当前位置:文档之家› 各岩土层岩性特征

各岩土层岩性特征

各岩土层岩性特征
各岩土层岩性特征

各岩土层岩性特征(土方挖填种类):

拟建场区在勘探深度范围内主要揭示4个单元地层,由上而下由新到老依次为:(1)人工填土、杂填土地层,由于场区位于武汉市内,人为活动频繁、建筑物密集,表层普遍分布填土地层;(2)第四系全新统冲洪积粉质黏土,可塑~硬塑,局部发育有淤泥质粉质黏土夹层,软~流塑状;(3) 第四系坡残积碎石土,硬塑,该层为初勘阶段售1、2、4钻孔揭示,本次详勘未见此层;(4)~(6)下伏基岩为泥盆系上统页岩、石英砂岩、局部钻孔揭示到灰岩。

详述如下:

(1)人工填土、杂填土:色杂,主要以建筑垃圾组成,含少量黏性土、生活垃圾等,堆填时间大部分小于10年,部分为新近拆迁期间回填,分布于整个场区。层面标高20.10~27.84m,地层厚度0.2~6.5m。

(2)淤泥质粉质黏土:灰褐色,流塑~软塑,潮湿,含大量有机质,具有腥臭味,多分布于表层,局部以透镜体形式分布于可塑状粉质黏土层中,幼儿园、C、B89、A9楼盘地基都有分布。层面标高14.90~26.62m,层面埋深0~10m,地层厚度0.6~4.6m。

(3)可塑状粉质黏土:粉质黏土,褐黄色~灰白色,可塑,局部含有铁质结核。层面标高 6.1~27.44m,平均标高18.85m,层面埋深0~15.3m,平均埋深4.15m,地层厚度0.4m~16.3m,平均厚度6.2m。

(4)硬塑状黏土:粉质黏土,褐黄色~灰褐色,硬塑,局部夹有碎石。层面标高1.19~26.22m,平均标高14.61m,层面埋深0~20.6m,平均埋深9.40m,地层厚度5m~9m,平均厚度8m。

(5)坡残积碎石土,暗红色~褐黄色,饱和,密实,碎石成份以石

英砂岩为主,岩芯坚硬,碎石直径3~5cm,含量约60%,夹大量粘土。售1、2、4钻孔均有揭露,层面埋深7.50~15.30m,层面标高8.06~15.30m,层厚2.70~5.90m,平均4.94m。本次详勘场地内未揭露。

下伏地层泥盆系上统五通组(D3w)石英砂岩、页岩、灰岩。

(5)-1页岩:褐红色、褐黄色,全风化,岩芯呈砂土状。层面标高-1.41~20.13m,平均标高8.7m,层面埋深6.9~25.5m,平均埋深14.45 m,地层厚度1.7m~70m,平均厚度26.85m。

(5)-2页岩:褐红色,强风化,岩芯呈碎块状,局部呈短柱状。层面标高-34.36~-16.97m,平均标高-21.96m,层面埋深40.9~57.8m,平均埋深45.88m,地层厚度3.6m~6.5m,平均厚度5.4m。

(5)-3页岩:褐黄色,中风化,岩芯呈碎块状,块径10~80mm,少量呈短柱状。层面标高-19.93~-23.93m,平均标高-21.93m,层面埋深45~49m,平均埋深47m,地层厚度约4m。本次详勘揭露较少,仅出现于机动钻孔K-C2-6附近。

(6)-1石英砂岩:褐灰色,灰色,全风化,岩芯土状。层面标高-0.28~18.11m,平均标高9.26m,层面埋深9.5~23.6m,平均埋深15.21m,地层厚度0.6m~30.2m,平均厚度18.69m。

(6)-2石英砂岩:褐黄色,强风化,局部岩芯呈短柱状,局部夹泥、局部呈碎石块状。层面标高-64.41~17.51m,平均标高-20.6m,层面埋深9.5~88.5m,平均埋深44.83m,地层厚度1.3m~39.3m,平均厚度7.37m。

