2018高考数学考前应注意问题与答题技巧
- 格式:doc
- 大小:14.90 KB
- 文档页数:2
绝密★启用前2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:锥体的体积,其中是锥体的底面积,是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上..1. 已知集合,,那么________.【答案】{1,8}【解析】分析:根据交集定义求结果.详解:由题设和交集的定义可知:.点睛:本题考查交集及其运算,考查基础知识,难度较小.2. 若复数满足,其中i是虚数单位,则的实部为________.【答案】2【解析】分析:先根据复数的除法运算进行化简,再根据复数实部概念求结果.详解:因为,则,则的实部为.点睛:本题重点考查复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.3. 已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.4. 一个算法的伪代码如图所示,执行此算法,最后输出的S的值为________.【答案】8【解析】分析:先判断是否成立,若成立,再计算,若不成立,结束循环,输出结果.详解:由伪代码可得,因为,所以结束循环,输出点睛:本题考查伪代码,考查考生的读图能力,难度较小.5. 函数的定义域为________.【答案】[2,+∞)【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数有意义,则,解得,即函数的定义域为.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.6. 某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.7. 已知函数的图象关于直线对称,则的值是________.【答案】【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数(A>0,ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间; 由求减区间.8. 在平面直角坐标系中,若双曲线的右焦点到一条渐近线的距离为,则其离心率的值是________.【答案】2【解析】分析:先确定双曲线的焦点到渐近线的距离,再根据条件求离心率.点睛:双曲线的焦点到渐近线的距离为b,焦点在渐近线上的射影到坐标原点的距离为a.9. 函数满足,且在区间上,则的值为________.【答案】【解析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果.详解:由得函数的周期为4,所以因此点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.10. 如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】【解析】分析:先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果.详解:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于,所以该多面体的体积为点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.11. 若函数在内有且只有一个零点,则在上的最大值与最小值的和为________.【答案】–3【解析】分析:先结合三次函数图象确定在上有且仅有一个零点的条件,求出参数a,再根据单调性确定函数最值,即得结果.详解:由得,因为函数在上有且仅有一个零点且,所以,因此从而函数在上单调递增,在上单调递减,所以,点睛:对于函数零点个数问题,可利用函数的单调性、草图确定其中参数取值条件.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.12. 在平面直角坐标系中,A为直线上在第一象限内的点,,以AB为直径的圆C与直线l交于另一点D.若,则点A的横坐标为________.【答案】3【解析】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果.详解:设,则由圆心为中点得易得,与联立解得点D的横坐标所以.所以,由得或,因为,所以点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.13. 在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.【答案】9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.14. 已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________.【答案】27【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值.详解:设,则由得所以只需研究是否有满足条件的解,此时,,为等差数列项数,且.由得满足条件的最小值为.点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如).二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15. 在平行六面体中,.求证:(1);(2).【答案】答案见解析【解析】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB1A1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因为AB1平面ABB1A1,所以平面ABB1A1⊥平面A1BC.点睛:本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明.16. 已知为锐角,,.(1)求的值;(2)求的值.【答案】(1)(2)【解析】分析:先根据同角三角函数关系得,再根据二倍角余弦公式得结果;(2)先根据二倍角正切公式得,再利用两角差的正切公式得结果.详解:解:(1)因为,,所以.因为,所以,因此,.(2)因为为锐角,所以.又因为,所以,因此.因为,所以,因此,.点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等. 17. 某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OC与MN所成的角为.(1)用分别表示矩形和的面积,并确定的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)当θ=时,能使甲、乙两种蔬菜的年总产值最大【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=,θ0∈(0,).当θ∈[θ0,)时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[,1).答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)=8000k(sinθcosθ+cosθ),θ∈[θ0,).设f(θ)= sinθcosθ+cosθ,θ∈[θ0,),则.令,得θ=,当θ∈(θ0,)时,,所以f(θ)为增函数;当θ∈(,)时,,所以f(θ)为减函数,因此,当θ=时,f(θ)取到最大值.答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.18. 如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于两点.若的面积为,求直线l的方程.【答案】(1)椭圆C的方程为;圆O的方程为(2)①点P的坐标为;②直线l的方程为【解析】分析:(1)根据条件易得圆的半径,即得圆的标准方程,再根据点在椭圆上,解方程组可得a,b,即得椭圆方程;(2)第一问先根据直线与圆相切得一方程,再根据直线与椭圆相切得另一方程,解方程组可得切点坐标.第二问先根据三角形面积得三角形底边边长,再结合①中方程组,利用求根公式以及两点间距离公式,列方程,解得切点坐标,即得直线方程.详解:解:(1)因为椭圆C的焦点为,可设椭圆C的方程为.又点在椭圆C上,所以,解得因此,椭圆C的方程为.因为圆O的直径为,所以其方程为.(2)①设直线l与圆O相切于,则,所以直线l的方程为,即.由,消去y,得.(*)因为直线l与椭圆C有且只有一个公共点,所以.因为,所以.因此,点P的坐标为.②因为三角形OAB的面积为,所以,从而.设,由(*)得,所以.因为,所以,即,解得舍去),则,因此P的坐标为.