(完整版)贾俊平统计学[第六版]思考题答案解析.docx
- 格式:docx
- 大小:34.46 KB
- 文档页数:9
第一章导论1.什么是统计学统计学是收集、处理、分析、解释数据并从数据中得出结论的科学。
2.解释描述统计和推断统计描述统计研究的是数据收集、处理、汇总、图表描述、概括与分析等统计方法。
推断统计是研究如何利用样本数据来推断总体特征的统计方法。
3.统计数据可以分为哪几种类型?不同类型的数据各有什么特点?分类数据:是只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,是用文字来表述的。
顺序数据:是只能归于某一有序类别的非数字型数据。
虽然也有列别,但这些类别是有序的。
数值型数据:是按数字尺度测量的观察值,其结果表现为具体的数值。
4.解释分类数据、顺序数据和数值型数据的含义分类数据和顺序数据说明的是事物的品质特征,通常是用文字来表述的,其结果均表现为类别,因此也可统称为定性数据或品质数据;数值型数据说明的是现象的数量特征,通常是用数值来表现的,因此也可称为定量数据或数量数据。
5.举例说明总体、样本、参数、统计量、变量这几个概念总体是包含所研究的全部个体(数据)的集合;样本是从总体中抽取的一部分元素的集合;参数是用来描述总体特征的概括性数字度量;统计量是用来描述样本特征的概括性数字度量;变量是说明现象某种特征的概念。
比如我们欲了解某市的中学教育情况,那么该市的所有中学则构成一个总体,其中的每一所中学都是一个个体,我们若从全市中学中按某种抽样规则抽出了10 所中学,则这10 所中学就构成了一个样本。
在这项调查中我们可能会对升学率感兴趣,那么升学率就是一个变量。
我们通常关心的是全市的平均升学率,这里这个平均值就是一个参数,而此时我们只有样本的有关升学率的数据,用此样本计算的平均值就是统计量。
6.变量可以分为哪几类分类变量:一个变量由分类数据来记录就称为分类变量。
顺序变量:一个变量由顺序数据来记录就称为顺序变量。
数值型变量:一个变量由数值型数据来记录就称为数值型变量。
离散变量:可以取有限个值,而且其取值都以整位数断开,可以一一例举。
1.什么是统计学?答:统计学是关于数据的科学,它所提供的是一套有关数据收集、处理、分析、解释并从数据中得出结论的方法,统计所研究的是来自各领域的数据。
数据收集即取得统计数据;数据处理是将数据用图表等形式展示出来;数据分析则是选择适当的统计方法研究数据,并从数据中提取有用信息进而得出结论。
2.解释描述统计和推断统计。
答:数据分析所用的方法可分为描述统计方法和推断统计方法。
(1)描述统计研究的是数据收集、处理、汇总、图表描述、概括与分析等统计方法。
(2)推断统计是研究如何利用样本数据来推断总体特征的统计方法。
比如,对产品的质量进行检验,往往是破坏性的,不可能对每个产品进行测量。
这就需要抽取部分个体即样本进行测量,然后根据获得的样本数据对所研究的总体特征进行推断,这就是推断统计要解决的问题。
3.统计数据可分为哪几种类型?不同类型的数据各有什么特点?答:统计数据是对现象进行测量的结果,可以从不同角度对统计数据进行分类:(1)按照所采用的计量尺度不同,可以将统计数据分为分类数据、顺序数据和数值型数据。
①在分类数据中,各类别之间是平等的并列关系,无法区分优劣或大小,各类别之间的顺序是可以改变的;②顺序数据也表现为类别,但这些类别之间是有顺序的;③数值型数据具有分类数据和顺序数据的特点,并且还可以进行加、减、乘、除运算。
(2)按照统计数据的收集方法,可以将其分为观测数据和实验数据。
①观测数据是通过调查或观测而收集到的数据,这类数据是在没有对事物进行人为控制的条件下得到的,有关社会经济现象的统计数据几乎都是观测数据;②实验数据是在实验中通过控制实验对象收集到的数据,自然科学领域的大多数数据都是实验数据。
(3)按照被描述的现象与时间的关系,可以将统计数据分为截面数据和时间序列数据。
①截面数据是在相同或近似相同的时间点上收集的数据,这类数据通常是在不同的空间上获得的,用于描述现象在某一时刻的变化情况;②时间序列数据是在不同时间上收集到的数据,这类数据是按时间顺序收集到的,用于描述现象随时间变化的情况。
统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)第一部分思考题第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
第1章统计与统计数据1.1(1)数值型数据;(2)分类数据;(3)数值型数据;(4)顺序数据;(5)分类数据。
1.2(1)总体是“该城市所有的职工家庭”,样本是“抽取的2000个职工家庭”;(2)城市所有职工家庭的年人均收入,抽取的“2000个家庭计算出的年人均收入。
1.3(1)所有IT从业者;(2)数值型变量;(3)分类变量;(4)观察数据。
