平面直角坐标系培优提升
- 格式:doc
- 大小:128.70 KB
- 文档页数:5
平面直角坐标系(提高)【学习目标】1.了解确定位置的方法,用有序数对或用方向和距离来确定物体的位置.2.理解平面直角坐标系概念,能正确画出平面直角坐标系.2.能在平面直角坐标系中,根据坐标描出点的位置、由点的位置写出它的坐标.3.会用确定坐标、描点、连线的方法在直角坐标系中作出简单图形.【要点梳理】要点一、确定位置的方法有序数对:把有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).要点诠释:有序,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,如电影院的座位是6排7号,可以写成(6,7)的形式,而(7,6)则表示7排6号.可以用有序数对确定物体的位置,也可以用方向和距离来确定物体的位置(或称方位).要点二、平面直角坐标系与点的坐标的概念1.平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1).要点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的.2.点的坐标平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b 分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.”要点诠释:(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,隔开.(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离.(3)对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的.要点三、坐标平面1.象限建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.要点诠释:(1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限.(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.2.各个象限内和坐标轴上点的坐标的符号特征要点诠释:(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上.(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0.(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况.【典型例题】类型一、确定物体的位置1.某军事行动中,对军队部署的方位,采用钟代码的方式来表示、例如,北偏东30°方向45千米的位置,与钟面相结合,以钟面圆心为基准,时针指向北偏东30°的时刻是1:00,那么这个地点就用代码010045来表示、按这种表示方式,南偏东30°方向78千米的位置,可用代码表示为__________.【思路点拨】根据题目的叙述可知:代码的前四位表示时间,前两位是几点,中间两位表示多少分,后两位是指距离,时间表示方向角,即正对钟表时按:上北,下南,左西,右东的方向,以钟面圆心为基准,时针指向所对应的时间.【答案】050078【解析】解:南偏东30°方向,时针正好指到5点00分,因而代码前4位是:0500,78千米的位置则代码的后两位是78.则代码是:050078.故答案填:050078.【总结升华】正确读懂题目的含义,是解决题目的关键,这一题目就是训练学生审题,理解题目的能力.举一反三:【变式】下列数据不能表示物体位置的是().A.5楼6号B.北偏东30°C.希望路20号D.东经118°,北纬36°【答案】B(提示A.5楼6号,是有序数对,能确定物体的位置;B.北偏东30°,不是有序数对,不能确定物体的位置;C.希望路20号,“希望路”相当于一个数据,是有序数对,能确定物体的位置;D.东经118°北纬36°,是有序数对,能确定物体的位置.)类型二、平面直角坐标系与点的坐标的概念2.有一个长方形ABCD,长为5,宽为3,先建立一个平面直角坐标系,在此坐标系下求出A,B,C,D各点的坐标.【答案与解析】解:本题答案不唯一,现列举三种解法.解法一:以点A为坐标原点,边AB所在的直线为x轴,边AD所在直线为y轴,建立平面直角坐标系,如图(1):A(0,0),B(5,0),C(5,3),D(0,3).解法二:以边AB的中点为坐标原点,边AB所在的直线为x轴,AB的中点和CD的中点所在的直线为y轴,建立平面直角坐标系,如图(2):A(﹣2.5,0),B(2.5,0),C(2.5,3),D(-2.5,3).解法三:以两组对边中点所在直线为x轴、y轴,建立平面直角坐标系,如图(3):A(﹣2.5,-1.5),B(2.5,-1.5),C(2.5,1.5),D(-2.5,1.5).【总结升华】在不同平面直角坐标系中,长方形顶点坐标不同,说明位置的相对性与绝对性,即只要原点、x轴和y轴确定,每一个点的位置也确定,而一旦原点或x轴、y轴改变,每一个点的位置也相对应地改变.举一反三:= ( A D + CE ) g D E - AD g D B - CE g B E 【变式】点 A (m ,n )到 x 轴的距离为 3,到 y 轴的距离为 2,则点 A 的坐标为________.【答案】(2,3)或(-2,3)或(-2,-3)或(2,-3).△3.平面直角坐标系中,已知 ABC 三个顶点的坐标分别是 A (-3,-1),B (1,3), C (2,-△3).求 ABC 的面积.【思路点拨】三角形的三边都不与坐标轴平行,根据平面直角坐标系的特点,可以将三角形 的面积转化为梯形或长方形的面积减去多余的直角三角形的面积,即可求得此三角形的面 积.【答案与解析】解:如图所示,过点 A 、C 分别作平行于 y 轴的直线与过 B 点平行于x 轴的直线交于点 D 、E ,则四边形 ACED 为梯形,根据点 A (-3,-1)、B (1,3)、C (2,-3)可求得 AD=4,CE =6,DB =4,BE =1,DE =△5,所以 ABC 的面积为:S △ ABC 1 1 1 2 2 21 1 1 = (4 + 6) ⨯ 5 - ⨯ 4 ⨯ 4 - ⨯ 6 ⨯1 = 14 .2 2 2【总结升华】点的坐标能体现点到坐标轴的距离,解决平面直角坐标系中的三角形面积问题, 就是要充分利用这一点,将不规则图形转化为规则图形,再利用相关图形的面积计算公式求 解.举一反三:【变式】如图所示,已知 A 1(1,0),A 2(1,1),A 3(-1,1),A 4(-1,-1),A 5(2,-1), A 6(2,2)……,则点 A 2008 的坐标为________.⎩1 - n > 0 ⎩1 - n < 0 ⎩1 - n < 0⎧ ⎧【答案】(-502,-502).类型三、坐标平面及点的特征4.平面直角坐标系内,点 A (n ,1-n )一定不在. 【思路点拨】确定横纵坐标的符号.【答案】第三象限和原点.【解析】解:由题意可得: ⎨ n > 0 ⎩1 - n > 0 ⎧ n < 0 ⎧ n < 0 ⎧ n > 0 、 ⎨ 、 ⎨ 、 ⎨可得: ⎨ n < 0 ⎩1 - n < 0无解,因而点 A 的横坐标是负数,纵坐标也是负数,不能同时成立,即点 A 一定不在第三象限.又 n 和 1-n 不能同时为 0,故也一定不在原点.故答案为:第三象限和原点.【总结升华】本题主要考查平面直角坐标系中各象限内点的坐标的符号,把符号问题转化为 不等式的问题.举一反三:【变式 1】点 P(-m,n)在第三象限,则 m ,n 的取值范围是________.【答案】 m > 0, n < 0 .【变式 2】在平面直角坐标系中,横、纵坐标满足下面条件的点,分别在第几象限.(1)点 P (x ,y )的坐标满足 xy >0.(2)点 P (x ,y )的坐标满足 xy <0.(3)点 P (x ,y )的坐标满足 xy =0.【答案】(1)点 P 在第一、三象限;(2)点 P 在第二、四象限;(3)x 轴或 y 轴.【变式 3】若点 C(x,y)满足 x +y <0,xy >0,则点 C 在第_____象限.【答案】三.5.一个正方形的一边上的两个顶点 O 、A 的坐标为 O (0,0),A (4,0),则另外两个 顶点的坐标是什么.【思路点拨】有点的坐标说明已有确定的平面直角坐标系,但正方形的另两个顶点位置不确定,所以应按不同位置分类去求.【答案与解析】解:不妨设另外两个顶点为B、C,因为OABC是正方形,所以OC=BA=BC=OA=4.且OC∥AB,OA∥BC,则:(1)当顶点B在第一象限时,如图所示,显然B点坐标为(4,4),C点坐标为(0,4).(2)当顶点B在第四象限时,如图所示,显然B点坐标为(4,-4),C点坐标为(0,-4).【总结升华】在解答这类问题时,我们千万不要忽略了分类讨论而导致错误.举一反三:【变式】在平面直角坐标系中,如果m·n>0,那么(m,|n|)一定在().A.第一象限或第二象限B.第一象限或第三象限C.第二象限或第四象限D.第三象限或第四象限【答案】A.。
一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0- B .()2,2- C .()2,0 D .()5,1 2.在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3) 3.一只跳蚤在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2021次跳到点( )A .(3,44)B .(4,45)C .(44,3)D .(45,4) 4.已知点A (0,-6),点B (0,3),则A ,B 两点间的距离是( ) A .-9B .9C .-3D .3 5.如果点A (a ,b )在第二象限,那么a 、b 的符号是( ) A .0>a ,0>b B .0<a ,0>b C .0>a ,0<b D .0<a ,0<b 6.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 2C 3C 2,…按如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是( )A .(2n ﹣1,2n ﹣1)B .(2n ﹣1,2n ﹣1)C .(2n ﹣1,2n ﹣1)D .(2n ﹣1,2n ﹣1)7.太原植物园是山西省唯一集科学研究、科普教育、园艺观赏和文化旅游于一体的综合性植物园.其标志性建筑为热带植物馆、沙生植物馆、主题花卉馆三个展览温室,远远望去犹如镶嵌在湖边的3颗大小不一的“露珠”(图1).若利用网格(图2)建立适当的平面直角坐标系,表示东门的点的坐标为()3,2A ,表示热带植物馆入口的点的坐标为()3,3B -,那么儿童游乐园所在的位置C 的坐标应是( )A .()5,1-B .()2,4--C .()8,3--D .()5,1-- 8.如图,在ABC ∆中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点B 的坐标为()1,4,则点A 的坐标为( )A .()6,3-B .()3,6-C .()4,3-D .()3,4- 9.若点P(3a+5,-6a-2)在第四象限,且到两坐标轴的距离相等,则a 的值为( ) A .-1 B .79- C .1 D .210.将点()1,2P 向左平移3个单位后的坐标是( )A .()2,2-B .()1,1-C .()1,5D .()1,1-- 11.平面直角坐标系中,线段CD 是由线段AB 平移得到的,点A(-1,4)的对应点C(4,7),点B(-4,-1)的对应点D 的坐标为( )A .(-1,-4)B .(1,-4)C .(1,2)D .(-1,2) 12.如图,在一单位长度为1cm 的方格纸上,依如所示的规律,设定点1A 、2A 、3A 、4A 、5A 、6A 、7A 、n A ,连接点O 、1A 、2A 组成三角形,记为1∆,连接O 、2A 、3A 组成三角形,记为2∆,连O 、n A 、1n A +组成三角形,记为n ∆(n 为正整数),请你推断,当n 为50时,n ∆的面积=( )2cmA .1275B .2500C .1225D .1250 13.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1) 14.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,...,第n 次移动到n A .则22020OA A 的面积是( )A .210112mB .2505mC .220092mD .2504m 15.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1)二、填空题16.若点P 位于x 轴上方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,则点P 的坐标是_____________.17.已知点P (a ,a +1)在平面直角坐标系的第二象限内,则a 的取值范围___. 18.在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a 2-2b 的值为______.19.如图,正方形ABCD 的各边分别平行于x 轴或y 轴,蚂蚁甲和蚂蚁乙都由点E (3,0)出发,同时沿正方形ABCD 的边逆时针匀速运动,蚂蚁甲的速度为3个单位长度/秒,蚂蚁乙的速度为1个单位长度/秒,则两只蚂蚁出发后,蚂蚁甲第3次追上蚂蚁乙的坐标是_____.20.已知点M 在y 轴上,纵坐标为4,点P (6,﹣4),则△OMP 的面积是__. 21.已知点()1,2A ,//AC x 轴,5AC =,则点C 的坐标是______ .22.如图所示,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动1个单位长度,依次得到点1(0,1)P ,2(1,1)P ,3(1,0)P,4(1,1)P -,5(2,1)P -,6(2,0)P ,…,则点2020P 的坐标是______.23.若点M(a-2,a+3)在y 轴上,则点N(a+2,a-3)在第________象限.24.已知点 P(b+1,b-2)在x 轴上,则P 的横坐标值为____25.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A 2020的坐标是________.26.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B(m ,3),C (n ,-5),则AD BC =______.三、解答题27.如图1,长方形OABC 的边OA 在数轴上,O 为原点,长方形OABC 的面积为12,OC 边长为3(1)数轴上点A 表示的数为______.(2)将长方形OABC 沿数轴水平移动,移动后的长方形记为O A B C '''',移动后的长方形O A B C ''''与原长方形OABC 重叠部分(如图2中阴影部分)的面积记为S①设点A 的移动距离AA x '=.当4S =时,x =______.②当S 恰好等于原长方形OABC 面积的一半时,求数轴上点A '表示的数为多少. 28.如图,己知()(),2,53,3A C -,将三角形ABC 向右平移3个的单位长度,再向下平移4个单位长度,得到对应的三角形111A B C .(1)画出三角形111A B C ;(2)直接写出点111A B C 的坐标;(3)求三角形111A B C 的面积.29.如图,平面直角坐标系中,已知点A (-3,3),B (-5,1),C (-2,0),P ( )是△ABC 的边AC 上任意一点,△ABC 经过平移后得到△A 1B 1C 1,点P 的对应点为 P 1 ( a +6,b+2 )(1)直接写出点A 1,B 1,C 1的坐标;(2)在图中画出△A 1B 1C 1;(3)求△ABC 的面积.30.如图,在平面直角坐标系中,OAB ∆的顶点都在格点上,把OAB ∆平移得到111O A B ∆,在OAB ∆内一点()1,1M 经过平移后的对应点为()13,5M -.(1)画出111O A B ∆;(2)点1B 到y 轴的距离是____个单位长;(3)求111O A B ∆的面积.。
初中数学直角坐标系提高题与常考题和培优题(含解析)一•选择题(共12小题)1 •已知点P (x+3, x - 4)在x 轴上,则x 的值为( )A. 3B.- 3 C . — 4 D . 42•如图,在平面直角坐标系中,点 P 的坐标为( )!>1「 F-r i 斗::\01:户'1 4 L ■ ■■ ■ ■4NA.(3,— 2) B. ( — 2, 3) C. (— 3, 2) D. (2,— 3)A.第一象限B.第二象限C.第三象限D.第四象限4.已知点A (— 1, 0)和点B(1, 2),将线段AB 平移至A B',点A 于点A 对应, 若点A 的坐标为(1,— 3),则点B 的坐标为()A. (3, 0)B. (3,— 3)C. (3,— 1)D. (— 1, 3)5.对于任意实数 m 点P (m- 2, 9 — 3m )不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限7.如图,正五边形ABCD 放入某平面直角坐标系后,若顶点 A , B , C, D 的坐标3.已知点P (0, m 在y 轴的负半轴上,贝U 点 M ( — m — m+1 在( 6.如图为A B 、C 三点在坐标平面上的位置图.若A 、B 、C 的x 坐标的数字总和为a , y 坐标的数字总和为b ,则a — b 之值为何?3 D .分别是(0, a), ( —3, 2), (b, m), (c , m ,则点E的坐标是( )若将线段AB 平移至AB ,则a+b 的A. (6,— 4)B. (5, 2)C. (- 3,— 6)D. (- 3, 4)10.如图,将△ PQR 向右平移2个单位长度,再向下平移3个单位长度,则顶点11.在平面直角坐标系xOy 中,对于点P (a , b )和点Q(a , b ),给出下列定(3,— 2) 8•如图,A , B 的坐标为(2, 0), (0, 1),D. 5义:若b=^ ,则称点Q为点的限变点•例如:点(2, 3)的限变点的-b» arClL坐标是(2, 3),点(-2, 5)的限变点的坐标是(-2,- 5),如果一个点的限变点的坐标是(弟,-1),那么这个点的坐标是( )A•(- 1, -;)B.(-.二-1) C. ( .「;,- 1) D. ( ■;, 1)12•在平面直角坐标系中,对于平面内任一点(a, b),若规定以下三种变换:①f (a, b) = (- a, b).女口: f (1, 3) = (- 1, 3);②g (a, b) = (b, a).女口:g (1, 3) = (3, 1);③h (a, b) = ( - a, - b).女口,h (1, 3) = ( - 1,- 3).按照以上变换有:f (g (h (2,- 3))) =f (g (- 2, 3)) =f (3,- 2) = (-3,-2),那么 f (g (h (-3, 5)))等于( )A. (- 5,- 3)B. (5, 3)C. (5,- 3)D. ( —5, 3)二•填空题(共13小题)13. 点P (3,- 2)到y轴的距离为个单位.14. 点P (X- 2, x+3)在第一象限,则x的取值范围是15. 线段AB的长为5,点A在平面直角坐标系中的坐标为(3,- 2),点B的坐标为(3, x),则点B的坐标为_______ .16. 在平面直角坐标系中,对于平面内任一点(a, b),若规定以下三种变换:©△( a, b) = (-a, b);②0( a, b) = (- a, - b);③Q (a, b) = (a, - b),按照以上变换例如:4(0( 1, 2)) = (1,- 2),则O(Q( 3, 4))等于 ___________________ .17. 将点A (1,- 3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到的点A的坐标为18. 已知点P(2- a, 2a- 7)(其中a为整数)位于第三象限,则点P坐标为 .19. 如图是利用网格画出的太原市地铁1, 2, 3号线路部分规划示意图,若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,- 1),表示桃园路的点的坐标为(-1, 0),则表示太原火车站的点(正好在网格点上)的坐标是的距离分别为p 、q 则称有序实数对(p , q )是点P 的距离坐标”根据上述定 义,距离坐标”是(3, 2)的点的个数有个.21 •在平面直角坐标系中,小明玩走棋的游戏,其走法是:棋子从原点出发,第 1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步 向右走1个单位,…,依此类推,第n 步的走法是:当n 能被3整除时,则向上 走1个单位;当n 被3除,余数为1时,贝U 向右走1个单位;当n 被3除,余数 为2时,则向右走2个单位,当走完第8步时,棋子所处位置的坐标是 ;当 走完第2016步时,棋子所处位置的坐标是22. 如图,在平面直角坐标系中,每个最小方格的边长均为 1个单位长,R ,P2, P 3,…,均在格点上,其顺序按图中 “一”向排列,如:R (0,0),R (0,1), P 3 ( 1, 1),P 4 ( 1,- 1),P 5 ( - 1,- 1),P 6 ( - 1, 2)…根据这个规律,点 P 2016 的坐标为23.如图,在平面直角坐标系中,一动点从原点0出发,沿着箭头所示方向,每 次移动 1 个单位,依次得到点 P 1 ( 0, 1), P 2 ( 1, 1), P 3 ( 1, 0), P 4( 1,- 1),P 5 ( 2,- 1), P 6 ( 2, 0),…,则点 P 60 的坐标是 _____ .R 点P 到直线I 1与I 224. 在平面直角坐标系中,A( 1,1), B (- 1,1), C(- 1,- 2), D( 1,- 2), 把一条长为2016个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A- B-C- D- A-….的规律紧绕在四边形ABCD勺边上,则细线另一端所在位置的点的坐标是25. 如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1, 1),第2次接着运动到点(2,0),第3次接着运动到点(3, 2),… 按这样的运动规律,经过第2016次运动后,动点P的坐标是三.解答题(共15小题)26. 在如图所示的直角坐标系中描出下列各点:A (-2 , 0),B (2 , 5) , C(-- , - 3)27•在如图中,确定点A BC 、D E 、F 、G 的坐标•请说明点B 和点F 有什么 关系?29. 在平面直角坐标系中,点 A (2m r 7, m- 5)在第四象限,且 m 为整数,试 求」「的值.30. 如图,一个小正方形网格的边长表示 50米.A 同学上学时从家中出发,先 向东走250米,再向北走50米就到达学校.(1) 以学校为坐标原点,向东为 x 轴正方向,向北为y 轴正方向,在图中建立 直角坐标系:■ Illi■申 ll>*>II^F II* 連 I mil* iilll-BIII 和 IIIIHfli' fllll^>lll!-丄罗28.求图中四边形ABCD 勺面积.(2)B同学家的坐标是;(3)在你所建的直角坐标系中,如果C同学家的坐标为(-150, 100),请你在图中描出表示C同学家的点.北1:出二= 1 »- L 二丄-』31. 如图,一只甲虫在5X 5的方格(每小格边长为1) 上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A- B (+1,+4),从B- A (- 1,- 4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中B-C (_,_),C-_ (+1, _);(2)若这只甲虫的行走路线为A- B- C- D,请计算该甲虫走过的路程;(3)若图中另有两个格点M N,且M-A (3-a,b-4),M-N (5- a,b- 2),则N-A应记作什么?32. 如图,已知A (- 2, 3)、B(4, 3)、C (- 1,- 3)(1)求点C到x轴的距离;(2)求厶ABC的面积;(3)点P在y轴上,当△ ABP的面积为6时,请直接写出点P的坐标.33. 已知:A (0, 1) , B (2, 0), C (4, 3)(1) 求厶ABC勺面积;(2) 设点P在坐标轴上,且△ ABP与△ ABC的面积相等,求点P的坐标.(4, 0), C(0, 6),点B在第一象限内,点P从原点0出发,以每秒2个单位长度的速度沿着长方形OAB(移动一周(即:沿着O^A^B^C—0的路线移动).(1)写出B点的坐标( );(2)当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.严B0卫 A X35.如图,某校七年级的同学从学校0点出发,要到某地P处进行探险活动,他们先向正西方向走8千米到A处,又往正南方向走4千米到B处,又折向正东方向走6千米到C处,再折向正北方向走8千米到D处,最后又往正东方向走 2 千米才到探险处P,以点0为原点,取0点的正东方向为x轴的正方向,取0点的正北方向为y 轴的正方向,以2千米为一个长度单位建立直角坐标系.(1)在直角坐标系中画出探险路线图;(2)分别写出A、B、C、D P点的坐标.36 .已知:P (4x, x - 3)在平面直角坐标系中.(1)若点P在第三象限的角平分线上,求x的值;(2)若点P在第四象限,且到两坐标轴的距离之和为9,求x的值.37. 在平面直角坐标系xOy中,对于任意三点A, B, C的矩面积”给出如下定义:水平底”a:任意两点横坐标差的最大值,铅垂高”h:任意两点纵坐标差的最大值,则矩面积”S=ah.例如:三点坐标分别为A( 1, 2), B (-3, 1), C(2, -2),贝U水平底”a=5,铅垂高”=4,矩面积”S=ah=20已知点A (1 , 2), B (-3, 1), P (0, t).(1)若A, B, P三点的矩面积”为12,求点P的坐标;(2)直接写出A, B, P三点的矩面积”的最小值.38. 如图,在平面直角坐标系中,原点为O,点A (0, 3), B (2, 3), C(2,-3), D( 0,- 3).点P, Q是长方形ABCD边上的两个动点,BC交x轴于点M.点P从点O出发以每秒1个单位长度沿O^A^B-M的路线做匀速运动,同时点Q 也从点O 出发以每秒2个单位长度沿C- D- C- M的路线做匀速运动.当点Q运动到点M 时,两动点均停止运动.设运动的时间为t秒,四边形OPM(的面积为S.(1)当t=2时,求S的值;(2)若S v 5时,求t 的取值范围.在平面直角坐标系xOy 中有不重合的两点A (x i , y i )和点B (X 2, ),小明在学 习中发现,若x i =x 2,贝U AB// y 轴,且线段AB 的长度为|y i - y ?| ;若y i =y 2,则AB // x 轴,且线段AB 的长度为|x i -X 2| ;【应用】:(1) 若点 A (- 1,1)、B (2, 1),则 AB// x 轴,AB 的长度为 ____ .(2) 若点C (1, 0),且CD// y 轴,且CD=2则点D 的坐标为 ______ .【拓展】:我们规定:平面直角坐标系中任意不重合的两点 M(X 1,yd ,N(X 2,y 2)之间的 折线距离为d (M, N) =|X 1-X 2|+|y 1-y 2| ;例如:图1中,点M (- 1,1)与点N( 1,- 2)之间的折线距离为 d (M, N) =| - 1- 1|+|1 -( -2) |=2+3=5 .解决下列问题:(1) ____________________________________________________ 如图 1,已知 E (2, 0),若 F ( - 1,- 2),则 d (E , F) ______________________ ;(2) 如图 2,已知 E (2, 0), H (1, t ),若 d (E , H) =3,则 t= _______ .(3) 如图3,已知P (3, 3),点Q 在x 轴上,且三角形OPQ 勺面积为3,则d(P, Q = .40.小明在学习了平面直角坐标系后,突发奇想,画出了这样的图形(如图) , 他把3A £ 2 - 1 1 1 ■ -3 -2 -1 ! 3 -1 -2 --3 D C39 •问题情境:图形与x轴正半轴的交点依次记作A1 (1, 0), A (5, 0),…A,图形与y 轴正半轴的交点依次记作B i (0, 2), B2 (0, 6),…图形与x轴负半轴的交点依次记作C1 (- 3, 0), C2 (- 7, 0),…G,图形与y轴负半轴的交点依次记作D (0 , - 4), D2 (0, - 8),…D,发现其中包含了一定的数学规律.请根据你发现的规律完成下列题目:(1)请分别写出下列点的坐标:A, B3, C3 , D3 ;(2)请分别写出下列点的坐标:A, b , G , Dn ;(3)请求出四边形AB5GD5的面积.Z0’ \ a /\初中数学直角坐标系提高题与常考题和培优题(含解析)参考答案与试题解析一•选择题(共12小题)1. (2017?可北一模)已知点P (x+3, x - 4)在x轴上,贝U x的值为()A. 3B.- 3 C . —4 D . 4【分析】直接利用x轴上点的纵坐标为0,进而得出答案.【解答】解:•••点P (x+3, x —4)在x轴上,x—4=0,解得:x=4,故选:D.【点评】此题主要考查了点的坐标,正确把握x轴上点的坐标性质是解题关键. 2. (2016?柳州)如图,在平面直角坐标系中,点P的坐标为()A. (3,—2)B. (—2, 3)C. (—3, 2)D. (2,—3)【分析】根据平面直角坐标系以及点的坐标的定义写出即可.【解答】解:点P的坐标为(3,—2).故选A.【点评】本题考查了点的坐标,熟练掌握平面直角坐标系中点的表示是解题的关键.3. (2016?