综上,直线l的方程为.点睛:直线与椭圆的交点问题的处理一般有两种处理方法:一是设出点的坐标,运用“设而不求”思想求解;二是设出直线方程,与椭圆方程联立,利用韦达定理求出交点坐标,适用于已知直线与椭圆的一个交点的情况.19. 记分别为函数的导函数.若存在,满足且,则称为函数与的一个“S点”.(1)证明:函数与不存在“S点”;(2)若函数与存在“S点”,求实数a的值;(3)已知函数,.对任意,判断是否存在,使函数与在区间内存在“S点”,并说明理由.【答案】(1)证明见解析(2)a的值为(3)对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.【解析】分析:(1)根据题中“S点”的定义列两个方程,根据方程组无解证得结论;(2)同(1)根据“S点”的定义列两个方程,解方程组可得a的值;(3)通过构造函数以及结合“S 点”的定义列两个方程,再判断方程组是否有解即可证得结论.详解:解:(1)函数f(x)=x,g(x)=x2+2x-2,则f′(x)=1,g′(x)=2x+2.由f(x)=g(x)且f′(x)= g′(x),得,此方程组无解,因此,f(x)与g(x)不存在“S”点.(2)函数,,则.设x0为f(x)与g(x)的“S”点,由f(x0)与g(x0)且f′(x0)与g′(x0),得,即,(*)得,即,则.当时,满足方程组(*),即为f(x)与g(x)的“S”点.因此,a的值为.(3)对任意a>0,设.因为,且h(x)的图象是不间断的,所以存在∈(0,1),使得,令,则b>0.函数,则.由f(x)与g(x)且f′(x)与g′(x),得,即(**)此时,满足方程组(**),即是函数f(x)与g(x)在区间(0,1)内的一个“S点”.因此,对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.点睛:涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.20. 设是首项为,公差为d的等差数列,是首项为,公比为q的等比数列.(1)设,若对均成立,求d的取值范围;(2)若,证明:存在,使得对均成立,并求的取值范围(用表示).【答案】(1)d的取值范围为.(2)d的取值范围为,证明见解析。
题型1 分类加法计数原理与分步乘法计数原理 例1 (1)设x ,y ∈N *,直角坐标平面中的点为P(x ,y). ①若x +y≤6,这样的P 点有________个.②若1≤x≤4,1≤y≤5,这样的P 点又有________个.(2)全体两位数中,个位数字大于十位数字的两位数共有多少个?(3)已知a ∈{-1,2,3},b ∈{0,1,3,4},r ∈{1,2},则方程(x -a)2+(y -b)2=r 2所表示的不同的圆的个数有________.(2)方法一:按十位数上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合题意的两位数的个数共有:8+7+6+5+4+3+2+1=36(个).方法二:按个位数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别是1个,2个,3个,4个,5个,6个,7个,8个,所以按分类加法计数原理共有:1+2+3+4+5+6+7+8=36(个). (3)∵a ∈{-1,2,3},∴a 有3种方法,同理b 的取法有4种,r 有2种,又只有a ,b ,r 依次确定后,才能确定圆,∴共有3×4×2=24个不同的圆.【解题技巧】利用两个计数原理解题,必须类步分明,依实际问题是分类,还是分步,必须由题而定. 如(1)①题中完成这件事分5类即可;(3)题中完成这件事,需分三步,这三步完成后这件事才算告终. 变式1.(2016全国甲理5)如图所示,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( ).A.24B.18C. 12D.9解析 从→E F 的最短路径有6种走法,从→F →G 的最短路径有3种走法,由乘法原理知,共6318⨯=种走法. 选B .题型2 排列数与组合数的计算例2.(2016江苏23)(1)求34677C 4C -的值;(2)设*,m n ∈N ,n m …,求证: ()()()121C 2C 3C m m mm m m m m m +++++++++()()212C 1C 1C m m m n n n n n m +-+++=+.所以左边()()211122311C C C C m m m m m m m n m ++++++++=+++++()()2113311C C C =m m m m m n m ++++++=++++()()21411C C m m m n m +++++++=⋅⋅⋅()()21+111C C m m n n m +++=++()2+21C m n m +=+=右边.证法二(数学归纳法):对任意的*m ∈N ,①当n m =时,左边()1C 1m m m m =+=+,右边()221C 1m m m m ++=+=+,等式成立. ②假设()n k k m =…时命题成立,即()()()121C 2C 3C m m m m m m m m m +++++++++()()212C 1C 1C m m m k k k k k m +-+++=+, 当1n k =+时,左边()()()121C 2C 3C mm mm m m m m m ++=+++++++()()11C 1C 2C m m mk k k k k k -+++++()()2211C 2C m mk k m k +++=+++.因此()()()222131C 2C 1C m m m k k k m k m ++++++++=+,因此左边=右边,因此1n k =+时命题也成立. 综合①②可得命题对任意n m …均成立.评注 本题从性质上考查组合数性质,从方法上考查利用数学归纳法解决与自然数有关命题,从思想上考查运用算两次解决二项式有关模型.组合数的运算性质不仅有111C C C m m m k k k ++++=,C C m k m k k -=,11C C k k n n k n --⋅=⋅,而且还有此题中出现的()()111C 1C m m k k k m +++=+(),1,,k m m n =+,这些不需记忆,但需会推导,平时善于总结才是突破此类问题的核心.题型3 与排列相关的常见问题例3 有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数. (1)选其中5人排成一排;(2)排成前后两排,前排3人,后排4人; (3)全体排成一排,甲不站排头也不站排尾; (4)全体排成一排,女生必须站在一起; (5)全体排成一排,男生互不相邻;(6)全体排成一排,甲、乙两人中间恰好有3人; (7)全体排成一排,甲必须排在乙前面;(8)全部排成一排,甲不排在左端,乙不排在右端.解析: (1)从7个人中选5个人来排,是排列.有A 75=7×6×5×4×3=2 520(种).(2)分两步完成,先选3人排在前排,有A 73种方法,余下4人排在后排,有A 44种方法,故共有A 73·A 44=5 040(种).事实上,本小题即为7人排成一排的全排列,无任何限制条件. (3)(优先法)(4)(捆绑法)将女生看成一个整体,与3名男生在一起进行全排列,有A 44种方法,再将4名女生进行全排列,也有A 44种方法,故共有A 44×A 44=576种.(5)(插空法)男生不相邻,而女生不作要求,所以应先排女生,有A 44种方法,再在女生之间及首尾空出的5个空位中任选3个空位排男生,有A 53种方法, 故共有A 44×A 53=1 440种.(6)(捆绑法)把甲、乙及中间3人看作一个整体,第一步先排甲乙两人,有A 22种方法;第二步从余下5人中选3人排在甲乙中间,有A 53种;第三步把这个整体与余下2人进行全排列,有A 33种方法.故共有A 22·A 53·A 33=720种.(7)(消序法)A 772=2 520.(8)(间接法)A 77-2A 66+A 55=3 720. 位置分析法:分甲在排尾与不在排尾两类. 【解题技巧】求解排列应用题的主要方法把符合条件的排列数直接列式计算题型4 与组合相关的常见问题例4 7名男生5名女生中选取5人,分别求符合下列条件的选法总数有多少种? (1)A ,B 必须当选; (2)A ,B 必不当选; (3)A ,B 不全当选;(4)至少有2名女生当选;(5)选取3名男生和2名女生分别担任班长、体育委员等5种不同的工作,但体育委员必须由男生担任,班长必须由女生担任.第二步:选2男1女补足5人有C 62C 41种; 第三步:为这3人安排工作有A 33种.由分步乘法计数原理共有C 71C 51C 62C 41A 33=12 600种选法. 