1.4(1)总体是“所有的网上购物者”;(2)分类变量;(3)所有的网上购物者的月平均花费;(4)统计量;(5)推断统计方法。
1.5(略)。
1.6(略)。
第2章数据的图表展示2.1(1)属于顺序数据。
(2)频数分布表如下服务质量等级评价的频数分布(3)条形图(略)(4)帕累托图(略)。
2.2(1)频数分布表如下40个企业按产品销售收入分组表(2)某管理局下属40个企分组表2.3频数分布表如下某百货公司日商品销售额分组表直方图(略)。
2.4茎叶图如下箱线图(略)。
2.5(1)排序略。
(2)频数分布表如下100只灯泡使用寿命非频数分布(3)直方图(略)。
(4)茎叶图如下2.6(1)频数分布表如下(2)直方图(略)。
(3)食品重量的分布基本上是对称的。
2.7(1)频数分布表如下(2)直方图(略)。
2.8(1)属于数值型数据。
(2)分组结果如下(3)直方图(略)。
2.9(1)直方图(略)。
(2)自学考试人员年龄的分布为右偏。
2.10(1)茎叶图如下(2)A 班考试成绩的分布比较集中,且平均分数较高;B 班考试成绩的分布比A 班分散,且平均成绩较A 班低。
2.11 (略)。
2.12 (略)。
2.13 (略)。
2.14 (略)。
2.15箱线图如下:(特征请读者自己分析)第3章 数据的概括性度量3.1(1)100=M ;10=e M ;6.9=x 。
(2)5.5=L Q ;12=U Q 。
(3)2.4=s 。
(4)左偏分布。
3.2(1)190=M ;23=e M 。
目录第一章P10 (1)第二章P34 (2)第三章P66 (3)第四章P94 (8)第七章P176 (11)第八章P212 (15)第10 章P258 (17)第11 章P291 (21)第13 章P348 (26)第14 章P376 (30)第一章P10一、思考题1.1什么是统计学?1.2解释描述统计和推断统计。
1.3统计数据可分为哪几种类型?不同类型的数据各有什么特点?1.4解释分类数据、顺序数据和数值型数据的含义。
1.5举例说明总体、样本、参数、统计量、变量这几个概念。
1.6变量可分为哪几类?1.7举例说明离散型变量和连续型变量。
1.8请举出统计应用的几个例子。
1.9请举出应用统计的几个领域。
1.1 指出下面变量的类型:(1)年龄(2)性别(3)汽车产量(4)员工对企业某项改革措施的态度(赞成、中立、反对)(5)购买商品时的支付方式(现金、信用卡、支票)(1)数值型变量。
(2)分类变量。
(3)离散型变量。
(4)顺序变量。
(5)分类变量。
1.2 某研究部门准备抽取 2000 个职工家庭推断该城市所有职工家庭的年人均收入。
要求:(1)描述总体和样本。
(2)指出参数和统计量。
(1)总体是该市所有职工家庭的集合;样本是抽中的 2000 个职工家庭的集合。
(2)参数是该市所有职工家庭的年人均收入;统计量是抽中的 2000 个职工家庭的年人均收入。
1.3 一家研究机构从 IT 从业者中随机抽取 1000 人作为样本进行调查,其中 60%的人回答他们的月收入在5000 元以上,50%的人回答他们的消费支付方式是用信用卡。
回答下列问题:(1)这一研究的总体是什么?(2)月收入是分类变量、顺序变量还是数值型变量?(3)消费支付方式是分类变量、顺序变量还是数值型变量?(4)这一研究涉及截面数据还是时间序列数据?(1)总体是所有 IT 从业者的集合。
(2)数值型变量。
(3)分类变量。
(4)截面数据。
1.4 一项调查表明,消费者每月在网上购物的平均花费是 200 元,他们选择在网上购物的主要原因是“价格便宜”。
附录:教材各章习题答案第1章统计与统计数据1.1(1)数值型数据;(2)分类数据;(3)数值型数据;(4)顺序数据;(5)分类数据。
1.2(1)总体是“该城市所有的职工家庭”,样本是“抽取的2000个职工家庭”;(2)城市所有职工家庭的年人均收入,抽取的“2000个家庭计算出的年人均收入。
1.3(1)所有IT从业者;(2)数值型变量;(3)分类变量;(4)观察数据。
1.4(1)总体是“所有的网上购物者”;(2)分类变量;(3)所有的网上购物者的月平均花费;(4)统计量;(5)推断统计方法。
1.5(略)。
1.6(略)。
第2章数据的图表展示2.1(1)属于顺序数据。
(2)频数分布表如下服务质量等级评价的频数分布(3)条形图(略)(4)帕累托图(略)。
2.2(1)频数分布表如下40个企业按产品销售收入分组表(2)某管理局下属40个企分组表2.3频数分布表如下某百货公司日商品销售额分组表直方图(略)。
2.4茎叶图如下箱线图(略)。
2.5(1)排序略。
(2)频数分布表如下100只灯泡使用寿命非频数分布(3)直方图(略)。
(4)茎叶图如下2.6(1)频数分布表如下(2)直方图(略)。
(3)食品重量的分布基本上是对称的。
2.7(1)频数分布表如下(2)直方图(略)。
2.8(1)属于数值型数据。
(2)分组结果如下(3)直方图(略)。
2.9(1)直方图(略)。