(6)-3石英砂岩:灰白色,中风化,节理裂隙较发育,岩芯呈短柱状,局部呈块状。层面标高-40.97~13.17m,平均标高-14.63m,层面埋深10.6~64.3m,平均埋深39.22m,地层厚度0.5m~12.5m,平均厚度

5.38m。

(7)-1溶洞:棕黄色,全填充~半充填,充填物为粉质黏土,流塑状,局部夹少许碎块石。主要于钻孔A10-8,B9-1、B9-9、A9-1、D-1、D-2、D-5中揭示。层面标高-52.83~-13.96m,平均标高-27.57m,层面埋深37.4~75.7m,平均埋深50.90m,地层厚度1m~8.2m,平均厚度3.86m。

(7)-2灰岩:灰白色,中风化,岩芯呈柱状,节理裂隙较发育,局部可见溶蚀现象。主要分布于A09、A10、B09楼栋及地下车库局部。层面标高-58.43~-10.4m,平均标高-32.68m,层面埋深34.6~81.3m,平均埋深56.23m,揭示厚度0.7m~12.8m,平均揭示厚度4.5m。

4 岩土工程性质

第四章岩土体工程性质 一、名词解释(6) 1.岩石风化作用p74 岩石形成后,地表附近的完整岩石,会在温度、水溶液、气体及生物等自然因素作用下,逐渐产生裂隙、发生机械破碎和矿物成分的改变,丧失完整性,这个过程称为岩石风化作用。 2.物理风化作用p74 岩石在自然因素作用下发生机械破碎,而无明显成分改变的风化作用称物理风化作用,又称机械风化作用。 3.化学风化作用p74 岩石在自然因素作用下发生化学成分改变,从而导致岩石破坏为化学风化作用。 4.生物风化作用p75 岩石风化过程有生物活动的参与称生物风化,如岩石裂隙中生长的树,随着树的生长,根系发育延伸,岩石被劈裂,即属生物物理风化;岩石表面生长的地衣分泌有机酸腐蚀岩石,使其分解,即属生物化学风化。 5.风化程度p76 岩石风化后工程性质改变的程度。 6.饱和重度p77 天然状态下,单位体积岩石土中包括固体颗粒、一定的水和孔(裂)隙三部分,若水把所有孔隙充满,则为岩土的饱和重度。 7.岩石吸水率p79 在常压条件下,岩石浸入水中充分吸水,被吸收的水质量与干燥岩石质量之比为吸水率。 8.液性指数p82 黏性土的天然含水率和塑限的差值与塑性指数之比。 9.弹性模量p85 岩石的弹性模量是变形曲线弹性段(直线段)的斜率。 10.岩体p86 岩体通常是指由各种岩石块体和不连续面组合而成的“结构物”。 11.结构面P87 岩体被不连续界面分割,这些不连续界面被称为岩体的结构面。 二、单选(22) 1.冰劈作用是()。p74 A.物理风化B.生物风化C.化学风化D.差异风化 2.因强烈蒸发使地下水浓缩结晶,导致岩石裂缝被结晶力扩大,叫做()。P74 A.热胀冷缩作用B.盐类结晶作用C.冰劈作用D.碳酸化作用 3.黄铁矿在空气或水中生成褐铁矿,在化学风化中应属于()。P75

遥感图像岩性及地层解译

《遥感地质学》 课程作业 题目:遥感图像岩性及地层解译 姓名:杨明珠 班级:064131 学号:20131002772 授课教师:牛瑞卿 2016年5 月23 日

