医学统计学重点图表总结
- 格式:doc
- 大小:97.50 KB
- 文档页数:2
各类临床医学统计图及其医学统计分析
临床医学统计图及医学统计分析
临床统计图(statistical chart)是用几何图形的位置、大小、长短、面积等特征来表现数据信息,将数据形象化。
与统计表相比,统计图更为直观,更便于读者理解和比较。
但统计图对数量的表达较为粗略,只能作为统计表的有益补充,可与统计表结合应用。
临床统计图是统计描述的重要工具,在医学论文中应合理运用和发挥其作用。
一、临床统计分析图常由以下6部分构成:
1.标题:一般置于图域的下方,一篇文章中有多幅统计图时,标题前应标注序号。
2.图域(即制图空间):图域的长宽比例一般为7:5或5:7。
3.标目:统计图一般有横轴和纵轴,纵轴的左侧和横轴的下方分别置放纵标目和横标目,并指明横纵轴所代表的指标和单位。
4.刻度:常用算术尺度和对数尺度,一般标注于纵轴外侧和横轴上侧。
5.图例:图例一般放置在横标目的下方,若图域中有较多空间,亦可放置于图域中。
6.注解:为了更清晰地说明统计图所反映的有关信息,可给予适当注解。
2、统计图形的选择
不同的统计图适用于不同的临床科研资料和分析目的,现归纳如下:。
描述内容 指 标 意 义 适 用 场 合平均水平均 数 个体的平均值 对称分布几何均数 平均倍数 取对数后对称分布中 位 数 位次居中的观察值 ①非对称分布;②半定量资料;③末端开口资料;④分布不明众 数 频数最多的观察值 不拘分布形式,概略分析 调和均数 基于倒数变换的平均值正偏峰分布资料 变 异 度全 距 观察值取值范围 不拘分布形式,概略分析 标 准 差 (方 差) 观察值平均离开均数的程度对称分布,特别是正态分布资料四分位数间距 居中半数观察值的全距①非对称分布;②半定量资料;③末端开口资料;④分布不明变异系数标准差与均数的相对比①不同量纲的变量间比较;②量纲相同但数量级相差悬殊的变量间比较4. 常用统计图有哪些?分别适用于什么分析目的? 常用统计图的适用资料及实施方法 图 形 适 用 资 料 实 施 方 法条 图 组间数量对比 用直条高度表示数量大小直 方 图 定量资料的分布 用直条的面积表示各组段的频数或频率百分条图 构成比 用直条分段的长度表示全体中各部分的构成比 饼 图 构成比用圆饼的扇形面积表示全体中各部分的构成比 线 图 定量资料数值变动 线条位于横、纵坐标均为算术尺度的坐标系半对数线图 定量资料发展速度 线条位于算术尺度为横坐标和对数尺度为纵坐标的坐标系 散 点 图 双变量间的关联 点的密集程度和形成的趋势,表示两现象间的相关关系 箱 式 图 定量资料取值范围 用箱体、线条标志四分位数间距及中位数、全距的位置 茎 叶 图 定量资料的分布用茎表示组段的设置情形,叶片为个体值,叶长为频数定性资料统计描述常用的统计指标及其适用场合指标 计算公式适用场合频率 n/N估计总体中某一结局发生的概率 频率分布 n 1/N ,n 2/N,…..,n k /N 估计总体中所有可能结局发生的概率强度 阳性人数/总观察人时数 估计总体中单位时间内某一结局发生的概率 比A/B估计两个指标的相对大小4.常用参考值范围的制定?参考值范围(%)正态分布法百分位数法双侧单侧双侧单侧下限上限下限上限 90 S X 64.1± S X 1.28- S X 1.28+ P 5~P 95 P 10 P 90 95 S X 96.1± S X 64.1- S X 64.1+ P 2.5~P 97.5 P 5 P 95 99S X 58.2±S X 2.33-S X 2.33+P 0.5~P 99.5P 1P 993. 简述置信区间与医学参考值范围的区别。
医学统计学流行病与卫生统计学系邹延峰*************常用统计图表统计表(statistical table)和统计图(statistical chart)是统计描述的重要工具。