临夏州)已知点P (0, m 在y轴的负半轴上,则点M (- m —m+1 在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据y轴的负半轴上点的横坐标等于零,纵坐标小于零,可得m的值, 根据不等式的性质,可得到答案.【解答】解:由点P(0,在y轴的负半轴上,得m< 0.由不等式的性质,得-m>0,- m+1> 1,则点M (- m - m+1在第一象限,故选:A.【点评】本题考查了点的坐标,利用点的坐标得出不等式是解题关键.4. (2017?禹州市一模)已知点A(- 1,0)和点B( 1, 2),将线段AB平移至AB',点A于点A对应,若点A的坐标为(1,- 3),则点B的坐标为()A.(3,0)B.(3,- 3)C.(3,- 1 )D.(- 1 ,3)【分析】根据平移的性质,以及点A, B 的坐标,可知点 A 的横坐标加上了4,纵坐标减小了1,所以平移方法是:先向右平移 4 个单位,再向下平移 1 个单位,根据点B的平移方法与A点相同,即可得到答案.【解答】解::A (- 1,0)平移后对应点A的坐标为(1,- 3),••• A点的平移方法是:先向右平移2个单位,再向下平移3个单位,••• B点的平移方法与A点的平移方法是相同的,••• B (1,2)平移后B的坐标是:(3,- 1).故选:C.【点评】本题考查了坐标与图形的变化-平移,解决问题的关键是运用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.5. (2016?乌鲁木齐)对于任意实数m点P (m- 2, 9 -3m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据点所在象限中横纵坐标的符号即可列不等式组,若不等式组无解,则不能在这个象限.意;B 、 当点在第二象限时j m_2<U ,解得m < 3,故选项不符合题意;C 、 当点在第三象限时,不等式组无解,故选项符合题意;9-3m<0D 当点在第四象限时,解得m>0,故选项不符合题意. 9-3m<0故选C.【点评】本题考查了点的坐标,理解每个象限中点的坐标的符号是关键.6. (2016?台湾)如图为A 、B 、C 三点在坐标平面上的位置图.若 A 、B 、C 的x 坐标的数字总和为a ,y 坐标的数字总和为b ,则a - b 之值为何?( )【分析】先求出A 、B C 三点的横坐标的和为-1+0+5=4,纵坐标的和为-4 - 1+4= -1,再把它们相减即可求得a -b 之值.【解答】解:由图形可知:a= - 1+0+5=4,b=- 4 - 1+4=- 1,a - b=4+1=5.故选:A.【点评】考查了点的坐标,解题的关键是求得 a 和b 的值.【解答】解: A 、当点在第一象限时缶-2〉0 9-3m>C ,解得2< mK 3,故选项不符合题7. (2016?滨州)如图,正五边形ABCD 放入某平面直角坐标系后,若顶点 A , C, D 的坐标分别是(0, a ),(- 3, 2), (b , m , (c, m ),则点E 的坐标是( C DA. (2,- 3)B. (2, 3)C. (3, 2)D. (3,- 2)【分析】由题目中A 点坐标特征推导得出平面直角坐标系 y 轴的位置,再通过 D 点坐标特征结合正五边形的轴对称性质就可以得出 E 点坐标了.【解答】解:•••点A 坐标为(0, a ),•••点A 在该平面直角坐标系的y 轴上,•••点 C 、D 的坐标为(b , n ) (c , m ),•••点C 、D 关于y 轴对称,•••正五边形ABCD 是轴对称图形,•该平面直角坐标系经过点 A 的y 轴是正五边形ABCDE 勺一条对称轴,•••点B 、E 也关于y 轴对称,•••点B 的坐标为(-3, 2),•点E 的坐标为(3, 2).故选:C.【点评】本题考查了平面直角坐标系的点坐标特征及正五边形的轴对称性质, 题的关键是通过顶点坐标确认正五边形的一条对称轴即为平面直角坐标系的 轴.8. (2016?菏泽)如图,A , B 的坐标为(2, 0), (0, 1),若将线段AB 平移至A 则a+b 的值为( )B , )C 、凤0,1)A. 2B. 3C. 4D. 5【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A B均按此规律平移,由此可得a=0+1=1, b=0+1=1,故a+b=2.故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同. 平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.9. (2016盘城校级一模)如图,小手盖住的点的坐标可能是()A. (6,- 4)B. (5,2)C. (- 3,- 6)D. (- 3,4)【分析】先判断手所在的象限,再判断象限横纵坐标的正负即可.【解答】解:因为小手盖住的点在第四象限,第四象限内点的坐标横坐标为正,纵坐标为负,且横坐标的绝对值大于纵坐标的绝对值.故只有选项A符合题意, 故选:A.【点评】解答此题的关键是熟记平面直角坐标系中各个象限内点的坐标符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10. (2016安顺)如图,将△ PQF向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()【解答】解:由题意可知此题规律是(x+2, y-3),照此规律计算可知顶点P(- 4,- 1)平移后的坐标是(-2,- 4).故选A.【点评】本题考查了图形的平移变换,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.11. (2016?临澧县模拟)在平面直角坐标系xOy中,对于点P (a,b)和点Q(a,b),给出下列定义:若b'』吮于,则称点Q为点的限变点.例如:点(2,[-bj 13)的限变点的坐标是(2, 3),点(-2, 5)的限变点的坐标是(-2,- 5), 如果一个点的限变点的坐标是(\/1,- 1),那么这个点的坐标是()A. (- 1, . 一;)B. ( - ;- 1)C. ( .「;,- 1)D.(二,1)【分析】根据新定义的叙述可知:这个点和限变点的横坐标不变,当横坐标a>1时,这个点和限变点的纵坐标不变;当横坐标a v 1时,纵坐标是互为相反数;据此可做出判断.【解答】解:•••.> 1•••这个点的坐标为(_ 1)故选C.【点评】本题考查了点的坐标和对新定义的阅读理解,准确找出这个点与限变点的横、纵坐标与a的关系即可.12. (2016?高新区一模)在平面直角坐标系中,对于平面内任一点(a, b),若规定以下三种变换:①f (a, b) = (- a, b).女口: f (1, 3) = (- 1, 3);②g (a, b) = (b, a).女口:g (1, 3) = (3, 1);③h (a, b) = ( - a, - b).女口,h (1, 3) = ( - 1,-3).按照以上变换有:f (g (h (2,- 3))) =f (g (- 2, 3)) =f (3,- 2) = (-3, -2),那么f (g (h (-3, 5)))等于( )A. (- 5,- 3)B. (5, 3)C. (5,- 3)D. (- 5, 3)【分析】根据f (a, b) = (- a, b). g (a, b) = (b, a) . h (a, b) = (- a, -b),可得答案.【解答】解:f (g (h (-3, 5))) =f (g (3,- 5) =f (-5, 3) = (5, 3), 故选:B.【点评】本题考查了点的坐标,利用f (a, b) = ( - a, b). g (a, b) = (b, a). h (a, b) = ( - a,- b)是解题关键.二.填空题(共13小题)13. (2017春?海宁市校级月考)点P (3,- 2)到y轴的距离为3个单位.【分析】求得3的绝对值即为点P到y轴的距离.【解答】解::|3|=3 ,•••点P (3,- 2)到y轴的距离为3个单位,故答案为:3.【点评】本题主要考查了点的坐标的几何意义:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.14. (2016?衡阳)点P (x - 2, x+3)在第一象限,则x的取值范围是x>2 . 【分析】直接利用第一象限点的坐标特征得出x的取值范围即可.【解答】解:•••点P (x - 2, x+3)在第一象限,…计3〉。
一、选择题1.已知点A (0,-6),点B (0,3),则A ,B 两点间的距离是( )A .-9B .9C .-3D .32.如图,将一颗小星星放置在平面直角坐标系中第二象限内的甲位置,先将它绕原点O 旋转180︒到乙位置,再将它向上平移2个单位长到丙位置,则小星星顶点A 在丙位置中的对应点A '的坐标为( )A .()3,1-B .()1,3C .()3,1D .()3,1-3.在平面直角坐标系中,点(2,1)A -关于y 轴对称的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列各点中,在第二象限的是( )A .()1,0B .()1,1C .()1,1-D .()1,1-5.若点P (x, y )在第二象限,且2,3x y ==,则x + y =( )A .-1B .1C .5D .-56.在平面直角坐标系中,点A 的坐标为(21a +,3-),则点A 在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,……,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为( )A .(-3,1)B .(0,-2)C .(3,1)D .(0,4)8.如图,在一单位长度为1cm 的方格纸上,依如所示的规律,设定点1A 、2A 、3A 、4A 、5A 、6A 、7A 、n A ,连接点O 、1A 、2A 组成三角形,记为1∆,连接O 、2A 、3A 组成三角形,记为2∆,连O 、n A 、1n A +组成三角形,记为n ∆(n 为正整数),请你推断,当n 为50时,n ∆的面积=( )2cmA .1275B .2500C .1225D .12509.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-, D .(0,4)-10.如图,在平面直角坐标系中,半径为1个单位长度的半圆123,,O O O ,…组成一条平滑曲线,点P 从点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2016秒时,点P 的坐标是( )A .()2016,1B .()2016,0C .()2016,1-D .()2016,0π 11.在平面直角坐标系中,将点A (﹣2,﹣2)先向右平移6个单位长度再向上平移5个单位长度得到点A ',则点A '的坐标是( )A .(4,5)B .(4,3)C .(6,3)D .(﹣8,﹣7)二、填空题12.小华在小明南偏西75°方向,则小明在小华______方向.(填写方位角) 13.如下图,在平面直角坐标系中,第一次将OAB 变换成11OA B ,第二次将11OA B 变换成22OA B △,第三次将22OA B △变换成33OA B ,…,将OAB 进行n 次变换,得到n n OA B △,观察每次变换中三角形顶点坐标有何变化,找出规律,推测2020A 的坐标是__________.14.在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a 2-2b 的值为______.15.如图,已知1(1,0)A ,2(1,1)A ,3(1,1)A -,4(1,1)A --,5(2,1)A -,则2020A 的坐标为_______.16.在平面直角坐标系中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义:水平底a 为任意两点的横坐标差的最大值,铅垂高h 为任意两点的纵坐标差的最大值,则“矩面积”S =ah .若A (1,2),B (﹣2,1),C (0,t )三点的“矩面积”是18,则t 的值为_____. 17.如图,在平面直角坐标系中,()()()()1,1,1,1,1,2,1,2A B C D ----,把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处, 并按A B C D A ----⋯的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是 ____.18.对于平面坐标系中任意两点()11,A x y ,()22,B x y 定义一种新运算“*”为:()()()11221221,*,,x y x y x y x y =.若()11,A x y 在第二象限,()22,B x y 在第三象限,则*A B 在第_________象限.19.如果点P (a ﹣1,a +2)在x 轴上,则a 的值为_____.20.点3(2,)A -到x 轴的距离是__________.21.把所有正整数从小到大排列,并按如下规律分组:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若A n =(a ,b )表示正整数n 为第a 组第b 个数(从左往右数),如A 7=(4,1),则A 20=______________.三、解答题22.如图,在平面直角坐标系中有一个△ABC .(1)将△ABC 向右平移3个单位得到△A 1B 1C 1,画出△A 1B 1C 1.(2)写出△A 1B 1C 1,三个顶点的坐标.23.在平面直角坐标系中,点P(2﹣m ,3m +6).(1)若点P 与x 轴的距离为9,求m 的值;(2)若点P 在过点A(2,﹣3)且与y 轴平行的直线上,求点P 的坐标.24.ABC 在如图所示的平面直角坐标系中,将其平移得到A B C ''',若B 的对应点B '的坐标为(1,1).(1)在图中画出A B C ''';(2)此次平移可以看作将ABC 向________平移________个单位长度,再向________平移________个单位长度,得A B C ''';(3)求A B C '''的面积并写出做题步骤.25.如图,已知火车站的坐标为()2,1,文化宫的坐标为()1,2-.(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育馆、市场、超市、宾馆的坐标;(3)请将原点O ,宾馆C 和文化宫B ,看作三点用线段连起来,将得OBC ,然后将此三角形向下平移3个单位长度,画出平移后的111O B C ,并求出其面积.一、选择题1.已知点A (0,-6),点B (0,3),则A ,B 两点间的距离是( )A .-9B .9C .-3D .32.第24届冬季奥林匹克运动会将于2022年由北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )A .离北京市200千米B .在河北省C .在宁德市北方D .东经114.8°,北纬40.8°3.点M 在第二象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( )A .(-3,5)B .(5,- 3)C .(-5,3)D .(3,5) 4.点(,)M x y 在第二象限,且230,40x y -=-=,则点M 的坐标是( )A .(3,2)-B .(3,2)-C .(2,3)-D .(2,3)-5.点()P 3,2-在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 6.某公交车上显示屏上显示的数据(),a b 表示该车经过某站点时先下后上的人数.若车上原有10个人,此公交车依次经过某三个站点时,显示器上的数据如下:()()()3,2,8,5,6,1,则此公交车经过第二个站点后车上的人数为( )A .9B .12C .6D .17.点(),A m n 满足0mn =,则点A 在( )A .原点B .坐标轴上C .x 轴上D .y 轴上8.如图,在平面直角坐标系中,若干个半径为3个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒3个单位长度,点在弧线上的速度为每秒π个单位长度,则2020秒时,点P 的坐标是( )A .(2020,0)B .(3030,0)C .( 30303)D .(30303)9.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1) 10.若把点A (-5m ,2m -1)向上平移3个单位后得到的点在x 轴上,则点A 在( ) A .x 轴上 B .第三象限 C .y 轴上 D .第四象限 11.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内不包含边界上的点,观察如图所示的中心在原点,一边平行于x 轴的正方形,边长为1的正方形内部有一个整点,边长为3的正方形内部有9个整点,…,则边长为10的正方形内部的整点个数为( )A .100B .81C .64D .49二、填空题12.在平面直角坐标系中,若点(1, 2)M m m -+与点(23, 2)N m m ++之间的距离是5,则m =______.13.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若(1,1)P -,(2,3)Q ,则P ,Q 的“实际距离”为5,即5PS SQ +=或5PT TQ +=.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为(2,2)A ,(4,2)B -,(2,4)C --,若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______.14.在电影院内找座位,将“4排3号”简记为(4,3),则(8,7)表示______15.如图点 A 、B 的坐标分别为(1,2)、(3,0),将△AOB 沿 x 轴向右平移,得到△CDE . 已知点 D 在的点 B 左侧,且 DB =1,则点 C 的坐标为 ____ .16.如图,一个机器人从0点出发,向正东方向走3米到达1A 点,记为()3,0;再向正北方向走6米到达2A 点,记为()3,6:再向正西方向走9米到达3A 点,记为()6,6-;再向正南方向走12米到达4A 点,再向正东方向走15米到达5A 点,按如此规律走下去,当机器人走到99A 点时,则99A 的坐标为________.17.三角形A′B′C′是由三角形ABC 平移得到的,点A(-1,4)的对应点为A′(1,-1),若点C′的坐标为(0,0),则点C′的对应点C 的坐标为______.18.若点M(a-2,a+3)在y 轴上,则点N(a+2,a-3)在第________象限.19.若x ,y 为实数,且满足330x y -++=,则 A(x ,y)在第____象限20.已知线段AB 的长度为3,且AB 平行于y 轴,A 点坐标为()32,,则B 点坐标为______.21.点3(2,)A -到x 轴的距离是__________.三、解答题22.在如图的平面直角坐标系中表示下面各点,并在图中标上字母:A (0,3);B (﹣2,4);C (3,﹣4);D (﹣3,﹣4).(1)点A 到原点O 的距离是 ,点B 到x 轴的距离是 ,点B 到y 轴的距离是 ;(2)连接CD ,则线段CD 与x 轴的位置关系是 .23.在平面直角坐标系中,(,0)A a ,(0,)B b ,且a ,b 满足2|6|0a b ++-=.(1)求A 、B 两点的坐标;(2)若P 从点B 出发沿着射线BO 方向运动(点P 不与原点重合),速度为每秒2个单位长度,连接AP ,设点P 的运动时间为t ,AOP 的面积为S .请你用含t 的式子表示S . (3)在(2)的条件下,点Q 与点P 同时运动,点Q 从A 点沿x 轴正方向运动,Q 点速度为每秒1个单位长度.A 、B 、P 、Q 四个点围成四边形的面积为S '.当4S =时,求:S S '的值.24.如图,已知三角形,ABC 把三角形ABC 先向上平移3个单位长度,再向右平移2个单位长度,得到三角形'''A B C .(1)在图中画出三角形'''A B C ,并写出',','A B C 的坐标;(2)连接,AO BO ,求三角形ABO 的面积;(3)在y 轴上是否存在一点P ,使得三角形BCP 与三角形ABC 面积相等?若存在请直接写出点P 的坐标;若不存在,请说明理由.25.如图,在平面直角坐标系中,△ABC 的顶点为(5,1)A -,(1,0)B -,(1,5)C -. (1)作出△ABC 关于y 轴对称图形△A 1B 1C 1;(2)若点P 在x 轴上,且△ABP 与△ABC 面积相等,求点P 的坐标.一、选择题 1.如图是北京市地图简图的一部分,图中“故宫”、“颐和园”所在的区域分别是( )D E F 6颐和园 奥运村 7故宫 日坛 8天坛 A .D7,E6 B .D6,E7 C .E7,D6 D .E6,D7 2.已知两点(,5)A a ,(1,)B b -且直线//AB x 轴,则( )A .a 可取任意实数,5b =B .1a =-,b 可取任意实数C .1a ≠-,5b =D .1a =-,5b ≠3.已知P(a ,b )满足ab=0,则点P 在( )A .坐标原点B .X 轴上C .Y 轴上D .坐标轴上 4.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为(2,1)A -和(2,3)B --,那么第一架轰炸机C 的坐标是( )A .(2,3)-B .(2,1)-C .(2,1)--D .(3,2)- 5.在平面直角坐标系中,与点P 关于原点对称的点Q 为()1,3-,则点P 的坐标是( ) A .()1,3 B .()1,3-- C .()1,3- D .()1,3- 6.已知点 M 到x 轴的距离为 3,到y 轴的距离为2,且在第四象限内,则点M 的坐标为( )A .(-2,3)B .(2,-3)C .(3,2)D .不能确定7.如图,在ABC ∆中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点B 的坐标为()1,4,则点A 的坐标为( )A .()6,3-B .()3,6-C .()4,3-D .()3,4- 8.如图,在一单位长度为1cm 的方格纸上,依如所示的规律,设定点1A 、2A 、3A 、4A 、5A 、6A 、7A 、n A ,连接点O 、1A 、2A 组成三角形,记为1∆,连接O 、2A 、3A 组成三角形,记为2∆,连O 、n A 、1n A +组成三角形,记为n ∆(n 为正整数),请你推断,当n 为50时,n ∆的面积=( )2cmA .1275B .2500C .1225D .12509.若点(1,)A n -在x 轴上,则点(1,1)B n n +-在( ).A .第一象限B .第二象限C .第三象限D .第四象限 10.在平面直角坐标系中,将点A (﹣2,﹣2)先向右平移6个单位长度再向上平移5个单位长度得到点A ',则点A '的坐标是( )A .(4,5)B .(4,3)C .(6,3)D .(﹣8,﹣7)11.若点P (﹣m ,﹣3)在第四象限,则m 满足( )A .m >3B .0<m≤3C .m <0D .m <0或m >3二、填空题12.在平面直角坐标系中,若点(1, 2)M m m -+与点(23, 2)N m m ++之间的距离是5,则m =______.13.对于平面直角坐标系xOy 中的点P (a ,b ),若点P 的坐标为(a +kb ,ka +b )(其中k 为常数,且k ≠0),则称点P 为点P 的“k 属派生点”,例如:P (1,4)的“2属派生点”为P (1+2×4,2×1+4),即P ′(9,6).若点P 在x 轴的正半轴上,点P 的“k 属派生点”为点P ′,且线段PP ′的长度为线段OP 长度的5倍,则k 的值为___.14.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.15.如图,已知A 1(1,2),A 2(2,2),A 3(3,0),A 4(4,﹣2),A 5(5,﹣2),A 6(6,0)…,按这样的规律,则点A 2020的坐标为______.16.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.则点2019A 的坐标是_________.17.对于平面坐标系中任意两点()11,A x y ,()22,B x y 定义一种新运算“*”为:()()()11221221,*,,x y x y x y x y =.若()11,A x y 在第二象限,()22,B x y 在第三象限,则*A B 在第_________象限.18.已知点()24,1P m m +-.()1若点P 在x 轴上,则点P 的坐标为________;()2若点P 在第四象限,且到y 轴的距离是2,则点P 的坐标为________. 19.在平面直角坐标系中,对于平面内任一点(),a b ,若规定以下三种变换: ①()(),,a b a b ∆=-;②(),a b O (),a b =--;③()(),,a b a b Ω=-按照以上变换例如:()()()1,21,2∆O =-,则()()2,5O Ω等于__________. 20.若点A (-2,n )在x 轴上,则点B(n-2,n+1)在第_____象限 .21.已知点A (﹣3,2),AB ∥坐标轴,且AB =4,若点B 在x 轴的上方,则点B 坐标为__. 三、解答题22.已知在平面直角坐标系中,ABC 三个顶点的坐标分别为:(3,1)A --,(2,4)B --,(1,3)C -.(1)作出ABC ;(2)若将ABC 向上平移3个单位后再向右平移2个单位得到111A B C △,请作出111A B C △. 23.如图①,A 、B 、C 三地依次在一条直线上,两辆汽车甲、乙分别从A 、B 两地同时出发驶向C 地.如图②,是两辆汽车行驶过程中到B 地的距离(km)s 与行驶时间(h)t 的关系图象,其中折线EF-FG 是甲车的图象,线段OM 是乙车的图象.(1)请求出图②中a 的值和点M 的坐标;(2)在行驶过程中,甲车有可能在乙车与B 地中点的位置吗?如有,请求出行驶时间t 的值;若没有,请说明理由.24.如图,在平面直角坐标系中,△ABC 的顶点为(5,1)A -,(1,0)B -,(1,5)C -. (1)作出△ABC 关于y 轴对称图形△A 1B 1C 1;(2)若点P 在x 轴上,且△ABP 与△ABC 面积相等,求点P 的坐标.25.如图1,在平面直角坐标系中,A (a ,0),C (b ,4),且满足(a+5)2+5-b =0,过C 作CB ⊥x 轴于B .(1)a = ,b = ,三角形ABC 的面积= ;(2)若过B 作BD //AC 交y 轴于D ,且AE ,DE 分别平分∠CAB ,∠ODB ,如图2,求∠AED的度数;(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P 点坐标;若不存在,请说明理由.。