【解题技巧】组合问题常有以下两类题型(1)“含有”或“不含有”某些元素的组合题型;“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“最多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解,用直接法和间接法都可以求解,通常用直接法,分类复杂时,考虑逆向思维,用间接法处理.题型5 排列组合的综合应用例5 (2017天津理14)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个(用数字作答).解析 依题意按分类计数原理操作:(1)当没有一个数字是偶数时,从1,3,5,7,9这五个数字中任取四个数,再进行全排列得无重复数字的四位数有45A 120=个(或4454C A 120=个);(2)当仅有一个数字是偶数时,先从2,4,6,8中任取一个数,再从1,3,5,7,9中任取三个数,然后再进行全排列得到无重复数字的四位数有134454C C A 960=.故由分类计数原理得这样的四位数共有1209601080N =+=个.【高考真题链接】1.(2107浙江16)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有 种不同的选法.(用数字作答)解法二(直接法):分2步完成:第一步,8名学生中选4人(至少有1名女生),其中1女3男有1326C C 种选法,2女2男有2226C C 种选法;第二步,分配职务,4人里选2人担任队长和副队长有24A 种选法.所以共有 ()()1322226264C C C C A 22011512660+⋅=⨯+⨯⨯=种选法.2.(2013浙江理14)将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法共有________种(用数字作答)解析:按C 的位置分类,在左1,左2,左3,或者在右1,右2,右3,因为左右是对称的,所以只看左的情况最后乘以2即可。
⾼考数学6⼤题型答题技巧⾼考即将来临,你准备好了么?你是否已经攻克下数学这个困难呢?下⾯就是⼩编给⼤家带来的,希望⼤家喜欢!⾼考数学6⼤题型答题技巧1·三⾓函数题注意归⼀公式、诱导公式的正确性(转化成同名同⾓三⾓函数时,套⽤归⼀公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗⼼,导致错误!⼀着不慎,满盘皆输!)。
2·数列题1.证明⼀个数列是等差(等⽐)数列时,最后下结论时要写上以谁为⾸项,谁为公差(公⽐)的等差(等⽐)数列;2.最后⼀问证明不等式成⽴时,如果⼀端是常数,另⼀端是含有n的式⼦时,⼀般考虑⽤放缩法;如果两端都是含n的式⼦,⼀般考虑数学归纳法(⽤数学归纳法时,当n=k+1时,⼀定利⽤上n=k时的假设,否则不正确。
利⽤上假设后,如何把当前的式⼦转化到⽬标式⼦,⼀般进⾏适当的放缩,这⼀点是有难度的。
简洁的⽅法是,⽤当前的式⼦减去⽬标式⼦,看符号,得到⽬标式⼦,下结论时⼀定写上综上:由①②得证;3.证明不等式时,有时构造函数,利⽤函数单调性很简单(所以要有构造函数的意识)。
3·⽴体⼏何题1.证明线⾯位置关系,⼀般不需要去建系,更简单;2.求异⾯直线所成的⾓、线⾯⾓、⼆⾯⾓、存在性问题、⼏何体的⾼、表⾯积、体积等问题时,最好要建系;3.注意向量所成的⾓的余弦值(范围)与所求⾓的余弦值(范围)的关系(符号问题、钝⾓、锐⾓问题)。
4·概率问题1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;2.搞清是什么概率模型,套⽤哪个公式;3.记准均值、⽅差、标准差公式;4.求概率时,正难则反(根据p1+p2+...+pn=1);5.注意计数时利⽤列举、树图等基本⽅法;6.注意放回抽样,不放回抽样;7.注意“零散的”的知识点(茎叶图,频率分布直⽅图、分层抽样等)在⼤题中的渗透;8.注意条件概率公式;9.注意平均分组、不完全平均分组问题。
5·圆锥曲线问题1.注意求轨迹⽅程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,⽅法上有直接法、定义法、交轨法、参数法、待定系数法;2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往⽤点差法);注意判别式;注意韦达定理;注意弦长公式;注意⾃变量的取值范围等等;3.战术上整体思路要保7分,争9分,想12分。
专题42 巧解圆锥曲线中的定点和定值问题【高考地位】圆锥曲线是解析几何的重要内容之一,也是高考重点考查的内容和热点,知识综合性较强,对学生逻辑思维能力计算能力等要求很高,这些问题重点考查学生方程思想、函数思想、转化与化归思想的应用.定值问题与定点问题是这类题目的典型代表,为了提高同学们解题效率,特别是高考备考效率,本文列举了一些典型的定点和定值问题,以起到抛砖引乇的作用.【方法点评】方法一定点问题求解直线和曲线过定点问题的基本解题模板是:把直线或曲线方程中的变量x,y当作常数看待,把方程一端化为零,既然是过定点,那么这个方程就要对任意参数都成立,这时参数的系数就要全部等于零,这样就得到一个关于x,y的方程组,这个方程组的解所确定的点就是直线或曲线所过的定点,或者可以通过特例探求,再用一般化方法证明.【例1】已知椭圆的左右焦点分别为,椭圆过点,直线交轴于,且为坐标原点.(1)求椭圆的方程;(2)设是椭圆上的顶点,过点分别作出直线交椭圆于两点,设这两条直线的斜率分别为,且,证明:直线过定点.【答案】(1);(2)证明见解析.考点:直线与圆锥曲线位置关系.【方法点晴】求曲线方程主要方法是方程的思想,将向量的条件转化为垂直.直线和圆锥曲线的位置关系一方面要体现方程思想,另一方面要结合已知条件,从图形角度求解.联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后由根与系数的关系求解是一个常用的方法.涉及弦长的问题中,应熟练地利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.【变式演练1】【2018贵州省遵义市模拟】已知点P是圆F1:(x﹣1)2+y2=8上任意一点,点F2与点F1关于原点对称,线段PF2的垂直平分线分别与PF1,PF2交于M,N两点.(1)求点M的轨迹C的方程;(2)过点G(0,)的动直线l与点的轨迹C交于A,B两点,在y轴上是否存在定点Q,使以AB为直径的圆恒过这个点?若存在,求出点Q的坐标;若不存在,请说明理由.【解析】(1)由圆F1:(x﹣1)2+y2=8,得F1(1,0),则F2(﹣1,0),由题意得,∴点M的轨迹C为以F1,F2为焦点的椭圆,∵∴点M的轨迹C的方程为;方法二定值问题解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值,求定值问题常见的解题模板有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.【例2】已知抛物线,直线与交于,两点,且,其中为坐标原点.(1)求抛物线的方程;(2)已知点的坐标为(-3,0),记直线、的斜率分别为,,证明:为定值.【答案】(1);(2)详见解析考点:1.抛物线方程;2.直线与抛物线的位置关系.【变式演练2】【2018河南郑州市第一中学模拟】设,是椭圆上的两点,椭圆的离心率为,短轴长为2,已知向量,,且,为坐标原点.(1)若直线过椭圆的焦点,(为半焦距),求直线的斜率的值;(2)试问:的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.【解析】(1)由题可得:,,所以,椭圆的方程为设的方程为:,代入得:∴,,∵,∴,即:即,解得:点睛:本题主要考查直线与圆锥曲线的位置关系、圆锥曲线的定值问题,解题时要注意解题技巧的运用,如常用的设而不求,整体代换的方法;探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个这个值与变量无关;②直接推理、计算,借助韦达定理,结合向量所提供的坐标关系,然后经过计算推理过程中消去变量,从而得到定值.【高考再现】1. 【2017课标1,理20】已知椭圆C:(a>b>0),四点P1(1,1),P2(0,1),P3(–1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.【考点】椭圆的标准方程,直线与圆锥曲线的位置关系.【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中为告知,则一定要讨论直线斜率不存在和存在情况,接着通法是联立方程组,求判别式、韦达定理,根据题设关系进行化简.2.【2017课标3,文20】在直角坐标系xOy中,曲线与x轴交于A,B两点,点C的坐标为.当m变化时,解答下列问题:(1)能否出现AC⊥BC的情况?说明理由;(2)证明过A,B,C三点的圆在y轴上截得的弦长为定值.【答案】(1)不会;(2)详见解析【解析】试题分析:(1)设,由AC⊥BC得;由韦达定理得,矛盾,所以不存在(2)可设圆方程为,因为过,所以,令得,即弦长为3.试题解析:(1)设,则是方程的根,所以,则,所以不会能否出现AC⊥BC的情况。