(2)自学考试人员年龄的分布为右偏。
2.10(1)茎叶图如下(2)A班考试成绩的分布比较集中,且平均分数较高;B班考试成绩的分布比A班分散,且平均成绩较A班低。
2.11(略)。
2.12(略)。
2.13(略)。
2.14(略)。
2.15箱线图如下:(特征请读者自己分析)第3章 数据的概括性度量 3.1(1)100=M ;10=e M ;6.9=x 。
(2)5.5=L Q ;12=U Q 。
(3)2.4=s 。
(4)左偏分布。
3.2(1)190=M ;23=e M 。
附录:教材各章习题答案第1 章统计与统计数据1.1(1)数值型数据;(2)分类数据;(3)数值型数据;(4)顺序数据;(5)分类数据。
1.2(1)总体是“该城市所有的职工家庭”,样本是“抽取的2000 个职工家庭”;(2)城市所有职工家庭的年人均收入,抽取的“2000个家庭计算出的年人均收入。
1.3(1)所有IT 从业者;(2)数值型变量;(3)分类变量;(4)观察数据。
1.4(1)总体是“所有的网上购物者”;(2)分类变量;(3)所有的网上购物者的月平均花费;(4)统计量;(5)推断统计方法。
1.5(略)。
1.6(略)。
第2 章数据的图表展示2.1 (1)属于顺序数据。
(2)频数分布表如下服务质量等级评价的频数分布3)条形图(略)4)帕累托图(略)2.2 (1)频数分布表如下402)某管理局下属40 个企分组表2.3 频数分布表如下某百货公司日商品销售额分组表2.4茎叶图如下茎叶数据个数1 8 8 93 2 0 1 1 3 3 6 8 8 8 9 9 912 3 13 5 6 95 4 1 2 36 67 6 50 1 2 74箱线图(略) 2.5 ( 1)排序略(2)频数分布表如下1数分布34)茎叶图如下茎叶65 66 67 68 5 5 6 6 6 7 7 8 8 8 8 9 970 7169720 1 2 2 5 6 7 8 9 973 3 5 674 1 4 72.6(1)频数分布表如下按重量分组频率/包40~42 242~44 344~46 746~48 1648~50 1752~52 1052~54 2054~56 856~58 1058~60 460~62 3合计100 (2)直方图(略)。
(3)食品重量的分布基本上是对称的2.7(1)频数分布表如下按重量误差分组频数/个10~20 020~30 530~40 740~50 850~60 1360~70 970~80 680~90 2合计50 2)直方图(略)2.8 (1)属于数值型数据( 2 )分组结果如下分组天数/天-25~-20 6-20~-15 8-15~-10 10-10~-5 13-5~0 120~5 45~10 7合计60( 3 )直方图(略)。
第一章导论1.什么是统计学统计学是收集、处理、分析、解释数据并从数据中得出结论的科学。
2.解释描述统计和推断统计描述统计研究的是数据收集、处理、汇总、图表描述、概括与分析等统计方法。
推断统计是研究如何利用样本数据来推断总体特征的统计方法。
3.统计数据可以分为哪几种类型?不同类型的数据各有什么特点?分类数据:是只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,是用文字来表述的。
顺序数据:是只能归于某一有序类别的非数字型数据。
虽然也有列别,但这些类别是有序的。
数值型数据:是按数字尺度测量的观察值,其结果表现为具体的数值。
4.解释分类数据、顺序数据和数值型数据的含义分类数据和顺序数据说明的是事物的品质特征,通常是用文字来表述的,其结果均表现为类别,因此也可统称为定性数据或品质数据;数值型数据说明的是现象的数量特征,通常是用数值来表现的,因此也可称为定量数据或数量数据。
5.举例说明总体、样本、参数、统计量、变量这几个概念总体是包含所研究的全部个体(数据)的集合;样本是从总体中抽取的一部分元素的集合;参数是用来描述总体特征的概括性数字度量;统计量是用来描述样本特征的概括性数字度量;变量是说明现象某种特征的概念。
比如我们欲了解某市的中学教育情况,那么该市的所有中学则构成一个总体,其中的每一所中学都是一个个体,我们若从全市中学中按某种抽样规则抽出了10所中学,则这10所中学就构成了一个样本。
在这项调查中我们可能会对升学率感兴趣,那么升学率就是一个变量。
我们通常关心的是全市的平均升学率,这里这个平均值就是一个参数,而此时我们只有样本的有关升学率的数据,用此样本计算的平均值就是统计量。
6.变量可以分为哪几类分类变量:一个变量由分类数据来记录就称为分类变量。
顺序变量:一个变量由顺序数据来记录就称为顺序变量。
数值型变量:一个变量由数值型数据来记录就称为数值型变量。
离散变量:可以取有限个值,而且其取值都以整位数断开,可以一一例举。
第5章概率与概率分布一、单项选择题1.一项试验中所有可能结果的集合称为()。