一、选择题1.一只跳蚤在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2021次跳到点( )A .(3,44)B .(4,45)C .(44,3)D .(45,4) 2.如图,将一颗小星星放置在平面直角坐标系中第二象限内的甲位置,先将它绕原点O 旋转180︒到乙位置,再将它向上平移2个单位长到丙位置,则小星星顶点A 在丙位置中的对应点A '的坐标为( )A .()3,1-B .()1,3C .()3,1D .()3,1-3.已知P(a ,b )满足ab=0,则点P 在( )A .坐标原点B .X 轴上C .Y 轴上D .坐标轴上 4.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2020次碰到球桌边时,小球的位置是( )A .(3,4)B .(5,4)C .(7,0)D .(8,1)5.在平面直角坐标系中,点()2,1-关于x 轴对称的点的坐标是( )A .()2,1B .()2,1-C .()2,1--D .()2,1-6.平面直角坐标系中,线段CD 是由线段AB 平移得到的,点A(-1,4)的对应点C(4,7),点B(-4,-1)的对应点D 的坐标为( )A .(-1,-4)B .(1,-4)C .(1,2)D .(-1,2)7.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1) 8.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上 9.已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在x 轴的上方,则点P 的坐标为( )A .(2,3)B .(3,2)C .(2,3)或(-2,3)D .(3,2)或(-3,2)10.若把点A (-5m ,2m -1)向上平移3个单位后得到的点在x 轴上,则点A 在( ) A .x 轴上 B .第三象限 C .y 轴上 D .第四象限 11.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内不包含边界上的点,观察如图所示的中心在原点,一边平行于x 轴的正方形,边长为1的正方形内部有一个整点,边长为3的正方形内部有9个整点,…,则边长为10的正方形内部的整点个数为( )A .100B .81C .64D .49二、填空题12.对于平面直角坐标系xOy 中的点P (a ,b ),若点P 的坐标为(a +kb ,ka +b )(其中k 为常数,且k ≠0),则称点P 为点P 的“k 属派生点”,例如:P (1,4)的“2属派生点”为P (1+2×4,2×1+4),即P ′(9,6).若点P 在x 轴的正半轴上,点P 的“k 属派生点”为点P ′,且线段PP ′的长度为线段OP 长度的5倍,则k 的值为___.13.点(1,1)P -向左平移2个单位,向上平移3个单位得1P ,则点1P 的坐标是________. 14.若电影票上座位是12排5号可记为(12,5),则(5,6)表示_______________. 15.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.16.如图点 A 、B 的坐标分别为(1,2)、(3,0),将△AOB 沿 x 轴向右平移,得到△CDE . 已知点 D 在的点 B 左侧,且 DB =1,则点 C 的坐标为 ____ .17.已知点(1,0)A 、(0,2)B ,点P 在x 轴上,且PAB △的面积为5,则点P 的坐标为__________.18.若P(2-a ,2a+3)到两坐标轴的距离相等,则点P 的坐标是____________________. 19.若点M(a-2,a+3)在y 轴上,则点N(a+2,a-3)在第________象限.20.若x ,y 为实数,且满足330x y -++=,则 A(x ,y)在第____象限21.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B (m ,3),C (n ,-5),则AD BC =______.三、解答题22.在直角坐标系中,ABC 顶点C 的坐标为()1m ,.90C ∠=︒,//BC x 轴,直线//l y 轴,,BC a AC b ==,ABC 与111A B C △关于直线l 对称,222A B C △与111A B C △关于y 轴对称,333A B C △与222A B C △关于x 轴对称.(1)问ABC 与222A B C △通过平移能重合吗?若不能说明其理由,若能请你说出一个平移方案(平移的单位数用m 、a 表示):(2)试写出点33A B 、坐标(注:结果可用含a 、b 、m 的代数式表示).23.ABC 在如图所示的平面直角坐标系中,将其平移得到A B C ''',若B 的对应点B '的坐标为(1,1).(1)在图中画出A B C ''';(2)此次平移可以看作将ABC 向________平移________个单位长度,再向________平移________个单位长度,得A B C ''';(3)求A B C '''的面积并写出做题步骤.24.如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是 A (﹣3,2),B (0,4),C (0,2).(1)将△ABC 以点 O 为旋转中心旋转 180°,画出旋转后对应的△A 1B 1C 1;(2)平移△ABC ,使对应点 A 2 的坐标为(0,﹣4),写出平移后对应△A 2B 2C 2的中B 2,C 2点坐标.25.已知()4,0A ,点B 在x 轴上,且5AB =.(1)直接写出点B 的坐标;(2)若点C 在y 轴上,且10ABC S =△,求点C 的坐标.(3)若点()3,2D a a -+,且15ABD S =,求点D 的坐标.一、选择题1.在平面直角坐标系中,将三角形各顶点的纵坐标都加上3,横坐标保持不变,所得图形的位置与原图形相比( )A .向上平移3个单位B .向下平移3个单位C .向右平移3个单位D .向左平移3个单位2.在平面直角坐标系中,点()2,1-关于x 轴对称的点的坐标是( )A .()2,1B .()2,1-C .()2,1--D .()2,1-3.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A ()2,1-和B ()2,3--,那么第一架炸机C 的平面坐标是( )A .()2,1B .()3,1-C .()2,1-D .()3,14.下列关于有序数对的说法正确的是( )A .(3,4)与(4,3)表示的位置相同B .(a ,b )与(b ,a )表示的位置肯定不同C .(3,5)与(5,3)是表示不同位置的两个有序数对D .有序数对(4,4)与(4,4)表示两个不同的位置5.点(),A m n 满足0mn =,则点A 在( )A .原点B .坐标轴上C .x 轴上D .y 轴上6.在平面直角坐标系中,点P (﹣2019,2018)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 7.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为( )A .900B .946C .990D .8868.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,...,第n 次移动到n A .则22020OA A ∆的面积是( )A .210112mB .2505mC .220092m D .2504m 9.在平面直角坐标系中,点()25,1N a -+一定在( )A .第一象限B .第二象限C .第三象限D .第四象限 10.如图,线段OA ,OB 分别从与x 轴和y 轴重合的位置出发,绕着原点O 顺时针转动,已知OA 每秒转动45︒,OB 的转动速度是每秒转动30,则第2020秒时,OA 与OB 之间的夹角的度数为( )A .90︒B .145︒C .150︒D .165︒11.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1)二、填空题12.小华在小明南偏西75°方向,则小明在小华______方向.(填写方位角)13.写一个第三象限的点坐标,这个点坐标是_______________.14.已知点()3,2P -,//MP x 轴,6MP =,则点M 的坐标为______.15.若点p(a+13,2a+23)在第二,四象限角平分线上,则a=_____. 16.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.17.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,2),且|a ﹣8b -0,将线段PQ 向右平移a 个单位长度,其扫过的面积为24,那么a+b+c 的值为_____. 18.如图,在平面直角坐标系中,三角形ABC 经过平移后得到三角形A′B′C′,且平移前后三角形的顶点坐标都是整数.若点P (12,﹣15)为三角形ABC 内部一点,且与三角形A′B′C′内部的点P′对应,则对应点P′的坐标是_____.19.对于平面坐标系中任意两点()11,A x y ,()22,B x y 定义一种新运算“*”为:()()()11221221,*,,x y x y x y x y =.若()11,A x y 在第二象限,()22,B x y 在第三象限,则*A B 在第_________象限.20.在平面直角坐标系中,对于平面内任一点(),a b ,若规定以下三种变换:①()(),,a b a b ∆=-;②(),a b O (),a b =--;③()(),,a b a b Ω=-按照以上变换例如:()()()1,21,2∆O =-,则()()2,5O Ω等于__________.21.已知点P 在第四象限,且到x 轴的距离是1,到y 轴的距离是3,则P 的坐标是______. 三、解答题22.已知点(1,5)A a -和(2,1)B b -.试根据下列条件求出a ,b 的值.(1)A ,B 两点关于y 轴对称;(2)A ,B 两点关于x 轴对称;(3)AB ‖x 轴23.在平面直角坐标系中,ABC 的位置如图所示,把ABC 先向左平移2个单位,再向下平移4个单位可以得到A B C '''.(1)画出三角形A B C ''',并写出,,A B C '''三点的坐标;(2)求A B C '''的面积.24.如图,在平面直角坐标系中,点A (0,12),点B (m ,12),且B 到原点O 的距离OB =20,动点P 从原点O 出发,沿路线O →A →B 运动到点B 停止,速度为每秒5个单位长度,同时,点Q 从点B 出发沿路线B →A →O 运动到原点O 停止,速度为每秒2个单位长度.设运动时间为t .(1)求出P 、Q 相遇时点P 的坐标.(2)当P 运动到AB 边上时,连接OP 、OQ ,若△OPQ 的面积为6,求t 的值. 25.已知点P (2x ﹣6,3x +1),求下列情形下点P 的坐标.(1)点P 在y 轴上;(2)点P 到x 轴、y 轴的距离相等,且点P 在第二象限;(3)点P 在过点A (2,﹣4)且与y 轴平行的直线上.一、选择题1.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 2C 3C 2,…按如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是( )A .(2n ﹣1,2n ﹣1)B .(2n ﹣1,2n ﹣1)C .(2n ﹣1,2n ﹣1)D .(2n ﹣1,2n ﹣1) 2.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为(2,1)A -和(2,3)B --,那么第一架轰炸机C 的坐标是( )A .(2,3)-B .(2,1)-C .(2,1)--D .(3,2)-3.点()1,3P --向右平移3个单位,再向上平移5个单位,则所得到的点的坐标为( ) A .()4,2- B .()2,2 C .()4,8-- D .()2,8-4.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路程如图所示,第一次移动到点A 1,第二次移动到点A 2,第n 次移动到点A n ,则点A 2020的坐标是( )A .(1010,0)B .(1010,1)C .(1009,0)D .(1009,1) 5.已知点A 坐标为()2,3-,点A 关于x 轴的对称点为A ',则A '关于y 轴对称点的坐标为( )A .()2,3--B .()2,3C .()2,3-D .以上都不对 6.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A .(4,0)B .(5,0)C .(0,5)D .(5,5)7.将点()1,2P 向左平移3个单位后的坐标是( )A .()2,2-B .()1,1-C .()1,5D .()1,1-- 8.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,……,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为( )A .(-3,1)B .(0,-2)C .(3,1)D .(0,4)9.在平面直角坐标系中,点P(-5,0)在( )A .第二象限B .x 轴上C .第四象限D .y 轴上10.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1) 11.在平面直角坐标中,点()1,2P 平移后的坐标是)3(3,-'P ,按照同样的规律平移其它点,则以下各点的平移变换中( )符合这种要求.A .()3,24(,2)→-B .()(104),5,--→-C .(1.2,5)→(-3.2,6)D .122.5, 1.5,33⎛⎫⎛⎫-→- ⎪ ⎪⎝⎭⎝⎭二、填空题12.在平面直角坐标系内,把点A (5,-2)向右平移3个单位,再向下平移2个单位,得到的点B 的坐标为______.13.如图,()3,3A -,()1,2P -,P 关于直线OA 的对称点为1P ,1P 关于x 轴的对称点为2P ,2P 关于y 轴的对称点为3P ,3P 关于直线OA 的对称点为4P ,4P 关于x 轴的对称点为5P ,5P 关于y 轴的对称点为6P ,6P 关于直线OA 的对称点为7P ,…,则2020P 的坐标是__________.14.在x 轴上方的点P 到x 轴的距离为3,到y 轴距离为2,则点P 的坐标为________. 15.某人从A 点沿北偏东60︒的方向走了100米到达点B ,再从点B 沿南偏西10︒的方向走了100米到达点C ,那么点C 在点A 的南偏东__度的方向上.16.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.17.填一填如图,百鸟馆在老虎馆的(__________)偏(__________)(__________).方向;大象馆在老虎馆的(__________)偏(__________)(__________).方向.18.如图,已知点A 的坐标为(−2,2),点C 的坐标为(2,1),则点B 的坐标是____.19.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A 2020的坐标是________.20.如果点P (a ﹣1,a +2)在x 轴上,则a 的值为_____.21.把所有正整数从小到大排列,并按如下规律分组:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若A n =(a ,b )表示正整数n 为第a 组第b 个数(从左往右数),如A 7=(4,1),则A 20=______________.三、解答题22.已知在长方形ABCD 中,4AB =,252BC =,O 为BC 上一点,72BO =,如图所示,以BC 所在直线为x 轴,O 为坐标原点建立平面直角坐标系,M 为线段OC 上的一点. (1)若点(1,0)M ,如图①,以OM 为一边作等腰OPM ,使点P 在长方形ABCD 的一边上.请直接写出所有符合条件的点P 的坐标;(2)若将(1)中的点M 的坐标改为()4,0,其它条件不变,如图②,求出所有符合条件的点P 的坐标.(3)若将(1)中的点M 的坐标改为()5,0,其它条件不变,如图③,请直接写出符合条件的等腰三角形有几个(不必求出点P 的坐标).23.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动,它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A C →(________,________),B C →(________,________),C D →(________,________);(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P 的位置.24.如图,在平面直角坐标系中,OAB ∆的顶点都在格点上,把OAB ∆平移得到111O A B ∆,在OAB ∆内一点()1,1M 经过平移后的对应点为()13,5M -.(1)画出111O A B ∆;(2)点1B 到y 轴的距离是____个单位长;(3)求111O A B ∆的面积.25.如图1,在平面直角坐标系中,A (a ,0),C (b ,4),且满足(a+5)2+5-b =0,过C 作CB ⊥x 轴于B .(1)a = ,b = ,三角形ABC 的面积= ;(2)若过B 作BD //AC 交y 轴于D ,且AE ,DE 分别平分∠CAB ,∠ODB ,如图2,求∠AED 的度数;(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出P点坐标;若不存在,请说明理由.。
人教版七年级数学下册第7章平面直角坐标系能力提升卷一.选择题(共10小题)1.如图,小手盖住的点的坐标可能为()A.(5,2) B.(-7,9) C.(-6,-8) D.(7,-1)2.若线段AB∥x轴且AB=3,点A的坐标为(2,1),则点B的坐标为()A.(5,1) B.(-1,1)C.(5,1)或(-1,1) D.(2,4)或(2,-2)3.若点A(a+1,b-2)在第二象限,则点B(1-b,-a)在()A.第一象限B.第二象限C.第三象限D.第四象限4.在平面直角坐标系中,点D(-5,4)到x轴的距离为()A.5 B.-5 C.4 D.-45.已知点A(2x-4,x+2)在坐标轴上,则x的值等于()A.2或-2 B.-2 C.2 D.非上述答案6.根据下列表述,能确定一个点位置的是()A.北偏东40°B.某地江滨路C.光明电影院6排D.东经116°,北纬42°7.如图是某动物园的平面示意图,若以大门为原点,向右的方向为x轴正方向,向上的方向为y轴正方向建立平面直角坐标系,则驼峰所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.若线段AB∥y轴,且AB=3,点A的坐标为(2,1),现将线段AB先向左平移1个单位,再向下平移两个单位,则平移后B点的坐标为()A.(1,2) B.(1,-4)C.(-1,-1)或(5,-1) D.(1,2)或(1,-4)9.课间操时,小明、小丽、小亮的位置如图所示,小明对小亮说:如果我的位置用(0,0)表示,小丽的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4) B.(4,5) C.(3,4) D.(4,3)10.已知点A(-1,2)和点B(3,m-1),如果直线AB∥x轴,那么m的值为()A.1 B.-4 C.-1 D.3二.填空题(共6小题)11.若P(a-2,a+1)在x轴上,则a的值是.12.在平面直角坐标系中,把点A(-10,1)向上平移4个单位,得到点A′,则点A′的坐标为.13.在平面直角坐标系中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a为常数,则称点Q是点P的“a级关联点”,例如,点P(1,4)的3级关联点”为Q(3×1+4,1+3×4)即Q(7,13),若点B的“2级关联点”是B'(3,3),则点B的坐标为;已知点M(m-1,2m)的“-3级关联点”M′位于y轴上,则M′的坐标为.14.已知点A(m-1,-5)和点B(2,m+1),若直线AB∥x轴,则线段AB的长为.15.小刚家位于某住宅楼A座16层,记为:A16,按这种方法,小红家住B座10层,可记为.16.如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是.三.解答题(共7小题)17.如图,在平面直角坐标系中,三角形ABC的顶点A、B、C的坐标分别为(0,3)、(-2,1)、(-1,1),如果将三角形ABC先向右平移2个单位长度,再向下平移2个单位长度,会得到三角形A′B′C′,点A'、B′、C′分别为点A、B、C移动后的对应点.(1)请直接写出点A′、B'、C′的坐标;(2)请在图中画出三角形A′B′C′,并直接写出三角形A′B′C′的面积.18.已知平面直角坐标系中有一点M(m-1,2m+3)(1)当m为何值时,点M到x轴的距离为1?(2)当m为何值时,点M到y轴的距离为2?19.如图是某个海岛的平面示意图,如果哨所1的坐标是(1,3),哨所2的坐标是(-2,0),请你先建立平面直角坐标系,并用坐标表示出小广场、雷达、营房、码头的位置.20.已知:点P(2m+4,m-1).试分别根据下列条件,求出P点的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过A(2,-4)点且与x轴平行的直线上.21.阅读材料:象棋在中国有近三千年的历史,如图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走.(1)若点A位于点(-4,4),点B位于点(3,1),则“帅”所在点的坐标为;"马”所在点的坐标为;"兵”所在点的坐标为.(2)若“马”的位置在点A,为了到达点B,请按“马”走的规则,在图上画出一种你认为合理的行走路线,并用坐标表示出来.22.对有序数对(m,n)定义“f运算”:f(m,n)=11,,22m a n b⎛⎫+-⎪⎝⎭其中a、b为常数.f运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F 变换”:点A(x,y)在F变换下的对应点即为坐标为f(x,y)的点A′.(1)当a=0,b=0时,f(-2,4)=;(2)若点P(4,-4)在F变换下的对应点是它本身,则a=,b=.答案:1-5 CCBCA6-10 DDDCD11.-112.(-10,5)13. (1,1)(0,-16)14.915. B1016. (-1,-1)17. 解:(1)根据题意知,点A′的坐标为(2,1)、B'的坐标为(0,-1)、C′的坐标为(1,-1);(2)如图所示,△A′B′C′即为所求,S△A′B′C′=×1×2=1.18. 解:(1)∵|2m+3|=12m+3=1或2m+3=-1∴m=-1或m=-2;(2)∵|m-1|=2m-1=2或m-1=-2∴m=3或m=-1.19. 解:建立如图所示的平面直角坐标系:小广场(0,0)、雷达(4,0)、营房(2,-3)、码头(-1,-2).20. 解:(1)∵点P(2m+4,m-1),点P在y轴上,∴2m+4=0,解得:m=-2,则m-1=-3,故P(0,-3);21. 解:(1)由点A位于点(-4,4人教版七年级下册第七章《平面直角坐标系》单元测试卷一、选择题(每小题5分,共25分)1、在平面直角坐标系中,若点P的坐标为(3,2),则点P所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2、课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)C.(3,4)D.(4,3)3、若x轴上的点P到y轴的距离为3,则点P的坐标为()A.(3,0)B.(3,0)或(-3,0)C.(0,3)D.(0,3)或(0,-3)4、线段CD是由线段AB平移得到的.点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标为()A.(2,9)B.(5,3)C.(1,2)D.(-9,-4)5、若定义:f(a,b)=(-a,b),g(m,n)=(m,-n),例如f(1,2)=(-1,2),g(-4,-5)=(-4,5),则g(f(2,-3))=()A.(2,3)B.(-2,3)C.(2,-3)D.(-2,-3)二、填空题(每小题5分,共25分)6、如果点M(3,x)在第一象限,则x的取值范围是.7、点A在y轴上,位于原点的上方,距离坐标原点5个单位长度,则此点的坐标为.8、小华将直角坐标系中的猫的图案向右平移了3个单位长度,平移前猫眼的坐标为(-4,3)、(-2,3),则移动后猫眼的坐标为.9、一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标为.10、如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A20的坐标为.三、解答题(共50分)11、写出如图中“小鱼”上所标各点的坐标.12、如图,这是某市部分简图,请以火车站为坐标原点建立平面直角坐标系,并分别写出各地的坐标.13、王明从A处出发向北偏东40°走30m,到达B处;李刚也从A处出发,向南偏东50°走了40m,到达C处.(1)用1cm表示10m,画出A,B,C三处的位置;(2)在图上量出B处和C处之间的距离,再说出王明和李刚两人实际相距多少米.14、如图,把△ABC向上平移4个单位长度,再向右平移2个单位得△A1B1C1,解答下列各题:(1)在图上画出△A1B1C1;(2)写出点A1,B1,C1的坐标.15、在平行四边形ACBO中,AO=5,则点B坐标为(-2,4).(1) 写出点C坐标;(2) 求出平行四边形ACBO面积.《平面直角坐标系》单元测试卷参考答案一、选择题1、A2、D3、B4、C5、B二、填空题6、x>07、(0,5)8、(-4,6)、(-2,6)9、(3,2) 10、(5,﹣5)三、解答题11、解:A(-2,0),B(0,-2),C(2,1),D(2,1),E(0,2), O(0,0). 12、解:图略.体育场(-4,3),文化宫(-3,1),宾馆(2,2),市人教版七年级数学下册第8章《二元一次方程组》培优试题(2)一.填空题(共8小题,每小题3分,共24分)1.已知二元一次方程2350x y --=的一组解为x ay b =⎧⎨=⎩,则643b a -+= .2.已知39x y -=,请用含x 的代数式表示y ,则y = .3.若实数x ,y 满足条件23x y +=,试写出一个x 和一个y 使它们满足这个条件,此时x = ;y = . 4.若12x y =⎧⎨=-⎩是二元一次方程组2022ax y bx ay -=⎧⎨+=⎩的解,则a b -= . 5.甲、乙两人同时解关于x 、y 的方程组321,ax y x by -=⎧⎨+=⎩但是甲看错了a ,求得解为11x y =⎧⎨=-⎩,乙看错了b ,求得解为14x y =-⎧⎨=-⎩,则a b += . 6.若54413,27319,3218x y z x y z x y z -+=⎧⎪+-=⎨⎪+-=⎩则51x y z ---的立方根是 .7.若37a x y -与2a b x y +是同类项,则b = . 8.已知:2222233+=⨯,2333388+=⨯,244441515+=⨯,255552424+=⨯,⋯,若21010b b a a+=⨯符合前面式子的规律,则a b += . 二.选择题(共10小题,每小题3分,共30分)9.若||2017||3(2018)(4)2018m n m x n y ---++=是关于x ,y 的二元一次方程,则( ) A .2018m =±,4n =± B .2018m =-,4n =± C .2018m =±,4n =-D .2018m =-,4n =10.下列4组数值,哪个是二元一次方程235x y +=的解?( )A .035x y =⎧⎪⎨=⎪⎩B .11x y =⎧⎨=⎩C .23x y =⎧⎨=-⎩D .41x y =⎧⎨=⎩11.下列方程组中不是二元一次方程组的是( ) A .23x y =⎧⎨=⎩B .12x y x y +=⎧⎨-=⎩C .51x y xy +=⎧⎨=⎩D .21y xx y =⎧⎨-=⎩12.以方程组23327x y x y +=-⎧⎨-=⎩的解为坐标的点在( )A .第一象限B .第二象限C .第三象限D .第四象限13.已知222,44,x y a x y a +=⎧⎨-=-⎩且320x y -=,则a 的值为( )A .2B .0C .4-D .514.已知实数x ,y ,z 满足7422x y z x y z ++=⎧⎨+-=⎩,则代数式3()1x z -+的值是( )A .2-B .4-C .5-D .6-15.若21x y =⎧⎨=⎩是关于x 、y 的方程组27ax by bx ay +=⎧⎨+=⎩的解,则()()a b a b +-的值为( ) A .15 B .15-人教版数学七年级下册同步单元复习卷: 第8章 二元一次方程组(1) 一、选择题(每小题3分,共42分)请将正确答案的代号填涂在答题卡上 1.下列各数中,既是分数又是负数的是( ) A .1B .﹣3C .0D .2.252.﹣2019的相反数是( ) A .﹣2019B .2019C .﹣D .3.“2017中国企业跨国投资研讨会”于11月17日在长沙召开,共同聚焦“‘一带一路’跨国投资与服务新时代”,该研讨会表示,在2016年,中国企业对7961家境外企业累计实现投资约170100000000美元,170100000000用科学记数法可表示为( ) A .1.701×1011B .1.701×1010C .17.01×1010D .170.1×1094.下列各组数中,互为倒数的是( ) A .2与﹣2B .﹣与C .﹣1与(﹣1)2016D .﹣与﹣5.计算﹣100÷10×,结果正确的是( ) A .﹣100B .100C .1D .﹣16.下列说法正确的是()A.整式就是多项式B.﹣的系数是C.π是单项式D.x4+2x3是七次二项式7.下列各组单项式中,不是同类项的一组是()A.x2y和2xy2B.﹣32和3C.3xy和﹣D.5x2y和﹣2yx28.下列计算正确的是()A.3a+2b=5ab B.3x2y﹣yx2=2x2yC.5x+x=5x2D.6x﹣x=69.下列运用等式的性质,变形正确的是()A.若x2=6x,则x=6B.若2x=2a﹣b,则x=a﹣bC.若3x=2,则x=D.若a=b,则a﹣c=b﹣c10.若|a+3|+(b﹣2)2=0,则a b的值为()A.﹣6B.﹣9C.9D.611.多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的和不含二次项,则m为()A.2B.﹣2C.4D.﹣412.某商品的原价是每件x元,在销售时每件加价20元,再降价15%,则现在每件的售价是()元.A.15%x+20B.(1﹣15%)x+20C.15%(x+20)D.(1﹣15%)(x+20)13.有长为l的篱笆,利用他和房屋的一面墙围成如图形状的长方形园子,园子的宽为t,则所围成的园子面积为()A.(l﹣2t)t B.(l﹣t)t C.(﹣t)t D.(l﹣)t 14.按照如图所示的计算机程序计算,若开始输入的x值为2,第一次得到的结果为1,第二次得到的结果为4,…第2018次得到的结果为()A.1B.2C.3D.4二、填空题(每小题3分,共15分)15.临沂某天的最高温度为8℃,最大温差11℃,该天最低温度是.16.在数轴上,点A表示的数是5,若点B与A点之间距离是8,则点B表示的数是.17.若2a﹣3b2=5,则2018﹣4a+6b2的值是.18.关于x的方程mx+4=3x﹣5的解是x=1,则m=.19.如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中由个基础图形组成.三、解答题(本题共7个小题,共计63分)20.(12分)计算下列各题:(1)(﹣5)﹣(﹣6)+(+1)(2)﹣12×(﹣+)(3)﹣1100﹣(1﹣0.5)××[3﹣(﹣3)2]21.(6分)对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a ﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.22.(12分)先化简,再求值.(1)﹣x2+5x+4﹣7x﹣4+2x2,其中x=﹣2.(2)m﹣2(m﹣n2)+(﹣m+n2),其中m=﹣2,n=﹣23.(7分)2017年12月,旗团委号召各校组织开展捐赠衣物的“暖冬行动”.某校七年级六个班参加了这次捐赠活动,若每班捐赠衣物以100件为基准,超过的件数用正数表示,不足的件数用负数表示,记录如下:(1)捐赠衣物最多的班比最少的班多多少件?(2)该校七年级学生共捐赠多少件衣物?该校七年级学生平均每人捐赠多少件衣物?24.(7分)为了有效控制酒后驾车,交警队一辆汽车每天在一条东西方向的公路上巡视.某天早晨从A地出发,晚上到达B地,约定向东为正方向,当天行驶记录如下(单位:km):+18,﹣19,﹣13,+15,+10,﹣14,+19,﹣20.