医学科学研究资料经过整理和计算各种必要的统计指标后,所得结果除了用适当文字说明以外,常用统计表和统计图表达分析结果。
统计图表可以对于数据进行概括、对比或做直观的表达。
统计表和统计图不仅便于阅读,而且便于分析比较。
1.概念:指在科技报告中,常将统计分析的事物及其指标用表格列出,以反映事物的内在规律性和关联性。
2.作用:1)避免繁杂的文字叙述2)便于计算3)便于事物间的比较分析统计表 3. 结构从外形上看,统计表由标题、标目(包括横标目、纵标目)、线条、数字和备注5部分构成。
其基本格式如表1:1)标题:概括说明表的中心内容,要求用词简练、确切。
必要时注明资料的时间、地点,写在表的上端中央。
注意:防止标题过于简略或过于繁杂,有的甚至不写标题。
2)标目:要求文字简明,有单位的标目要注明单位。
横标目位于表的左侧,说明各横行数字的含义。
纵标目位于表的右侧,向下说明各纵行数字的含义。
注意:防止标目过多,层次不清。
3) 线条:只需要顶线、底线及纵标目下面与合计上面的横线。
注意:线条不宜过多,表的左上角不宜有斜线,表内不能有纵线。
4) 数字:表内数字一律用阿拉伯数字表示,同一个指标的数字精确度应当一致,表内不宜有空格,无数字用“—”表示,数字为0,则填写0。
5) 备注:表格一般不列备注或其他文字说明,如有特殊情况需要说明时可用“*”标出,将文字说明写在表格的下面。
从内容上看,每张表都有主语和谓语。
主语指被研究的事物,如表2-5中的药物分组,一般置于表的左侧;谓语指说明主语的各项统计指标,如表2-5中的“治愈”和“未愈”、“合计”,一般置于表的右侧,主语和谓语结合起来构成一个完整的句子。
如表2-5可读成用替硝唑治疗组治愈25例,未愈4例,合计29例。
医学统计学重点选择1.几何均数:平均血清抗体滴度(如P9例2.4)2.正态分布:横轴为μ(界值、面积)2.5% I1.962.5%单侧双侧90%: 1.6495%: 1.64 1.9699%: 2.583.P值与α的关系,α是人为规定的,它们之间没有关系;P值f,Qt(X)4.方差分析自由度V的计算,V总=nT;V组间=组数(k)-1;V组间=V总-V组间5.理论秩和(n(n+1)∕2),实际秩和(通过平均秩次算)6.可信区间的正确应用:总体参数有95%的可能落在该区间内(X);有95%的总体参数在该区间内(X);该区间包含95%的总体参数(X);该区间有95%的可能包含总体参数。
(X);这个区间的可信度为95%(√);总体参数只有一个,要么在区间内,要么不在7.相关系数与回归系数:相关系数为0,两个变量之间没有相关关系(X);回归系数t,相关系数t(X);(要做假设检验)二、名解1.参考值范围:根据正常人的数据估计绝大多数的正常人所在的范围2.区间估计(可信区间):按一定的概率或可信度(bα)用一个区间估计总体参数所在范围。
这个范围称作可信度为1-a的可信区间,又称置信区间。
3.P值:拒绝HO时所冒的风险(或“作出拒绝HO而接受H1”结论时冒了P风险)4.a(第一类错误):HO真实时被拒绝(或HO真实时,拒绝H0,接受H1)5.β(第二类错误):HO不真实时不拒绝(或HO不真实时,不拒绝HO)1-β检验效能:对真实的H1做肯定结论之概率6.秩次:是指全部观察值按某种顺序排列的位序;7.秩和:同组秩次之和8.剩余标准差:扣除了X的影响后,Y方面的变异;引进回归方程后,Y方面的变异。
三、简答1.假设检验与可信区间的联系与区别分辨多个样本是否分别属于不同的总体,并对总体作出适当的结论。
分辨一个样本是否属于某特定总体等。
区间估计(可信区间):按一定的概率或可信度(1-a)用一个区间估计总体参数所在范围。
第一章2选1总体:总体(population)是根据研究目的确定的同质观察单位(研究对象)的全体,实际上是某一变量值的集合。
可分为有限总体和无限总体。
总体中的所有单位都能够标识者为有限总体,反之为无限总体。
总体population根据研究目的而确定的同质观察单位的全体。
