(b a 内可导,试证:在),(b a 内存在点ξ,使得)()]()([)()]()([ξξf a g b g g a f b f '-='-.4.(20)证明:函数项级数∑∞=-=1)(n nx ne x f 在),0(+∞上收敛,但不一致收敛,而和函数)(x f 在),0(+∞上可以任意次求导.5.(20)证明:方程)sin(2xy y x =+在原点的某个邻域内可以唯一确定隐函数)(x f y =,并)0(y '计算的值.6.(14)证明:若函数)(x f 在],[b a 上无界,则必存在],[b a 上的某点,使得)(x f 在该点的任何邻域内无界.7.(12)设函数u 在),0[+∞上连续可微且+∞<'+⎰dx x u x u ))()((22,试证:(1)存在),0[+∞中的子列∞=1}{n n x 使得当∞→n 时, +∞→n x 且0)(→n x u(2)存在某常数0>C ,使得2122},0[)))()((()(sup dx x u x u C x u x ⎰∞++∞∈'+≤8.(18)设3R ⊂Ω为有界闭区域,且具有光滑边界+∞<<Ω∂T 0,.(1)设v u ,是Ω上具有连续二阶偏导数的函数,试证:dS n u v dxdydz v u dxdydz u v ⎰⎰⎰⎰⎰⎰⎰⎰Ω∂ΩΩ∂∂+∇∇-=∆,其中222222z u y u x u u ∂∂+∂∂+∂∂=∆,u ∇为u 的梯度, n u∂∂为u 沿区域的边界的外法向n的方向导数;(2)设),,,(t z y x u 在),0[T ⨯Ω上具有连续一阶偏导数,试证:),0[,),,,(),,,(T t dxdydz t z y x t udxdydz t z y x u dt d ∈∀∂∂=⎰⎰⎰⎰⎰⎰ΩΩ;(3)设),,,(t z y x u 在),0[T ⨯Ω上具有连续二阶偏导数且满足3u u tu+∆=∂∂若u 在 ),0[T ⨯Ω上恒为零记2222)()()(z u y u x u u ∂∂+∂∂+∂∂=∇,试证dxdydz u u t E ⎰⎰⎰Ω-∇=)4121()(42在),0[T 上是减函数.1.(30)计算题: (1)1)1()]ln 1cos[sin()sin(lim 0-++→βαx x x x (2) 计算二重积分dxdy y yD⎰⎰sin ,其中D 是由0,1,===x y x y 围成的区域.(3) 求曲线积分⎰-+----C y x dxy dy x 22)2()1(4)2()1(其中C 为平面内任意一条不经过点)2,1(得正向光滑封闭简单曲线2.(12)设函数)(x f 定义在开区间),(b a 内,若对任意的),(b a c ∈,都有)(lim x f cx →存在,且)(lim x f ax +→和)(lim x f bx +→也存在,则)(x f 在开区间),(b a 内有界.3.(12)证明:含参量反常积分dy xe xy ⎰+∞-0在),[+∞δ上一致收敛)0(>δ,但在),0(+∞内不一致收敛.4.(20)设函数)(x f 在]1,0[上连续,在)1,0(内可微,且存在0>M ,使得M x x f x f x x 2)()(),1,0(<-'∈∀,证明: (1)xx f )(在]1,0[内一致连续. (2))(lim 0x f x +→存在.5.(20)证明下面结论: (1)若)(x f 在]1,0[上连续,则⎰=∞→10)(lim dx x f x n x . (2)若)(x f 在]1,0[上连续可微,则⎰=∞→1)1()(lim f dx x f x n n n .6.(18)设⎪⎩⎪⎨⎧=+≠+++=0 , 00,sin ),(222222222y x y x y x y x y x y x f ,讨论),(y x f 在原点)0,0(处的连续性,偏导的存在性以及可微性.7.