问:(1)B地在A地哪个方向?距A地多少千米?(2)若该警车每千米耗油0.2L,警车出发时,油箱中有油20L,请问中途有没有给警车加油?若有,至少加多少升油?请说明理由.25.(7分)如图所示,1925年数学家莫伦发现的世界上第一个完美长方形,它恰能被分割成10个大小不同的正方形,请你计算:(1)如果标注1、2的正方形边长分别为1,2,第3个正方形的边长=;第5个正方形的边长=;(2)如果标注1、2的正方形边长分别为x,y,第10个正方形的边长=.(用含x、y的代数式表示)26.(12分)开学期间,为了打扫卫生,班主任派卫生委员小敏去轻工市场购买一些扫帚和抹布.选定一家店后,老板告诉小敏,扫帚每把25元,抹布每块5元,现为了搞促销,有两种优惠方案.方案一:买一把扫帚送一块抹布;方案二:扫帚和抹布都按定价的90%付款.小敏需要购买扫帚6把,抹布x块(x>6).(1)若小敏按方案一购买,需付款多少元(用含x的式子表示);(2)若小敏按方案二购买,需付款多少元(用含x的式子表示);(3)当x=10时,通过计算说明此时按哪种方案购买较为合算;(4)当x=10时,你能给小敏提供一种更为省钱的购买方案吗?试写出你的购买方法.2018-2019学年山东省临沂市临沭县七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共42分)请将正确答案的代号填涂在答题卡上1.下列各数中,既是分数又是负数的是()A.1B.﹣3C.0D.2.25【分析】根据有理数的分类即可求出答案.【解答】解:既是分数又是负数的是故选:B.【点评】本题考查有理数的分类,解题的关键是正确理解有理数的分类,本题属于基础题型.2.﹣2019的相反数是()A.﹣2019B.2019C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2019的相反数是:2019.故选:B.【点评】此题主要考查了相反数,正确把握定义是解题关键.3.“2017中国企业跨国投资研讨会”于11月17日在长沙召开,共同聚焦“‘一带一路’跨国投资与服务新时代”,该研讨会表示,在2016年,中国企业对7961家境外企业累计实现投资约170100000000美元,170100000000用科学记数法可表示为()A.1.701×1011B.1.701×1010C.17.01×1010D.170.1×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:170100000000=1.701×1011.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列各组数中,互为倒数的是()A.2与﹣2B.﹣与C.﹣1与(﹣1)2016D.﹣与﹣【分析】根据倒数的定义,可得答案.【解答】解:﹣与﹣互为倒数,故选:D.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.5.计算﹣100÷10×,结果正确的是()A.﹣100B.100C.1D.﹣1【分析】直接利用有理数的乘除运算法则计算得出答案.【解答】解:﹣100÷10×=﹣10×=﹣1.故选:D.【点评】此题主要考查了有理数的乘除运算,正确掌握运算法则是解题关键.6.下列说法正确的是()A.整式就是多项式B.﹣的系数是C.π是单项式D.x4+2x3是七次二项式【分析】根据整式的定义,单项式的系数,单项式的定义以及多项式概念对各选项分析判断即可得解.【解答】解:A、整式就是多项式,错误,因为单项式和多项式统称为整式,故本选项错误;B、﹣的系数是﹣,故本选项错误;C、π是单项式,故本选项正确;D、x4+2x3是四次二项式,故本选项错误.故选:C.【点评】本题考查了多项式,单项式,熟练掌握相关概念是解题的关键.7.下列各组单项式中,不是同类项的一组是()A.x2y和2xy2B.﹣32和3C.3xy和﹣D.5x2y和﹣2yx2【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、所含字母相同且相同字母的指数也相同,故B正确;C、所含字母相同且相同字母的指数也相同,故C正确;D、所含字母相同且相同字母的指数也相同,故D正确;故选:A.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.8.下列计算正确的是()A.3a+2b=5ab B.3x2y﹣yx2=2x2yC.5x+x=5x2D.6x﹣x=6【分析】根据合并同类项的法则解答即可.【解答】解:A、3a与2b不是同类项,错误;B、3x2y﹣yx2=2x2y,正确;C、5x+x=6x,错误;D、6x﹣x=5x,错误;故选:B.【点评】此题考查合并同类项,关键是根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变计算进行判断.9.下列运用等式的性质,变形正确的是()A.若x2=6x,则x=6B.若2x=2a﹣b,则x=a﹣bC.若3x=2,则x=D.若a=b,则a﹣c=b﹣c【分析】根据等式的性质解答.【解答】解:A、当x=0时,该等式的变形不成立,故本选项错误;B、若2x=2a﹣b,则x=a﹣b,故本选项错误;C、在等式3x=2的两边同时除以2,等式仍成立,即x=,故本选项错误;D、在等式a=b的两边同时减去c,等式仍成立,即a﹣c=b﹣c,故本选项正确.故选:D.【点评】考查的是等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.10.若|a+3|+(b﹣2)2=0,则a b的值为()A.﹣6B.﹣9C.9D.6【分析】根据非负数的性质列式求出ab的值,然后再代入代数式进行计算.【解答】解:根据题意得,a+3=0,b﹣2=0,解得a=﹣3,b=2,∴a b=(﹣3)2=9.故选:C.【点评】本题主要考查了非负数的性质,几个非负数相加等于0,则每一个算式都等于0.11.多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的和不含二次项,则m为()A.2B.﹣2C.4D.﹣4【分析】先把两多项式的二次项相加,令x的二次项为0即可求出m的值.【解答】解:∵多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3相加后不含x的二次项,∴﹣8x2+2mx2=(2m﹣8)x2,∴2m﹣8=0,解得m=4.故选:C.【点评】本题考查的是整式的加减,根据题意把两多项式的二次项相加得到关于m的方程是解答此题的关键.12.某商品的原价是每件x元,在销售时每件加价20元,再降价15%,则现在每件的售价是()元.A.15%x+20B.(1﹣15%)x+20C.15%(x+20)D.(1﹣15%)(x+20)【分析】先提价的价格是原价+20,再降价的价格是降价前的1﹣15%,得出此时价格即可.【解答】解:根据题意可得:(1﹣15%)(x+20),故选:D.【点评】本题考查了列代数式,解答本题的关键是读懂题意,列出代数式.13.有长为l的篱笆,利用他和房屋的一面墙围成如图形状的长方形园子,园子的宽为t,则所围成的园子面积为()A.(l﹣2t)t B.(l﹣t)t C.(﹣t)t D.(l﹣)t 【分析】表示出长,利用长方形的面积列出算式即可.【解答】解:园子的面积为t(l﹣2t).故选:A.【点评】此题考查列代数式,利用长方形的面积计算方法是解决问题的关键.14.按照如图所示的计算机程序计算,若开始输入的x值为2,第一次得到的结果为1,第二次得到的结果为4,…第2018次得到的结果为()A.1B.2C.3D.4【分析】将x=2代入,然后依据程序进行计算,依据计算结果得到其中的规律,然后依据规律求解即可.【解答】解:当x=2时,第一次输出结果=×2=1;第二次输出结果=1+3=4;第三次输出结果=4×=2,;第四次输出结果=×2=1,…2018÷3=672…2.所以第2018次得到的结果为4.故选:D.【点评】本题主要考查的是求代数式的值,熟练掌握相关方法是解题的关键.二、填空题(每小题3分,共15分)15.临沂某天的最高温度为8℃,最大温差11℃,该天最低温度是﹣3℃.【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:∵临沂某天的最高温度为8℃,最大温差11℃,∴该天最低温度是:8﹣11=﹣3(℃).故答案为:﹣3℃【点评】此题主要考查了有理数的加减,正确掌握运算法则是解题关键.16.在数轴上,点A表示的数是5,若点B与A点之间距离是8,则点B表示的数是﹣3或13.【分析】分点B在点A的左边与右边两种情况讨论求解.【解答】解:①当点B在点A的左边时,5﹣8=﹣3,②当点B在点A的右边时,5+8=13,所以点B表示的数是﹣3或13.故答案为:﹣3或13.【点评】本题考查了数轴,注意分点B在点A的左右两边两种情况讨论.17.若2a﹣3b2=5,则2018﹣4a+6b2的值是2008.【分析】首先把2018﹣4a+6b2化成2018﹣2(2a﹣3b2),然后把2a﹣3b2=5代入化简后的算式,求出算式的值是多少即可.【解答】解:∵2a﹣3b2=5,∴2018﹣4a+6b2=2018﹣2(2a﹣3b2)=2018﹣2×5=2018﹣10=2008故答案为:2008.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.18.关于x的方程mx+4=3x﹣5的解是x=1,则m=﹣6.【分析】把x=1代入方程mx+4=3x﹣5,得到关于m的一元一次方程,解之即可.【解答】解:把x=1代入方程mx+4=3x﹣5得:m+4=3﹣5,解得:m=﹣6,故答案为:﹣6.【点评】本题考查了一元一次方程的解,正确掌握代入法是解题的关键.19.如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中由(3n+1)个基础图形组成.【分析】观察图形很容易看出每加一个图案就增加三个基础图形,以此类推,便可求出结果.【解答】解:第一个图案基础图形的个数:3+1=4;第二个图案基础图形的个数:3×2+1=7;第三个图案基础图形的个数:3×3+1=10;…∴第n个图案基础图形的个数就应该为:(3n+1).故答案为:(3n+1).【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三、解答题(本题共7个小题,共计63分)20.(12分)计算下列各题:(1)(﹣5)﹣(﹣6)+(+1)(2)﹣12×(﹣+)(3)﹣1100﹣(1﹣0.5)××[3﹣(﹣3)2]【分析】(1)运用加减运算律和运算法则计算可得;(2)运用乘法分配律计算可得;(3)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=(﹣5+1)+6=﹣4+6=2;(2)原式=(﹣12)×﹣(﹣12)×+(﹣12)×=﹣4+3﹣6=﹣7;(3)原式=﹣1﹣××(3﹣9)=﹣1﹣×(﹣6)=﹣1+1=0.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则及其运算律.21.(6分)对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a ﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.【分析】(1)根据新定义计算可得;(2)根据数轴得出a<0<b且|a|>|b|,从而得出a+b<0、a﹣b<0,再根据绝对值性质解答可得.【解答】解:(1)2⊙(﹣4)=|2﹣4|+|2+4|=2+6=8;(2)由数轴知a<0<b,且|a|>|b|,则a+b<0、a﹣b<0,所以原式=﹣(a+b)﹣(a﹣b)=﹣a﹣b﹣a+b=﹣2a.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算法则和运算顺序及绝对值的性质.22.(12分)先化简,再求值.(1)﹣x2+5x+4﹣7x﹣4+2x2,其中x=﹣2.(2)m﹣2(m﹣n2)+(﹣m+n2),其中m=﹣2,n=﹣【分析】(1)直接合并同类项,进而计算得出答案;(2)直接去括号进而合并同类项,再把已知代入求出答案.【解答】解:(1)﹣x2+5x+4﹣7x﹣4+2x2=x2﹣2x,当x=﹣2,原式=8;(2)原式=﹣3m+n2,当m=﹣2,n=﹣,原式=6+=.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.23.(7分)2017年12月,旗团委号召各校组织开展捐赠衣物的“暖冬行动”.某校七年级六个班参加了这次捐赠活动,若每班捐赠衣物以100件为基准,超过的件数用正数表示,不足的件数用负数表示,记录如下:(1)捐赠衣物最多的班比最少的班多多少件?(2)该校七年级学生共捐赠多少件衣物?该校七年级学生平均每人捐赠多少件衣物?【分析】(1)求出捐赠衣物最多的班额,捐赠衣物最少的班额,然后相减即可;(3)用标准捐赠衣物数加上记录的各班捐赠衣物数的和,计算即可得解.【解答】解:(1)19﹣(﹣7)=26,答:捐赠衣物最多的班比最少的班多26件;(2)18﹣3+19+14+9﹣7+6×100=50+600=650,答:该校七年级学生共捐赠650件衣物,平均每人捐赠2.6件衣物.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.24.(7分)为了有效控制酒后驾车,交警队一辆汽车每天在一条东西方向的公路上巡视.某天早晨从A地出发,晚上到达B地,约定向东为正方向,当天行驶记录如下(单位:km):+18,﹣19,﹣13,+15,+10,﹣14,+19,﹣20.问:(1)B地在A地哪个方向?距A地多少千米?(2)若该警车每千米耗油0.2L,警车出发时,油箱中有油20L,请问中途有没有给警车加油?若有,至少加多少升油?请说明理由.【分析】(1)把行驶记录求和,若结果为正,则B地在出发地的正东,若结果为负,再B地再出发点的正西;(2)计算各个记录的绝对值的和,计算出耗油量,根据邮箱里的油量判断是否需要加油,计算至少需要加多少升油.【解答】解:(1)18﹣19﹣13+15+10﹣14+19﹣20=(18+15+10)﹣(13+14+20)+(19﹣19)=43﹣47=﹣4即B地在A地的西方,距A地4千米.(2)因为(18+19+13+15+10+14+19+20)×0.2=128×0.2=25.6(L)因为25.6>20,所以途中至少加油5.6L答:途中警车需加油,至少需加油5.6L.【点评】本题考查了正负数的意义和有理数的混合运算,解决本题的关键是根据题意列出代数式,并能根据计算结果作答.25.(7分)如图所示,1925年数学家莫伦发现的世界上第一个完美长方形,它恰能被分割成10个大小不同的正方形,请你计算:(1)如果标注1、2的正方形边长分别为1,2,第3个正方形的边长=3;第5个正方形的边长=7;(2)如果标注1、2的正方形边长分别为x,y,第10个正方形的边长=3y﹣3x.(用含x、y的代数式表示)【分析】(1)根据正方形的性质即可解决问题;(2)根据各个正方形的边的和差关系分别表示出第(3)(4)(5)(6)(7),第10个正方形的边长=第7个正方形的边长﹣第一个正方形的边长﹣第3个正方形的边长;【解答】解:(1)观察图象可知第3个正方形的边长=3;第5个正方形的边长=7;故答案为3,7;(2):(1)第(3)个正方形的边长是:x+y,则第(4)个正方形的边长是:x+2y;第(5)个正方形的边长是:x+2y+y=x+3y;第(6)个正方形的边长是:(x+3y)+(y﹣x)=4y;第(7)个正方形的边长是:4y﹣x;第(10)个正方形的边长是:(4y﹣x)﹣x﹣(x+y)=3y﹣3x;故答案为3y﹣3x.【点评】本题考查了列代数式,正确理解各个正方形的边之间的和差关系是关键.26.(12分)开学期间,为了打扫卫生,班主任派卫生委员小敏去轻工市场购买一些扫帚和抹布.选定一家店后,老板告诉小敏,扫帚每把25元,抹布每块5元,现为了搞促销,有两种优惠方案.方案一:买一把扫帚送一块抹布;方案二:扫帚和抹布都按定价的90%付款.小敏需要购买扫帚6把,抹布x块(x>6).(1)若小敏按方案一购买,需付款多少元(用含x的式子表示);(2)若小敏按方案二购买,需付款多少元(用含x的式子表示);(3)当x=10时,通过计算说明此时按哪种方案购买较为合算;(4)当x=10时,你能给小敏提供一种更为省钱的购买方案吗?试写出你的购买方法.【分析】(1)根据题意列出算式即可;(2)根据题意列出算式即可;(3)把x=10分别代入求出结果,即可得出答案;(4)先在方案一买6把扫帚,再在方案二买4块抹布即可.【解答】解:(1)∵方案一:买一把扫帚送一块抹布,∴小敏需要购买扫帚6把,抹布x块(x>6),若小敏按方案一购买,需付款25×6+5(x﹣6)=(5x+120)元;(2)∵方案二:扫帚和抹布都按定价的90%付款,∴小敏需要购买扫帚6把,抹布x块(x>6),若小敏按方案二购买,需付款25×6×0.9+5x•0.9=(4.5x+135)元;(3)方案一需:5×10+120=170元,方案二需4.5×10+135=180元,故方案一划算;(4)其中6把扫帚6块抹布按方案一买,剩下4块抹布按方案二买,共需168元.【点评】本题考查了求代数式的值,列代数式的应用的应用,能正确根据题意列出算式是解此题的关键.。
平面直角坐标系2[例1]在坐标平面描出以下各点的位置.A(2,1),B(1,2),C(-1,2),D(-2,-1),E(0,3),F(-3,0)[变式题组]01.第三象限的点P(x,y),满足|x|=5,2x+|y|=1,则点P得坐标是_____________.02.在平面直角坐标系中,如果m.n>0,那么(m, |n|)一定在____________象限. 03.指出以下各点所在的象限或坐标轴.A(-3,0),B(-2,-13),C(2,12),D(0,3),E(π-3.14,3.14-π)[例2]若点P(a,b)在第四象限,则点Q(―a,b―1)在()A.第一象限B.第二象限C.第三象限D.第四象限[变式题组]01.若点G(a,2-a)是第二象限的点,则a的取值围是()A.a<0 B.a<2 C.0<a<2 B.a<0或a>202.如果点P(3x-2,2-x)在第四象限,则x的取值围是____________.03.若点P(x,y)满足xy>0,则点P在第______________象限.04.已知点P(2a-8,2-a)是第三象限的整点,则该点的坐标为___________.[例3]已知A点与点B(-3,4)关于x轴对称,求点A关于y轴对称的点的坐标.[解法指导]关于x轴对称的点的坐标的特点:横坐标(x)相等,纵坐标(y)互为相反数,关于y 轴对称的点的坐标特点:横坐标互为相反数,纵坐标(y)相等.[变式题组]01.P(-1,3)关于x轴对称的点的坐标为____________.02.P(3,-2)关于y轴对称的点的坐标为____________.03.P(a,b)关于原点对称的点的坐标为____________.04.点A(-3,2m-1) 关于原点对称的点在第四象限,则m的取值围是____________.05.如果点M(a+b,ab)在第二象限,那么点N(a,b) 关于y轴对称的点在第______象限.[例4]P(3,-4),则点P到x轴的距离是____________.[变式题组]01.已知点P(3,5),Q(6,-5),则点P、Q到x轴的距离分别是_________,__________.P到y 轴的距离是点Q到y轴的距离的________倍.02.若x轴上的点P到y轴的距离是3,则P点的坐标是__________.03.如果点B(m+1,3m-5) 到x轴的距离与它到y轴的距离相等,求m的值.04.若点(5-a,a-3)在一、三象限的角平分线上,求a的值.05.已知两点A(-3,m),B(n,4),AB∥x轴,求m的值,并确定n的取值围.例5.如图,四边形ACBD是平行四边形,且AD∥x轴,说明,A、D两点的___________坐标相等,请你依据图形写出A、B、C、D四点的坐标分别是_________、_________、____________、____________.[变式题组]01.已知:A(0,4),B(-3,0),C(3,0)要画出平行四边形ABCD,请根据A、B、C三点的坐标,写出第四个顶点D的坐标,你的答案是唯一的吗?02.已知:A(0,4),B(0,-1),在坐标平面求作一点,使△ABC的面积为5,请写出点C的坐标规律.[例6]平面直角坐标系,已知点A(-3,-2),B(0,3),C(-3,2),求△ABC的面积.[变式题组]01.在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(―3,―1),B(1,3),C(2,-3),△ABC的面积.02.如图,已知A(-4,0),B(-2,2),C,0,-1),D(1,0),求四边形ABDC的面积.03.已知:A(-3,0),B(3,0),C(-2,2),若D点在y轴上,且点A、B、C、D四点所组成的四边形的面积为15,求D点的坐标.[例7]如下图,在平面直角坐标系中,横、纵坐标都为整数的点称为整点.请你观察图中正方形A1B1C1D1、A2B2C2D2……每个正方形四条边上的整点的个数,推算出正方形A10B10C10D10四条边上的整点共有__________个.01.如下图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变成△OA3B3.已知:A(1,2),A1(2,2),A2(4,2),A3(8,2),B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换前后的三角形有何变化?找出规律,按此规律再将三角形△OA3B3变换成△OA4B4,则A4的坐标是____________,B4的坐标是_____________;(2)若按(1)题找到的规律将△OAB进行n次变换,得到三角形△OA n B n,推测A n的坐标是_____________,B n的坐标是_____________.[解法指导]由AA1A2A3、BB1B2B3的坐标可知,每变换一次,顶点A的横坐标乘以2,纵坐标不变,顶点B的横坐标乘以2,纵坐标不变.如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1)…则点A2010的坐标为_______________.演练巩固反馈提高01.若点A(-2,n)在x轴上,则点B(n-1,n+1)在( )A.第一象限B.第二象限C.第三象限D.第四象限02.若点M(a+2,3-2a)在y轴上,则点M的坐标是( )A.(-2,7) B.(0,3) C.(0,7) D.(7,0)03.如果点A(a,b),则点B(-a+1,3b-5)关于原点的对称点是( )A.第一象限B.第二象限C.第三象限D.第四象限04.以下数据不能确定物体位置的是( )A.六楼6号B.北偏西400C.大道10号D.北纬260,东经135005.在坐标平面有一点P(a,b),若ab=0,则P点的位置是( )A.原点B.x轴上C.y轴上D.坐标轴上06.已知点P(a,b)到x轴的距离为2,到y轴的距离为5,且|a-b |=b-a,则点P的坐标是_______________.07.已知平面直角坐标系两点M(5,a),N(b,-2),①若直线MN∥x轴,则a=______,b=__________;②若直线MN∥y轴,则a=___________,b=_________.08.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2010次,点P依次落在点P1,P2,P3,…,P2010的位置,则P2010的横坐标x2010=___________•09.按以下规律排列的一列数对,(2,1),(5,4),(8,7) …,则第七个数对中的两个数之和是______________•10.如图,小明用手盖住的点的坐标可能为()A.(2,3) B.(2,-3) C.(-2,3) D.(-2,-3)11.点P位于x轴的下方,距y轴3个单位长度,距x轴4个单位长度,则点P的坐标是____________.12.将正整数按如下图的规律排列下去,若有序数对(n,m)表示第n排,从左到右第m个数,则表示实数25的有序数对是______________.13.已知点A(-5,0),B(3,0),(1)在y轴上找一点C,使之满足S△ABC=16,求点C的坐标;(2)在平面直角坐标系找一点C,使之满足S△ABC=16的点C有多少个?这样的点有什么规律.14.若y轴正方向是北,小芳家的坐标为(1,2),小家的坐标为(-2,-1),则小芳家的________________方向.15.如下图,在直角坐标系xOy中,四边形OABC为正方形,其边长为4,有一动点P,自O点出发,以2个单位长度/秒得速度自O→A→B→C→O运动,问何时S△PBC=4?并求此时P点的坐标.培优检查01.如果点M(a+b,ab)在第二象限,那么点N(a,b)在第_____________象限.02.若点A(6-5a,2a-1).(1)点A在第二象限,求a的取值围;(2)当a为实数时,点A能否在第三象限,试说明理由;(3)点A能否在坐标原点处?为什么?03.点P{-12,-[ -|1-12| ]}关于y轴对称点的坐标是_____________.04.已知点A(2a+3b,-2)与点B(8,3a+2b)关于x轴对称,那么a+b=__________.05.已知a<0,那么点P(-a2-2,2-a)关于原点对称的点在第________象限.06.已知点P1(a-1,5)在第一、三象限角平分线上,点P2(2,b-8)在第二、四象限角平分线上,则(-a+b)2010=___________.07.无论x为何实数值,点P(x+1,x-1)都不在第_________象限•08.已知点P的坐标为(2-a,3b+6),且点P到两坐标轴的距离相等,则点P的坐标为_________.09.若点P(x,y)在第二象限,且|x-1|=2,|y+3|=5,则P点的坐标是__________.10.若点A(2x-3,b-x)在坐标轴夹角的平分线上,且在第二象限,则点A的坐标是__________.11.已知线段AB平行于y轴,若点A的坐标为(-2,3),且AB=4,则点B的坐标是__________.12.已知A(-3,2)与点B(x,y)在同一条平行于y轴的直线上,且点B到x轴的距离等于3,求B 点的坐标.13.已知:A(a-35,2b+23),以A点为原点建立平面直角坐标系.(1)试确定a、b的值;(2)若点B(2a-75,2b+2m),且AB所在直线为第二、四象限夹角的平分线,求m的值.。
平面直角坐标系综合提高一、知识点概述1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系2、已知点的坐标找出该点的方法:分别以点的横坐标、纵坐标在数轴上表示的点为垂足,作x轴y轴的的垂线,两垂线的交点即为要找的点。
3、已知点求出其坐标的方法:由该点分别向x轴y轴作垂线,垂足在x轴上的坐标是改点的横坐标,垂足在y轴上的坐标是该点的纵坐标。
4、各个象限内点的特征:第一象限:(+,+)点P(x,y),则x>0,y>0;第二象限:(-,+)点P(x,y),则x<0,y>0;第三象限:(-, -)点P(x,y),则x<0,y<0;第四象限:(+,-)点P(x,y),则x>0,y<0;5、坐标轴上点的坐标特征: x轴上的点,纵坐标为零;y轴上的点,横坐标为零;原点的坐标为(0 , 0)。
两坐标轴的点不属于任何象限。
6、点的对称特征:已知点P(m,n),关于x轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号关于y轴的对称点坐标是(-m,n) 纵坐标相同,横坐标反号关于原点的对称点坐标是(-m,-n) 横,纵坐标都反号7、平行于坐标轴的直线上的点的坐标特征:平行于x轴的直线上的任意两点:纵坐标相等;平行于y轴的直线上的任意两点:横坐标相等。
8、各象限角平分线上的点的坐标特征:第一、三象限角平分线上的点横、纵坐标相等。
点P(a,b)关于第一、三象限坐标轴夹角平分线的对称点坐标是(b, a)第二、四象限角平分线上的点横纵坐标互为相反数。
点P(a,b)关于第二、四象限坐标轴夹角平分线的对称点坐标是(-b,-a)9、点P(x,y)的几何意义:点P(x,y)到x轴的距离为 |y|,点P(x,y)到y轴的距离为 |x|。
10、点的平移特征:在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以得到对应点( x-a,y);将点(x,y)向左平移a个单位长度,可以得到对应点(x+a ,y);将点(x,y)向上平移b个单位长度,可以得到对应点(x,y+b);将点(x,y )向下平移b 个单位长度,可以得到对应点(x ,y -b )。