A.事件B.简单事件C.样本空间D.基本事件【答案】C【解析】在同一组条件下,对某事物或现象所进行的观察或实验称作试验,观察或试验的结果称作事件。
如果一个事件不能分解成两个或更多个事件,则这个事件称为基本事件或者简单事件。
一个试验中所有的简单事件的全体称为样本空间或基本空间。
2.每次试验可能出现也可能不出现的事件称为()。
A.必然事件B.样本空间C.随机事件D.不可能事件【答案】C【解析】随机事件是指在同一组条件下,每次试验可能出现也可能不出现的事件,也叫偶然事件。
必然事件是指在同一组条件下,每次试验一定出现的事件。
不可能事件是指在同一组条件下,每次试验一定不出现的事件。
3.抛3枚硬币,用0表示反面,l 表示正面,其样本空间为Ω=()。
A.{000,001,010,100,011,101,110,111}B.{l,2,3}C.{0,1}D.{01,10}【答案】A【解析】样本空间为一个试验中所有的简单事件的全体。
抛3枚硬币,每抛一次都是由0和1组成的一个三位数的组合,所有的组合构成了样本空间,即{000,001,010,100,011,101,110,111}。
4.随机抽取一只灯泡,观察其使用寿命t ,其样本空间为Ω=()。
A.{0t =}B.{0t <}C.{0t >}D.{0t ≥}【答案】D【解析】一个试验中所有的简单事件的全体称为样本空间或基本空间。
灯泡的使用寿命样本空间为Ω={0t ≥}。
5.观察一批产品的合格率p ,其样本空间为Ω=()。
A.{01p <<}B.{01p ≤≤}C.{1p ≤}D.{0p ≥}【答案】B【解析】一个试验中所有的简单事件的全体称为样本空间或基本空间。
产品的合格率样本空间为Ω={01p ≤≤}。
6.抛掷一枚硬币,观察其出现的是正面还是反面,并将事件A 定义为:事件A=出现正面,这一事件的概率记作P(A)。
统计学贾俊平课后习题答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】附录:教材各章习题答案第1章统计与统计数据1.1(1)数值型数据;(2)分类数据;(3)数值型数据;(4)顺序数据;(5)分类数据。
1.2(1)总体是“该城市所有的职工家庭”,样本是“抽取的2000个职工家庭”;(2)城市所有职工家庭的年人均收入,抽取的“2000个家庭计算出的年人均收入。
1.3(1)所有IT从业者;(2)数值型变量;(3)分类变量;(4)观察数据。
1.4(1)总体是“所有的网上购物者”;(2)分类变量;(3)所有的网上购物者的月平均花费;(4)统计量;(5)推断统计方法。
1.5(略)。
1.6(略)。
第2章数据的图表展示2.1(1)属于顺序数据。
(2)频数分布表如下(4)帕累托图(略)。
2.2(1)频数分布表如下2.3频数分布表如下2.5(1)排序略。
(2)频数分布表如下2.6(3)食品重量的分布基本上是对称的。
2.72.8(1)属于数值型数据。
2.9(1)直方图(略)。
(2)自学考试人员年龄的分布为右偏。
2.10A 班分散,且平均成绩较A 班低。
2.11 (略)。
2.12 (略)。
2.13 (略)。
2.14 (略)。
2.15 箱线图如下:(特征请读者自己分析) 第3章 数据的概括性度量3.1(1)100=M ;10=e M ;6.9=x 。
(2)5.5=L Q ;12=U Q 。
(3)2.4=s 。
(4)左偏分布。
3.2(1)190=M ;23=e M 。
(2)5.5=L Q ;12=U Q 。
(3)24=x ;65.6=s 。
(4)08.1=SK ;77.0=K 。
(5)略。
3.3 (1)略。
(2)7=x ;71.0=s 。
(3)102.01=v ;274.02=v 。
(4)选方法一,因为离散程度小。
3.4 (1)x =(万元);M e= 。
贾俊平统计学第六、七章课后习题答案6.1解:设每个瓶子的灌装量为X,X?为样本均值,样本容量为n。
由于总体X服从正态分布,样本均值X?也服从正态分布,且均值相同,标准差为σ√n =1√9=13所以P(|X??μ|≤0.3)=P(|X??μ|13≤0.313)=2Φ(0.9)?1=2?0.8159?1=0.6318 7.1(1)已知σ=500,n=15,x=8900,1-α=95%,Z2α=1.96x+Z2αnσ=8900+1.96×15500=(8647,9153)(2)已知σ=500,n=35,x=8900,1-α=95%,Z2α=1.96x+Z2αnσ=8900+1.96×35500=(8734,9066)(3)已知n=35,x=8900,s=500,由于总体方差未知,但为大样本,所以可用样本方差来代替总体方差。
置信水平1-α=90%,Z2α=1.645x+Z2αns=8900+1.645×35500=(8761,9039)(4)已知n=35,x=8900,s=500,由于总体方差未知,但为大样本,所以可用样本方差来代替总体方差。