遥感图像岩性及地层解译 本研究区选择的是贵州省望谟县麻山乡,经纬度范围为122-124E、35-40N,麻山乡位于望谟县东部,始建于1995年,是全县建立最晚的乡。乡政府所在地和平村距县城约54公里,东邻桑郎镇,南界纳夜镇,西接大观乡,北靠新屯镇和乐旺镇处于“麻山片区”中心区域位置;年平均气温15.1℃,年平均降雨1422毫米,最低海拔742m,最高海拔1484m,平均海拔1160m。花坪镇位于贵州省遵义市凤冈县东北面,东邻德江、思南两县,南靠石径乡、龙泉镇,西与绥阳镇接壤,北面为德江县,总面积107.2平方公里。花坪镇以丘陵地貌为主,构成东南与西北高,东北与西南低的地形特点,最高海拔1230米,最低海拔610米,平均海拔909米。 下图为研究区地质图,比例尺为1:20万。 研究区地质图 研究遥感图像岩性及地层所使用的是landsat 7的数据,用ENVI所展示的是第7、4、3波段的RGB影像,如下图:

放大来看可以看见左上角有一个呈椭圆形的区域,在影像上粗糙,层理不明显,在强烈切割地区,地形崎岖,分水岭尖,而上部为浑圆状,有时像碳酸盐岩形成的连座峰林,节理数量少而明显,植被分布不均,地面水系不发育。 由遥感图像的目视解译可以看出这片区域发育为粘土砾岩,特征明显,由该地区的矿产分布特征来看为高岭土矿,详细图像如下图: 在图中可以看出颗粒状的粗糙形态,高岭土是一种非金属矿产,是一种以高岭石族粘土矿物为主的粘土和粘土岩。因呈白色而又细腻,又称白云土。因江

岩土体工程地质类型及特征

一、岩土体工程地质类型及特征 岩土体工程地质类型的划分根据岩土体形成条件、结构、岩性、力学特性及工程地质特征的差别,可分为松散松软堆积层岩类、碳酸盐岩类及碎屑岩类3个岩体类型6个工程地质岩组。 (一)土体工程地质类型及物理力学特征 此岩类的划分根据其结构特征、力学性质及工程特性分为中偏高压缩粘性土类岩组和低压缩碎石土类岩组2个工程地质岩组。 1、中偏高压缩粘性土类岩组 (1)残坡积土(Q el+dl) 残坡积层主要分布于沿线丘陵沟谷坡脚一带,多为紫红色、棕红色粉砂质粘土或浅黄色、灰黄色砂土、亚粘土、粉土夹(含)碎石,沿线厚度不一。残坡积亚粘土天然含水量W18.8~24.00%,天然孔隙比e0.600~0.697,塑性指数Ip 8.4~12.6,液性指数I L0.46~0.60为软塑状,凝聚力C26.6~45.1Kpa,内摩擦角φ10.1~18.7度,压缩系数a0.25~0.40为中~偏高压缩土类。残坡积层的主要工程地质问题是湿陷变形、压缩沉降变形、蠕滑变形。 (2)冲洪积土(Q4al+pl) 冲洪积层主要分布于河床、河滩上,为灰色、浅灰色亚粘土、粘土及褐灰色细、粉砂土及砂砾卵石层,厚度不一。亚粘土天然含水量W21.7~26.50%,天然孔隙比e0.619~0.838,塑性指数Ip 8.4~14.6,液性指数I L0.46~0.87为可塑状,凝聚力C12.9~32.2Kpa,内摩擦角φ7.0~10.3度,压缩系数a0.31~0.47为中~偏高压缩土类。粘

土天然含水量W28.8~34.30%,天然孔隙比e0.838~0.978,塑性指数Ip 20.0~21.3,液性指数I L0.54~0.77为软塑状,凝聚力C22.6~54.7Kpa,内摩擦角φ10.0~10.3度,压缩系数a0.24~0.605为中~高压缩土类。 冲洪积层的主要工程地质问题是湿陷变形、压缩沉降变形、蠕滑变形。 2、低压缩碎石土类岩组 崩坡积土(Q4col+dl) 崩坡积层主要分布于斜坡边缘、高陡斜坡的坡脚处,碎块石成份与地层岩性有关,为黄灰、红褐色亚粘土夹块石、碎石。此类岩组颗粒级别差异大,密实度较高但不均一,透水性较好,为低压缩碎石土类岩组,工程地质问题主要表现为土石滑坡、塌方,不均匀沉降。 线路区段内土体工程地质类型及主要物理力学指标参见表6。 (二)岩体工程地质类型及物理力学特征 根据路线区岩层坚硬程度、抗风化能力、抗溶蚀能力和基本物理力学性 土体工程地质类型及主要物理力学指标表 表6