人教版七年级数学下册第七章平面直角坐标系培优专题测试训练一、选择题1. 点(-2,1)在平面直角坐标系中所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限2. 已知点A的坐标为(2,1),将点A向下平移4个单位长度,得到的点A'的坐标是 ( )A.(6,1)B.(-2,1)C.(2,5)D.(2,-3)3.图是某动物园的平面示意图,若以猴山为原点,向右的水平方向为x轴正方向,向上的竖直方向为y轴正方向建立平面直角坐标系,则熊猫馆所在的象限是 ( )A.第一象限B.第二象限C.第三象限D.第四象限4.在平面直角坐标系中,将点P(x,y)先向左平移4个单位长度,再向上平移3个单位长度后得到点P'(1,2),则点P的坐标为( )A.(2,6)B.(-3,5)C.(-3,1)D.(5,-1)5.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1 mm,则图中转折点P的坐标表示正确的是( )A.(5,30)B.(8,10)C.(9,10)D.(10,10)6. 平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标为( )A. (-2,-3)B. (2,-3)C. (-3,2)D. (3,-2)7.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…,组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第21秒时,点P的坐标为( )A.(21,-1)B.(21,0)C.(21,1)D.(22,0)8.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点O运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2021次运动后,动点P的坐标是( )A.(2021,1)B.(2021,0)C.(2021,2)D.(2022,0)二、填空题9. 点P(-6,-7)到x轴的距离为 ,到y轴的距离为 .10. 已知点P(3-m,m)在第二象限,则m的取值范围是________.11.如图,线段AB经过平移得到线段A'B',其中点A,B的对应点分别为点A',B',这四个点都在格点上.若线段AB上有一点P(a,b),则点P在A'B'上的对应点P'的坐标为 .12.五子棋是一种两人对弈的棋类游戏,起源于中国古代的传统黑白棋种,规则是在正方形棋盘中,由黑方先行,白方后行,轮流弈子,下在棋盘横线与竖线的交叉点上,直到某一方首先在任一方向(横向、竖向或者是斜着的方向)上连成五子者为胜.如图,这一部分棋盘是两个同学的对弈图.若白子A的坐标为(0,-2),白子B的坐标为(-2,0),为了不让白方马上获胜,此时黑方应该下在坐标为 的位置.(写出一处即可)13.如图,在三角形ABC中,已知点A(0,4),C(3,0),且三角形ABC的面积为10,则点B的坐标为 .14. 将自然数按以下规律排列:第一列第二列第三列第四列第五列…第一行1451617第二行23615…第三行98714…第四行10111213…第五行………………表中数2在第二行、第一列,与有序数对(2,1)对应,数5与有序数对(1,3)对应,数14与有序数对(3,4)对应.根据这一规律,数2021对应的有序数对为 .15.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位长度,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,-1),P5(2,-1),P6(2,0),…,则点P60的坐标是 .16.在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移两个单位称为一次变换.如图,已知等边三角形ABC的顶点B、C的坐标分别是(-1,-1),(-3,-1),把△ABC经过连续九次这样的变换得到△A′B′C′,则点A的对应点A′的坐标是__________.三、解答题17. 在如图所示的平面直角坐标系中,描出下列各点:(0,4),(-1,1),(-4,1),(-2,-1),(-3,-4),(0,-2),(3,-4),(2,-1),(4,1),(1,1),(0,4).依次连接各点,观察得到的图形,你觉得它像什么?18.常用的确定物体位置的方法有两种.如图,在4×4的边长为1的小正方形组成的网格中,标有A ,B两点(点A,B之间的距离为m).请你用两种不同的方法表述点B相对于点A的位置.19. 如图所示,已知单位长度为1的方格中有一个三角形ABC.(1)请画出三角形ABC先向上平移3格,再向右平移2格所得的三角形A'B'C'(点A,B,C的对应点分别为点A',B',C');(2)请以点A为坐标原点,水平向右为x轴正方向,竖直向上为y轴正方向建立平面直角坐标系(在图中画出),然后写出点B,B'的坐标.20. 如图,在平面直角坐标系中,A(3,4),B(4,1),求三角形AOB的面积.21.如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(4,0),点C的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O-A-B-C-O的路线移动(即沿着长方形的边移动一周).(1)点B的坐标为 ;(2)当点P移动了4秒时,求出点P的坐标,并在图中描出此时点P的位置;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.22.如图,在平面直角坐标系中,已知A(2,3),B(0,2),C(3,0).将三角形ABC的一个顶点平移到坐标原点O处,写出平移方法和另两个对应顶点的坐标.23. 如图,若三角形A 1B 1C 1是由三角形ABC 平移后得到的,且三角形ABC 中任意一点P (x ,y )经过平移后的对应点为P 1(x-5,y+2).(1)求点A 1,B 1,C 1的坐标;(2)求三角形A 1B 1C 1的面积.24. 【阅读】在平面直角坐标系中,以任意两点P (x 1,y 1)、Q (x 2,y 2)为端点的线段中点坐标为1212,22x x y y ++⎛⎫ ⎪⎝⎭.【运用】(1)如图,矩形ONEF 的对角线交于点M ,ON 、OF 分别在x 轴和y 轴上,O 为坐标原点,点E 的坐标为(4,3),求点M 的坐标;(2)在直角坐标系中,有A (-1,2),B (3,1),C (1,4)三点,另有一点D 与点A ,B ,C 构成平行四边形的顶点,求点D 的坐标.答案一、选择题1.B 2.D 3.B 4.D5.C [解析] 如图,过点C作CD⊥y轴于点D,∴CD=50÷2-16=9,OA=OD-AD=40-30=10,∴P(9,10).故选C.6.A 【解析】本题考查了直角坐标平面内的点关于x轴的对称点,点如果关于x轴对称,则它的横坐标不变,纵坐标互为相反数,于是点(-2,3)关于x轴对称的点的坐标为(-2,-3),故选A .7.C [解析] 半径为1的半圆的弧长是×2π×1=π,由此可列下表:故选C.8.A [解析]点P坐标的变化规律可以看作每运动四次一个循环,且横坐标与运动次数相同,纵坐标规律是:第1次纵坐标为1,第3次纵坐标为2,第2次和第4次纵坐标都是0.∵2021=505×4+1,∴经过第2021次运动后,动点P 的坐标是(2021,1).故选A .二、填空题9.7 6 10.m >3 【解析】∵点P 在第二象限,∴其横坐标是负数,纵坐标是正数,则根据题意得出不等式组,解得m >3. {3-m <0m >0)11.(a-2,b+3) [解析]由图可知线段AB 向左平移了2个单位长度,向上平移了3个单位长度,所以P'(a-2,b+3).12.(2,0)或(-2,4)13.(-2,0) [解析] S 三角形ABC =BC ·4=10,解得BC=5,∴OB=5-3=2,∴点B 的坐标为(-2,0).14.(45,5) [解析] 观察表格发现:偶数列的第一行数是“列数”的平方数,奇数行的第一列数是“行数”的平方数.下面从奇数行着手:(1,1)表示1,即12;(3,1)表示9,即32;(5,1)表示25,即52;依此类推可知(45,1)表示452,即2025,于是(45,2)表示2024,(45,3)表示2023,…,(45,5)表示2021.故填(45,5).15.(20,0) [解析] 因为P 3(1,0),P 6(2,0),P 9(3,0),…,所以P 3n (n ,0).当n=20时,P 60(20,0).16.(16,1+) 3解析:可以求得点A (-2,-1-),则第一次变换后点A 的坐标为A 1(0,1+),第二次变换33后点A 的坐标为A 2(2,-1-),可以看出每经过两次变换后点A 的y 坐标就还原,每经过一次3变换x 坐标增加2.因而第九次变换后得到点A 9的坐标为(16,1+).3三、解答题17.解:描点连线如图所示,它像五角星.18.解:方法一:用有序数对(a ,b )表示.比如:以点A为原点,水平向右为x轴正方向,竖直向上为y轴正方向建立平面直角坐标系,则点B相对于点A的位置是(3,3).方法二:用方向和距离表示.比如:点B位于点A的东北方向(或北偏东45°方向),距离点A m处.19.解:(1)如图.(2)如图,以点A为坐标原点,水平向右为x轴正方向,竖直向上为y轴正方向建立平面直角坐标系,则B(1,2),B'(3,5).20.[解析]三角形AOB的三边均不与坐标轴平行,不能直接利用三角形的面积公式求面积,需通过作辅助线,用“添补”法间接计算.解:如图,过点A作AE⊥y轴于点E,过点B作BF⊥x轴于点F,延长EA,FB交于点C,则四边形OECF为长方形.由点A,B的坐标可知AE=3,OE=4,OF=4,BF=1,CE=4,CF=4,所以AC=1,BC=3,所以S三角形AOB=S长方形OECF-S三角形OAE-S三角形ABC-S三角形BOF=4×4-×4×3-×3×1-×4×1=6.5.21.解:(1)(4,6)(2)因为点P的移动速度为每秒2个单位长度,所以当点P移动了4秒时,它移动了8个单位长度,此时点P的坐标为(4,4),图略.(3)当点P到x轴的距离为5个单位长度时,有两种情况:①若点P在AB上,则点P移动了4+5=9(个)单位长度,此时点P移动了9÷2=4.5(秒);②若点P在OC上,则点P移动了4+6+4+1=15(个)单位长度,此时点P移动了15÷2=7.5(秒).综上所述,当点P到x轴的距离为5个单位长度时,点P移动了4.5秒或7.5秒.22.解:(1)若将点A平移到原点O处,则平移方法(不唯一)是向左平移2个单位长度,再向下平移3个单位长度.另两个顶点B,C的对应点的坐标分别是(-2,-1),(1,-3).(2)若将点B平移到原点O处,则平移方法是向下平移2个单位长度.另两个顶点A,C的对应点的坐标分别是(2,1),(3,-2).(3)若将点C平移到原点O处,则平移方法是向左平移3个单位长度.另两个顶点A,B的对应点的坐标分别是(-1,3),(-3,2).23.解:(1)∵三角形ABC中任意一点P(x,y)经过平移后的对应点为P1(x-5,y+2),∴三角形ABC 向左平移5个单位长度,再向上平移2个单位长度(平移方法不唯一)得到三角形A 1B 1C 1.∵A (4,3),B (3,1),C (1,2),∴点A 1的坐标为(-1,5),点B 1的坐标为(-2,3),点C 1的坐标为(-4,4).(2)三角形A 1B 1C 1的面积=三角形ABC 的面积=3×2-×1×3-×1×2-×1×2=.24.解:(1)∵四边形ONEF 是矩形,∴点M 是OE 的中点.∵O (0,0),E (4,3),∴点M 的坐标为.(2,32)(2)设点D 的坐标为(x ,y ).若以AB 为对角线,AC ,BC 为邻边构成平行四边形,则AB ,CD 的中点重合∴Error!,解得,Error!.若以BC 为对角线,AB ,AC 为邻边构成平行四边形,则AD ,BC 的中点重合∴Error!,解得,Error!.若以AC 为对角线,AB ,BC 为邻边构成平行四边形,则BD ,AC 的中点重合∴Error!,解得,Error!.综上可知,点D 的坐标为(1,-1)或(5,3)或(-3,5).。
第七章 平面直角坐标系培优提高卷一、选择题。
(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.1. 某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第K 棵树种植在P k(X k ,Y k )处,其中X 1=1,Y 1=1,当k ≥2时,X k =X k –1+1-5([51-k ]-[52-k ]),Y k =Y k –1+[51-k ]-[52-k ],[a ]表示非负实数a 的整数部分,例如[2.6]= 2,[0.2]= 0,按此方案,第2013棵树种植点的坐标是( )A .(3,402)B .(3,403)C .(4,403)D .(5,403)2.如图,在平面直角坐标系中,已知点A (-1,1),B (-1,-2),将线段AB 向下平移2个单位,再向右平移3个单位得到线段A /B /,设点),(y x P 为线段A /B /上任意一点,则y x ,满足的条件为( )A .3=x ,14-≤≤-yB .2=x ,14-≤≤-yC .14-≤≤-x ,3=yD .14-≤≤-x ,2=y(第2题) (第3题) (第4题)3.如图,在平面直角坐标系中,A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A ﹣B ﹣C ﹣D ﹣A …的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是( )A .(﹣1,0)B .(1,﹣2)C .(1,1)D .(﹣1,﹣1)4.如图,A ,B 的坐标为(2,0),(0,1),若将线段AB 平移至A 1B 1,则a +b 的值为( )A .2B .3C .4D .55.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n 步的走法是:当n 能被3整除时,则向上走1个单位;当n 被3除,余数为1时,则向右走1个单位;当n 被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( )A .(66,34)B .(67,33)C .(100,33)D .(99,34)6.在平面直角坐标系中,对于平面内任一点(m ,n ),规定以下两种变换:①()()f m n m n =-,,,如()()f 2121=- ,,;②()()g m n m n =--,,,如()()g 2121=-- ,,.按照以上变换有:()()()f g 34f 3434⎡⎤=--=-⎣⎦ ,,,,那么()g f 32⎡-⎤⎣⎦ ,]等于( )A .(3,2)B .(3,2-,)C .(3-,2)D .(3-,2-,)7.如图,矩形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(3,2).点D 、E 分别在AB 、BC 边上,BD =BE =1.沿直线DE 将△BDE 翻折,点B 落在点B ′处,则点B ′的坐标为 ( )A .(1,2)B .(2,1)C .(2,2)D .(3,1)8.如图,△ABC 的两个顶点BC 均在第一象限,以点(0,1)为位似中心,在y 轴左方作△ABC 的位似图形△AB ′C ′,△ABC 与△A ′B ′C 的位似比为1:2.若设点C 的纵坐标是m ,则其对应点C ′的纵坐标是( )A . ﹣(2m ﹣3)B . ﹣(2m ﹣2)C . ﹣(2m ﹣1)D . ﹣2m9.已知点A (0,0),B (0,4),C (3,t +4),D (3,t ).记N (t )为▱ABCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N (t )所有可能的值为( )A .6、7 B.7、8 C.6、7、8 D.6、8、910.以下是甲、乙、丙三人看地图时对四个坐标的描述:甲:从学校向北直走500米,再向东直走100米可到图书馆.乙:从学校向西直走300米,再向北直走200米可到邮局.丙:邮局在火车站西200米处.根据三人的描述,若从图书馆出发,判断下列哪一种走法,其终点是火车站()A.向南直走300米,再向西直走200米B.向南直走300米,再向西直走100米C.向南直走700米,再向西直走200米D.向南直走700米,再向西直走600米二、填空题。
一、选择题1.在平面直角坐标系中,若点(),A a b -在第三象限,则下列各点在第四象限的是( ) A .(),a b - B .(),a b - C .(),a b -- D .(),a b2.点()1,3P --向右平移3个单位,再向上平移5个单位,则所得到的点的坐标为( ) A .()4,2- B .()2,2 C .()4,8-- D .()2,8- 3.已知点M (9,﹣5)、N (﹣3,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( ) A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交 4.点(,)M x y 在第二象限,且230,40x y -=-=,则点M 的坐标是( )A .(3,2)-B .(3,2)-C .(2,3)-D .(2,3)-5.已知点A 坐标为()2,3-,点A 关于x 轴的对称点为A ',则A '关于y 轴对称点的坐标为( )A .()2,3--B .()2,3C .()2,3-D .以上都不对 6.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A .(4,0)B .(5,0)C .(0,5)D .(5,5)7.在平面直角坐标系中,点P(-5,0)在( )A .第二象限B .x 轴上C .第四象限D .y 轴上8.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1)9.在平面直角坐标系中,将点A (﹣2,﹣2)先向右平移6个单位长度再向上平移5个单位长度得到点A ',则点A '的坐标是( )A .(4,5)B .(4,3)C .(6,3)D .(﹣8,﹣7) 10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m 其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…第n 次移动到n A .则32020OA A △的面积是( )A .2504.5mB .2505mC .2505.5mD .21010m 11.已知点M (12,﹣5)、N (﹣7,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( ) A .相交、相交 B .平行、平行 C .垂直相交、平行 D .平行、垂直相交二、填空题12.已知点P 的坐标为()2,6a -,且点P 到两坐标轴的距离相等,则a 的值为_________. 13.若线段AB 的端点为()1,3-,()1,3,线段CD 与线段AB 关于x 轴轴对称,则线段CD 上任意一点的坐标可表示为___________.14.已知点(1,0)A 、(0,2)B ,点P 在x 轴上,且PAB △的面积为5,则点P 的坐标为__________.15.下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x 轴和y 轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.16.在平面直角坐标系中,点A (2,0)B (0,4),作△BOC ,使△BOC 和△ABO 全等,则点C 坐标为________17.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,-1),…,按照这样的运动规律,点P 第17次运动到的点的坐标为__________.18.在平面直角坐标系中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义:水平底a 为任意两点的横坐标差的最大值,铅垂高h 为任意两点的纵坐标差的最大值,则“矩面积”S =ah .若A (1,2),B (﹣2,1),C (0,t )三点的“矩面积”是18,则t 的值为_____. 19.在平面直角坐标系中,对于平面内任一点(),a b ,若规定以下三种变换:①()(),,a b a b ∆=-;②(),a b O (),a b =--;③()(),,a b a b Ω=-按照以上变换例如:()()()1,21,2∆O =-,则()()2,5O Ω等于__________.20.若点()35,62P a a +--到 两坐标轴的距离相等,则a 的值为____________ 21.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B (m ,3),C (n ,-5),则AD BC =______.三、解答题22.某部队在大西北戈壁滩上进行军事演习,部队司令部把部队分为“蓝军”、“黄军”两方.蓝军的指挥所在A 地,黄军的指挥所地B 地,A 地在B 地的正西边(如图).部队司令部在C地.C 在A 的北偏东60︒方向上、在B 的北偏东30方向上.(1)BAC ∠=______°;(2)请在图中确定(画出)C 的位置,标出字母C ;(3)演习前,司令部要蓝军、黄军派人到C 地汇报各自的准备情况.黄军一辆吉普车从B 地出发、蓝军一部越野车在吉普车出发3分钟后从A 地出发,它们同时到达C 地.已知吉普车行驶了18分钟.A 到C 的距离是B 到C 的距离的1.7倍.越野车速度比吉普车速度的2倍多4千米.求越野车、吉普车的速度及B 地到C 地的距离(速度单位用:千米/时).23.在直角坐标系中,已知点A (a +b ,2﹣a )与点B (a ﹣5,b ﹣2a )关于y 轴对称, (1)试确定点A 、B 的坐标;(2)如果点B 关于x 轴的对称的点是C ,求△ABC 的面积.24.如图,在平面直角坐标系中,A (-2,0),C (2,2),过C 作CB ⊥x 轴于B ,在y 轴上是否存在点P ,使得ABC 和ABP △的面积相等,若存在,求出P 点的坐标;若不存在,请说明理由.25.如图,在平面直角坐标系中,三角形ABC?的顶点坐标分别是()()A 4,1B 1,1?--,,()C 1,4?-,点()11P x ,y ?是三角形 ABC?内一点,点()11 P x ,y ?平移到点()111 P x 3,1?y +-时;(1)画出平移后的新三角形111?A B C 并分别写出点111?A B C 的坐标;(2)求出三角形111?A B C 的面积一、选择题1.在平面直角坐标系中,若点(),A a b -在第三象限,则下列各点在第四象限的是( ) A .(),a b - B .(),a b - C .(),a b -- D .(),a b2.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为(2,1)A -和(2,3)B --,那么第一架轰炸机C 的坐标是( )A .(2,3)-B .(2,1)-C .(2,1)--D .(3,2)- 3.若点(),A m n 到y 轴的距离是它到x 轴距离的两倍,则( ).A .2m n =B .2m n =C .2m n =D .2m n = 4.点A(-π,4)在第( )象限A .第一象限B .第二象限C .第三象限D .第四象限 5.点(,)M x y 在第二象限,且230,40x y -=-=,则点M 的坐标是( )A .(3,2)-B .(3,2)-C .(2,3)-D .(2,3)- 6.如图,在平面直角坐标系中,、、A B C 三点的坐标分别是()()()1,2,4,2,2,1--,若以A B C D 、、、为顶点的四边形为平行四边形,则点D 的坐标不可能是( )A .()7,1-B .()3,1--C .()1,5D .()2,57.如图,在直角坐标系中,边长为2的等边三角形12OA A 的一条边2OA 在x 的正半轴上,O 为坐标原点;将12OA A △沿x 轴正方向依次向右移动2个单位,依次得345A A A △,678A A A ……则顶点2019A 的坐标是( )A .()2690,0B .()2692,0C .()2694,0D .无法确定 8.过点A (﹣2,3)且垂直于y 轴的直线交y 轴于点B ,则点B 的坐标为( ) A .(0,﹣2) B .(3,0) C .(0,3) D .(﹣2,0) 9.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( )A .(5,4)B .(4,5)C .(3,4)D .(4,3)10.在平面直角坐标系中,点P (﹣2019,2018)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 11.若点(1,)A n -在x 轴上,则点(1,1)B n n +-在( ).A.第一象限B.第二象限C.第三象限D.第四象限二、填空题12.若点A(m+2,﹣3)与点B(﹣4,n+5)在二四象限角平分线上,则m+n=_____.13.写一个第三象限的点坐标,这个点坐标是_______________.14.若点M(5,a)关于y轴的对称点是点N(b,4),则(a+b)2020= __15.已知点P(a,a+1)在平面直角坐标系的第二象限内,则a的取值范围___.16.在平面直角坐标系中,有点A(a﹣2,a),过点A作AB⊥x轴,交x轴于点B,且AB =2,则点A的坐标是___.17.如图,若棋盘中“帅”的坐标是(0,1),“卒”的坐标是(2,2),则“马”的坐标是________.18.下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x轴和y轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.19.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2021次运动后,动点P的坐标是_____.20.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A2020的坐标是________.21.已知点A (﹣3,2),AB ∥坐标轴,且AB =4,若点B 在x 轴的上方,则点B 坐标为__.三、解答题22.ABC 在直角坐标系中如图所示.(1)请写出点A 、B 、C 的坐标;(2)求ABC 的面积.23.在平面直角坐标系中,画出点(0,0)A ,(4,0)B ,(3,3)C ,(0,5)D ,并求出BCD 的面积.24.如图,在平面直角坐标系中,四边形ABCD 的顶点都在格点上,其中A 点坐标为(﹣2,﹣1),C 点坐标为(3,3).(1)填空:点B 到y 轴的距离为 ,点B 到直线AD 的距离为 ; (2)求四边形ABCD 的面积;(3)点M 在y 轴上,当△ADM 的面积为12时,请直接写出点M 的坐标. 25.已知()4,0A ,点B 在x 轴上,且5AB =.(1)直接写出点B 的坐标;(2)若点C 在y 轴上,且10ABC S =△,求点C 的坐标.(3)若点()3,2D a a -+,且15ABD S =,求点D 的坐标.一、选择题1.已知点32,)6(M a a -+.若点M 到两坐标轴的距离相等,则a 的值为( ) A .4 B .6- C .1-或4 D .6-或23 2.已知两点(,5)A a ,(1,)B b -且直线//AB x 轴,则( )A .a 可取任意实数,5b =B .1a =-,b 可取任意实数C .1a ≠-,5b =D .1a =-,5b ≠3.已知P(a ,b )满足ab=0,则点P 在( )A .坐标原点B .X 轴上C .Y 轴上D .坐标轴上 4.在平面直角坐标系中,若点(),A a b -在第三象限,则下列各点在第四象限的是( ) A .(),a b - B .(),a b - C .(),a b -- D .(),a b 5.下列各点中,在第二象限的是( )A .()1,0B .()1,1C .()1,1-D .()1,1- 6.点M 在第二象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( )A .(-3,5)B .(5,- 3)C .(-5,3)D .(3,5)7.如图,在棋盘上建立平面直角坐标系,若使“将”位于点(-1,-2),“象”位于点(4,-1),则“炮”位于点( )A .(2,-1)B .(-1,2)C .(-2,1)D .(-2,2) 8.点()P 3,2-在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 9.点(),A m n 满足0mn =,则点A 在( )A .原点B .坐标轴上C .x 轴上D .y 轴上10.在平面直角坐标系中,点()25,1N a -+一定在( )A .第一象限B .第二象限C .第三象限D .第四象限 11.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .82D .16二、填空题12.已知点P 的坐标为()2,6a -,且点P 到两坐标轴的距离相等,则a 的值为_________. 13.若点P 位于x 轴上方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,则点P 的坐标是_____________.14.若不在第一象限的点(),22A x x -+到两坐标轴距离相等,则A 点坐标为 _________. 15.已知两点A(-2,m),B(n ,-4),若AB//y 轴,且AB=5,则m=_______;n=_______________. 16.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示,则点A 400的坐标为_______.17.如图,已知A 1(1,2),A 2(2,2),A 3(3,0),A 4(4,﹣2),A 5(5,﹣2),A 6(6,0)…,按这样的规律,则点A 2020的坐标为______.18.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.则点2019A 的坐标是_________.19.如图,在平面直角坐标系中,()()()()1,1,1,1,1,2,1,2A B C D ----,把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处, 并按A B C D A ----⋯的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是 ____.20.已知点P 在第四象限,且到x 轴的距离是1,到y 轴的距离是3,则P 的坐标是______.21.已知线段AB 的长度为3,且AB 平行于y 轴,A 点坐标为()32,,则B 点坐标为______.三、解答题22.在平面直角坐标系中,已知(0,1)A ,(2,0)B ,(4,3)C .(1)在给出的平面直角坐标系中画出ABC ∆;(2)已知P 为x 轴上一点,若ABP ∆的面积为2,求点P 的坐标.23.如图,△ABC 在直角坐标系中,(1)请写出△ABC 各点的坐标.(2)若把△ABC 向上平移2个单位,再向左平移1个单位得到△A ′B ′C ′,写出A ′、B ′、C ′的坐标.(3)求出三角形ABC 的面积.24.如图是我国南沙群岛中某个小岛的平面示意图,小明建立了平面直角坐标系后,营房的坐标为(2,5)-,哨所2的坐标为(2,2)-.(1)请将小明所做的坐标系在图上画出,并写出雷达,码头,停机坪,哨所1的坐标. (2)如果平移直角坐标系,使营房为坐标原点,值班士兵从营房出发,沿着(3,3),(1,6),(4,8),(4,7),(5,2),(1,10)---的路线巡逻,请依次写出他所经过的地方.25.已知点P(m+2,3),Q(−5,n−1),根据以下条件确定m、n的值(1)P、Q两点在第一、三象限的角平分线上;(2)PQ∥x轴,且P点与Q点的距离为3.。