置信水平1-α=99%,Z2α=2.58x +Z2αn s =8900+2.58×35500=(8682,9118)7.2已知n=36,x =3.3167,s=1.6093(1)当置信水平为90%时,Z 2α=1.645x +Z 2αn s =3.3167+1.645×366093.1=3.3167+0.4532=(2.88,3.76)(2)当置信水平为95%时,Z 2α=1.96x +Z 2αn s =3.3167+1.96×366093.1=3.3167+0.544=(2.80,3.84)(3)当置信水平为99%时,Z 2α=2.58Z2αn s =3.3167+2.58×366093.1=3.3167+0.7305=(2.63,4.01)7.3(1)已知总体服从正态分布,但σ未知,n=50为大样本,α=0.05,Z 2α=1.96,根据样本计算可知x =101.32,s=1.63x +Z 2αn s =101.32+1.96×5063.1=101.32+0.45=(100.87,101.77)(2)由所给样本数据可知样本合格率:p=5045=0.9p +Z2αnp p )1(-=0.9+1.9650)9.0-19.0(=0.9+0.08=(0.82,0.98)7.4由样本数据得x =16.13,σ=0.8706,置信水平1-α=99%,Z 2α=2.58x +Zαn σ=16.13+2.58×58706.0=16.13+0.45=(15.68,16.58)7.5、(1)n=44,p=0.51,置信水平为99%由题意,已知n=44,置信水平1-α=99%,因此检验统计量为:,代入数值计算,总体比例π的置信区间为(31.6%,70.4%) (2)n=300,p=0.82,置信水平为95%由题意可得知96.12=αZ检验统计量为:,代入数值计算,总体比例π的置信区间为(77.7%,86.3%) (3)n=1150,p=0.48,置信水平为90%由题意可得知检验统计量为:,代入数值计算,58.22=αZ np p Z P )1(2-±α)704.0,316.0(194.051.044)51.01(51.058.251.0=+=-??p p Z P )1(2-±α)863.0,777.0(043.082.0300)82.01(82.096.182.0=+=-?+645.12=αZ np p Z P )1(2-±α总体比例π的置信区间为(45.6%,50.4%)7.6、(1)由题意已知n=200,当置信水平为90%时,,检验统计量为代入数据计算可得:置信区间为(18.10%,27.90%) (2)当置信水平为95%时,96.12=αZ ,检验统计量为代入数据计算可得:置信区间为(17.17%,28.83%)7.7、由题意已知置信水平为99%,即1-α=99%,则,估计误差E=200,=1000504.0,456.0(024.048.01150)48.01(48.0645.148.0=+=-?+645.12=αZ np p Z P )1(2-±α%)90.27%,10.18(%90.4%23200%)231%(23645.1%23=±=-?±np p Z P )1(2-±α%)83.28%,17.17(%83.5%23200%)231%(2396.1%23=+=-?+58.22=αZ σ则,即应该取样本量为1677.8、(1)由题意可知n=50,p=32/50=0.64,α=0.05,96 .12=αZ 总体中赞成该项改革的户数比例的置信区间为,代入数据计算:即置信区间为(51%,77%)(2)如果小区管理者预计赞成的比例能达到80%,即π=0.80,估计误差不超过10%,即E=10%,α=0.05,96.12=αZ ,应抽取的样本量为即应该抽取62户进行调查7.9(1)x?=21,s=2,n=50,α=0.1χ0.12?2(50?1)=66.3387,χ1?0.12?2(50?1)=33.9303∴(n?1)s 2χα22≤σ2≤(n?1)s 2χ1?α22(50?1)×2266.3387≤σ2≤(50?1)×2233.9303即2.95≤σ2≤5.78.标准差的置信区间为1.72≤σ≤2.4 (2)x?=1.3,s=0.02,n=15,α=0.1167200100058.22222222≈?==E Z n σαnp p Z P )1(2-±α)77.0,51.0(13.064.050)64.01(64.096.164.0=±=-±621.0)80.01(80.096.1)1(22222=-?=-?=E Z n ππαχ0.12?2(15?1)=23.6848,χ1?0.12?2(15?1)=6.5706∴(n?1)s 2χα22≤σ2≤(n?1)s 2χ1?α22(15?1)×0.02223.6848≤σ2≤(15?1)×0.0226.5706标准差的置信区间为0.015≤σ≤0.029 (3)x?=167,s=31,n=22,α=0.1χ0.12?2(22?1)=32.6706,χ1?0.12?2(22?1)=11.5913∴(n?1)s 2χα22≤σ2≤(n?1)s 2χ1?α22(22?1)×312≤σ2≤(22?1)×312标准差的置信区间为24.85≤σ≤41.73。