土层的工程分类及性质

土层 的工程分类及性质 一、土的工程分类 在建筑施工中,按照开挖的难易程度,土可分为八类:一类土(松软土)、二类土(普通土)、三类土(坚土)、四类土(砂砾坚土)、五类土(软石)、六类土(次坚石)、七类土(坚石)、八类土(特坚石)。一至四类为土,五至八类为岩石。 二、土的工程性质 1、土的密度 (1)土的天然密度土在天然状态下单位体积的质量,称为土的天然密度。 (2)土的干密度单位体积中土的固体颗粒的质量称为土的干密度。注:土的干密度越大,表示土越密实。工程上把土的干密度作为评定土体密实程度的标准,以控制基坑底压实及填土工程的压实质量。 2、土的含水量 土的含水量是土中水的质量与固体颗粒质量之比,以百分数表示。注:土的干湿程度用含水量表示。5%以下称干土、5%—30%称潮湿土、30%以上称湿土。含水量越大,土就越湿,对施工越不利。 3、土的可松性

自然状态下的土经开挖后,其体积因松散而增大,以后虽经回填压实,其体积仍不能恢复原状,这种性质称为土的可松性。土的可松性程度用可松性系数表示。 4、土的渗透性 土的渗透性指水流通过土中孔隙的难易程度,水在单位时间内穿透土层的能力称为渗透系数,用表示,单位为。注:土的渗透性大小取决于不同的土质。地下水的流动以及在土中的渗透速度都与土的渗透性有关。 下面来介绍一下,岩石风化。一般情况下,岩体的风化程度呈现出由表及里逐渐减弱的规律。但由于岩体中岩性并不均一,且有断裂存在,所以岩体风化的情况并不一定完全符合一般规律。岩体风化厚度一般为数米至数十米,沿断裂破碎带和易风化岩层,可形成风化较剧的岩层。断层交会处还可形成风化囊。在这两种情况下深度可超过百米。岩体风化分为:①物理风化,如气温变化使岩石胀缩导致破裂等;②化学风化,如低价铁的黄铁矿在水参与下变为高价铁的褐铁矿;③生物风化,如植物根系可使岩石的裂隙扩张等。岩体风化的速度和程度取决于岩石的性质和结构、地质构造、气候条件、地形条件、人类活动的影响等。 另外,按照岩石分化程度不同可以分为:1、未风化:岩质新鲜偶见风化痕迹。2、微风化:结构基本未变,仅节理面有渲染或略有变色,有少量风化裂隙。3、中风化:结构部分破坏,沿节理面有次生矿物,有风化裂隙发育,岩体被切割成岩块。用镐难挖,干钻不易钻进。4、强风化:结构大部分破坏,矿物成分显著变化,风化裂隙发育,岩体破碎,用镐可挖,干钻不易钻进。5、全风化:结构基本破坏,但尚可辨认,有残余结构强度,