初中数学直角坐标系提升题与常考题和培优题(含分析 )一.选择题(共12 小题)1.已知点 P(x+3, x﹣ 4)在 x 轴上,则 x 的值为()A.3B.﹣3 C.﹣ 4 D.42.如图,在平面直角坐标系中,点P 的坐标为()A.(3,﹣2)B.(﹣2,3) C.(﹣ 3,2)D.(2,﹣ 3)3.已知点 P(0,m)在 y 轴的负半轴上,则点M(﹣ m,﹣ m+1)在()A.第一象限B.第二象限C.第三象限D.第四象限4.已知点 A(﹣ 1, 0)和点 B( 1,2),将线段 AB平移至 A′B′,点 A′于点 A 对应,若点 A′的坐标为( 1,﹣ 3),则点 B′的坐标为()A.(3,0) B.(3,﹣ 3)C.(3,﹣1) D.(﹣1,3)5.对于随意实数 m,点 P(m﹣2,9﹣3m)不行能在()A.第一象限B.第二象限C.第三象限D.第四象限6.如图为 A、B、C 三点在座标平面上的地点图.若A、B、C 的 x 坐标的数字总和为 a,y 坐标的数字总和为b,则 a﹣ b 之值为什么?()A.5B.3C.﹣ 3 D.﹣57.如图,正五边形 ABCDE放入某平面直角坐标系后,若极点A,B,C,D的坐标分别是( 0, a),(﹣ 3,2),(b,m),( c, m),则点 E 的坐标是()A.(2,﹣3)B.(2,3) C.(3,2) D.(3,﹣2)8.如图, A,B 的坐标为( 2, 0),(0,1),若将线段 AB平移至 A1B1,则 a+b 的值为()A.2B.3C.4D.59.如图,小手遮住的点的坐标可能是()A.(6,﹣4)B.(5,2) C.(﹣3,﹣ 6)D.(﹣ 3,4)10.如图,将△ PQR向右平移 2 个单位长度,再向下平移 3 个单位长度,则极点P 平移后的坐标是()A.(﹣ 2,﹣ 4)B.(﹣ 2, 4) C.( 2,﹣ 3)D.(﹣ 1,﹣ 3)11.在平面直角坐标系 xOy 中,对于点 P( a, b)和点 Q(a,b′),给出以下定义:若 b′=,则称点 Q为点的限变点.比如:点( 2,3)的限变点的坐标是( 2,3),点(﹣ 2,5)的限变点的坐标是(﹣2,﹣ 5),假如一个点的限变点的坐标是(,﹣1),那么这个点的坐标是()A.(﹣ 1,) B.(﹣,﹣1)C.(,﹣ 1)D.(,1)12.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①f ( a, b) =(﹣ a, b).如: f (1,3)=(﹣ 1,3);② g( a, b) =( b,a).如: g( 1, 3) =( 3, 1);③ h( a, b) =(﹣ a,﹣ b).如, h(1,3)=(﹣ 1,﹣ 3).依据以上变换有: f ( g( h(2,﹣ 3)))=f ( g(﹣ 2, 3))=f (3,﹣ 2)=(﹣ 3,﹣2),那么 f (g(h(﹣ 3,5)))等于()A.(﹣ 5,﹣ 3)B.(5,3) C.(5,﹣ 3)D.(﹣ 5,3)二.填空题(共13 小题)13.点 P( 3,﹣ 2)到 y 轴的距离为个单位.14.点 P( x﹣2,x+3)在第一象限,则x 的取值范围是15.线段 AB的长为 5,点 A 在平面直角坐标系中的坐标为(.3,﹣ 2),点B 的坐标为( 3,x),则点 B 的坐标为.16.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△( a,b)=(﹣ a,b);②○( a,b)=(﹣ a,﹣ b);③Ω( a,b)=(a,﹣ b),依据以上变换比如:△(○( 1,2))=(1,﹣2),则○(Ω( 3,4))等于.17.将点 A( 1,﹣ 3)沿 x 轴向左平移 3 个单位长度,再沿y 轴向上平移 5 个单位长度后获得的点A′的坐标为.18.已知点 P(2﹣a,2a﹣ 7)(此中 a 为整数)位于第三象限,则点 P 坐标为.19.如图是利用网格画出的太原市地铁1,2,3 号线路部分规划表示图,若成立适合的平面直角坐标系,表示双塔西街点的坐标为(0,﹣ 1),表示桃园路的点的坐标为(﹣ 1,0),则表示太原火车站的点(正幸亏网格点上)的坐标是.20.定义:直线 l 1与 l 2订交于点 O,对于平面内随意一点 P1点 P 到直线 l 1与 l 2的距离分别为 p、 q 则称有序实数对( p,q)是点 P 的“距离坐标”.依据上述定义,“距离坐标”是(3, 2)的点的个数有个.21.在平面直角坐标系中,小明玩走棋的游戏,其走法是:棋子从原点出发,第1 步向右走 1 个单位,第2 步向右走 2 个单位,第3 步向上走 1 个单位,第4 步向右走 1 个单位,,依此类推,第 n 步的走法是:当 n 能被 3 整除时,则向上走 1个单位;当 n 被 3 除,余数为 1 时,则向右走 1 个单位;当 n 被 3 除,余数为 2时,则向右走 2 个单位,当走完第 8 步时,棋子所处地点的坐标是;当走完第 2016 步时,棋子所处地点的坐标是.22.如图,在平面直角坐标系中,每个最小方格的边长均为 1 个单位长, P1,P2,P3,,均在格点上,其次序按图中“→”方向摆列,如:P1(0,0),P2(0,1),P3( 1,1),P4(1,﹣1),P5(﹣ 1,﹣ 1),P6(﹣ 1,2)依据这个规律,点P2016的坐标为.23.如图,在平面直角坐标系中,一动点从原点 O出发,沿着箭头所示方向,每次挪动 1 个单位,挨次获得点 P1(0,1),P2( 1, 1),P3( 1, 0),P4(1,﹣ 1),P5( 2,﹣ 1),P6(2, 0),,则点 P60的坐标是.24.在平面直角坐标系中, A( 1,1),B(﹣ 1,1),C(﹣ 1,﹣2),D( 1,﹣2),把一条长为 2016 个单位长度且没有弹性的细线(线的粗细忽视不计)的一端固定在点 A 处,并按 A﹣B﹣C﹣D﹣A﹣.的规律紧绕在四边形ABCD的边上,则细线另一端所在地点的点的坐标是.25.如图,动点 P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点( 1,1),第 2 次接着运动到点(2,0),第 3 次接着运动到点(3,2),按这样的运动规律,经过第2016 次运动后,动点P 的坐标是.三.解答题(共15 小题)26.在以下图的直角坐标系中描出以下各点:A(﹣ 2, 0),B(2,5), C(﹣,﹣ 3)27.在如图中,确立点A、 B、C、D、E、F、G的坐标.请说明点 B 和点 F 有什么关系?28.求图中四边形 ABCD的面积.29.在平面直角坐标系中,点A( 2m﹣7,m﹣5)在第四象限,且m 为整数,试求的值.30.如图,一个小正方形网格的边长表示50 米. A 同学上学时从家中出发,先向东走 250 米,再向北走 50 米就抵达学校.(1)以学校为坐标原点,向东为 x 轴正方向,向北为 y 轴正方向,在图中成立直角坐标系:(2) B 同学家的坐标是;(3)在你所建的直角坐标系中,假如 C 同学家的坐标为(﹣ 150,100),请你在图中描出表示 C 同学家的点.31.如图,一只甲虫在5×5 的方格(每小格边长为1)上沿着网格线运动.它从 A 处出发去探望 B、C、D 处的其余甲虫,规定:向上向右走为正,向下向左走为负.假如从 A 到 B 记为: A→B( +1,+4),从 B→A(﹣ 1,﹣ 4),此中第一个数表示左右方向,第二个数表示上下方向.(1)图中 B→C (,),C→(+1,);(2)若这只甲虫的行走路线为 A→B→C→D,请计算该甲虫走过的行程;(3)若图中还有两个格点 M、 N,且 M→A( 3﹣a,b﹣4),M→N( 5﹣ a, b﹣2),则 N→A应记作什么?32.如图,已知 A(﹣ 2,3)、 B( 4, 3)、C(﹣ 1,﹣ 3)(1)求点 C 到 x 轴的距离;(2)求△ ABC的面积;(3)点 P 在 y 轴上,当△ ABP的面积为 6 时,请直接写出点 P 的坐标.33.已知: A(0,1),B(2,0),C(4,3)(1)求△ ABC的面积;(2)设点 P 在座标轴上,且△ ABP与△ ABC的面积相等,求点 P 的坐标.34.已知:如图,在平面直角坐标系xOy 中, A(4,0), C( 0,6),点 B 在第一象限内,点 P 从原点 O出发,以每秒 2 个单位长度的速度沿着长方形OABC挪动一周(即:沿着O→A→B→C→O的路线挪动).( 1)写出 B 点的坐标();(2)当点 P 挪动了 4 秒时,描出此时 P 点的地点,并求出点 P 的坐标;(3)在挪动过程中,当点 P 到 x 轴的距离为 5 个单位长度时,求点 P 挪动的时间.35.如图,某校七年级的同学从学校 O点出发,要到某地 P 处进行探险活动,他们先向正西方向走 8 千米到 A 处,又往正南方向走 4 千米到 B 处,又折向正东方向走 6 千米到 C 处,再折向正北方向走 8 千米到 D 处,最后又往正东方向走 2 千米才到探险处 P,以点 O为原点,取 O点的正东方向为 x 轴的正方向,取 O点的正北方向为 y 轴的正方向,以 2 千米为一个长度单位成立直角坐标系.(1)在直角坐标系中画出探险途线图;(2)分别写出 A、B、C、D、P 点的坐标.36.已知: P(4x,x﹣3)在平面直角坐标系中.( 1)若点P 在第三象限的角均分线上,求x 的值;( 2)若点P 在第四象限,且到两坐标轴的距离之和为9,求x 的值.37.在平面直角坐标系xOy中,对于随意三点A,B,C 的“矩面积”,给出以下定义:“水平底” a:随意两点横坐标差的最大值,“铅垂高”h:随意两点纵坐标差的最大值,则“矩面积”S=ah.比如:三点坐标分别为A( 1,2),B(﹣ 3,1),C(2,﹣ 2),则“水平底” a=5,“铅垂高” h=4,“矩面积” S=ah=20.已知点 A(1,2), B(﹣ 3,1), P( 0, t ).(1)若 A,B,P 三点的“矩面积”为 12,求点 P 的坐标;(2)直接写出 A,B,P 三点的“矩面积”的最小值.38.如图,在平面直角坐标系中,原点为O,点 A( 0,3),B(2,3),C(2,﹣3),D(0,﹣3).点P,Q是长方形ABCD边上的两个动点,BC交x 轴于点M.点 P 从点 O 出发以每秒 1 个单位长度沿 O→A→B→M的路线做匀速运动,同时点 Q 也从点 O出发以每秒 2 个单位长度沿 O→D→C→M的路线做匀速运动.当点 Q 运动到点 M时,两动点均停止运动.设运动的时间为 t 秒,四边形 OPMQ的面积为S.(1)当 t=2 时,求 S 的值;(2)若 S<5 时,求 t 的取值范围.39.问题情境:在平面直角坐标系xOy 中有不重合的两点A(x1,y1)和点 B(x2,y2),小明在学习中发现,若 x1=x2,则 AB∥ y 轴,且线段 AB的长度为 |y 1﹣y2| ;若 y1 =y2,则 AB ∥ x 轴,且线段 AB的长度为 |x 1﹣x2| ;【应用】:( 1)若点( 2)若点A(﹣ 1,1)、B(2,1),则C(1,0),且 CD∥y 轴,且AB∥x 轴, AB的长度为CD=2,则点 D 的坐标为..【拓展】:我们规定:平面直角坐标系中随意不重合的两点 M(x1,y1),N(x2,y2)之间的折线距离为 d(M,N)=|x 1﹣ x2 |+|y 1﹣y2| ;比如:图 1 中,点 M(﹣ 1,1)与点N(1,﹣ 2)之间的折线距离为d(M,N)=| ﹣1﹣ 1|+|1 ﹣(﹣ 2)|=2+3=5.解决以下问题:( 1)如图( 2)如图1,已知2,已知E(2,0),若 F(﹣ 1,﹣ 2),则 d(E,F);E(2,0),H(1,t ),若 d(E,H)=3,则 t=.(3)如图 3,已知 P( 3, 3),点 Q 在 x 轴上,且三角形 OPQ的面积为 3,则 d (P,Q)=.40.小明在学习了平面直角坐标系后,突发奇想,画出了这样的图形(如图),他把图形与 x 轴正半轴的交点挨次记作A1( 1,0),A2(5,0), A n,图形与 y 轴正半轴的交点挨次记作B1(0,2),B2(0,6), B n,图形与 x 轴负半轴的交点挨次记作 C1(﹣ 3, 0),C2(﹣ 7,0), C n,图形与 y 轴负半轴的交点挨次记作 D1(0,﹣ 4),D2(0,﹣ 8), D n,发现此中包括了必定的数学规律.请依据你发现的规律达成以下题目:( 1)请分别写出以下点的坐标: A3,B3,C3,D3;( 2)请分别写出以下点的坐标: A,B,C,D;n n n n( 3)恳求出四边形 A5 B5C5 D5的面积.初中数学直角坐标系提升题与常考题和培优题(含分析)参照答案与试题分析一.选择题(共12 小题)1.(2017? 河北一模)已知点P( x+3,x﹣4)在 x 轴上,则 x 的值为()A.3B.﹣3 C.﹣ 4 D.4【剖析】直接利用 x 轴上点的纵坐标为0,从而得出答案.【解答】解:∵点 P(x+3,x﹣4)在 x 轴上,∴x﹣ 4=0,解得: x=4,应选: D.【评论】本题主要考察了点的坐标,正确掌握 x 轴上点的坐标性质是解题重点.2.(2016? 柳州)如图,在平面直角坐标系中,点P 的坐标为()A.(3,﹣2)B.(﹣2,3)C.(﹣ 3,2)D.(2,﹣ 3)【剖析】依据平面直角坐标系以及点的坐标的定义写出即可.【解答】解:点 P 的坐标为( 3,﹣ 2).应选 A.【评论】本题考察了点的坐标,娴熟掌握平面直角坐标系中点的表示是解题的重点.3.(2016? 临夏州)已知点 P(0,m)在 y 轴的负半轴上,则点M(﹣ m,﹣ m+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【剖析】依据 y 轴的负半轴上点的横坐标等于零,纵坐标小于零,可得m的值,依据不等式的性质,可获得答案.【解答】解:由点 P(0,m)在 y 轴的负半轴上,得m<0.由不等式的性质,得﹣m> 0,﹣ m+1>1,则点 M(﹣ m,﹣ m+1)在第一象限,应选: A.【评论】本题考察了点的坐标,利用点的坐标得出不等式是解题重点.4.(2017? 禹州市一模)已知点A(﹣ 1,0)和点 B(1,2),将线段 AB平移至A′B′,点 A′于点 A对应,若点 A′的坐标为( 1,﹣3),则点 B′的坐标为()A.(3,0) B.(3,﹣ 3)C.(3,﹣1)D.(﹣1,3)【剖析】依据平移的性质,以及点 A,B 的坐标,可知点 A 的横坐标加上了 4,纵坐标减小了 1,因此平移方法是:先向右平移 4 个单位,再向下平移 1 个单位,依据点 B 的平移方法与 A 点同样,即可获得答案.【解答】解:∵ A(﹣ 1, 0)平移后对应点A′的坐标为( 1,﹣ 3),∴A 点的平移方法是:先向右平移 2 个单位,再向下平移 3 个单位,∴B 点的平移方法与 A 点的平移方法是同样的,∴B( 1, 2)平移后 B′的坐标是:(3,﹣ 1).应选: C.【评论】本题考察了坐标与图形的变化﹣平移,解决问题的重点是运用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.5.(2016? 乌鲁木齐)对于随意实数m,点 P(m﹣2,9﹣3m)不行能在()A.第一象限B.第二象限C.第三象限D.第四象限【剖析】依据点所在象限中横纵坐标的符号即可列不等式组,若不等式组无解,则不可以在这个象限.【解答】解: A、当点在第一象限时,解得2<m< 3,应选项不切合题意;B、当点在第二象限时,解得m<3,应选项不切合题意;C、当点在第三象限时,,不等式组无解,应选项切合题意;D、当点在第四象限时,解得m>0,应选项不切合题意.应选 C.【评论】本题考察了点的坐标,理解每个象限中点的坐标的符号是重点.6.(2016? 台湾)如图为 A、B、C三点在座标平面上的地点图.若A、B、C的 x 坐标的数字总和为a,y 坐标的数字总和为b,则 a﹣b 之值为什么?()A.5B.3C.﹣ 3 D.﹣5【剖析】先求出 A、B、C 三点的横坐标的和为﹣ 1+0+5=4,纵坐标的和为﹣ 4﹣1+4=﹣ 1,再把它们相减即可求得a﹣b 之值.【解答】解:由图形可知:a=﹣1+0+5=4,b=﹣4﹣1+4=﹣1,a﹣b=4+1=5.应选: A.【评论】考察了点的坐标,解题的重点是求得 a 和 b 的值.7.(2016? 滨州)如图,正五边形 ABCDE放入某平面直角坐标系后,若极点 A,B,C,D 的坐标分别是( 0,a),(﹣ 3,2),(b,m),( c, m),则点 E 的坐标是()A.(2,﹣3)B.(2,3) C.(3,2) D.(3,﹣2)【剖析】由题目中 A 点坐标特色推导得出平面直角坐标系y 轴的地点,再经过 C、D点坐标特色联合正五边形的轴对称性质就能够得出 E 点坐标了.【解答】解:∵点 A 坐标为( 0,a),∴点 A 在该平面直角坐标系的y 轴上,∵点 C、D 的坐标为( b, m),(c,m),∴点 C、D 对于 y 轴对称,∵正五边形 ABCDE是轴对称图形,∴该平面直角坐标系经过点 A 的 y 轴是正五边形 ABCDE的一条对称轴,∴点 B、E 也对于 y 轴对称,∵点 B 的坐标为(﹣ 3,2),∴点 E 的坐标为( 3, 2).应选: C.【评论】本题考察了平面直角坐标系的点坐标特色及正五边形的轴对称性质,解题的重点是经过极点坐标确认正五边形的一条对称轴即为平面直角坐标系的 y 轴.8.(2016? 菏泽)如图, A, B 的坐标为( 2,0),( 0, 1),若将线段AB 平移至A1B1,则 a+b 的值为()A.2B.3C.4D.5【剖析】直接利用平移中点的变化规律求解即可.【解答】解:由 B 点平移前后的纵坐标分别为 1、2,可得 B 点向上平移了 1 个单位,由 A 点平移前后的横坐标分别是为 2、3,可得 A 点向右平移了 1 个单位,由此得线段 AB的平移的过程是:向上平移 1 个单位,再向右平移 1 个单位,因此点A、 B 均按此规律平移,由此可得 a=0+1=1, b=0+1=1,故 a+b=2.应选: A.【评论】本题考察了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移同样.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.9.(2016? 盐城校级一模)如图,小手遮住的点的坐标可能是()A.(6,﹣4) B.(5,2) C.(﹣3,﹣ 6)D.(﹣ 3,4)【剖析】先判断手所在的象限,再判断象限横纵坐标的正负即可.【解答】解:因为小手遮住的点在第四象限,第四象限内点的坐标横坐标为正,纵坐标为负,且横坐标的绝对值大于纵坐标的绝对值.故只有选项 A 切合题意,应选: A.【评论】解答本题的重点是熟记平面直角坐标系中各个象限内点的坐标符号,四个象限的符号特色分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限( +,﹣).10.( 2016? 安顺)如图,将△ PQR向右平2 个单位长度,再向下平移3 个单移位长度,则极点P 平移后的坐标是()A.(﹣ 2,﹣ 4)B.(﹣ 2, 4) C.( 2,﹣ 3)D.(﹣ 1,﹣ 3)【剖析】直接利用平移中点的变化规律求解即可.【解答】解:由题意可知本题规律是( x+2,y﹣3),照此规律计算可知极点P(﹣4,﹣ 1)平移后的坐标是(﹣ 2,﹣ 4).应选 A.【评论】本题考察了图形的平移变换,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.11.( 2016? 临澧县模拟)在平面直角坐标系xOy 中,对于点P(a,b)和点 Q (a,b′),给出以下定义:若 b′=,则称点 Q为点的限变点.比如:点( 2,3)的限变点的坐标是( 2,3),点(﹣ 2,5)的限变点的坐标是(﹣ 2,﹣ 5),假如一个点的限变点的坐标是(,﹣ 1),那么这个点的坐标是()A.(﹣ 1,) B.(﹣,﹣ 1) C.(,﹣ 1)D.(,1)【剖析】依据新定义的表达可知:这个点和限变点的横坐标不变,当横坐标a≥1 时,这个点和限变点的纵坐标不变;当横坐标a< 1 时,纵坐标是互为相反数;据此可做出判断.【解答】解:∵> 1∴这个点的坐标为(,﹣1)应选 C.【评论】本题考察了点的坐标和对新定义的阅读理解,正确找出这个点与限变点的横、纵坐标与 a 的关系即可.12.(2016? 高新区一模)在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①f ( a, b) =(﹣ a, b).如: f (1,3)=(﹣ 1,3);② g( a, b) =( b,a).如: g( 1, 3) =( 3, 1);③ h( a, b) =(﹣ a,﹣ b).如, h(1,3)=(﹣ 1,﹣ 3).依据以上变换有: f ( g( h(2,﹣ 3)))=f ( g(﹣ 2, 3))=f (3,﹣ 2)=(﹣ 3,﹣2),那么 f (g(h(﹣ 3,5)))等于()A.(﹣ 5,﹣ 3)B.(5,3) C.(5,﹣ 3)D.(﹣ 5,3)【剖析】依据 f (a,b)=(﹣ a, b).g(a,b)=(b,a). h( a, b) =(﹣ a,﹣ b),可得答案.【解答】解: f (g(h(﹣ 3,5))) =f (g(3,﹣ 5)=f (﹣ 5,3)=(5,3),应选: B.【评论】本题考察了点的坐标,利用 f (a,b)=(﹣ a,b).g( a,b)=( b,a).h( a, b) =(﹣ a,﹣ b)是解题重点.二.填空题(共13 小题)13.( 2017 春? 海宁市校级月考)点 P(3,﹣ 2)到 y 轴的距离为3个单位.【剖析】求得 3 的绝对值即为点 P 到 y 轴的距离.【解答】解:∵ |3|=3 ,∴点 P(3,﹣ 2)到 y 轴的距离为 3 个单位,故答案为: 3.【评论】本题主要考察了点的坐标的几何意义:点到 x 轴的距离为点的纵坐标的绝对值,到 y 轴的距离为点的横坐标的绝对值.14.(2016? 衡阳)点 P( x﹣ 2,x+3)在第一象限,则 x 的取值范围是x>2.【剖析】直接利用第一象限点的坐标特色得出x的取值范围即可.【解答】解:∵点 P(x﹣2,x+3)在第一象限,∴,解得: x>2.故答案为: x>2.【评论】本题主要考察了点的坐标,正确得出对于x 的不等式组是解题重点.15.( 2017? 涿州市一模)线段 AB的长为 5,点 A 在平面直角坐标系中的坐标为( 3,﹣2),点 B 的坐标为( 3,x),则点 B 的坐标为(3,3)或(3,﹣7).【剖析】由线段 AB的长度联合点 A、B 的坐标即可得出对于 x 的含绝对值符号的一元一次方程,解之即可得出 x 值,由此即可得出点 B 的坐标.【解答】解:∵线段 AB的长为 5,A(3,﹣ 2),B(3,x),∴| ﹣ 2﹣ x|=5 ,解得: x1=3,x2 =﹣7,∴点 B 的坐标为( 3, 3)或( 3,﹣7).故答案为:( 3, 3)或( 3,﹣7).【评论】本题考察了坐标与图形性质、两点间的距离公式以及含绝对值符号的一元一次方程,依据两点间的距离公式找出对于 x 的含绝对值符号的一元一次方程是解题的重点.16.(2016? 黔南州)在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△( a,b)=(﹣ a,b);②○( a,b)=(﹣ a,﹣ b);③Ω( a,b)=(a,﹣ b),依据以上变换比如:△(○( 1,2))=(1,﹣2),则○(Ω( 3,4))等于(﹣3,4).【剖析】依据三种变换规律的特色解答即可.【解答】解:○(Ω( 3,4))=○( 3,﹣ 4) =(﹣ 3, 4).故答案为:(﹣ 3,4).【评论】本题考察了点的坐标,读懂题目信息,理解三种变换的变换规律是解题的重点.17.( 2016? 广安)将点 A(1,﹣ 3)沿 x 轴向左平移 3 个单位长度,再沿y 轴向上平移 5 个单位长度后获得的点 A′的坐标为(﹣2,2).【剖析】依据向左平移横坐标减,向上平移纵坐标加求解即可.【解答】解:∵点 A(1,﹣3)沿 x 轴向左平移 3 个单位长度,再沿 y 轴向上平移5 个单位长度后获得点 A′,∴点 A′的横坐标为1﹣3=﹣ 2,纵坐标为﹣ 3+5=2,∴A′的坐标为(﹣ 2,2).故答案为(﹣ 2,2).【评论】本题考察了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.18.( 2016? 鞍山二模)已知点P(2﹣a,2a﹣7)(此中 a 为整数)位于第三象限,则点 P 坐标为(﹣1,﹣1).【剖析】依据第三象限点的坐标性质得出 a 的取值范围,从而得出 a 的值,即可得出答案.【解答】解:∵点 P(2﹣a,2a﹣ 7)(此中 a 为整数)位于第三象限,∴,解得: 2<a<,故 a=3,则点 P 坐标为:(﹣ 1,﹣ 1).故答案为:(﹣ 1,﹣ 1).【评论】本题主要考察了点的坐标,正确得出 a 的取值范围是解题重点.19.( 2016? 山西)如图是利用网格画出的太原市地铁1,2,3 号线路部分规划表示图,若成立适合的平面直角坐标系,表示双塔西街点的坐标为(0,﹣ 1),表示桃园路的点的坐标为(﹣1,0),则表示太原火车站的点(正幸亏网格点上)的坐标是(3,0).【剖析】依据双塔西街点的坐标可知: 1 号线起点所在的直线为 x 轴,依据桃园路的点的坐标可知: 2 号线起点所在的直线为 y 轴,成立平面直角坐标系,确立太原火车站的点的坐标.【解答】解:由双塔西街点的坐标为(0,﹣1)与桃园路的点的坐标为(﹣ 1,0)得:平面直角坐标系,可知:太原火车站的点的坐标是(3,0);故答案为:( 3, 0)x、y 【评论】本题考察了利用坐标确立地点,解题的重点就是确立坐标原点和轴的地点.20.( 2016? 厦门校级模拟)定义:直线l 1与 l 2订交于点 O,对于平面内随意一点 P1点 P 到直线 l 1与 l 2的距离分别为 p、q 则称有序实数对( p,q)是点 P 的“距离坐标”.依据上述定义,“距离坐标”是( 3, 2)的点的个数有 4 个.【剖析】第一依据“距离坐标”的含义,可得“距离坐标”是(3, 2)到直线l 1与 l 2的距离分别为3、 2,而后依据到直线l 1的距离是 3 的点在与直线 l 1平行且与 l 1的距离是 3 的两条平行线上,到直线 l 2的距离是 2 的点在与直线 l 2平行且与l 2的距离是 2 的两条平行线上,一共有 4 个交点,因此“距离坐标”是(3,2)的点的个数有 4 个,据此解答即可.【解答】解:“距离坐标”是( 3, 2)到直线 l 1与 l 2的距离分别为 3、2,因为到直线 l 1的距离是 3 的点在与直线 l 1平行且与 l 1的距离是 3 的两条平行线上,到直线 l 2的距离是 2 的点在与直线 l 2平行且与 l 2的距离是 2 的两条平行线上,一共有 4 个交点,因此“距离坐标”是( 3,2)的点的个数有 4 个.故答案为: 4.【评论】本题主要考察了点的“距离坐标”的含义以及应用,考察了剖析推理能力,考察了分类议论思想的应用,要娴熟掌握,解答本题的重点是要明确:“距离坐标”是( 3,2)到直线 l 1与 l 2的距离分别为 3、2.21.( 2016? 汕头校级自主招生)在平面直角坐标系中,小明玩走棋的游戏,其走法是:棋子从原点出发,第 1 步向右走 1 个单位,第 2 步向右走 2 个单位,第 3 步向上走 1 个单位,第 4 步向右走 1 个单位,,依此类推,第 n 步的走法是:当n 能被 3 整除时,则向上走 1 个单位;当 n 被 3 除,余数为 1 时,则向右走 1 个单位;当 n 被 3 除,余数为 2 时,则向右走 2 个单位,当走完第 8 步时,棋子所处地点的坐标是(9,2);当走完第 2016 步时,棋子所处地点的坐标是(2016, 672).【剖析】设走完第 n 步时,棋子所处的地点为点 P n( n 为自然数),依据走棋子的规律找出部分点 P n的坐标,依据坐标的变化找出变化规律“P3n+1(3n+1,n),P3n+2( 3n+3, n),P3n+3(3n+3,n+1)”,依此规律即可得出结论.【解答】解:设走完第 n 步时,棋子所处的地点为点 P n(n 为自然数),察看,发现规律: P1(1,0), P2(3,0), P3(3, 1),P4( 4, 1),,∴P3n+1(3n+1,n),P3n+2( 3n+3, n),P3n+3( 3n+3,n+1).∵ 8=3×2+2,∴P8(9,2).∵2016=3×671+3,∴P2016(2016,672).故答案为:( 9, 2);( 2016, 672).【评论】本题考察了规律型中的点的坐标变化,解题的重点是找出变化规律“P 3n+1(3n+1, n),P3n+2(3n+3,n),P3n+3(3n+3, n+1)”.本题属于中档题,难度不大,解决该题型题目时,依据点的变化找出变化规律是重点.22.( 2016? 岳阳)如图,在平面直角坐标系中,每个最小方格的边长均为 1 个单位长, P1,P2,P3,,均在格点上,其次序按图中“→”方向摆列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣ 1,2)依据这个规律,点P2016的坐标为(504,﹣504).【剖析】依据各个点的地点关系,可得出下标为 4 的倍数的点在第四象限的角均分线上,被 4 除余 1 的点在第三象限的角均分线上,被 4 除余 2 的点在第二象限的角均分线上,被 4 除余 3 的点在第一象限的角均分线上,点 P2016的在第四象限的角均分线上,且横纵坐标的绝对值 =2016÷ 4,再依据第四项象限内点的符号得出答案即可.【解答】解:由规律可得, 2016÷4=504,∴点 P2016的在第四象限的角均分线上,∵点 P4( 1,﹣ 1),点 P8(2,﹣ 2),点 P12( 3,﹣ 3),∴点 P2016( 504,﹣ 504),故答案为( 504,﹣ 504).【评论】本题考察了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答本题的重点是第一确立点所在的大概地点,所在正方形,而后就能够进一步推得点的坐标.23.( 2016? 三明)如图,在平面直角坐标系中,一动点从原点 O出发,沿着箭头所示方向,每次挪动 1 个单位,挨次获得点 P1( 0,1),P2(1,1),P3(1,0),P4( 1,﹣ 1),P5(2,﹣ 1), P6(2,0),,则点 P60的坐标是(20,0).