样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本(sample)。
样本应具有代表性。
所谓有代表性的样本,是指用随机抽样方法获得的样本。
样本sample从总体中随机抽得的部分观察单位,其实测值的集合。
3选1小概率事件:我们把概率很接近于0(即在大量重复试验中出现的频率非常低)的事件称为小概率事件。
P值:P 值即概率,反映某一事件发生的可能性大小。
统计学根据显著性检验方法所得到的P 值反应结果真实程度,一般以P ≤ 0.05 认为有统计学意义, P ≤0.01 认为有高度统计学意义,其含义是样本间的差异由抽样误差所致的概率等于或小于0.05 或0.01。
P值是:1) 一种概率,一种在原假设为真的前提下出现观察样本以及更极端情况的概率。
2) 拒绝原假设的最小显著性水平。
3) 观察到的(实例的) 显著性水平。
4) 表示对原假设的支持程度,是用于确定是否应该拒绝原假设的另一种方法。
小概率原理:一个事件如果发生的概率很小的话,那么可认为它在一次实际实验中是不会发生的,数学上称之小概率原理,也称为小概率的实际不可能性原理。
统计学中,一般认为等于或小于0.05或0.01的概率为小概率。
资料的类型(3选1)(1)计量资料:对每个观察单位用定量的方法测定某项指标量的大小,所得的资料称为计量资料(measurement data)。
计量资料亦称定量资料、测量资料。
.其变量值是定量的,表现为数值大小,一般有度量衡单位。
如某一患者的身高(cm)、体重(kg)、红细胞计数(1012/L)、脉搏(次/分)、血压(KPa)等。
计量资料measurement data定量资料quantitative data数值变量资料numerical variable为观测每个观察单位某项指标的大小,而获得的资料。
统计图定义与作用定义统计图是利用几何图形、符号、线条、颜色等视觉元素来表示统计数据的一种图形化表达方式。
作用使数据更直观、易于理解,便于比较和分析数据间的关系和趋势。
用条形的长度表示数据的大小,适用于表示离散型数据。
条形图用折线的升降表示数据的变化趋势,适用于表示连续性数据。
折线图用扇形的面积表示部分在总体中所占的比例,适用于表示数据的构成情况。
饼图用点的分布表示两个变量之间的关系,适用于表示两个变量之间的相关性和分布规律。
散点图常见类型及其特点适用场景与选择依据适用场景医学研究中常用于描述数据的分布规律、比较不同组别数据的差异、分析数据间的相关性和趋势等。
选择依据根据数据类型、数据特点和分析目的选择合适的统计图类型。
例如,对于离散型数据,可以选择条形图或饼图;对于连续性数据,可以选择折线图或散点图。
同时,还需要考虑图形的直观性、易读性和美观性等因素。
直方图与条形图直方图用于展示连续变量的分布情况,横轴为变量分组,纵轴为频数或频率。
在医学研究中,常用于描述身高、体重等连续变量的分布。
条形图用于比较不同分类变量之间的差异,横轴为分类变量,纵轴为统计量(如均数、百分比等)。
在医学研究中,常用于比较不同组别(如性别、疾病类型等)之间的差异。
折线图与散点图折线图用于展示一个或多个变量随时间或其他连续变量的变化趋势,通过连接各数据点形成折线。
在医学研究中,常用于描述疾病发病率、死亡率等随时间的变化趋势。
散点图用于展示两个连续变量之间的关系,每个点代表一个观测值,横轴和纵轴分别为两个变量。
在医学研究中,常用于探索两个指标(如身高与体重、血压与年龄等)之间的相关性。
箱线图与小提琴图箱线图用于展示一组数据的分布情况,包括中位数、四分位数、异常值等。
在医学研究中,常用于比较不同组别数据的分布情况,如不同治疗方法下的疗效比较。
小提琴图结合了箱线图和核密度估计的优点,既能展示数据的分布形状,又能展示数据的概率密度。
在医学研究中,常用于更细致地比较不同组别数据的分布情况。
一、描述集中位置的指标应用适用范围【筒】平均数:算数均数、几何均数、中位数、百分位数。