专题1.2 求同存异解决集合的交、并、补运算问题考纲要求:1、理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.2、理解在给定集合中一个子集的补集的含义,会求给定子集的补集.3、能使用韦恩(Venn)图表达集合的关系及运算.基础知识回顾:1、集合的基本运算2、集合的运算性质①A∪B=A⇔B⊆A,A∩B=A⇔A⊆B;②A∩A=A,A∩∅=∅;③A∪A=A,A∪∅=A;④A∩∁U A=∅,A∪∁U A=U,∁U(∁U A)=A,∁U(A∪B)=∁U A∩∁U B,∁U(A∩B)=∁U A∪∁U B应用举例:类型一:已知集合中的元素,求其交集、并集或补集例1.【四川省成都市第七中学2018届高三下学期三诊】已知集合,,则为()A. B. C. D.【答案】C2例2.【延安市2018届高三高考模拟】全集{}2,1,0,1,2U =--, {}2,2A =-, 2{|10}B x x =-=,则图中阴影部分所表示的集合为( )A. {}1,0,1-B. {}1,0-C. {}1,1-D. {}0 【答案】D【解析】试题分析:根据韦恩图得到表示的是()U C A B ⋃,根据题意求得集合B ,再求集合A 并B ,再求补集即可.详解: {}{}2|1011B x x =-==-,,阴影部分表示的集合为()U C A B ⋃, {}2,1,1,2A B ⋃=--,(){}0U C A B ⋃=故答案为:D.点睛:这个题目考查了韦恩图的应用,一般先读懂韦恩图所代表的集合的含义,再将区域用集合的交并补形式表示出来,最终求解即可.例3.【郑州外国语学校2018届高三第十五次调研】已知全集,集合,,则中元素的个数是( )A. 0B. 1C. 2D. 3 【答案】D【解析】分析:先解分式不等式得集合U ,解绝对值不等式得集合A ,解二次不等式得集合B ,最后根据并集以及补集定义得结果.3详解:因为,所以, 因为,所以,因为,所以,因此,元素的个数是3,选D,点睛:集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提. (2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决. (3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图. 类型二:已知集合交集、并集或补集中的元素,求其集合中的元素 例4.【山东省威海市2018届高三下学期第二次模拟考试】设全集,,,则集合( ) A.B.C.D.【答案】B【例5】【2017浙江省温州市高三月考试题】设全集{}()1,2,3,4,5,U U C A B =={}(){}1,A 3U C B =,则集合B =( )A .{}1,2,4,5B .{}2,4,5C .{}2,3,4D .{}3,4,5【答案】B【解析】如图,{2,4,5}B =.故选B .413U :1,2,3,4,5BA类型三:已知集合关系求参数的值或范围例6.【北京市中国人民大学附属中学2018届高三5月考前热身】已知集合,,若,则实数的取值范围是( ) A. B.C.D.【答案】B例7.【内蒙古呼和浩特市2018届高三年级质量普查调研考试】已知集合,集合,集合,若A B C ⋃⊆,则实数m 的取值范围是______________.【答案】1,12⎡⎤-⎢⎥⎣⎦【解析】由题意, {|12}A B x x ⋃=-<< , ∵集合{|10}C x mx A B C =+⋃⊆>, , ①111102022m x m m m m -∴-≥∴≥-∴-≤<,<,,,<;②m 0= 时,成立;③1101101m x m m m m -∴-≤-∴≤∴≤>,>,,,<,综上所述, 112m -≤≤,故答案为112m -≤≤.5例8.【河北省衡水中学2018届高三上学期一轮复习周测】已知函数()41log ,,416f x x x ⎡⎤=∈⎢⎥⎣⎦的值域是集合A ,关于x 的不等式()3122x ax a R +⎛⎫>∈ ⎪⎝⎭的解集为B ,集合5|01x C x x -⎧⎫=≥⎨⎬+⎩⎭,集合{}()|1210D x m x m m =+≤<->.(1)若A B B ⋃=,求实数a 的取值范围; (2)若D C ⊆,求实数m 的取值范围. 【答案】(1)(),4-∞-;(2)(]0,3.解:(1)因为41>,所以()f x 在区间1416⎡⎤⎢⎥⎣⎦,上单调递增,所以()()44min max 1log 2,log 4116f x f x ==-==,所以[]2,1A =-.由()3122x ax a R +⎛⎫>∈ ⎪⎝⎭,可得()322x a x -+>,即3x a x -->,所以4a x <-,所以,4a B ⎛⎫=-∞- ⎪⎝⎭.又因为A B B ⋃=,所以A B ⊆. 所以14a->,解得4a <-, 所以实数a 的取值范围为(),4-∞-.6方法、规律归纳:1、一个性质:要注意应用A ⊆B 、A ∩B =A 、A ∪B =B 、∁U A ⊇∁U B 、A ∩(∁U B )=∅这五个关系式的等价性. 两种方法2、两种方法:韦恩图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法要特别注意端点是实心还是空心. 实战演练:1.【河北省武邑中学2018届高三上学期第五次调研】已知集合{21,M xN y y x ⎧⎫=<==⎨⎬⎩⎭,则()R C M N ⋂=A. (]0,2B. []0,2C. ∅D. []1,2 【答案】B7【解析】因为(){[)212,,0,M xN y y x ∞⎧⎫=<+===+∞⎨⎬⎩⎭=,则(]R ,2C M =-∞, ()[]0,2R C M N ⋂=.故选B.2.【安徽省江南十校2018届高三冲刺联考(二模)】已知全集为,集合,,则( ) A.B.C.D.【答案】C3.【湖南省岳阳市第一中学2018届高三第一次模拟考试】已知集合,,则( )A. B. C. D.【答案】C【解析】分析:集合为函数的值域,集合为函数的定义域,分别求出它们后可求出交集及其补集. 详解:,,故,所以,故选C.点睛:本题为集合和函数性质的综合题,一般地,表示函数的值域,表示函数的定义域,解题中注意集合中代表元的含义.4.【河南省郑州外国语学校2018届高三第十五次调研考试】设集合,,则的真子集的个数为( )8A. 3B. 4C. 7D. 8 【答案】C5.【江西省抚州市临川区第一中学2018届高三上学期期中考试】设集合1|,36k M x x k Z ⎧⎫==+∈⎨⎬⎩⎭, 2|,63k N x x k Z ⎧⎫==+∈⎨⎬⎩⎭,则( )A. M N =B. M N ⊂≠C. NM ⊂≠D. M N ⋂=∅【答案】B 【解析】 因为()()112121,2,366636k k x k x k k Z =+=+=+=+∈,所以M N ⊂≠,故选B.6.【浙江省教育绿色评价联盟2018届高三5月适应性考试】已知集合,,若,则A. B. C. D.【答案】B 【解析】分析:由可得是方程的两根,再根据韦达定理列方程求解即可.详解:,由,可得是方程得两根,9由韦达定理可得,即,故选B.点睛:集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提; (2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决; (3)注意划归思想的应用,常常转化为方程问题以及不等式问题求解. 7.【河南省八市学评2018届高三下学期第一次测评】集合,,若只有一个元素,则实数的值为( )A. 1B. -1C. 2D. -2 【答案】B 【解析】因为只有一个元素,而, 所以或 ,选B.8.【天津市河东区2018届高三高考二模】集合,,,则的取值范围是_______. 【答案】9.【河北省邯郸市2018届高三第一次模拟考试】已知集合1{|}2M x x =≥-, 32{|310}A x M x x a =∈-+-=,{|20}B x M x a =∈--=,若集合A B ⋃的子集的个数为8,则a 的取值范围为__________.【答案】51,11,28⎡⎫⎛⎫--⋃-⎪ ⎪⎢⎣⎭⎝⎭【解析】作函数()()321131,,2,22h x x x x g x x x ⎛⎫⎛⎫=-+≥-=-≥- ⎪ ⎪⎝⎭⎝⎭图像,因为集合A B ⋃的子集的个数为108,所以集合A B ⋃的子集的元素为3,因此()5111112228g a h a f ⎛⎫⎛⎫-=-≤<-=≠=- ⎪ ⎪⎝⎭⎝⎭且,即a 的取值范围为51,11,28⎡⎫⎛⎫--⋃-⎪ ⎪⎢⎣⎭⎝⎭.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.10.【福建省2016届高三毕业班总复习单元过关形成性测试卷】函数()()2lg f x x ax b =++的定义域为集合A ,函数()g x =B ,若(∁R A )∩B =B , (∁R A )∪B ={x |-2≤x ≤3}.求实数,a b 的值及实数k 的取值范围.【答案】1,6a b =-=-, 24,3k ⎡⎤∈--⎢⎥⎣⎦.11。