【剖析】依据图形分别求出 n=3、 6、 9 时对应的点的坐标,可知点 P3n(n,0),将 n=20 代入可得.【解答】解:∵ P3( 1, 0),P6( 2, 0),P9( 3,0),,∴P3n(n,0)当 n=20 时, P60(20, 0),故答案为:( 20,0).【评论】本题考察了点的坐标的变化规律,认真察看图形,分别求出n=3、6、9时对应的点的对应的坐标是解题的重点.24.( 2016? 金华模拟)在平面直角坐标系中,A(1,1),B(﹣ 1,1),C(﹣ 1,﹣2),D(1,﹣ 2),把一条长为 2016 个单位长度且没有弹性的细线(线的粗细忽视不计)的一端固定在点 A 处,并按 A﹣ B﹣ C﹣ D﹣ A﹣.的规律紧绕在四边形 ABCD的边上,则细线另一端所在地点的点的坐标是(0,﹣ 2).【剖析】依据点的坐标求出四边形 ABCD的周长,而后求出另一端是绕第几圈后的第几个单位长度,从而确立答案.【解答】解:∵ A(1,1),B(﹣ 1,1),C(﹣ 1,﹣ 2),D(1,﹣ 2),∴AB=1﹣(﹣ 1)=2, BC=1﹣(﹣ 2)=3,CD=1﹣(﹣ 1)=2,DA=1﹣(﹣ 2) =3,∴绕四边形 ABCD一周的细线长度为 2+3+2+3=10,2016÷10=2016,∴细线另一端在绕四边形第202 圈的第 6 个单位长度的地点,即CD中间的地点,点的坐标为(0,﹣2),故答案为:( 0,﹣ 2).【评论】本题利用点的坐标考察了数字变化规律,依据点的坐标求出四边形 ABCD一周的长度,从而确立 2016 个单位长度的细线的另一端落在第几圈第几个单位长度的地点是解题的重点.25.( 2016? 乐亭县一模)如图,动点 P 在平面直角坐标系中按图中箭头所示方向运动,第 1 次从原点运动到点( 1,1),第 2 次接着运动到点( 2, 0),第 3 次接着运动到点( 3,2),按这样的运动规律,经过第 2016 次运动后,动点 P 的坐标是(2016,0).【剖析】察看动点 P 运动图象可知,运动次数为偶数时, P 点在 x 轴上,比较其横坐标与运动次数发现规律,依据规律即可解决问题.【解答】解:联合图象可知,当运动次数为偶数次时, P 点运动到 x 轴上,且横坐标与运动次数相等,∵2016 为偶数,∴运动 2016 次后,动点 P 的坐标是( 2016,0).故答案为:( 2016,0).【评论】本题考察了点的坐标以及数的变化,解题的重点是发现“当运动次数为偶数次时, P 点运动到 x 轴上,且横坐标与运动次数相等”这已变化规律.本题属于基础题,难度不大,解题时可先看求什么?依据所求再去找寻规律能够简化好多.三.解答题(共15 小题)26.( 2016 春? 黄埔区期末)在以下图的直角坐标系中描出以下各点:A(﹣ 2, 0),B(2,5), C(﹣,﹣ 3)【剖析】依据平面直角坐标系中点的表示方法找出各点的地点即可.【解答】解:以下图.【评论】本题考察了点坐标,娴熟掌握平面直角坐标系中的点的表示方法是解题的重点.A、B、C、D、E、F、G的坐27.( 2016 秋? 商河县校级月考)在如图中,确立点标.请说明点 B 和点 F 有什么关系?【剖析】从图形中找到各点对应的横纵坐标,从而进行求解.【解答】解:各点的坐标为: A(﹣ 4, 4)、B(﹣ 3,0)、C(﹣ 2,﹣ 2)、D(1,﹣4)、E(1,﹣1)、F( 3, 0)、G(2,3),点 B 和点 F 对于 y 轴对称,且对于原点对称.【评论】本题考察了在平面直角坐标系中确立点的坐标,是一道简单的基础题.28.( 2017 春? 滨海县月考)求图中四边形ABCD的面积.【剖析】由图可得:四边形ABCD的面积 =矩形 EFGH的面积﹣△ AEB的面积﹣△AHD的面积﹣△ BFC的面积﹣△ CGD的面积,即可解答.【解答】解:如图,S 四边形ABCD=S矩形EFGH﹣S△AEB﹣S△AHD﹣ S△BFC﹣S△CDG==25.【评论】本题考察了坐标与图形性质,解决本题的重点是联合图形四边形ABCD 的面积=矩形EFGH的面积﹣△AEB的面积﹣△AHD的面积﹣△BFC的面积﹣△CGD 的面积.29.(2016 春 ? 垦利县期末)在平面直角坐标系中,点A(2m﹣7,m﹣5)在第四象限,且 m为整数,试求的值.【剖析】依据第四象限的点的横坐标是正数,纵坐标是负数列不等式组求出 m 的取值范围,再依据 m是整数解答即可.【解答】解:∵点 A(2m﹣ 7, m﹣ 5)在第四象限,∴解得:.∵m为整数,∴ m=4.∴.【评论】本题考察了点的坐标,记着各象限内点的坐标的符号是解决的重点,四个象限的符号特色分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限( +,﹣).30.(2016 秋 ? 郓城县期末)如图,一个小正方形网格的边长表示50 米.A 同学上学时从家中出发,先向东走250 米,再向北走 50 米就抵达学校.(1)以学校为坐标原点,向东为 x 轴正方向,向北为 y 轴正方向,在图中成立直角坐标系:(2) B 同学家的坐标是(200, 150);(3)在你所建的直角坐标系中,假如 C 同学家的坐标为(﹣ 150,100),请你在。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!2022-2023学年七年级数学下册尖子生培优题典【人教版】专题7.1平面直角坐标系专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022秋•锦江区校级期中)在平面直角坐标系中,下列各点位于第四象限的是( )A.(2,﹣)B.(﹣2,﹣)C.(2,)D.(﹣2,)【分析】平面直角坐标系中第四象限内的点的特点是横坐标大于0,纵坐标小于0,由此解答即可.【解答】解:A、点(2,﹣)在第四象限,故此选项符合题意;B、点(﹣2,﹣)在第三象限,故此选项不符合题意;C、点(2,)在第一象限,故此选项不符合题意;D、点(﹣2,)在第二象限,故此选项不符合题意,故选:A.2.(2022秋•锦江区校级期中)根据下列表述,能确定准确位置的是( )A.太平洋影城3号厅2排B.南偏东40°C.天府大道中段D.东经116°,北纬42°【分析】根据坐标的定义,确定位置需要两个数据对各选项分析判断利用排除法求解.【解答】解:A、太平洋影城3号厅2排,不能确定具体位置,故本选项不符合题意;B、南偏东40°,不能确定具体位置,故本选项不符合题意;C、天府大道中段,不能确定具体位置,故本选项不符合题意;D、东经116°,北纬42°,能确定具体位置,故本选项符合题意.故选:D.3.(2022秋•重庆期中)在平面直角坐标系中,点P(a﹣3,2a+1)在y轴上,则a的值为( )A.3B.﹣3C.D.【分析】直接利用y轴上点的坐标特点得出a﹣3=0,进而得出答案.【解答】解:∵点P(a﹣3,2a+1)在y轴上,∴a﹣3=0,解得:a=3.故选:A.4.(2022秋•罗湖区校级期中)在平面直角坐标系中,若点A(a,ab)在第四象限,则点B(a2b,﹣b2)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用第四象限内点的坐标特点得出a,b的符号,进而得出答案.【解答】解:∵A(a,ab)在第四象限,∴,解得a>0,b<0,∴a2b<0,﹣b2<0,∴点B(a2b,﹣b2)所在的象限是第三象限.故选:C.5.(2022秋•天桥区期中)点P在第二象限内,P到x轴的距离是5,到y轴的距离是3,那么点P的坐标为( )A.(﹣5,3)B.(﹣3,﹣5)C.(﹣3,5)D.(3,﹣5)【分析】根据点的x轴的距离等于纵坐标的绝对值,点的y轴的距离等于横坐标的绝对值,再根据平面直角坐标系中第二象限点的坐标特征即可解答.【解答】解:点P在第二象限内,P到x轴的距离是5,到y轴的距离是3,那么点P的坐标是(﹣3,5),故选:C.6.(2022秋•渠县校级期中)如图,象棋盘上,若“将”位于点(1,﹣1),“象”位于点(3,﹣2).则“炮”位于点( )A.(﹣1,1)B.(﹣1,2)C.(﹣2,1)D.(﹣2,2)【分析】直接利用已知点坐标得出原点位置,进而得出答案.【解答】解:如图所示:“炮”位于点(﹣2,1).故选:C.7.(2022秋•天长市月考)若点P(m﹣2,﹣1﹣3m)落在坐标轴上,则m的值是( )A.m=2B.C.m=2或D.m=﹣2或【分析】根据x轴上点的纵坐标为0,y轴上点的横坐标为0列方程求解即可.【解答】解:∵点P(m﹣2,﹣1﹣3m)落在坐标轴上,∴m﹣2=0或﹣1﹣3m=0,解得m=2或m=﹣.故选:C.8.(2022春•长安区校级期中)如图是一台雷达探测相关目标得到的部分结果,若图中目标A的位置为(2,90°),用方位角和距离可描述为:在点O正北方向,距离O点2个单位长度.下面是嘉嘉和琪琪用两种方式表示目标B,则判断正确的是( )嘉嘉:目标B的位置为(3,210°);淇淇:目标B在点O的南偏西30°方向,距离O点3个单位长度.A.只有嘉嘉正确B.只有淇淇正确C.两人均正确D.两人均不正确【分析】根据题意判断即可得到结论.【解答】解:由题意得,目标B的位置为(4,210°)或目标B在点O的南偏西60°方向,距离O点4个单位长度;故选:D.9.(2022春•长安区校级期中)在平面直角坐标系中,一只蜗牛从原点O出发,按向下、向右、向上、向右的方向依次不断移动,每次移动1个单位长度,其行走路线如图所示,则点A2021的坐标是( )A.(505,0)B.(505,﹣1)C.(1010,0)D.(1010,﹣1)【分析】根据点的坐标变化发现规律即可写出点A4n+1的坐标(n为正整数).【解答】解:根据点的坐标变化可知:各点的坐标为:A5(2,﹣1),A9(4,﹣1),A13(6,﹣1),•∴点A4n+1的坐标(n为正整数)为(2n,1);∴点A2021的坐标是(1010,﹣1),故选:D.10.(2022春•海淀区月考)在平面直角坐标系xOy中,直线l经过点A(﹣1,0),点A1,A2,A3,A4,A5,……按如图所示的规律排列在直线l上.若直线l上任意相邻两个点的横坐标都相差1,纵坐标也都相差1,若点A n(为正整数)的纵坐标为﹣2022,则n的值为( )A.4042B.4043C.4044D.4045【分析】观察①n为奇数时,横坐标纵坐标变化得出规律;②n为偶数时,横坐标纵坐标变化得出规律,再求解.【解答】解:观察①n为奇数时,横坐标变化:﹣1+1,﹣1+2,﹣1+3,…﹣1+,纵坐标变化为:0﹣1,0﹣2,0﹣3,…﹣,②n为偶数时,横坐标变化:﹣1﹣1,﹣1﹣2,﹣1﹣3,…﹣1﹣,纵坐标变化为:1,2,3,…,∵点A n(n为正整数)的纵坐标为﹣2022,∴﹣=﹣2022,解得n=4043,故选:B.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2022秋•下城区校级期中)在平面直角坐标系中,点P(﹣3,2)在第 二 象限;点P到x轴的距离是 2 .【分析】直接利用点的坐标特点、横纵坐标的意义得出答案.【解答】解:∵点P(﹣3,2),横坐标为负数,纵坐标为正数,∴点P(﹣3,2)在第二象限;点P到x轴的距离是2.故答案为:二,2.12.(2022秋•三水区期中)在直角坐标系中,点A的坐标是(﹣3,4),则点A到x轴的距离为 4 .【分析】根据点到x轴的距离是点的纵坐标的绝对值,可得答案.【解答】解:点A在直角坐标系中的坐标是(﹣3,4),则点A到x轴的距离是4.故答案为:4.13.(2022秋•城阳区期中)已知点M到x轴的距离为5,到y轴的距离为3,且在第四象限内,则点M的坐标为 (3,﹣5) .【分析】根据第四象限内的点的坐标第四象限(+,﹣);点到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标,可得答案.【解答】解:M到x轴的距离为5,到y轴距离为3,且在第四象限内,则点M的坐标为(3,﹣5),故答案为:(3,﹣5).14.(2022秋•市中区期中)国庆期间,小强和小明两位同学去电影院看中国外交官撤侨题材电影《万里归途》.在电影票上,小强的“45排4座”记作(5,4),则小明的“6排7座”可记作 (6,7) .【分析】根据用“排、座”有序数确定点的位置,可得答案.【解答】解:在电影票上,小强的“5排4座”记作(5,4),则小明的“6排7座”可记作(6,7),故答案为:(6,7).15.(2022•玉树市校级一模)在平面直角坐标系中,点A(﹣2,4),点B(1,4),则线段AB= 3 .【分析】由题意可知,AB∥x轴,则线段AB的长度为1﹣(﹣2)=3.【解答】解:由点A(﹣2,4),点B(1,4)的坐标可知,AB∥x轴,∴线段AB的长度为1﹣(﹣2)=3.故答案为:3.16.(2022秋•皇姑区校级月考)已知点M的坐标为(2,﹣4),线段MN=5,MN∥x轴,则点N的坐标为 (﹣3,﹣4)或(7,﹣4) .【分析】根据平行于x轴的直线上点的纵坐标相等求出点N的纵坐标,再分点N在点M的右边与左边两种情况求出点N的横坐标即可.【解答】解:∵点M的坐标为(2,﹣4),MN∥x轴,∴点N的纵坐标为﹣4,∵MN=5,∴点N在点M的右边时,横坐标为2+5=7,此时,点N(7,﹣4),点N在点M的左边时,横坐标为2﹣5=﹣3,此时,点N(﹣3,﹣4),综上所述,点N的坐标为(﹣3,﹣4)或(7,﹣4).故答案为:(﹣3,﹣4)或(7,﹣4).17.(2022秋•商河县期中)规定以下两种变换:①f(m,n)=(﹣m,n),如f(2,1)=(﹣2,1);②g(m,n)=(﹣n,﹣m),如g(2,1)=(﹣1,﹣2).按照以上变换有:f[g(3,4)]=f(﹣4,﹣3)=(4,﹣3),那么g[f(﹣2,3)]等于 (﹣3,﹣2) .【分析】直接利用新定义分别化简,进而得出答案.【解答】解:g[f(﹣2,3)]=g(2,3)=(﹣3,﹣2).故答案为:(﹣3,﹣2).18.(2022秋•海淀区校级期中)如图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若点M到直线l1、l2的距离分别是pcm、qcm,则称有序实数对(p,q)是点M的“距离坐标”.特别地,当点在直线上时,定义点到直线的距离为0.下列说法:①“距离坐标”是(0,0)的点只有点O;②“距离坐标”是(0,1)的点只有1个;③“距离坐标”是(2,2)的点共有4个;正确的有 ①③ (填序号).【分析】根据(p,q)是点M的“距离坐标”,得出①若pq≠0,则“距离坐标”为(p、q)的点有且仅有4个.②若pq=0,且p+q≠0,则“距离坐标”为(p、q)的点有且仅有2个,进而得出解集从而确定答案.【解答】解:如上图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p、q分别是M到直线l1和l2的距离,则称有序非负数实数对(p、q)是点M的“距离坐标”.已知常数p≥0,q≥0,给出下列两个个结论:(1)若pq≠0,则“距离坐标”为(p、q)的点有且仅有4个.(2)若pq=0,且p+q≠0;①p=0,q=0,则“距离坐标”为(0,0)的点有且仅有1个;故①“距离坐标”是(0,0)的点只有点O是正确的;②p=0,q=1,则“距离坐标”为(0,1)的点有且仅有2个;故②“距离坐标”是(0,1)的点有1个是错误的;③得出(2,2)是与l1距离是2的点是与之平行的两条直线,与l2的距离是2的也是与之平行的两条直线,这四条直线共有4个交点.所以③是正确的.正确的有:①③.故答案为:①③.三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2022秋•南海区月考)在直角坐标系中描绘下列各点,并将各组内这些点依次用线段连接起来.C(﹣6,3),D(﹣6,0),A(0,0),B(0,3).(1)图形中那些点在坐标轴上?(2)线段BC与x轴有什么位置关系?【分析】(1)在坐标系中描出各点,再顺次连接可得一个长方形,结合图案得出点D、A、B在坐标轴上;(2)根据图形可得平行于x轴的两点B、C的纵坐标相等.【解答】解:(1)如图所示:点D、A、B在坐标轴上;(2)线段BC平行于x轴.20.(2022秋•无为市月考)如图,这是冉冉所在学校的平面示意图,图中小方格都是边长为1个单位长度的正方形,若艺术楼的坐标为(2,1),实验楼的坐标为(﹣2,﹣1).(1)请在图中画出平面直角坐标系,并写出教学楼和体育馆的坐标.(2)若食堂的坐标为(1,2),请在(1)中所画的平面直角坐标系中标出食堂的位置.【分析】(1)根据已知点坐标得出原点位置,进而得出答案;(2)利用(1)中平面直角坐标系得出答案.【解答】解:(1)教学楼的坐标:(0,﹣2),体育馆的坐标:(﹣1,2);(2)食堂的位置如图所示.21.(2022秋•天长市月考)已知点P(2a﹣7,3﹣a).(1)若点P在第三象限,求a的取值范围;(2)点P到y轴的距离为11,求点P的坐标.【分析】(1)根据题意列出不等式即可解决问题;(2)根据题意列出方程即可解决问题.【解答】解:(1)∵点P(2a﹣7,3﹣a)在第三象限,∴,解得3<a<3.5;(2)∵点P到y轴的距离为11,∴|2a﹣7|=11,∴2a﹣7=﹣11或2a﹣7=11,解得a=﹣2或a=9,∴3﹣a=3+2=5或3﹣a=3﹣9=﹣6,∴点P的坐标为(﹣11,5)或(11,﹣6).22.(2022秋•无为市月考)在平面直角坐标系中,一个动点A从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次只移动1个单位长度,其行走路线如图所示.(1)填写下列各点的坐标:A4 (2,0) ,A6 (3,1) ,A12 (6,0) ,A14 (7,1) .(2)按此规律移动,n为正整数,则点A4n的坐标为 (2n,0) ,点A4n+2的坐标为 (2n+1,1) .(3)动点A从点A2022到点A2023的移动方向是 向下 .(填“向上”、“向右”或“向下”)【分析】(1)根据点的坐标变化即可填写各点的坐标;(2)根据(1)发现规律即可写出点A4n的坐标(n为正整数);(3)根据(2)发现的规律,每四个点一个循环,进而可得蜗牛从点A2020到点A2021的移动方向.【解答】解:(1)根据点的坐标变化可知:各点的坐标为:A4(2,0),A6(3,1),A12(6,0),A14(7,1);故答案为:(2,0),(3,1),(6,0),(7,1);(2)根据(1)发现:点A4n的坐标(n为正整数)为(2n,0);点A4n+2的坐标为(2n+1,1);故答案为:(2n,0),(2n+1,1);(3)因为每四个点一个循环,所以2023÷4=505…3.所以从点A2022到点A2023的移动方向是向下.故答案为:向下.23.(2022秋•江阴市期中)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,按图解答下列问题:(1)C→ D (+1, ﹣2 );(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的最短路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为:(+2,+2),(+2,﹣1),(﹣2,+3),(+1,﹣3),请在图中标出P的位置.【分析】(1)根据规定求解即可;(2)利用绝对值求和即可;(3)根据要求作出图形即可.【解答】解:(1)C→D(+1,﹣2);故答案为:D,﹣2;(2)若这只甲虫的行走路线为A→B→C→D,甲虫走过的最少路程=1+4+2+1+2=10;(3)如图,点P即为所求.24.(2022秋•海淀区校级期中)给出如下定义:在平面直角坐标系xOy中,已知点P1(a,b),P2(c,b),P3(c,d),这三个点中任意两点间的距离的最小值称为点P1,P2,P3的“完美间距″.例如:如图,点P1(﹣1,2),P2(1,2),P3(1,3)的“完美间距”是1.(1)点Q1(4,1),Q2(5,1),Q3(5,5)的“完美间距”是 1 ;(2)已知点O(0,0),A(4,0),B(4,y).①若点O,A,B的“完美间距”是2,则y的值为 ±2 ;②点O,A,B的“完美间距”的最大值为 4 ;③已知点C(0,4),D(﹣4,0),点P(m,n)为线段CD上一动点,当O(0,0),E(m,0),P (m,n)的“完美间距”取最大值时,求此时点P的坐标.【分析】(1)分别计算出Q1Q2,Q2Q3,Q1Q3的长度,比较得出最小值即可;(2)①分别计算出OA,AB的长度,由于斜边大于直角边,故OB>OA,OB>AB,所以“最佳间距”为OA或者AB的长度,由于“最佳间距”为1,而OA=4,故OB=2,即可求解y的值;②由①可得,“最佳间距”为OA或AB的长度,当OA≤AB时,“最佳间距”为OA=4,当OA>AB时,“最佳间距”为AB<4,比较两个“最大间距”,即可解决;③同①,当点O(0,0),E(m,0),P(m,n)的“最佳间距”为OE或者PE的长度,先求出直线CD的解析式,用m表示出线段OE和线段PE的长度,分两类讨论,当OE≥PE和OE<PE时,求出各自条件下的“最佳间距”,比较m的范围,确定“最佳间距”的最大值,进一步求解出P点坐标.【解答】解:(1)如图,在给出图形中标出点Q1,Q2,Q3,∵Q1(4,1),Q2(5,1),Q3(5,5),∴Q1Q2=1,Q2Q3=4,在Rt△Q1Q2Q3中,Q1Q3=,∵1<4<,“最佳距离”为1;故答案为:1;(2)①如图:∵O(0,0),A(4,0),B(4,y),∴OA=4,AB=|y|,在直角△ABO中,OB>OA,OB>AB,又∵点O,A,B的“最佳间距”是2,且4>2,∴|y|=2,∴y=±2,故答案为:±2;②由①可得,OB>OA,OB>AB,∴“最佳间距”的值为OA或者是AB的长,∵OA=4,AB=|y|,当AB≥OA时,“最佳间距”为4,当AB<OA时,“最佳间距”为|y|<4,∴点O,A,B的“最佳间距”的最大值为4,故答案为:4;③设直线CD为y=kx+4,代入点D得,如图,﹣4k+4=0,∴k=1,∴直线CD的解析式为:y=x+4,∵E(m,0),P(m,n),且P是线段CD上的一个动点,∴PE∥y轴,∴OE=﹣m,PE=n=m+4,Ⅰ、当﹣m≥m+4时,即OE≥PE时,m≤﹣2,“最佳间距”为m+4,此时m+4≤2,Ⅱ、当﹣m<m+4时,即OE<PE时,﹣2<m<0,“最佳间距“为﹣m,此时﹣m<2,∴点O(0,0),E(m,0),P(m,n)的“最佳间距”取到最大值时,m=﹣2,∴m=﹣2,∴n=m+4=2,∴P(﹣2,2).。
初二上数学培优讲六A 平面直角坐标系提高训练考点一、二次根式提高训练:1.若13-m 有意义,则m 能取的最小整数值是 2.若x<0,则xx x 2-= 3.若35-=x ,则562++x x 的值为 。
4.当12a ≤时,化简21a -= 52= 6.若xy____x =,_____y =.7.若11x -<<1_____x +=.8.若01x <<=___ _ 9、计算或化简: (1) 2484554+-+ (2))(102132531-⋅⋅;(23a10、已知:2420-=x ,求221x x +的值. 11、若代数式||112x x -+有意义,则x 的取值范围是什么?12、若x ,y 是实数,且2111+-+-<x x y ,求1|1|--y y 的值。
13. 已知()11039322++=+-+-y x x x y x ,求的值。
14、已知m15、已知:321+=a ,321-=b ,求b a b a 2222+-的值。
16、已知:2323-+=a ,2323+-=b ,求代数式223b ab a +-的值。
17、已知30≤≤x ,化简9622+-+x x x 182440y y -+=,求xy 的值。
19. 当a 取什么值时,代数式1取值最小,并求出这个最小值。
20、已知,a b (10b -=,求20052006a b -的值。
21、已知:11a a +=+221a a +的值。
考点二、点到坐标轴的距离:例1:已知:)3,4(A ,)1,1(B ,)0,3(C ,求三角形ABC 的面积.例2:已知:)54,21(-+a a A ,且点A 到两坐标轴的距离相等,求A 点坐标.考点三、求点的坐标例3、若点 A(a ,b )在第三象限,则点 C (-a+1,3b -5)在第_____________象限.例4、P(-5,4)到x 轴的距离是________,到y 轴的距离是_________例5、与点P(a ,b )与点Q(1,2)关于x 轴对称,则a+b=__________例6、如图1-5-18所示,已知边长为 1的正方把OABC 在直角坐标系中,B 、C 两点在第二象限内,OA 与x 轴外夹角为60°,那么B 点的坐标为_____例7、如图l -5-19 所示,在直角坐标系中,第一次将△OAB 变换成△OA 1B 1;第二次将OA 1B 1变换成OA 2B 2 ,第三次将△OA 2B 2变换成△OA 3B 3,已知 A(1,3), A 1(2,3),A 2(4,3),A 3(8,3),B (2,0),B 1(4,0),B 2(8,0),B 3 (6,0).(1)观察每次变换前后的三角形有何变化,找出规律,按此规律再将△OA 3B 3变换成△OA 4B 4,则A 4的坐标是________,B 4的坐标是_______;(2)若按第(1)题的规律将△OAB 进行第n 次变换,得到△OAnB n ,比较每次变换中三角形顶点坐标有 何变化,找出规律推测An 的坐标是______,B n 的坐标是_____________.考点四、坐标平移例8、在平面直角坐标系中,将点)5,2(-向右平移3个单位长度,可以得到对应点坐标( , );将点)5,2(--向左平移3个单位长度可得到对应点( , );将点)5,2(+向上平移3单位长度可得对应点( , );将点)5,2(-向下平移3单位长度可得对应点( , )。
一、选择题1.已知点A (0,-6),点B (0,3),则A ,B 两点间的距离是( )A .-9B .9C .-3D .32.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 2C 3C 2,…按如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是( )A .(2n ﹣1,2n ﹣1)B .(2n ﹣1,2n ﹣1)C .(2n ﹣1,2n ﹣1)D .(2n ﹣1,2n ﹣1)3.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A ()2,1-和B ()2,3--,那么第一架炸机C 的平面坐标是( )A .()2,1B .()3,1-C .()2,1-D .()3,14.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,……按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,0B .()2020,1C .()2021,1D .()2021,2 5.若实数a ,b 满足2(2)30a b ++-=,则点P(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.下列说法正确的是( )A .若0ab =,则点(,)P a b 表示原点B .点(1,)a 在第三象限C .已知点(3,3)A -与点(3,3)B ,则直线//AB x 轴D .若0ab >,则点(,)P a b 在第一或第三象限7.如图,在平面直角坐标系中,若干个半径为3个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒3个单位长度,点在弧线上的速度为每秒π个单位长度,则2020秒时,点P 的坐标是( )A .(2020,0)B .(3030,0)C .( 30303)D .(30303) 8.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( )A.(5,4) B.(4,5) C.(3,4) D.(4,3)9.在平面直角坐标系中,将点A(﹣2,﹣2)先向右平移6个单位长度再向上平移5个单位长度得到点A',则点A'的坐标是()A.(4,5)B.(4,3)C.(6,3)D.(﹣8,﹣7)10.如图,线段OA,OB分别从与x轴和y轴重合的位置出发,绕着原点O顺时针转动,已知OA每秒转动45︒,OB的转动速度是每秒转动30,则第2020秒时,OA与OB之间的夹角的度数为()A.90︒B.145︒C.150︒D.165︒11.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据这个规律,则第2016个点的横坐标为()A.44 B.45 C.46 D.47二、填空题12.如图,()3,3A -,()1,2P -,P 关于直线OA 的对称点为1P ,1P 关于x 轴的对称点为2P ,2P 关于y 轴的对称点为3P ,3P 关于直线OA 的对称点为4P ,4P 关于x 轴的对称点为5P ,5P 关于y 轴的对称点为6P ,6P 关于直线OA 的对称点为7P ,…,则2020P 的坐标是__________.13.已知点A(3,b)在第一象限,那么点B(-3,-b)在第________象限.14.某人从A 点沿北偏东60︒的方向走了100米到达点B ,再从点B 沿南偏西10︒的方向走了100米到达点C ,那么点C 在点A 的南偏东__度的方向上.15.若电影票上座位是12排5号可记为(12,5),则(5,6)表示_______________. 16.写一个第三象限的点坐标,这个点坐标是_______________.17.在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a 2-2b 的值为______.18.如图,已知A 1(1,0),A 2(1,1),A 3(﹣1,1),A 4(﹣1,﹣1),A 5(2,﹣1),…,则坐标为(﹣505,﹣505)的点是______.19.如图,在平面直角坐标系中,已如点A (1,1),B (-1,1),C (-1,-2),D (1,-2),把一根长为2019个单位长度没有弹性的细线(线的相细忽略不计)的一端固定在A 处,并按A B C D A →→→→的规律紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标是__________.20.