附录:教材各章习题答案第1章统计与统计数据1.1(1)数值型数据;(2分类数据;(3)数值型数据;(4)顺序数据;(5)分类数据。
1.2(1)总体是该城市所有的职工家庭”样本是抽取的2000个职工家庭”(2)城市所有职工家庭的年人均收入,抽取的“ 200个家庭计算出的年人均收入。
1.3(1)所有IT从业者;(2)数值型变量;(3)分类变量;(4)观察数据。
1.4(1)总体是所有的网上购物者”(2)分类变量;(3)所有的网上购物者的月平均花费;(4)统计量;(5)推断统计方法。
1.5(略)。
1.6(略)。
第2章数据的图表展示2.1(1)属于顺序数据。
(2)频数分布表如下服务质量等级评价的频数分布(3)条形图(略)(4)帕累托图(略)。
2.2(1)频数分布表如下40个企业按产品销售收入分组表(2)某管理局下属40个企分组表2.3 频数分布表如下某百货公司日商品销售额分组表直方图(略)。
2.4 茎叶图如下箱线图(略)。
2.5(1)排序略。
(2)频数分布表如下100只灯泡使用寿命非频数分布690~700 700~710 710~720 720~730 730~740 261813103261813103合计100 100(3)直方图(略)(4)茎叶图如下茎叶65 1 866 1 4 5 6 867 1 3 4 6 7 968 1 1 2 3 3 3 4 5 5 5 8 8 9 969 0 0 1 1 1 1 2 2 2 3 3 4 4 5 5 6 6 6 7 7 8 8 8 8 9 970 0 0 1 1 2 2 3 4 5 6 6 6 7 7 8 8 8 971 0 0 2 2 3 3 5 6 7 7 8 8 972 0 1 2 2 5 6 7 8 9 973 3 5 674 1 4 7(1)频数分布表如下按重量分组频率/包40 〜42 242 〜44 344 〜46 746 〜48 1648 〜50 1752 〜52 1052 〜54 202.62.7 2.854 〜56 856 〜58 1058 〜60 460 〜62 3合计100(2)直方图(略)。
第1章统计与统计数据1.1(1)数值型数据;(2)分类数据;(3)数值型数据;(4)顺序数据;(5)分类数据。
1.2(1)总体是“该城市所有的职工家庭”,样本是“抽取的2000个职工家庭”;(2)城市所有职工家庭的年人均收入,抽取的“2000个家庭计算出的年人均收入。
1.3(1)所有IT从业者;(2)数值型变量;(3)分类变量;(4)观察数据。
1.4(1)总体是“所有的网上购物者”;(2)分类变量;(3)所有的网上购物者的月平均花费;(4)统计量;(5)推断统计方法。
1.5(略)。
1.6(略)。
第2章数据的图表展示2.1(1)属于顺序数据。
(2)频数分布表如下(4)帕累托图(略)。
2.2(1)频数分布表如下2.32.5(1)排序略。
(2)频数分布表如下2.6(3)食品重量的分布基本上是对称的。
2.72.8(1)属于数值型数据。
2.9 (1)直方图(略)。
(2)自学考试人员年龄的分布为右偏。
布比A 班分散,且平均成绩较A 班低。
2.11 (略)。
2.12 (略)。
2.13 (略)。
2.14 (略)。
2.15 箱线图如下:(特征请读者自己分析)第3章 数据的概括性度量 3.1(1)100=M ;10=e M ;6.9=x 。
(2)5.5=L Q ;12=U Q 。
(3)2.4=s 。
(4)左偏分布。
3.2(1)190=M ;23=e M 。
(2)5.5=L Q ;12=U Q 。
(3)24=x ;65.6=s 。
(4)08.1=SK ;77.0=K 。
(5)略。
3.3 (1)略。
(2)7=x ;71.0=s 。
(3)102.01=v ;274.02=v 。
(4)选方法一,因为离散程度小。
3.4 (1)x =274.1(万元);M e=272.5 。
(2)Q L =260.25;Q U =291.25。
(3)17.21=s (万元)。
3.5 甲企业平均成本=19.41(元),乙企业平均成本=18.29(元);原因:尽管两个企业的单位成本相同,但单位成本较低的产品在乙企业的产量中所占比重较大,因此拉低了总平均成本。
第一章:1、什么是统计学?统计学是一门收集、分析、表述、解释数据的科学和艺术。
2、描述统计:研究的是数据收集、汇总、处理、图表描述、概括与分析等统计方法。
推断统计:研究的是如何利用样本数据来推断总体特征。
3、统计学据可以分成哪几种类型,个有什么特点?按照计量尺度不同,分为:分类数据、顺序数据、数值型数据。
分类数据:只能归于某一类别的,非数字型数据。
顺序数据:只能归于某一有序类别的,非数字型数据。
数值型数据:按数字尺度测量的观察值,结果表现为数值。