2018届高考文科数学(通用版)选择填空题解题技巧选择题是高考试题的三大题型之一,其特点是难度中低、小巧灵活、知识覆盖面广,解题只要结果不看过程。
解选择题的基本策略是充分利用题干和选项信息,先定性后定量,先特殊再一般,先排除后求解,避免“小题大做”。
解答选择题主要有直接法和间接法两大类。
直接法是最基本、最常用的方法,但为了提高解题的速度,我们还要研究解答选择题的间接法和解题技巧。
直接法是最常用的解答选择题方法。
直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密地推理和准确地运算,从而得出正确的结论,然后对照题目所给出的选项“对号入座”,作出相应的选择。
涉及概念、性质的辨析或运算较简单的题目常用直接法。
特例法是解答选择题的间接法之一。
通过构造或寻找特殊情况,从而得到解题思路和答案。
特例法适用于一些比较抽象、比较难以直接运算的题目。
但需要注意的是,特例法只能得到部分答案,不能代表所有情况。
在解答选择题时,需要准确地把握题目的特点,提高用直接法解选择题的能力。
同时,在稳的前提下求快,避免“小题大做”,用简便的方法巧解选择题,是建立在扎实掌握基础知识的基础上的。
特例法是解决数学题的一种方法,通过选取特殊情况代入,将问题特殊化或构造满足条件的特殊函数或图形位置,进行判断。
特殊化法适用于含有字母或一般性结论的选择题,特殊情况可能是特殊值、特殊点、特殊位置、特殊数列等。
例如,对于已知O是锐角△XXX的外接圆圆心,∠A=60°,·AB+·AC=2m·AO,求sinCsinB的值,我们可以选取△ABC为正三角形的情况,此时A=B=C=60°,取D为BC的中点,AO=AD,则有AB+AC=2m·AO,化简得到m=3/2.因此,sinCsinB=(√3/2)^2=3/4,答案为A。
需要注意的是,取特例要尽可能简单,有利于计算和推理;若在不同的特殊情况下有两个或两个以上的结论相符,则应选另一特例情况再检验,或改用其他方法求解。
【高考地位】平面向量中的最值和范围问题,是一个热点问题,也是难点问题,这类试题的基本类型是根据给出的条件求某个量的最值、范围,如:向量的模、数量积、夹角及向量的系数.解决这类问题的一般思路是建立求解目标的函数关系,通过函数的值域解决问题,同时,平面向量兼具“数”与“形”的双重身份,解决平面向量最值、范围问题的另一个基本思想是数形结合.在高考各种题型均有出现如选择题、填空题和解答题,其试题难度属中高档题. 【方法点评】方法一 利用基本不等式求平面向量的最值使用情景:一般平面向量求最值问题解题模板:第一步 利用向量的概念及其基本运算将所求问题转化为相应的等式关系;第二步 运用基本不等式求其最值问题; 第三步 得出结论。
例1.已知点A 在线段BC 上(不含端点),O 是直线BC 外一点,且20OA aOB bOC --=,则221a ba b b+++的最小值是___________ 【答案】222例2 如右图所示,已知点G 是ABC ∆的重心,过点G 作直线与,AB AC 两边分别交于,N M 两点,且,AM x AB AN y AC ==,则2x y +的最小值为( )A .2B .13C .3223+ D .34【答案】C【变式演练1】如图所示,已知点G 是ABC ∆的重心,过点G 作直线与,AB AC 两边分别交于,M N 两点,且,AM x AB AN y AC ==,则x y +的最小值为( )A .2B .13C .43D .34【答案】CMNA BGQ考点:向量共线,基本不等式求最值【变式演练2】已知点A(1, 1),B(4,0),C(2,2).平面区域D由所有满足AP AB ACλμ=+(1≤≤a,1≤≤b)的点P(x,y)组成的区域.若区域D的面积为8,则a+b的最小值为.【答案】4考点:1、平面向量的线性运算;2、基本不等式. 【变式演练3】平行四边形ABCD 中,60,1,2,BAD AB AD P ∠===为平行四边形内一点,且22AP =,若),(R AD AB AP ∈+=μλμλ,则2u λ+的最大值为 . 6【解析】试题分析:对),(R AD AB AP ∈+=μλμλ两边平方可得()()22AP AB AD λμ=+可化为222222APAB AB AD ADλλμμ=+⋅⋅+,据已知条件可得22122λμ=+≥,即λμ≤,又()22212223λλμ=++=+≤,则λ+≤. 考点:向量的数量积运算;基本不等式方法二 利用向量的数量积m n m n ⋅≤求最值或取值范围使用情景:涉及数量积求平面向量最值问题解题模板:第一步 运用向量的加减法用已知向量表示未知向量;第二步 运用向量的数量积的性质求解; 第三步 得出结论。
高考数学答题技巧与套路精选高考数学答题技巧一、难题先跳过手热好得分周洁娴,毕业于华师一附中理科班,高考664分。
说到去年高考数学和理科综合,周洁娴仍心有余悸。
数学开考时不顺,她几道选择题拿不准,十几分钟后越做越慌。
她决定跳过这几题往后面做,没想到思路打开了,答题很顺利,之前拿不准的题也好上手了。
“我感觉脑袋也像机器,需要预热!”二、开头最易错回头可救分“基础题得分和丢分都很容易。
”去年毕业于武汉三中的黑马陈野介绍,越容易的题越要仔细。
陈野说,自己能超常发挥,很大程度因为考试时基础题得分高,特别是理科综合和数学两门。
做选填题时,无论题目多简单,都会保证做完后再检查一遍,确保能做的题目不出错。
“既然得不到难题分,一定要保证简单题不错。
”周洁娴回忆,考数学时,离交卷还剩10分钟,她开始回头检查。
结果重新算了算看上去不对劲的答案,发现真有错误,救回10多分。
三、时间很宝贵掐表做综合对于综合考试的时间,受访学生均认为,一定要学会合理分配时间。
周洁娴回忆,做综合试卷的物理部分时,最后一题有点难。
当时她做前面部分花的时间已超出预算,结果越做越急,无奈之下只得放弃物理最后一题。
好在自己做化学时挤出了一些时间,最后回头才完成物理这道压轴题。
毕业于武汉一中的黑马梁巾认为,综合科目的答题没必要刻意按照统一的答题模式,但最好分科进行,不交叉答题。
答题时,应先做自己最拿手的科目。
四、审题别偷懒用时别吝啬“不集中精力仔细审题,一不留神就丢分。
”去年全市理科状元,武汉三中学生徐懋祺以685分考入北大。
他建议考生,不要小看题干中的每个隐含条件和细节,审题一定要非常仔细。
“要留意题目的所有条件。
”毕业于武汉四中的黑马刘恋念说,物理题有时会给出很多物理量。
这时不妨把已知的物理量都圈起来,做题时如发现所给物理量没用,肯定是答题思路有问题,一定要重新思考。
“文科综合更是重在审题。
”毕业于武汉十二中的黑马佘晔介绍,文科综合里的选择题干扰项特别多。
《[高考数学答题的方法] 2018年高考数学答题卡》摘要:(3)拿到试卷5分钟内一般不允许答题,可以对试卷作整体观察,看看这份试卷的名称是否正确、共多少页、页码顺序有无错误、每一页卷面是否清晰、完整,同时听好监考老师的要求(有时监考老师还会宣读更正错误试题).,(6)当同考场考生因试卷难而心理紧张,并出现情绪波动时,你不要受此影响,相信自己能做得出、答得好.总之,在高考考场上,你始终应做到:不理他人事,只管自己做.,数学解题中,构造的辅助元素是多种多样的,常见的有构造图形(点、线、面、体),构造算法,构造多项式,构造方程(组),构造坐标系,构造数列,构造行列式,构造等价性命题,构造反例,构造数学模型等等数学解题的思维过程是指从理解问题开始,经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动。
今天,小编为你带来了高考数学答题的方法。