在平面直角坐标系中,对于平面内任一点(),a b ,若规定以下三种变换:①()(),,a b a b ∆=-;②(),a b O (),a b =--;③()(),,a b a b Ω=-按照以上变换例如:()()()1,21,2∆O =-,则()()2,5O Ω等于__________.21.已知P (a,b ),且ab <0,则点P 在第_________象限. 三、解答题22.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动,它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A C →(________,________),B C →(________,________),C D →(________,________);(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P 的位置.23.如图,已知平面直角坐标系中,点A 在y 轴上,点B 、C 在x 轴上,S △ABO =8,OA =OB ,BC =10,点P 的坐标是(-6,a )(1)求△ABC 三个顶点A 、B 、C 的坐标;(2)连接PA 、PB ,并用含字母a 的式子表示△PAB 的面积(a ≠2);(3)在(2)问的条件下,是否存在点P ,使△PAB 的面积等于△ABC 的面积?如果存在,请求出点P 的坐标;若不存在,请说明理由.24.如图,在平面直角坐标系中,△ABC 的顶点为(5,1)A -,(1,0)B -,(1,5)C -. (1)作出△ABC 关于y 轴对称图形△A 1B 1C 1;(2)若点P 在x 轴上,且△ABP 与△ABC 面积相等,求点P 的坐标.25.如图为某校区分布图的一部分,方格纸中每个小方格是边长为1个单位的正方形,若教学楼的坐标为A(1,2),图书馆的坐标为(-2,-1).解答以下问题:(1)在图中找到坐标系中的原点O ,并建立直角坐标系;(2)若体育馆的坐标为C(1,-3),餐厅坐标为D (2,0),请在图中标出体育馆和餐厅的位置; (3)顺次连接教学楼、图书馆、体育馆、餐厅得到四边形ABCD ,求四边形ABCD 的面积.一、选择题1.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2020次碰到球桌边时,小球的位置是( )A .(3,4)B .(5,4)C .(7,0)D .(8,1)2.在平面直角坐标系中,点Q 的坐标是()35,1m m -+.若点Q 到x 轴的距离与到y 轴的距离相等,则m 的值为( )A .3B .1C .1或3D .2或33.如图,在棋盘上建立平面直角坐标系,若使“将”位于点(-1,-2),“象”位于点(4,-1),则“炮”位于点( )A .(2,-1)B .(-1,2)C .(-2,1)D .(-2,2) 4.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是一局象棋残局,已知棋子“马”和“车”表示的点的坐标分别为(4,1),(2,1)--,则在第三象限的棋子有( )A .1颗B .2颗C .3颗D .4颗5.已知点A 坐标为()2,3-,点A 关于x 轴的对称点为A ',则A '关于y 轴对称点的坐标为( )A .()2,3--B .()2,3C .()2,3-D .以上都不对 6.点()P 3,2-在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 7.在平面直角坐标系中,点P(-5,0)在( )A .第二象限B .x 轴上C .第四象限D .y 轴上8.如图是医院、公园和超市的平面示意图,超市B 在医院O 的南偏东25︒的方向上,且到医院的距离为300m ,公园A 到医院O 的距离为400m .若∠90AOB =︒,则公园A 在医院O 的( )A .北偏东75︒方向上B .北偏东65︒方向上C .北偏东55︒方向上D .北偏西65°方向上9.点(),A m n 满足0mn =,则点A 在( )A .原点B .坐标轴上C .x 轴上D .y 轴上 10.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上 11.若把点A (-5m ,2m -1)向上平移3个单位后得到的点在x 轴上,则点A 在( ) A .x 轴上 B .第三象限 C .y 轴上 D .第四象限二、填空题12.如图,平面直角坐标系xOy 中,点A(4,3),点B(3,0),点C(5,3),OAB ∆沿AC 方向平移AC 长度的到ECF ∆,四边形ABFC 的面积为_________.13.小华在小明南偏西75°方向,则小明在小华______方向.(填写方位角) 14.若点M (5,a )关于y 轴的对称点是点N (b ,4),则(a+b )2020= __15.如图,有A ,B ,C 三点,如果A 点用()1,1表示,B 点用()2,3表示,则C 点的坐标为_______.16.若不在第一象限的点(),22A x x -+到两坐标轴距离相等,则A 点坐标为 _________. 17.在平面直角坐标系中,有点A (a ﹣2,a ),过点A 作AB ⊥x 轴,交x 轴于点B ,且AB =2,则点A 的坐标是___.18.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2021次运动后,动点P 的坐标是_____.19.在平面直角坐标系中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义:水平底a 为任意两点的横坐标差的最大值,铅垂高h 为任意两点的纵坐标差的最大值,则“矩面积”S =ah .若A (1,2),B (﹣2,1),C (0,t )三点的“矩面积”是18,则t 的值为_____. 20.已知点 P(b+1,b-2)在x 轴上,则P 的横坐标值为____21.若点A (-2,n )在x 轴上,则点B(n-2,n+1)在第_____象限 .三、解答题22.已知在平面直角坐标系中,ABC 三个顶点的坐标分别为:(3,1)A --,(2,4)B --,(1,3)C -.(1)作出ABC ;(2)若将ABC 向上平移3个单位后再向右平移2个单位得到111A B C △,请作出111A B C △. 23.在如图的直角坐标系中,将三角形ABC 平移后得到三角形111A B C ,他们的对应点坐标如下表所示:ABC(,0)A a (3,0)B (5,5)C 111A B C △ 1(4,2)A 1(7,)B b1(,)C c d (1)观察表中各对应点坐标变化,写出平移规律:________.(2)在坐标系中画出两个三角形.(3)求出111A B C △面积.24.已知三角形ABC 在平面直角坐标系中,点(3,6)A ,点()1,3B ,点(4,2)C ,则三角形ABC 的面积为多少?25.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以坐标为(0,b),且a、b满足4每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a=,b=,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.一、选择题1.在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3)2.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,……按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,0B .()2020,1C .()2021,1D .()2021,2 3.若点(),A m n 到y 轴的距离是它到x 轴距离的两倍,则( ).A .2m n =B .2m n =C .2m n =D .2m n = 4.点(,)M x y 在第二象限,且230,40x y -=-=,则点M 的坐标是( )A .(3,2)-B .(3,2)-C .(2,3)-D .(2,3)- 5.如图,在平面直角坐标系中,、、A B C 三点的坐标分别是()()()1,2,4,2,2,1--,若以A B C D 、、、为顶点的四边形为平行四边形,则点D 的坐标不可能是( )A .()7,1-B .()3,1--C .()1,5D .()2,56.在平面直角坐标系中,点P(-5,0)在( )A .第二象限B .x 轴上C .第四象限D .y 轴上7.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是( ) A .横向拉伸为原来的2倍B .纵向拉伸为原来的2倍C .横向压缩为原来的12D .纵向压缩为原来的128.如图,在平面直角坐标系中,若干个半径为3个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒3个单位长度,点在弧线上的速度为每秒π个单位长度,则2020秒时,点P 的坐标是( )A .(2020,0)B .(3030,0)C .( 3030,3)D .(3030,﹣3) 9.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,...,第n 次移动到n A .则22020OA A ∆的面积是( )A .210112mB .2505mC .220092mD .2504m 10.若点(1,)A n -在x 轴上,则点(1,1)B n n +-在( ).A .第一象限B .第二象限C .第三象限D .第四象限 11.如图所示,某战役缴获敌人防御工事坐标地图碎片,依稀可见,一号暗堡的坐标为(4,2),四号暗堡的坐标为(2,4)-,原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大约是( )A .A 处B .B 处C .C 处D .D 处二、填空题12.如图,平面直角坐标系xOy 中,点A(4,3),点B(3,0),点C(5,3),OAB ∆沿AC 方向平移AC 长度的到ECF ∆,四边形ABFC 的面积为_________.13.下列四个命题中:①对顶角相等;②如果两条直线被第三条直线所截,那么同位角相等;③如果两个实数的平方相等,那么这两个实数也相等;④当0m ≠时,点()2,P m m -在第四象限内.其中真命题有________(填序号).14.在电影院内找座位,将“4排3号”简记为(4,3),则(8,7)表示______15.已知点A (2m +,3-)和点B (4,1m -),若直线//AB x 轴,则m 的值为______. 16.点P 先向左平移4个单位,再向上平移1个单位,得到点Q(2,-3),则点P 坐标为__ 17.已知点M 在y 轴上,纵坐标为4,点P (6,﹣4),则△OMP 的面积是__. 18.下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x 轴和y 轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.19.对于平面坐标系中任意两点()11,A x y ,()22,B x y 定义一种新运算“*”为:()()()11221221,*,,x y x y x y x y =.若()11,A x y 在第二象限,()22,B x y 在第三象限,则*A B 在第_________象限.20.如图,已知点A 的坐标为(−2,2),点C 的坐标为(2,1),则点B 的坐标是____.21.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B (m ,3),C (n ,-5),则AD BC =______.三、解答题22.在平面直角坐标系中,有A(﹣2,a +1),B(a ﹣1,4),C(b ﹣2,b )三点.(1)当点C 在y 轴上时,求点C 的坐标;(2)当AB ∥x 轴时,求A ,B 两点间的距离;(3)当CD ⊥x 轴于点D ,且CD =1时,求点C 的坐标.23.已知三角形ABC 在平面直角坐标系中,点(3,6)A ,点()1,3B ,点(4,2)C ,则三角形ABC的面积为多少?24.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,ABC的顶点在格点上,且A(2,−4),B(5,−4),C(4,−1)(1)画出ABC;(2)求出ABC的面积;''',在图中(3)若把ABC向上平移2个单位长度,再向左平移4个单位长度得到A B C ''',并写出B'的坐标画出A B C25.如图,在平面直角坐标系中有一个△ABC.(1)将△ABC向右平移3个单位得到△A1B1C1,画出△A1B1C1.(2)写出△A1B1C1,三个顶点的坐标.。
《第七章平面直角坐标系》能力提升1、如图,数轴上点表示的数为,点在数轴上向左平移个单位到达点,点表示的数为.(1) 求的值.(2) 化简:.2、已知点A(-2,3),B(4,3),C(-1,-3).(1)求A,B两点之间的距离;(2)求点C到x轴的距离;(3)求三角形ABC的面积;(4)观察线段AB与x轴的关系,若点D是线段AB上一点(不与A,B重合),则点D的坐标有什么特点?3、已知点P(2m+4,m﹣1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,﹣3)点,且与x轴平行的直线上.4、如图,在直角坐标系xOy 中,A (﹣1,0),B (3,0),将A ,B 同时分别向上平移2个单位,再向右平移1个单位,得到的对应点分别为D ,C ,连接AD ,B C.(1)直接写出点C ,D 的坐标:C ,D ;(2)四边形ABCD 的面积为 ;(3)点P 为线段BC 上一动点(不含端点),连接PD ,PO .求证:∠CDP +∠BOP =∠OP D.5.如图①,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位长度,再向右平移1个单位长度,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD.(1)求点C ,D 的坐标及S 四边形ABDC .(2)在y 轴上是否存在一点Q ,连接QA ,QB ,使S △QAB =S 四边形ABDC ?若存在这样一点,求出点Q 的坐标;若不存在,试说明理由.(3)如图②,点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合),给出下列结论:①∠DCP +∠BOP ∠CPO的值不变,②∠DCP +∠CPO ∠BOP的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.21、(1)解:根据题意得,。
七(下)培优训练(三)平面直角坐标系综合问题(压轴题)培优训练三:平面直角坐标系(压轴题)一、坐标与面积:【例1】如图,在平面直角坐标中,A(0,1),B(2,0),C(2,1.5).(1)求△ABC的面积;(2)如果在第二象限内有一点P(a,0.5),试用a的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在这样的点P,使四边形ABOP 的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.【例2】在平面直角坐标系中,已知A(-3,0),B(-2,-2),将线段AB平移至线段CD.图2(1)如图1,直接写出图中相等的线段,平行的线段;(2)如图2,若线段AB移动到CD,C、D两点恰好都在坐标轴上,求C、D的坐标;(3)若点C在y轴的正半轴上,点D在第一象限内,且S△ACD=5,求C、D的坐标;(4)在y轴上是否存在一点P,使线段AB平移至线段PQ 时,由A、B、P、Q构成的四边形是平行四边形面积为10,若存在,求出P、Q的坐标,若不存在,说明理由;【例3】如图,△ABC 的三个顶点位置分别是A (1,0),B (-2,3),C (-3,0). (1)求△ABC 的面积;(2)若把△ABC 向下平移2个单位长度,再向右平移3个单位长度,得到△A B C ''',请你在图中画出△A B C '''; (3)若点A 、C 的位置不变,当点P 在y 轴上什么位置时,使2ACP ABC S S =;(4)若点B 、C 的位置不变,当点Q 在x 轴上什么位置时,使2BCQABCS S=.【例4】如图1,在平面直角坐标系中,A (a ,0),C (b ,2),且满足2(2)20a b ++-=,过C 作CB ⊥x 轴于B .(1)求三角形ABC的面积;(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数;(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP 的面积相等,若存在,求出P点坐标;若不存在,请说明理由.【例5】如图,在平面直角坐标系中,四边形ABCD各顶点的坐标分别是A(0,0),B(7,0),C(9,5),D(2,7)(1)在坐标系中,画出此四边形; (2)求此四边形的面积;(3)在坐标轴上,你能否找一个点P ,使S △PBC =50, 若能,求出P 点坐标,若不能,说明理由.【例6】如图,A 点坐标为(-2, 0), B 点坐标为(0, -3).(1)作图,将△ABO 沿x 轴正方向平移4个单位, 得到△DEF , 延长ED 交y 轴于C 点, 过O 点作OG ⊥CE , 垂足为G ;(2) 在(1)的条件下, 求证: ∠COG=∠EDF ;A(-2,0)B(0,-3)y x(3)求运动过程中线段AB 扫过的图形的面积.【例7】在平面直角坐标系中,点B (0,4),C (-5,4),点A 是x 轴负半轴上一点,S 四边形AOBC =24.图1yxHOFEDACB(1)线段BC 的长为 ,点A 的坐标为 ;(2)如图1,EA 平分∠CAO ,DA 平分∠CAH ,CF ⊥AE点F ,试给出∠ECF 与∠DAH 之间满足的数量关系式,并说明理由;(3)若点P 是在直线CB 与直线AO 之间的一点,连接BP 、OP ,BN 平分CBP ∠,ON 平分AOP ∠,BN 交ON 于N ,请依题意画出图形,给出BPO ∠与BNO ∠之间满足的数量关系式,并说明理由.【例8】在平面直角坐标系中,OA =4,OC =8,四边形ABCO 是平行四边形.(1)求点B 的坐标及的面积ABCO S 四边形;(2)若点P 从点C 以2单位长度/秒的速度沿CO 方向移动,同时点Q 从点O 以1单位长度/秒的速度沿OA 方向移动,设移动的时间为t 秒,△AQB 与△BPC 的面积分别记为AQB S ∆,BPC S ∆,是否存在某个时间,使AQB S ∆=3OQBPS 四边形,若存在,求出t 的值,若不存在,试说明理由;(3)在(2)的条件下,四边形QBPO 的面积是否发生变化,若不变,求出并证明你的结论,若变化,求出变化的范围.【例9】如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0)单位,再向右平移1D 连结AC ,BD .(1)求点C ,D 的坐标及四边形(2)在y 轴上是否存在一点P ,连结PA ,PB ,使S △PAB =S △PDB ,若存在这样一点,求出点P 点坐标,若不存在,试说明理由;(3)若点Q 自O 点以0.5个单位/s 的速度在线段AB 上移动,运动到B 点就停止,设移动的时间为t 秒,(1)是否是否存在一个时刻,使得梯形CDQB 的面积是四边形ABCD 面积的三分之一?(4)是否是否存在一个时刻,使得梯形CDQB 的面积等于△ACO 面积的二分之一?【例10】在直角坐标系中,△ABC(2,4),C (5,0). (1)求△ABC 的面积(2)点D 为y 负半轴上一动点,连BD 交x 轴于E ,是否存在点D 使得ADEBCES S ∆∆=?若存在,请求出点D 的坐标;若不存在,请说明理由.(3)点F (5,n )是第一象限内一点,,连BF ,CF ,G 是x轴上一点,若△ABG 的面积等于四边形ABDC 的面积,则点G 的坐标为 (用含n 的式子表示)二、坐标与几何:【例1】如图,已知A(0,a),B (0,b ),C (m ,b )且(a -4)2+|b +3|=0,S △ABC =14. (1)求C 点坐标(2)作DE ⊥DC ,交y 轴于E 点,EF 为∠AED 的平分线,且∠DFE =900.求证:FD 平分∠ADO ;(3)E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分∠AEC ,且PM ⊥EM ,PN⊥x轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,∠MPQ∠ECA 的大小是否发生变化,若不变,求出其值.【例2】如图,在平面直角坐标系中,已知点A (-5,0),B (5.0),D (2,7), (1)求C 点的坐标;(2)动点P从B点出发以每秒1个单位的速度沿BA方向运动,同时动点Q从C点出发也以每秒1位的速度沿y轴正半轴方向运动(当P点运动到A点时,两点都停止运动)。
平面直角坐标系2【例1】在坐标平面描出下列各点的位置.A(2,1),B(1,2),C(-1,2),D(-2,-1),E(0,3),F(-3,0)【变式题组】01.第三象限的点P(x,y),满足|x|=5,2x+|y|=1,则点P得坐标是_____________.02.在平面直角坐标系中,如果m.n>0,那么(m, |n|)一定在____________象限. 03.指出下列各点所在的象限或坐标轴.A(-3,0),B(-2,-13),C(2,12),D(0,3),E(π-3.14,3.14-π)【例2】若点P(a,b)在第四象限,则点Q(―a,b―1)在()A.第一象限B.第二象限C.第三象限D.第四象限【变式题组】01.若点G(a,2-a)是第二象限的点,则a的取值围是()A.a<0 B.a<2 C.0<a<2 B.a<0或a>202.如果点P(3x-2,2-x)在第四象限,则x的取值围是____________.03.若点P(x,y)满足xy>0,则点P在第______________象限.04.已知点P(2a-8,2-a)是第三象限的整点,则该点的坐标为___________.【例3】已知A点与点B(-3,4)关于x轴对称,求点A关于y轴对称的点的坐标.【解法指导】关于x轴对称的点的坐标的特点:横坐标(x)相等,纵坐标(y)互为相反数,关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标(y)相等.【变式题组】01.P(-1,3)关于x轴对称的点的坐标为____________.02.P(3,-2)关于y轴对称的点的坐标为____________.03.P(a,b)关于原点对称的点的坐标为____________.04.点A(-3,2m-1) 关于原点对称的点在第四象限,则m的取值围是____________.05.如果点M(a+b,ab)在第二象限,那么点N(a,b) 关于y轴对称的点在第______象限.【例4】P(3,-4),则点P到x轴的距离是____________.【变式题组】01.已知点P(3,5),Q(6,-5),则点P、Q到x轴的距离分别是_________,__________.P到y 轴的距离是点Q到y轴的距离的________倍.02.若x轴上的点P到y轴的距离是3,则P点的坐标是__________.03.如果点B(m+1,3m-5) 到x轴的距离与它到y轴的距离相等,求m的值.04.若点(5-a,a-3)在一、三象限的角平分线上,求a的值.05.已知两点A(-3,m),B(n,4),AB∥x轴,求m的值,并确定n的取值围.例5.如图,四边形ACBD是平行四边形,且AD∥x轴,说明,A、D两点的___________坐标相等,请你依据图形写出A、B、C、D四点的坐标分别是_________、_________、____________、____________.【变式题组】01.已知:A(0,4),B(-3,0),C(3,0)要画出平行四边形ABCD,请根据A、B、C三点的坐标,写出第四个顶点D的坐标,你的答案是唯一的吗?02.已知:A(0,4),B(0,-1),在坐标平面求作一点,使△ABC的面积为5,请写出点C的坐标规律.【例6】平面直角坐标系,已知点A(-3,-2),B(0,3),C(-3,2),求△ABC的面积.【变式题组】01.在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(―3,―1),B(1,3),C(2,-3),△ABC的面积.02.如图,已知A(-4,0),B(-2,2),C,0,-1),D(1,0),求四边形ABDC的面积.03.已知:A(-3,0),B(3,0),C(-2,2),若D点在y轴上,且点A、B、C、D四点所组成的四边形的面积为15,求D点的坐标.【例7】如图所示,在平面直角坐标系中,横、纵坐标都为整数的点称为整点.请你观察图中正方形A1B1C1D1、A2B2C2D2……每个正方形四条边上的整点的个数,推算出正方形A10B10C10D10四条边上的整点共有__________个.01.如图所示,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变成△OA3B3.已知:A(1,2),A1(2,2),A2(4,2),A3(8,2),B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换前后的三角形有何变化?找出规律,按此规律再将三角形△OA3B3变换成△OA4B4,则A4的坐标是____________,B4的坐标是_____________;(2)若按(1)题找到的规律将△OAB进行n次变换,得到三角形△OA n B n,推测A n的坐标是_____________,B n的坐标是_____________.【解法指导】由AA1A2A3、BB1B2B3的坐标可知,每变换一次,顶点A的横坐标乘以2,纵坐标不变,顶点B的横坐标乘以2,纵坐标不变.如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1)…则点A2010的坐标为_______________.演练巩固反馈提高01.若点A(-2,n)在x轴上,则点B(n-1,n+1)在( )A.第一象限B.第二象限C.第三象限D.第四象限02.若点M(a+2,3-2a)在y轴上,则点M的坐标是( )A.(-2,7) B.(0,3) C.(0,7) D.(7,0)03.如果点A(a,b),则点B(-a+1,3b-5)关于原点的对称点是( )A.第一象限B.第二象限C.第三象限D.第四象限04.下列数据不能确定物体位置的是( )A.六楼6号B.北偏西400C.大道10号D.北纬260,东经135005.在坐标平面有一点P(a,b),若ab=0,则P点的位置是( )A.原点B.x轴上C.y轴上D.坐标轴上06.已知点P(a,b)到x轴的距离为2,到y轴的距离为5,且|a-b |=b-a,则点P的坐标是_______________.07.已知平面直角坐标系两点M(5,a),N(b,-2),①若直线MN∥x轴,则a=______,b=__________;②若直线MN∥y轴,则a=___________,b=_________.08.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2010次,点P依次落在点P1,P2,P3,…,P2010的位置,则P2010的横坐标x2010=___________•09.按下列规律排列的一列数对,(2,1),(5,4),(8,7) …,则第七个数对中的两个数之和是______________•10.如图,小明用手盖住的点的坐标可能为()A.(2,3) B.(2,-3) C.(-2,3) D.(-2,-3)11.点P位于x轴的下方,距y轴3个单位长度,距x轴4个单位长度,则点P的坐标是____________.12.将正整数按如图所示的规律排列下去,若有序数对(n,m)表示第n排,从左到右第m个数,则表示实数25的有序数对是______________.13.已知点A(-5,0),B(3,0),(1)在y轴上找一点C,使之满足S△ABC=16,求点C的坐标;(2)在平面直角坐标系找一点C,使之满足S△ABC=16的点C有多少个?这样的点有什么规律.14.若y轴正方向是北,小芳家的坐标为(1,2),小家的坐标为(-2,-1),则小芳家的________________方向.15.如图所示,在直角坐标系xOy中,四边形OABC为正方形,其边长为4,有一动点P,自O点出发,以2个单位长度/秒得速度自O→A→B→C→O运动,问何时S△PBC=4?并求此时P点的坐标.培优检查01.如果点M(a+b,ab)在第二象限,那么点N(a,b)在第_____________象限.02.若点A(6-5a,2a-1).(1)点A在第二象限,求a的取值围;(2)当a为实数时,点A能否在第三象限,试说明理由;(3)点A能否在坐标原点处?为什么?03.点P{-12,-[ -|1-12| ]}关于y轴对称点的坐标是_____________.04.已知点A(2a+3b,-2)与点B(8,3a+2b)关于x轴对称,那么a+b=__________.05.已知a<0,那么点P(-a2-2,2-a)关于原点对称的点在第________象限.06.已知点P1(a-1,5)在第一、三象限角平分线上,点P2(2,b-8)在第二、四象限角平分线上,则(-a+b)2010=___________.07.无论x为何实数值,点P(x+1,x-1)都不在第_________象限•08.已知点P的坐标为(2-a,3b+6),且点P到两坐标轴的距离相等,则点P的坐标为_________.09.若点P(x,y)在第二象限,且|x-1|=2,|y+3|=5,则P点的坐标是__________.10.若点A(2x-3,b-x)在坐标轴夹角的平分线上,且在第二象限,则点A的坐标是__________.11.已知线段AB平行于y轴,若点A的坐标为(-2,3),且AB=4,则点B的坐标是__________.12.已知A(-3,2)与点B(x,y)在同一条平行于y轴的直线上,且点B到x轴的距离等于3,求B 点的坐标.13.已知:A(a-35,2b+23),以A点为原点建立平面直角坐标系.(1)试确定a、b的值;(2)若点B(2a-75,2b+2m),且AB所在直线为第二、四象限夹角的平分线,求m的值.。