1、算数平均数:适用于单峰对称分布或近似于单峰对称分布的资料2、几何均数:适用于对数变换后单峰对称的资料。
eg∙等比资料、滴度资料、对数正态分布资料3、中位数:理论上可用于任何分布资料•,但当资料适合计算均数或几何均数时,不宜用中位数。
Eg:偏态分布、分布不明资料、有不确定值的资料.4、百分位数:适用于任何分布的资料。
二、描述离散趋势的指标【简】变异度:极差、四分位数间距、标准差、方差、变异系数。
1、极差:又称全距,是一组数据中最大值和最小值之差。
极差大说明资料的离散度大。
优点:简单明了缺点:不灵敏和不稳定。
样本例数相差悬殊时,不适宜比较其极差。
2、四分位数间距:即中间一半观察值的极差。
四分位数间距较全距稳定,常与中位数一起,描述不对称分布资料的特征。
3、标准差:基本内容是离均差,它显示一组变量值与其均数的间距,故标准差直接地、总结地、平均地描述了变量值的离散程度。
在同质的前提下,标准差大,表示变量值的离散程度大,即变量值的分布分散、不整齐、波动较大;标准差小,表示变量值的离散程度小,即变量值的分布集中、整齐、波动较小。
4、方差:利用了所用的信息,与变异度和变量值的个数有关。
5、变异系数(CV):变异系数派生于标准差,其应用价值在于排除了平均水平的影响,并消除了单位。
三、正态分布特征1、单峰分布;高峰在均数处;2、以均数为中心,均数两侧完全对称。
3、正态分布有两个参数(Parameter),即位置参数_(均数)和变异度参数_(标准差)。
4、有些指标本身不服从正态分布,但经过变换之后可以服从正态分布。
5、正态曲线下的面积分布有一定的规律。
四、参考值范围(含义+原则)【简】1、含义:(1)又称正常值范围,是绝大多数正常人的某观察指标所在的范围。
绝大多数:90%,95%,99%等等。
(2)确定参考值范围的意义:用于判断正常与异常。
名词解释1、一类错误:拒绝了实际上成立的H。
,这类“弃真”的错误称为I型错误或第一类错误。
2、参数和统计量:这些总体的统计指标或特征值称为参数。
由样本所算出的统计指标或特征值称为统计量。
3、变异系数:亦称离散系数,为标准差与均数之比,常用百分数表示。
4、P值:即概率,反映某一事件发生的可能性大小。
5、检验效能:B称为检验效能或把握度,即两总体却有差别,按α水准能发现它们有差别的能力。
简答题1、描述数值变量资料(统计资料)的集中程度有哪些指标,有何运用条件?算数均数:单峰对称分布的资料几何均数:对数变换后的单峰对称的资料中位数:偏态分布,分布不明资料,有不确定值的资料。
百分位数:当样本含量较少时不宜用靠近俩端的百分位数来估计频数分布范围。
2、实验研究的基本要素和基本原则是什么?基本要素:处理因素、受试对象和实验效应。
基本原则:对照原则、随机化原则和重狂原则大题1、(1)变量资料(2)成组t检验对立性正态性方差齐性(3)H0ιμ1=μ2,新药与常规药物的疗效相同H1rμ1≠μ2,新药与常规药物的疗效不同α=0.05T=1.0195V=n1+n2-2=18(2)t<t0.05z18,p>0.05,按a=0.05水准,不拒绝H0,差别无统计学意义。
结论:t检验结果表明,故尚不能认为新药与常规药物的疗效相同。
2、(1)T=13×17/47=4.7(2)x2检验(3)X2>X2(0.05,1),p<0.05,按a=0.05水准,拒绝H0,接受HQ差别有统计学意义。
结论:x2检验结果表明,乙疗法比甲疗法好。
3、(1)成组设计两样本比较的秩和检验(2)实验组秩次:13、I15、8.5、14、15.5、15.5、17、18对照组秩次:1、2、4、3、5、6、8.5、7、10、11.5(3)H0:两组局部温热的疗效总体分布相同H1:两组局部温热的疗效总体分布不同4(1)Ho:P=O,即母体内时间与体重无线性相关关系H1:P≠0,即母体内时间与体重有线性相关关系a=0.05F>5.23,拒绝HO,接受HI,相关系数有统计学意义。