秘籍一考场答题原则(1)先易后难一般来说,选择题的最后一题,填空题的最后一题,解答题的后两题是难题.当然,对于不同的学生来说,有的简单题目也可能是自己的难题,所以题目的难易只能由自己确定.一般来说,小题思考1分钟还没有建立解答方案,则应采取暂时性放弃,把自己可做的题目做完再回头解答.(2)小题有法选择题有其独特的解答方法,首先重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确.切记不要小题大做. 另外,答完选择题后即可填涂答题卡,切记最后不要留空,实在不会的,要采用猜测、凭第一感觉(四个选项中正确答案的数目不会相差很大,选项C出现的机率较大,难题的答案常放在A、B两个选项中)等方法选定答案.(3)规范答题(4)最大得分(5)答题顺序(6)放弃原则秘籍二考场答题方法1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;2.注意题目中的小括号括起来的部分,那往往是解题的关键;3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质.如所过的定点,二次函数的对称轴或是4.函数或方程或不等式的题目,先直接思考后建立三者的联系.首先考虑定义域,其次使用三合一定理.5.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;6.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;7.选择与填空中出现不等式的题目,优选特殊值法;8.与平移有关的,注意口诀左加右减,上加下减只用于函数,沿向量平移一定要使用平移公式完成;秘籍三考场答题技巧如何在高考有限的时间内充分发挥自己的水平,对每个考生来说是很重要的一件事,对数学成绩的影响也许是几分、十几分、甚至更多.面对层出不穷的命题陷阱,我们该如何调整自我,轻松应对呢,下面根据笔者多年的阅卷经验给出4个方面提示.(1)审题要清晰,破题要迅速(2)答题要细致,踩点要准确(3)快慢多结合,得分要稳当(4)难易多结合,关卡轻过关秘籍四考场答题心理(1)临进考场前,最好不要与同学扎堆,以免紧张情绪相互蔓延,你可以独自静处一会儿,在允许的情况下提前15-20分钟进入考场,看一看考场四周,熟悉一下环境,如果有认识的同学,可打招呼以放松心态.(2)坐在座位上,尽快进入角色;不再考虑成败、得失;文具摆好,眼镜摘下擦一擦,把这些动作权当考前稳定情绪的心灵体操,提醒自己做到保持静心、增强信心、做题专心、考试细心.(3)拿到试卷5分钟内一般不允许答题,可以对试卷作整体观察,看看这份试卷的名称是否正确、共多少页、页码顺序有无错误、每一页卷面是否清晰、完整,同时听好监考老师的要求(有时监考老师还会宣读更正错误试题).(4)在考场上,有时明明知道试题的答案,由于紧张,一时想不起来,可事后不加思素,答案也会油然而生,这种现象在心理学上叫舌尖现象,遇到舌尖现象,最好是把回忆搁置起来,去解其它问题,等抑制过去后,需要的知识经验往往会自然出现.考试时,一时想不起某道试题的答案,可以暂停回忆,转移一下注意,先解决其它题目,过一定的时间后,所需要的答案也许就回忆起来了.(5)同一考场考生的考试表现对自己会带来直接或间接的影响.例如,当同考场考生主动与你说话甚至暗示给予关心时,你完全可以不予理睬,如该考生继续纠缠,你应主动报告监考老师.如同一考场学生有不良的习惯动作,对你造成干扰性影响时,你也应报告监考老师,由监考老师提醒该考生,以消除对你的影响.(6)当同考场考生因试卷难而心理紧张,并出现情绪波动时,你不要受此影响,相信自己能做得出、答得好.总之,在高考考场上,你始终应做到:不理他人事,只管自己做.(7)题目分析受挫,很可能是一个重要的已知条件被你忽略,所以重新读题,仔细读题才能有所发现,不能停留在某一固定的思维层面不变.此时不妨,冷静一下,表面是耽误了时间,其实是为自己赢得了机会,可能创造出奇迹.在头脑混乱的时候,不防停下来,喝口水,深吸一口气,再慢慢呼出,就在呼出的同时,你就会得到灵感.(8)高考的考试科目顺序是规定好的,如果第一门是你的劣势学科,你就可以告诉自己我最弱的科目已经考完了,可以放心了,千万不要跟别人对题,或回味哪些题目没有做对,要放得下,稍作休息,稳定情绪,时刻保持饱满的精神状态,做好下一科考试的准备.一、熟悉化策略所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。
三一文库()/高三〔2018高考数学大题题型归纳〕高考数学大题必考题型(一)排列组合篇1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5.了解随机事件的发生存在着规律性和随机事件概率的意义。
6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
8.会计算事件在n次独立重复试验中恰好发生k次的概率.立体几何篇高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。
选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。
随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。
从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。
知识整合1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2.判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。
高考数学答题技巧方法及易错知识点高考即将来临,数学想得高分,要讲究方法技巧,不能盲目,今天小编在这给大家整理了一些高考数学答题的技巧及方法_高考数学易错的知识点,我们一起来看看吧!高考数学答题的技巧及方法1.调整好状态,控制好自我(1)保持清醒。
数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。
(2)按时到位。
今年的答题卡不再单独发放,要求答在答题卷上,但发卷时间应在开考前5-10分钟内。
建议同学们提前15-20分钟到达考场。
2.通览试卷,树立自信刚拿到试卷,一般心情比较紧张,此时不易匆忙作答,应从头到尾、通览全卷,哪些是一定会做的题要心中有数,先易后难,稳定情绪。
答题时,见到简单题,要细心,莫忘乎所以。
面对偏难的题,要耐心,不能急。
3.提高解选择题的速度、填空题的准确度数学选择题是知识灵活运用,解题要求是只要结果、不要过程。
因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。
选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。
由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。
填空题也是只要结果、不要过程,因此要力求“完整、严密”。
4.审题要慢,做题要快,下手要准题目本身就是破_这道题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审题才能从题目本身获得尽可能多的信息。
找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,牢记高考评分标准是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。
答题时,尽量使用数学语言、符号,这比文字叙述要节省而严谨。
5.保质保量拿下中下等题目中下题目通常占全卷的80%以上,是试题的主要部分,是考生得分的主要来源。
谁能保质保量地拿下这些题目,就已算是打了个胜仗,有了胜利在握的心理,对攻克高难题会更放得开。
6.要牢记分段得分的原则,规范答题会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣点分”。
高考学生必备数学答题技巧总结高考数学是难度比较大的,对于数学并不是十分擅长的考生,如何尽可能多得几分呢?需要掌握哪些答题技巧?下面是为大家整理的关于高考学生必备数学答题技巧,欢迎大家来阅读。
高考数学的答题技巧一、你需要了解的答题顺序其实很多同学平时并没有注意答题顺序,大部分人都是试卷发下来后采用从头到尾的顺序去答题;但是今天我想告诉各位考生,其实答题顺序很重要,很多人就因为从头到尾在前面浪费了很多时间,导致后面大题会的也没有做出来,结果就白白浪费了机会。
为此,我建议大家按照以下顺序进行答题:1.做选择题前10个或前11个首先做选择题前10个或前11个,做完后就开始涂答题卡,一定要做完选择题就涂答题卡,我见过太多的同学因为做完选择题、填空题没有及时涂答题卡,导致后面做大题没有时间涂答题卡,考试时间到还未来得及涂卡在考场苦苦哀求监考老师给一分钟机会,可是高考对每个人而言都是公平的,监考老师也不可能为了你的痛哭流涕就心软给你额外一分钟的时间,所以最后一般都是会无情的收走试卷,如果你真的将答案做出来写在了试卷上,却未来得及涂卡,那么你是不是要后悔一辈子了?所以,尽可能做完选择题前11个就涂答题卡。
一第1页共7页般而言,最后一个选择题较难,大部分人做五分钟如果还做不出来就先放弃,选择B或者C,大概率显示高考数学选择题近几年的答案一般都是B或者C。
节约时间在后面的部分,不要为了一棵树而放弃整片森林,不然得不偿失。
2.做填空题前三个高考数学中,填空题前三个一般情况下难度适中,你尽量用最短的时间作出后就填在答题纸上,避免后续时间紧张而来不及填写,最后一个填空题你先看一遍题目,倘若看完题目毫无思绪的话,暂且放弃,留到最后,倘若有时间就再回过头来看看,如果没有时间就随便填蒙一个,一般情况下都是特殊数字,比如0、1等。