(20)设函数列)}({x f n 中的每一项函数)(x f n 都是],[b a 上的单调函数,试证明:(1)若∑∞=1)(n n a f 和∑∞=1)(n n b f 都绝对收敛,则∑∞=1)(n n x f 在],[b a 上一致收敛.(2)若每一项函数)(x f n 的单调性相同,且∑∞=1)(n n a f 和∑∞=1)(n n b f 都收敛,则在上一致收敛.8.(18)设f 连续,证明:(1)证明:⎰⎰⎰⎰--=Vdx x x f dxdydz z f 112)1)(()(π,其中1:222≤++z y x V .(2)记函数dxdydz cz by ax f c b a F V⎰⎰⎰++=)(),,(,其中1:222≤++z y x V ,证明:球面1222=++c b a 为函数),,(c b a F 的等值面,即),,(c b a F 在球面1222=++c b a 上恒为常数,并求出此常数.2010年数学分析1.(30)计算题: (1)设函数)(x f 定义在),(+∞-∞上,满足:1)0()(lim ,cos )()2(0===→f x f x x f x f x ,求)(x f . (2)设⎰=40tan πxdx a nn ,求)(121+∞=+∑n n n a a n的值.(3) 求曲线积分dz y x dy x z dx z y L)()()(-+-+-⎰,其中L 为平面0=++z y x 与球面1222=++z y x 相交的交线,方向从z 轴正向看是逆时针的.2.(12)设0,)(>=ααx x f ,证明:当10≤<α时, )(x f 在),0(+∞上一致连续; 当1>α时, )(x f 在),0(+∞上不一致连续.3.(12)证明:含参量x 反常积分dy xe xy ⎰+∞-0在),[+∞δ上一致收敛)0(>δ,但在),0(+∞内不一致收敛.4.(20)函数)(x f 在],[b a 上连续,在),(b a 内二阶可导,且过点))(,(a f a 和))(,(b f b 的直线与曲线)(x f y =相交于点))(,(c f c (b c a <<),证明:存在),(b a ∈ξ,使得0)(=''x f .5.(20)设可微函数列)}({x f n 在],[b a 上逐点收敛,且对任意],[b a x ∈存在x 的邻域)(x U ,使得)}({x f n '在],[)(b a x U ⋂上一致有界,证明:(1))}({x f n '在]1,0[上一致有界. (2))}({x f n 在]1,0[上一致收敛.6.(20)设⎪⎩⎪⎨⎧=+≠++=0, 00),ln(),(222222y x y x y x xy y x f ,讨论),(y x f 在原点)0,0(处的连续性,偏导的存在性以及可微性. 7.(20)已知)(x f 是),0[+∞上的正值连续函数,且+∞<⎰+∞dx x f 0)(1,证明: (1)存在数列),2,1)(,0[ =+∞∈n x n 满足:}{n x 严格单调递增,+∞=+∞=∞→∞→)(lim ,lim n n n n x f x . (2)+∞=⎰+∞→dt t f xxx 02)(1lim .8.(16)已知),,(z y x f 和),,(z y x g 在1:222≤++z y x V 上具有二阶连续的偏导数,记z y x zy x ∂∂+∂∂+∂∂=∇∂∂+∂∂+∂∂=∆,222222(1)证明:⎰⎰⎰⎰⎰⎰⎰⎰∇⋅-∂∂=∇⋅∇VVSdxdydz f g dS n fgdxdydz f g )()(,其中n 表示S 的外法线方向,S 为球面1222=++z y x .(2)若222z y x f ++=∆,试计算:dxdydz z fzy x z y f z y x y x f z y x xI V)(222222222∂∂+++∂∂+++∂∂++=⎰⎰⎰.。