医学统计学重点总结(总6页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除1.简述总体和样本的定义,并且举例说明。
总体是研究目的确定的所有同质观察单位的全体。
样品是从研究总体中抽取部分有代表性的观察单位。
2.简述参数和统计量的定义,并且举例说明。
描述总体特征的指标称为参数,描述样本特征的指标称为统计量。
3.变量的类型有哪几种?举例说明各种类型变量有什么特点。
①定量数据:计量资料;定量的观测值是定量的,其特点是能够用数值的大小衡量其水平的高低。
②定性数据:计数资料;变量的观测值是定性的,表现为互不相容的类别或属性。
③有序数据:半定量数据/等级资料;变量的观测值是定性的,但各类别(属性)有程度或顺序上的差异。
4.请举例说明一种类型的变量如何变换为另一种类型的变量。
定量数据>有序数据>定性数据--------------->5.请简述什么是小概率事件?概率是描述事件发生可能性大小的度量,P0.05事件称为小概率事件。
6.举例说明什么是配对设计。
配对设计是将受试对象按某些重要特征相近的原则配成对子,每对中的两个个体随机地给予两种处理。
①同源配对:同一受试对象或同一标本的两个部分,随机分配接受两种不同处理;②异源配对:为消除混杂因素的影响,将两个同质受试对象配对分别接受两种处理。
7.非参数假设检验适合什么类型数据进行分析?①总体分布类型未知或非正态分布数据;②定量或半定量数据;③数据两端无确定的数值。
8.简述P25 P50P75的统计学意义。
(条件:明显偏态且不能转化为正态或近似对称;一端或两端无确定数值;分布情况未知)用来描述资料的观测值序列在某百分位置的水平,四分位数间距可以作为说明个体差异的指标(说明个体在不同位置的变异情况)。
9.直条图、直方图、圆饼图的使用条件是什么?直条图:各自独立的统计指标的数值大小和他们之间的对比;直方图:连续变量频数分布情况;圆饼图:全体中各部分所占的比例。
1.简述总体和样本的定义,并且举例说明。
总体是研究目的确定的所有同质观察单位的全体。
样品是从研究总体中抽取部分有代表性的观察单位。
2.简述参数和统计量的定义,并且举例说明。
描述总体特征的指标称为参数,描述样本特征的指标称为统计量。
3.变量的类型有哪几种?举例说明各种类型变量有什么特点。
①定量数据:计量资料;定量的观测值是定量的,其特点是能够用数值的大小衡量其水平的高低。
②定性数据:计数资料;变量的观测值是定性的,表现为互不相容的类别或属性。
③有序数据:半定量数据/等级资料;变量的观测值是定性的,但各类别(属性)有程度或顺序上的差异。
4.请举例说明一种类型的变量如何变换为另一种类型的变量。
定量数据>有序数据>定性数据--------------->5.请简述什么是小概率事件?概率是描述事件发生可能性大小的度量,P≤0.05事件称为小概率事件。
6.举例说明什么是配对设计。
配对设计是将受试对象按某些重要特征相近的原则配成对子,每对中的两个个体随机地给予两种处理。
①同源配对:同一受试对象或同一标本的两个部分,随机分配接受两种不同处理;②异源配对:为消除混杂因素的影响,将两个同质受试对象配对分别接受两种处理。
7.非参数假设检验适合什么类型数据进行分析?①总体分布类型未知或非正态分布数据;②定量或半定量数据;③数据两端无确定的数值。
8.简述P25 P50P75的统计学意义。
(条件:明显偏态且不能转化为正态或近似对称;一端或两端无确定数值;分布情况未知)用来描述资料的观测值序列在某百分位置的水平,四分位数间距可以作为说明个体差异的指标(说明个体在不同位置的变异情况)。
9.直条图、直方图、圆饼图的使用条件是什么?直条图:各自独立的统计指标的数值大小和他们之间的对比;直方图:连续变量频数分布情况;圆饼图:全体中各部分所占的比例。