按收集方法不同。
分为:观测数据、和实验数据观测数据:通过调查或观测而收集到的数据;不控制条件;社会经济领域实验数据:在试验中收集到的数据;控制条件;自然科学领域。
按时间不同,分为:截面数据、时间序列数据截面数据:在相同或近似相同的时间点上收集的数据。
时间序列数据:在不同时间收集的数据。
4、举例说明总体、样本、参数、统计量、变量这几个概念。
总体:是包含全部研究个体的集合,包括有限总体和无限总体(范围、数目判定)样本:从总体中抽取的一部分元素的集合。
参数:用来描述总体特征的概括性数字度量。
(平均数、标准差、比例等)统计量:用来描述样本特征的概括性数字度量。
(平均数、标准差、比例等)变量:是说明样本某种特征的概念,其特点:从一次观察到下一次观察结果会呈现出差别或变化。
(商品销售额、受教育程度、产品质量等级等)(对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
)5、变量可以分为哪几类?分类变量:说明事物类别;取值是分类数据。
顺序变量:说明事物有序类别;取值是顺序数据数值型变量:说明事物数字特征;取值是数值型数据。
变量也可以分为:随机变量和非随机变量;经验变量和理论变量6、举例说明离散型变量和连续型变量。
离散型变量:只能取有限个、可数值的变量。
(企业个数、产品数量)连续型变量:可以在一个或多个区间中取任何值的变量。
(年龄、温度、零件尺寸误差)7、请举出统计应用的几个例子。
市场调查、人口普查等。
8、请举出应用统计学的几个领域。
社会科学中的经济分析、政府政策制定等;自然科学中的物理、生物领域等。
1、什么是二手资料?使用二手资料需要注意些什么?什么是二手资料:已经存在的;跟研究内容有关的;别人所做的调查或研究;会被我们利用的,资料。
注意:需要进行评估:考虑原始数据收集人、收集目的、收集途径、收集时间及数据来源。
2、比较概率抽样和非概率抽样的特点。
举例说明什么情况下适合采用概率抽样,什么情况下适合采用非概率抽样。
概率抽样:以一定的入样概率,按照一定的随机性原则选取样本(即样本被选中的概率已知或可计算);技术含量高、成本高。
用于描述性、解释性、推断性研究;研究目的在于掌握对象总体的数字特征,得到总体参数的置信区间。
非概率抽样:不按照入样概率和随机性原则,而按照方便、滚雪球或配额等抽样形式选取样本;技术含量低、成本低、时效快、操作简便。
用于探索性研究;研究目的在于发现问题,为更深入的数量分析提供准备。
下面题目(略)2.3 除了自填式,面访式和电话式还有什么搜集数据的办法试验式和观察式等2.4 自填式,面访式和电话式各自的长处和弱点自填式;优点: 1 调查组织者管理容易 2 成本低,可进行大规模调查 3 对被调查者,可选择方便时间答卷,减少回答敏感问题压力。
缺点: 1 返回率低 2 不适合结构复杂的问卷,调查内容有限 3 调查周期长 4 在数据搜集过程中遇见问题不能及时调整。
面访式;优点: 1 回答率高 2 数据质量高 3 在调查过程中遇见问题可以及时调整。
缺点:1成本比较高 2 搜集数据的方式对调查过程的质量控制有一定难度 3 对于敏感问题,被访者会有压力。
电话式;优点: 1 速度快 2 对调查员比较安全 3 对访问过程的控制比较容易。
缺点: 1 实施地区有限 2 调查时间不能过长 3 使用的问卷要简单 4 被访者不愿回答时,不易劝服。
2.6 如何控制调查中的回答误差对于理解误差,学习一定的心理学知识,记忆误差,缩短所涉及的时间范围,有意识误差,做好被调查者的心理工作,要遵守职业道德,为被调查者保密,尽量在问卷中不涉及敏感问题。
2.7 怎么减少无回答对于随机误差,要提高样本容量,对于系统误差,只有做好准备工作并做好补救措施。
比如说要一百份的问卷回复,就要做好一百二十到一百三十的问卷准备,进行面访式的时候要尽量的劝服不愿意回答的被访者,以小物品的馈赠提高回复率。
1、数据的预处理包括哪些内容?数据审核:从完整性和准确性方面调查原始数据(完整性:单位、个体是否遗漏;准确性:检查错误、异常值)数据筛选:根据需要找出符合特定条件的某类数据。
数据排序:按一定顺序将数据排列,体现数据特征或趋势。
2、分类数据和顺序数据的整理和图示方法各有哪些?分类数据:整理:制作频数分布表,用比例、百分比、比率进行描述性分析。
图示:条形图、帕累托图、饼图。
顺序数据::整理:制作频数分布表,用比例、百分比、比率进行描述性分析。
图示:累积频数、累计频率分布图、环形图、条形图、帕累托图、饼图。
3、数值型数据的分组方法有哪些?简述组距分组的步骤。
分组方法:单变量分组:把每一个变量值做为一组(只适合离散型变量,变量值较少)组距分组:将全部变量值依次划分为若干区间,一个区间变量值做为一组。
(组距分组又分为:等距分组、异距分组)分组步骤:确定组数(5,15);确定各组组距( 5 倍数;组距 >最大变量值 - 最小变量值);根据分组整理成频数分布表。