地基岩土的分类及工程特性指标

地基岩土的分类及工程特性指标 4.1岩土的分类 4.1.1作为建筑地基的岩土,可分为岩石、碎石土、砂土、粉土、粘性土和人工填土。 4.1.2岩石的坚硬程度和完整程度可按本规范第4.1.3~4.1.4条划分。 4.1.3岩石的坚硬程度应根据岩块的饱和单轴抗压强度f rk按表4.1.3分为坚硬岩、较硬岩、较软岩、软岩和极软岩。当缺乏饱和单轴抗压强度资料或不能进行该项试验时,可在现场通过观察定性划分,划分标准可按本规范附录A.0.1条执行。岩石的风化程度可分为未风化、微风化、中等风化、强风化和全风化。 表4.1.3岩石坚硬程度的划分 坚硬程度类别坚硬岩较硬岩较软岩软岩极软岩 饱和单轴抗压强度 标准值f rk(MPa) >6060≥f rk>3030≥f rk>1515≥f rk>5≤5 4.1.4岩体完整程度应按表4.1.4划分为完整、较完整、较破碎、破碎和极破碎。当缺乏试验数据时可按本规范附录A.0.2条确定。 表4.1.4岩体完整程度划分 完整程度等级完整较完整较破碎破碎极破碎 完整性指数>0.750.75~0.550.55~0.350.35~0.15<0.15 注:完整性指数为岩体纵波波速与岩块纵波波速之比的平方。选定岩体、岩块测定波速时应有代表性。4.1.5碎石土为粒径大于2mm的颗粒含量超过全重50%的土。碎石土可按表4.1.5分为漂石、块石、卵石、碎石、圆砾和角砾。 表4.1.5碎石土的分类 土的名称颗粒形状粒组含量 漂石块石圆形及亚圆形为主 棱角形为主 粒径大于200mm的颗粒含量超过 全重50% 卵石圆形及亚圆形为主粒径大于20mm的颗粒含量超过

碎石棱角形为主全重50% 圆砾角砾圆形及亚圆形为主 棱角形为主 粒径大于2mm的颗粒含量超过全 重50% 注:分类时应根据粒组含量栏从上到下以最先符合者确定。 4.1.6碎石土的密实度,可按表4.1.6分为松散、稍密、中密、密实。 表4.1.6碎石土的密实度 重型圆锥动力触探锤击数N63.5密实度 N63.5≤5松散 520密实 注:1.本表适用于平均粒径小于等于50mm且最大粒径不超过100mm的卵石、碎石、圆砾、角砾。对于平均粒径大于50mm或最大粒径大于100mm的碎石土,可按本规范附录B鉴别其密实度; 2.表内N6 3.5为经综合修正后的平均值。 4.1.7砂土为粒径大于2mm的颗粒含量不超过全重50%、粒径大于0.075mm的颗粒超过全重50%的土。砂土可按表4.1.7分为砾砂、粗砂、中砂、细砂和粉砂。 表4.1.7砂土的分类 土的名称粒组含量 砾砂粒径大于2mm的颗粒含量占全重25%~50% 粗砂粒径大于0.5mm的颗粒含量超过全重50% 中砂粒径大于0.25mm的颗粒含量超过全重50% 细砂粒径大于0.075mm的颗粒含量超过全重85% 粉砂粒径大于0.075mm的颗粒含量超过全重50% 注:分类时应根据粒组含量栏从上到下以最先符合者确定。