10.统计分析包括哪两个方面的内容?为什么要进行统计推断?统计描述和统计分析;统计描述用来描述及总结一组数据的重要特征,其目的是使实验或观察得到的数据表达清楚并便于分析。
描述内容 指 标 意 义 适 用 场 合
平均水平
均 数 个体的平均值 对称分布
几何均数 平均倍数 取对数后对称分布
中 位 数 位次居中的观察值 ①非对称分布;②半定量资料;③末端开口资料;④分布不明
众 数 频数最多的观察值 不拘分布形式,概略分析 调和均数 基于倒数变换的平均值
正偏峰分布资料 变 异 度
全 距 观察值取值范围 不拘分布形式,概略分析 标 准 差 (方 差) 观察值平均离开均数的程度
对称分布,特别是正态分布资料
四分位数间距 居中半数观察值的全距
①非对称分布;②半定量资料;③末端开口资料;④分布不明
变异系数
标准差与均数的相对比
①不同量纲的变量间比较;②量纲相同但数量级相差悬殊的变量间比较
4. 常用统计图有哪些?分别适用于什么分析目的? 常用统计图的适用资料及实施方法 图 形 适 用 资 料 实 施 方 法
条 图 组间数量对比 用直条高度表示数量大小
直 方 图 定量资料的分布 用直条的面积表示各组段的频数或频率
百分条图 构成比 用直条分段的长度表示全体中各部分的构成比 饼 图 构成比
用圆饼的扇形面积表示全体中各部分的构成比 线 图 定量资料数值变动 线条位于横、纵坐标均为算术尺度的坐标系
半对数线图 定量资料发展速度 线条位于算术尺度为横坐标和对数尺度为纵坐标的坐标系 散 点 图 双变量间的关联 点的密集程度和形成的趋势,表示两现象间的相关关系 箱 式 图 定量资料取值范围 用箱体、线条标志四分位数间距及中位数、全距的位置 茎 叶 图 定量资料的分布
用茎表示组段的设置情形,叶片为个体值,叶长为频数
定性资料统计描述常用的统计指标及其适用场合
指标 计算公式
适用场合
频率 n/N
估计总体中某一结局发生的概率 频率分布 n 1/N ,n 2/N,…..,n k /N 估计总体中所有可能结局发生的概率
强度 阳性人数/总观察人时数 估计总体中单位时间内某一结局发生的概率 比
A/B
估计两个指标的相对大小
4.常用参考值范围的制定?
参考值范
围(%)
正态分布法
百分位数法
双侧
单侧
双侧
单侧
下限
上限
下限
上限 90 S X 64.1± S X 1.28- S X 1.28+ P 5~P 95 P 10 P 90 95 S X 96.1± S X 64.1- S X 64.1+ P 2.5~P 97.5 P 5 P 95 99
S X 58.2±
S X 2.33-
S X 2.33+
P 0.5~P 99.5
P 1
P 99
3. 简述置信区间与医学参考值范围的区别。
置信区间与医学参考值范围的区别
区别置信区间参考值范围
含义
范畴
用途
计算公式总体参数的波动范围,即按事先给定的概率100(1-α)%所
确定的包含未知总体参数的一个波动范围
统计推断
估计未知总体均数所在范围
正态分布,σ未知:
/2,X
X t S
αν
±
非正态分布,但n≥30,有
/2X
X Z
α
σ
±或/2
X
X Z S
α
±
个体值的波动范围,即按事先给定的范围100(1-α)%所确定的
“正常人”的解剖、生理、生化指标的波动范围
统计描述
供判断观察个体某项指标是否“正常”时参考(辅助诊断)
正态分布:/2
X Z S
α
±
偏峰分布:P X~P100-X
区别点线性回归logistic回归Cox回归
结果变量
模型类型
删失值处理参数估计方法回归系数含义模型形式
连续型数值变量
参数模型
不能利用
最小二乘估计
X每变化一个单位Y的平均变化
Y=X
β
离散型分类变量
参数模型
不能利用
极大似然估计
X每变化一个单位OR的自然对数
)
exp(
1
1
X
P
β
-
+
=
分类结局变量及数值时间变量
半参数模型
能利用
极大部分似然估计
X每变化一个单位RR的自然对数
)
exp(
)(
)
,(
X
t
h
X
t
hβ
=。