《数学教学论》练习题库及答案一、填空题:1. A.A.斯托利亚尔把教学过程分解为以下要素:、、、2.数学教育学的研究方法有:、、、、、、、、、。
3.调查报告一般包括三个部分为:、、。
4.教育实验的变量主要包括:、、。
5.大纲按不同层次要求阐述教学目的的主要有___、___、___、___四个层次。
6.中学数学教材从是否分科来编排,有___和___的编排方式。
7.中学数学教材从课程内容的发展上排列,有___、___、___三种编排方式。
8.巴甫洛夫关于人的两种信号系统的学说为提供了神经生理学的基础;9.所谓第一信号系统,所谓第二信号系统,10.在数学教学中,注意恰当地通过、、、,以帮助学生形成鲜明的表象,为他们掌握基础理论提供必要的感性材料。
11.合作学习包含五个基本要素:、、、、。
12.在一般情况下,合作学习包括五个主要环节,即:、、、学生的学习进步分数的统计和小组奖励。
13.自主学习的本质和与其相对应的他主学习的比较中,我们可以得出自主学习的几个基本特点:、、。
14.数学思维品质主要有以下几个方面:、、、、。
15.数学思维发展按思维活动中抽象概念的水平由低到高,大体上可以分为以下几个层次:、、和。
16.一般说来,中学生数学思维的发展具有以下几个突出特点:、、。
17.运算能力包含的四个要素:、、和18.数学逻辑思维可以分为三级水平:①;②;③。
19、数学课堂教学语言使用的基本要求是:、、和20、数学新三大能力是:、、。
21、复数的本质属性是:。
22、教学中的启发有两种基本的方式即:和23、中学数学中最重要且最基本的数学思想包括:、、和二,单项选择题:1.下列哪一项不是课程引入技能的目的()A. 引起学生注意,激发学习兴趣B. 明确学习目标,形成学习动机C. 建立问题情境,建立知识间联系D. 激发认知需求,形成学习期待2.下列各项中关于数学课的课题引入的论述中,正确的是()A. 数学课的课题引入,要根据学生的要求进行B. 数学课的课题引入,要依据数学学科的特点进行C. 数学课的课题引入,要依据教师的兴趣来进行D. 数学课的课题引入,要依据教学进度的要求来进行3.下列哪一项不是数学的特点()A. 理论的开放性B. 逻辑的严谨性C. 高度的抽象性D. 广泛的应用性4.下列关于提问时应注意的问题的论述中正确的是()①提问过程中要注意合理分布②提问过程要有合理的停顿③提问过程中应照顾成绩较好的学生A. ①③B. ②③C. ①②D. ①②③5.下列哪一项不是提问的类型()A. 回忆型提问B. 启发型提问C. 评价型提问D. 分析型提问6.下列关于数学课的结束的论述正确的是()A. 数学课的结束是以下课铃声的想起为标志的B. 数学课的结束是以教学任务的完成为标志的C. 数学课的结束是以总结学习内容,布置作业和预习任务为标志的D. 数学课的结束是以教师宣布下课为标志的7.下列哪一项不是结束技能的主要功能()A. 沟通知识,深化拓展B. 检查学生学习效果,为改进教学提供依据C. 设疑生趣,承前启后D. 系统概括、归纳所学内容,使之系统化8.“灵感”、“顿悟”所体现的数学思维主要是:()A.直觉思维B.逻辑思维C.发散思维D.收敛思维E.函数思维9.“顺推不行时可考虑逆推;直接证明有困难时,可采用间接证明”体现()A.逻辑思维B.发散思维C.逆向思维D.再现性思维10.下列方法中,能体现数学方法中的“发现方法”的是:()A.配方 B. 归纳 C.类比 D.猜想 E.联想11.