3.做你会做的大题在做大题的过程中,一定要先做你会做的题目,以防万一后续由于过度紧张或时间紧张来不及做会做的题目,你先保证你能拿到的分数,再去挑战有难度的题目。
绝密★启用前2018年普通高等学校招生全国统一考试(浙江卷)数学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A,B互斥,则若事件A,B相互独立,则若事件A在一次试验中发生的概率是p,则n次独立重复试验中事件A恰好发生k次的概率台体的体积公式其中分别表示台体的上、下底面积,表示台体的高柱体的体积公式其中表示柱体的底面积,表示柱体的高锥体的体积公式其中表示锥体的底面积,表示锥体的高球的表面积公式球的体积公式其中表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知全集U={1,2,3,4,5},A={1,3},则A. B. {1,3} C. {2,4,5} D. {1,2,3,4,5}【答案】C【解析】分析:根据补集的定义可得结果.详解:因为全集,,所以根据补集的定义得,故选C.点睛:若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.2. 双曲线的焦点坐标是A. (−,0),(,0)B. (−2,0),(2,0)C. (0,−),(0,)D. (0,−2),(0,2)【答案】B【解析】分析:根据双曲线方程确定焦点位置,再根据求焦点坐标.详解:因为双曲线方程为,所以焦点坐标可设为,因为,所以焦点坐标为,选B.点睛:由双曲线方程可得焦点坐标为,顶点坐标为,渐近线方程为.3. 某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A. 2B. 4C. 6D. 8【答案】C【解析】分析:先还原几何体为一直四棱柱,再根据柱体体积公式求结果.详解:根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1,2,梯形的高为2,因此几何体的体积为选C.点睛:先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.4. 复数(i为虚数单位)的共轭复数是A. 1+iB. 1−iC. −1+iD. −1−i【答案】B【解析】分析:先分母实数化化简复数,再根据共轭复数的定义确定结果.详解:,∴共轭复数为,选B.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数的相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.5. 函数y=sin2x的图象可能是A. B.C. D.【答案】D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.6. 已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】分析:根据线面平行的判定定理得充分性成立,而必要性显然不成立.详解:因为,所以根据线面平行的判定定理得.由不能得出与内任一直线平行,所以是的充分不必要条件,故选A.点睛:充分、必要条件的三种判断方法:(1)定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.(2)等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.7. 设0<p<1,随机变量ξ的分布列是ξ0 1 2P则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.详解:,,,∴先增后减,因此选D.点睛:8. 已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则A. θ1≤θ2≤θ3B. θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ1【答案】D【解析】分析:分别作出线线角、线面角以及二面角,再构造直角三角形,根据边的大小关系确定角的大小关系.详解:设O为正方形ABCD的中心,M为AB中点,过E作BC的平行线EF,交CD于F,过O作ON垂直EF于N,连接SO,SN,OM,则SO垂直于底面ABCD,OM垂直于AB,因此从而因为,所以即,选D.点睛:线线角找平行,线面角找垂直,面面角找垂面.9. 已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2−4e·b+3=0,则|a−b|的最小值是A. −1B. +1C. 2D. 2−【答案】A【解析】分析:先确定向量所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.详解:设,则由得,由得因此的最小值为圆心到直线的距离减去半径1,为选A.点睛:以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程、解不等式、求函数值域或直线与曲线的位置关系,是解决这类问题的一般方法.10. 已知成等比数列,且.若,则A. B. C. D.【答案】B【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断.详解:令则,令得,所以当时,,当时,,因此,若公比,则,不合题意;若公比,则但,即,不合题意;因此,,选B.点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
数学考试答题技巧与方法(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!数学考试答题技巧与方法备考是一种经历,也是一种体验,我们每天进步一点点,基础扎实一点点,通过考试就会更容易一点点。
高考数学考试考生答题技巧关于高考四个答题技巧”技巧1:借问得分阅卷时,特别强调知识点的把握,在解题的过程中,要把定理的条件和结论写全,中间的步骤可以省略,如文科立体几何题中,第一小题只要写清垂直的条件和结论,即使不会证明,也要写上结论(只要条件和结论都有就可得分),就是中间一步不会证明,也可以写上结论,跳过去往下证,这样后面的仍可得分。
技巧2:难题“割肉”学生平时训练时,应对自己提出明确的要求,题目再难,每个题目中的条件总是可以推导出结论的,哪怕是只推导出一个结论,也可能是得分点,有了得分点,也就说明得分了。
高考阅卷时是按步骤、按得分点给分的。
技巧3:步骤规范学生在平时训练时,要明确哪些步骤是可省的,哪些是不可省的,哪些是必须写的,哪些是不可写的,在做题时,尽量按得分点、按步骤书写,严格训练。
切忌拖沓冗长,模糊不清。
技巧4:重视书写要用0.5毫米的黑色墨水签字笔作答。
因为标准的扫描试卷尺寸是十四寸,正好填满屏幕。
因为是扫描,所以如果字迹过细、过淡,可能会影响阅卷人的正常判断。
其次,答题时,字迹要工整、清楚,不要写得太细长;字距适当,行距不宜过密。
最后,要严格按照答题要求,在答题卡对应题号指定的答题区域内答题,书写在规定区域内。
要注意几个易混字的书写规范,如“z、Z、2”,“b、6、0、9、q”,“4、+”等,若不注意书写,电子卷就不太容易区分。
历年高考数学试卷的启发1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;(很多无规律的公式大家是不是都容易记混呢?如果你也有类似的困扰,也许高考数学知识点公式定理记忆口诀能帮的到你~)2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。
如果前问是证明,即使不会证明结论,该结论在后问中也可以使用。
当然,我们也要考虑结论的独立性;3.注意题目中的小括号括起来的部分,那往往是解题的关键;二、答题策略选择1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。
考场攻略:沉着应对高考数学难题的十个方法_答题技巧一、调理大脑思绪,提前进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
二、“内紧外松”,集中注意,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
三、沉着应战,确保旗开得胜,以利振奋精神良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生"旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
四、“六先六后”,因人因卷制宜在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。
1.先易后难。
就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
2. 先熟后生。