4、直方图与条形图有何区别?1、条形图用于展示分类数据;直方图用于展示数值型数据。
2、条形图用长度表示个类别频数,宽度固定(无意义);直方图用面积表示各组频数,长度表每组频数(或频率),宽度为组距(有意义)。
3、条形图各矩形分开排列,直方图各矩形连续排列。
(分组数据具有连续性)5、绘制线图应注意哪些问题?时间在横轴,观测值在纵轴;横轴纵轴长度比例大概为 10:7;纵轴下端一般从 0 开始,数据与 0 距离过大的话用折断符。
6、饼图与环形图有什么不同?饼图:只能绘制一个样本或总体各部分的比例。
条形图:可以同时绘制多个样本或总体各部分的比例。
中间有一空洞,每个样本或总体数据表现为一个环。
7、茎叶图与直方图相比有什么优点?他们的应用场合是什么?茎叶图在给出数据分布情况的同时,又能给出每一个原始数据(保留了原始数据的信息);直方图用于大批量数据,茎叶图用于小批量数据。
8、鉴别图标优劣的准则有哪些?显示数据、强调数据间的比较、有对图形的统计描述和文字描述、避免歪曲、把读者注意力集中于数据内容上、服务于一个明确的目的。
8、制作统计表应注意哪几个问题合理安排统计表结构;表头一般包括表号,总标题和表中数据的单位等内容;表中的上下两条横线一般用粗线,中间的其他用细线;在使用统计表时,必要时可在下方加注释,注明数据来源。
公式:组中值=(上限 +下限) /21、 一组数据的分布特征可以从哪进几个方面进行测度?可以从以下三方面进行测度:集中趋势:反映个数据向其中心值的靠拢或集中程度; 离散程度:反映各数据远离其中心值的趋势; 分布形状:数据分布的峰态和偏态; 2、 怎样理解平均数在统计学中的地位?平均数在统计学中具有重要地位:是集中趋势的最主要测度,是一组数据的重心所在;是数据误差相互抵消的结果, 利用了全部数据信息, 具有无偏性; 只适用于数值型数据,不适用于分类或顺序数据。
3、 简述四分位数的计算方法:四分位数是一组数据排序后处于 25%和 75%位置上的值。
具体计算方法是: n/4 ; 3n/4 4、 对于比例数据的平均为什么采用几何平均?对于比例数据采用几何平均比采用算数平均更合理。
nn(1 G i )(1 G )i 15、 简述众数、中位数和平均数的特点和应用场合。
众数:主要用于分类数据集中趋势的度量;是一组数据的峰值;优点:不受极值的影响。
缺点:具有不唯一性;只有数据量较大时才有效果中位数:主要用于顺序数据集中趋势的度量;是一组数据中间位置的代表制;优点:不受极值的影响;数据分布偏斜程度较大时是一个不错的选择。
平均数:主要用于数值型数据集中趋势的度量;是一组数据的重心所在。
优点:利用了所有数据信息;数据误差相互抵消,具有无偏性;缺点:易受极值影响;当数据分布偏斜程度较大时代表性差。
6、 简述异众比率、四分位差、方差或标准差的应用场合。
异众比率:分类数据的离散程度测度; 四分位差:顺序数据的离散程度测度; 方差:数值型数据的离散程度测度 7、 标准分数有哪些用途?标准分数: Xi-/s 即:(变量值减去其平均数) / 标准差标准分数给出了一组数据中各数据的相对位置(其离平均数的距离用标准差衡量) 用途:在对多个具有不同量纲的变量进行处理时,需要对变量进行标准化处理;检查一组数据中是否有离群值。
8、 为什么要计算离散系数?离散系数 =标准差 / 平均数原因:方差和标准差反映的是数据离散程度的绝对值:一方面,受原变量值自身水平高低的影响(与变量平均数大小有关) ;另一方面,与原变量值得计量单位有关,计量单位不同,离散程度也不同。
因此,为消除变量值水平高低和变量值单位对离散程度的影响,要计算离散系数。
9、 测度数据分布形状的统计量有哪些?峰态系数、偏态系数。
第六章:1、什么是量?什么要引量?量什么不含任何未知参数?定:( X1,X2⋯⋯ Xn)是从体X 中抽取的容量n 的本,如果由此构造一个函数 T( X1,X2⋯⋯ Xn),不依于任何未知参数,称函数T( X1,X2⋯⋯ Xn)是一个量。
什么:了使推断成可能。
2、什么是次序量?( X1,X2⋯⋯ Xn)是从体X 中抽取的容量n 的本,,若本( X1,X2⋯⋯ Xn)是足如下条件的函数:每当本得到一个x1,x1 ⋯⋯ xn ,其由小到大的排序中,第 i 个 x(i)就作次序量Xi 的,而X(1),X(2)⋯⋯X(n)就称次序量。
3、什么是充分量?加工程中一点信息都不失的量称充分量。
4、什么是自由度?独立量的个数。
5、述三个重要分布及正分布的关系。
卡方分布:X1,X2, ⋯⋯ Xn 是n个相互独立的随机量,且Xi~N(0,1),X=X1^2+⋯⋯ +Xn^2 服从以 n 自由度的卡方分布。
F 分布:X~X^2(m),Y^2~X^2(n),且X,Y相互独立,Z=X/m/Y/n , Z~F(m,n)Z 分布:X~N(0,1),Y~X^2(n),且X,Y相互独立,T=X/(Y/n)^(1/2),有T~t(n) 6、什么是抽分布?本量(随机量)的概率分布是一种理概率分布。