对图形的平移、对称、旋转等的认识主要与中学生的哪一能力有关()A.运算能力B.逻辑思维能力C.空间想象能力D.自学能力E.记忆能力12.夸美纽斯提出的教学原则的基础是()A.以自然适应性为基础B. 以文化适应性为基础C. 以生理现象为基础D. 以教育心理学为基础13.属于弗赖登塔尔提出的数学教学原则的是( )A教学的科学性原则 B. 严谨性原则C. 最佳动机原则D. 阶段序进原则14.“备课先备学生”说的是教学原则中的哪个?( )A. 严谨性与量力性相结合的原则B. 具体与抽象相结合原则C. 理论与实际相结合原则D. 巩固与发展相结合原则15.“温故而知新”体现的是教学原则中的哪个?( )A. 严谨性与量力性相结合原则B. 具体与抽象相结合原则C. 理论与实际相结合原则D. 巩固与发展相结合原则16.数学能力表现的基本形式:()A.运算能力B.逻辑思维能力C.空间想象能力 D.解决实际问题的能力17.以下哪些心理表现是逻辑思维能力的表现:()A.分析B.综合C.抽象D.概括E.推理证明三,名词解释:1.自变量2.教育实验法3.因变量4:经验总结法5:文献分析法6:调查法7:数学学习8:机械学习9:有意义学习10:接受学习11:发现学习12:概念同化13:概念形成14:变式15:技能16:动作技能17:心智技能18:数学合作学习19:教学方法及数学教学方法20、启发式教学思想四、简答题:1.数学教育学的基本任务是什么?2.数学教育学的研究对象是什么?3.数学课程论研究的主要问题是什么?4.数学学习论研究的主要问题是什么?5.数学教学论研究的主要问题是什么?6.谈谈数学教育学的学科性质?7.教学原则的含义是什么?怎样正确理解教学原则?8.怎样理解数学的严谨性与量力性?9.在中学数学教学中如何做到严谨性与量力性相结合?10.如何理解数学的抽象性?11.在中学数学教学中如何贯彻具体与抽象相结合的原则?12.在讲解立体几何的有关概念时,我们常常借助实物模型或图形。
华中师大《数学教学论》练习题库及答案《数学教学论》练习题库及答案一、填空题:1. A.A.斯托利亚尔把教学过程分解为以下要素:、、、2.数学教育学的研究方法有:、、、、、、、、、。
3.调查报告一般包括三个部分为:、、。
4.教育实验的变量主要包括:、、。
5.大纲按不同层次要求阐述教学目的的主要有___、___、___、___四个层次。
6.中学数学教材从是否分科来编排,有___和___的编排方式。
7.中学数学教材从课程内容的发展上排列,有___、___、___三种编排方式。
8.巴甫洛夫关于人的两种信号系统的学说为提供了神经生理学的基础;9.所谓第一信号系统,所谓第二信号系统,10.在数学教学中,注意恰当地通过、、、,以帮助学生形成鲜明的表象,为他们掌握基础理论提供必要的感性材料。
11.合作学习包含五个基本要素:、、、、。
12.在一般情况下,合作学习包括五个主要环节,即:、、、学生的学习进步分数的统计和小组奖励。
13.自主学习的本质和与其相对应的他主学习的比较中,我们可以得出自主学习的几个基本特点:、、。
14.数学思维品质主要有以下几个方面:、、、、。
15.数学思维发展按思维活动中抽象概念的水平由低到高,大体上可以分为以下几个层次:、、和。
16.一般说来,中学生数学思维的发展具有以下几个突出特点:、、。
17.运算能力包含的四个要素:、、和18.数学逻辑思维可以分为三级水平:①;②;③。
19、数学课堂教学语言使用的基本要求是:、、和20、数学新三大能力是:、、。
21、复数的本质属性是:。