通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的策略,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。
高考数学复习时应注意的几个问题与答题技巧本报告主要以数学学科为例,谈一谈与高考有关的问题,内容包括高考数学复习时应注意的几个问题与答题技巧分析两部分。
一、高考数学复习时应注意的几个问题从多年的高考评卷过程中发现,有相当一部分考生对考试大纲理解的不太到位,以至于出现考生的实际能力和水平差距不大,但应试结果落差较大的情况。
所以,我在此建议考生注意体会高考大纲与试题的对应关系,认识数学的高考是有一定规律可循的,从而培养答卷的科学态度,增强高考成功的自信心和决心。
高考数学试题分第Ⅰ卷和第Ⅱ卷,共三道大题。
第一大题构成第Ⅰ卷,第二大题和第三大题构成第Ⅱ卷。
第一大题是单项选择题,总共有12道小题((1)-(12)),每小题5分,共60分。
第一大题主要考查高中生的基础知识和基本功,内容相对简单。
第二大题是填空题,总共有4道小题((13)-(16)),每小题5分(2007年以后5分,2007年以前4分),共20分。
第三大题是解答题,总共有6道小题((17)-(22)),其中有一道题10分,其余5道题各12分,总共70分。
第Ⅱ卷要比第Ⅰ卷难度更大,主要考查高中生利用基础知识分析问题和解决问题的能力,有些题还有一定的考查创新能力和应用能力的成分。
尤其是第三大题(由6道解答题构成)是高考数学的核心部分。
从近几年的高考题看出,第三大题的类型是有规律可循的,数列题、立体几何题、解析几何题、概率题、导数题各占一道,而且都是各12分,另外一道题有点随机性和不确定性,如考过与三角形有关的内容、与函数有关的内容、与向量有关的内容、与复数有关的内容,这一道题10分。
作为即将应对高考的高中生,高中阶段数学的基础知识和常规知识一定要具备,决不能忽略。
针对前面提到的高考出题的规律,再结合高中生在高考中往往忽略、经常出错的一些知识点,我想重点强调以下几点:1、关于数列问题考生在熟练掌握等差数列、等比数列的通项公式与前n项和公式的同时,要具备利用已知条件建立或推导递推关系的能力和基础。
专题38 椭圆1.掌握椭圆的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率)。
2.了解椭圆的简单应用。
3.理解数形结合的思想。
热点题型一 椭圆的定义及其标准方程例1、 (1)设F 1,F 2是椭圆x 249+y 224=1的两个焦点,P 是椭圆上的点,且|PF 1|∶|PF 2|=4∶3,则△PF 1F 2的面积为( ) A .30 B .25 C .24 D .40(2)已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为( ) A.x 264-y 248=1 B.x 248+y 264=1 C.x 248-y 264=1 D.x 264+y 248=1 解析:(1)∵|PF 1|+|PF 2|=14, 又|PF 1|∶|PF 2|=4∶3, ∴|PF 1|=8,|PF 2|=6。
∵|F 1F 2|=10,∴PF 1⊥PF 2。
∴S △PF 1F 2=12|PF 1|·|PF 2|=12×8×6=24。
(2)设圆M 的半径为r ,则|MC 1|+|MC 2|=(13-r )+(3+r )=16,∴M 的轨迹是以C 1,C 2为焦点的椭圆,且2a =16,2c =8, 故所求的轨迹方程为x 264+y 248=1。
【提分秘籍】 椭圆定义的应用技巧(1)椭圆定义的应用主要有:求椭圆的标准方程,求焦点三角形的周长、面积及弦长、最值和离心率等。
(2)通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题。
(3)当椭圆焦点位置不明确时,可设为x 2m +y 2n =1(m >0,n >0,m ≠n ),也可设为Ax 2+By 2=1(A >0,B >0,且A ≠B )。
【举一反三】椭圆x 24+y 2=1的左、右焦点分别为F 1,F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2|=( )A.72B.32C. 3 D .4热点题型二 椭圆的几何性质例2、 (1)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l交C 于A ,B 两点,若△AF 1B 的周长为43,则C 的方程为( ) A.x 23+y 22=1 B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1(2)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1(-c,0)、F 2(c,0),若椭圆上存在点P 使asin ∠PF 1F 2=csin ∠PF 2F 1,则该椭圆的离心率的取值范围是________。
2016高考数学考前应注意问题与答题技巧
高考数学复习时应注意的几个问题
与答题技巧
本报告主要以数学学科为例,谈一谈与高考有关的问题,内容包括高考数学复习时应注意的几个问题与答题技巧分析两部分。
一、高考数学复习时应注意的几个问题
从多年的高考评卷过程中发现,有相当一部分考生对考试大纲理解的不太到位,以至于出现考生的实际能力和水平差距不大,但应试结果落差较大的情况。
所以,我在此建议考生注意体会高考大纲与试题的对应关系,认识数学的高考是有一定规律可循的,从而培养答卷的科学态度,增强高考成功的自信心和决心。
高考数学试题分第Ⅰ卷和第Ⅱ卷,共三道大题。
第一大题构成第Ⅰ卷,第二大题和第三大题构成第Ⅱ卷。
第一大题是单项选择题,总共有12道小题((1)-(12)),每小题5分,共60分。
第一大题主要考查高中生的基础知识和基本功,内容相对简单。
第二大题是填空题,总共有4道小题((13)-(16)),每小题5分(2007年以后5分,2007年以前4分),共20分。
第三大题是解答题,总共有6道小题((17)-(22)),其中有一道题10分,其余5道题各12分,总共70分。
第Ⅱ卷要比第Ⅰ卷难度更大,主要考查高中生利用基础知识分析问题和解决问题的能力,有些题还有一定的考查创新能力和应用能力的成分。
尤其是第三大题(由6道解答题构成)是高考数学的核心部分。
从近几年的高考题看出,第三大题的类型是有规律可循的,数列题、立体几何题、解析几何题、概率题、导数题各占一道,而且都是各12分,另外一道题有点随机性和不确定性,如考过与三角形有关的内容、与函数有关的内容、与向量有关的内容、与复数有关的内容,这一道题10分。
作为即将应对高考的高中生,高中阶段数学的基础知识和常规知识一定要具备,决不能忽略。
针对前面提到的高考出题的规律,再结合高中生在高考中往往忽略、经常出错的一些知识点,我想重点强调以下几点:
1、关于数列问题
考生在熟练掌握等差数列、等比数列的通项公式与前n项和公式的同时,要具备利用已知条件建立或推导递推关系的能力和基础。
同时还要学会熟练利用数学归纳法处理与自然数有关的命题。
2、关于不等式问题
考生要熟练掌握并学会利用一些常用不等式,如平均值不等式、柯西(Cauchy)不等式等等,这些不等式在某些放大或缩小等估计问题中有它们独特的魅力和作用。
3、关于排列与组合问题
从2005年开始,概率成了高考中必考的一个内容。
从题型来看,概率题的题型似乎比较单一。
这几年考的概率题基本上都是古典概型中的有关随机变量分布列和数学期望等内容,而这些内容的处理基本上离不开排列组合的基本知识。
甚至有时填空题中的某些小题也是排列组合与二项式定理的直接内容。
这就要求考生对排列组合的内容要达到比较熟练的程度,尤其是对一些排列数和组合数的计算要尽可能准确。
熟记两个常用的组合数性质:
4、关于几何问题
5、立体几何与解析几何是高考中必考的两大块内容。
要求考生掌握好这两大块内容的基本知识和常规知识的同时,必要时可以考虑用向量来解决立体几何与解析几何中的有些问题。
有时向量是解决几何问题的一个很好的工具。
在遇到二次曲线的有关切线问题时,千万要想起导数的几何意义,在这类问题中导数完全可以发挥它应有的作用。
6、关于导数问题
导数是研究函数的一个重要工具,从2005年开始,导数成了高考中必考的一个内容。
从这五年(2005-2010)的高考题目中涉及导数内容的题目来看,没有超出利用一阶导数研究函数的单调性、极值、最值、不等式问题这个范围。
这就要求考生熟练掌握并学会利用一阶导数来讨论函数的单调性、极值、最值、不等式等问题。
二、答题技巧分析
1、对第Ⅰ卷和第Ⅱ卷的时间分配问题
2、答第Ⅱ卷时的有关技巧问题下面主要通过举例来着重谈一谈在答第Ⅱ卷时应注意的一些方式、方法问题。
3、答卷时的有关注意事项:
1认真审题,严格按要求完成题目, 特别注意括号里的附加要求。
2 尽量把关键步骤写完整。
3 对不会做的题目,可以写出与题目内容有关的重要公式或图表等。