22、教学中的启发有两种基本的方式即:和23、中学数学中最重要且最基本的数学思想包括:、、和二,单项选择题:1.下列哪一项不是课程引入技能的目的()A. 引起学生注意,激发学习兴趣B. 明确学习目标,形成学习动机C. 建立问题情境,建立知识间联系D. 激发认知需求,形成学习期待2.下列各项中关于数学课的课题引入的论述中,正确的是()A. 数学课的课题引入,要根据学生的要求进行B. 数学课的课题引入,要依据数学学科的特点进行C. 数学课的课题引入,要依据教师的兴趣来进行D. 数学课的课题引入,要依据教学进度的要求来进行3.下列哪一项不是数学的特点()A. 理论的开放性B. 逻辑的严谨性C. 高度的抽象性D. 广泛的应用性4.下列关于提问时应注意的问题的论述中正确的是()①提问过程中要注意合理分布②提问过程要有合理的停顿③提问过程中应照顾成绩较好的学生A. ①③B. ②③C. ①②D. ①②③5.下列哪一项不是提问的类型()A. 回忆型提问B. 启发型提问C. 评价型提问D. 分析型提问6.下列关于数学课的结束的论述正确的是()A. 数学课的结束是以下课铃声的想起为标志的B. 数学课的结束是以教学任务的完成为标志的C. 数学课的结束是以总结学习内容,布置作业和预习任务为标志的D. 数学课的结束是以教师宣布下课为标志的7.下列哪一项不是结束技能的主要功能()A. 沟通知识,深化拓展B. 检查学生学习效果,为改进教学提供依据C. 设疑生趣,承前启后D. 系统概括、归纳所学内容,使之系统化8.“灵感”、“顿悟”所体现的数学思维主要是:()A.直觉思维B.逻辑思维C.发散思维D.收敛思维E.函数思维9.“顺推不行时可考虑逆推;直接证明有困难时,可采用间接证明”体现()A.逻辑思维B.发散思维C.逆向思维D.再现性思维10.下列方法中,能体现数学方法中的“发现方法”的是:()A.配方 B. 归纳C.类比D.猜想E.联想11.对图形的平移、对称、旋转等的认识主要与中学生的哪一能力有关()A.运算能力B.逻辑思维能力C.空间想象能力D.自学能力E.记忆能力12.夸美纽斯提出的教学原则的基础是()A.以自然适应性为基础B. 以文化适应性为基础C. 以生理现象为基础D. 以教育心理学为基础13.属于弗赖登塔尔提出的数学教学原则的是( )A教学的科学性原则 B. 严谨性原则C. 最佳动机原则D. 阶段序进原则14.“备课先备学生”说的是教学原则中的哪个?( )A. 严谨性与量力性相结合的原则B. 具体与抽象相结合原则C. 理论与实际相结合原则D. 巩固与发展相结合原则15.“温故而知新”体现的是教学原则中的哪个?( )A. 严谨性与量力性相结合原则B. 具体与抽象相结合原则C. 理论与实际相结合原则D. 巩固与发展相结合原则16.数学能力表现的基本形式:()A.运算能力B.逻辑思维能力C.空间想象能力 D.解决实际问题的能力17.以下哪些心理表现是逻辑思维能力的表现:()A.分析B.综合C.抽象D.概括E.推理证明三,名词解释:1.自变量2.教育实验法3.因变量4:经验总结法5:文献分析法6:调查法7:数学学习8:机械学习9:有意义学习10:接受学习11:发现学习12:概念同化13:概念形成14:变式15:技能16:动作技能17:心智技能18:数学合作学习19:教学方法及数学教学方法20、启发式教学思想四、简答题:1.数学教育学的基本任务是什么?2.数学教育学的研究对象是什么?3.数学课程论研究的主要问题是什么?4.数学学习论研究的主要问题是什么?5.数学教学论研究的主要问题是什么?6.谈谈数学教育学的学科性质?7.教学原则的含义是什么?怎样正确理解教学原则?8.怎样理解数学的严谨性与量力性?9.在中学数学教学中如何做到严谨性与量力性相结合?10.如何理解数学的抽象性?11.在中学数学教学中如何贯彻具体与抽象相结合的原则?12.在讲解立体几何的有关概念时,我们常常借助实物模型或图形。