综合判断地层的岩性

岩性物理特征曲线特征 泥岩⒈非渗透。⒉低电阻。⒊低密度。 ⒋高含H。⒌大时差(声速小)。 ⒍含放射性矿物多。⒎层理不发 育。⒈自然电位无异常,微电极深浅测向无幅度差。⒉电阻率曲线有低值,感应幅度高。⒊密度曲线低1-2 g/cm3。⒋中子r幅度低(长源距)⒌声波时差曲线上有大幅度500us/m左右。⒍在自然r上幅度高。⒎所有的曲线上,曲线都比较平缓,变化不大。⒏中、深感应低值。 砂岩⒈有孔隙性和渗透性。⒉电阻率较高。⒊泥质含量少。⒋含有某 种流体。⒌密度,中等密度。⒍ 时差,350us/m左右。⒎好的砂 层层理不发育(通常情况)。⒈自然电位有异常,微电极深浅测向有幅度差。⒉电阻率曲线上幅度较高,电导低(高矿化度水时例外)。⒊自然r有低值(自然电位有异常)。⒋中子r通常是低值,当含的是高矿化度水时电阻率低,当含的是油气水(指淡水)电阻率升高。⒌中等密度(在2-2.5)。⒍时差在350 us/m左右。⒎曲线起伏不大。 ⒏中深感应曲线相对较低,含淡水升高。 岩性物理特征曲线特征 灰岩⒈多数无渗透性,少数例外(生物灰岩等)。⒉通常是高电阻。 ⒊低含H。⒋高密度。⒌含泥量 变化大。⒍高声速。⒎常常有比 较发育的裂隙和溶洞。⒏层理不 明显,通常井壁无泥饼,规则, 有小的起伏。⒈自然电位多数无异常,微电极、深浅侧向按理是无差异的,但在微电极曲线上往往有小正差常。⒉电阻率曲线上幅度高,电导率低。⒊中子r曲线上有高值。⒋密度曲线幅度在2.7g/cm3左右。⒌自然r曲线可大可小,有时在自然电位曲线上引起一些异常。⒍有低时差(150 us/m左右)。⒎时差曲线上有周波跳跃。⒏曲线起伏都比较大。⒐中深感应曲线为高阻(裂缝发育为低阻)⒑补偿中子为高孔隙度(对储集层讲)双侧向有小的正幅度差。 火成岩(变质岩)⒈一般无渗透性。⒉都是高电 阻。⒊大声速的。⒋一般高密度 的。⒌低或不含H。⒍高放射性。 ⒎井壁无泥饼,并且有小的起 ⒈自然电位无差异,深浅侧向无异常,微电极有小的正差异。⒉电阻率曲线幅 度高,电导特低(但有例外,对一些金属矿床电阻率会特低,电导率高)。⒊时 差小(100us/m)。⒋密度>2.7g/cm3。⒌中子伽玛的幅度高值。⒍自然伽玛的幅 度中值,当放射矿物含量高时为高值。⒎曲线起伏比较大,特别是微电极、微 侧向更大。⒏中深感应曲线为高阻。 煤⒈无渗透。⒉电阻率很低(比泥岩还低)。⒊密度小。⒋声速小 (有时与泥岩大致相当)。⒈自然电位无异常,微电极、深浅侧向无差异。⒉电阻率曲线为零,电导率极高。⒊密度<2g/cm3。⒋时差大500us/m左右。⒌中、深感应为低值。⒍见扩径现象。 油页岩灰质页岩⒈高阻 ⒉层薄 ⒈电阻曲线幅度高(>泥岩<灰岩)。 ⒉曲线起伏大,呈尖刀状(一般起伏油页岩>灰质页岩)。 ⒊在微电极、深浅侧向有反常的负差异。 岩性物理特征曲线特征 盐层⒈可溶性。 ⒉高阻。⒊钾盐有高放射性⒈扩径现象特别明显(饱和盐水泥浆除外)。⒉泥浆常被咸化,视电阻率曲线变得低平。⒊通常自然伽玛幅度低(钾盐除外)。 砂质泥岩介于泥岩与砂岩之间。介于砂岩泥岩之间,在视电阻率曲线上有小的起伏,呈锯齿状,在微电极曲线 上有小的尖峰,声波曲线上介于砂岩与泥岩之间,自然电位上无异常,见扩径 现象,自然伽玛相对泥岩较低。 灰质泥岩介于灰岩与泥岩之间。在2.5m视电阻率曲线上有小尖峰及平凸形高阻,通常在微电极曲线上出现负幅 度差,声波介于泥岩和灰岩之间,有扩径现象,在4m、中、深感应曲线上出现 鼓包和尖峰,自然电位无异常,自然伽马为中高值。 泥灰岩与泥质含量多少有关。在2.5m视电阻率曲线为高值,相对灰岩较低,在自然电位曲线上有异常(在裂 缝发育的情况下)。在微电极曲线上呈峰状高阻并见小的正幅度差,自然伽马相 对灰岩较高,声波时差相对灰岩数值增大,中、深感应曲线相对灰岩较低,密 度曲线上随泥质含量增加数值变小。

01第一章 土的物理性质及工程分类

兰州交通大学博文学院教案 课题: 第一章土的物理性质及工程分类 一、教学目的:1.了解土的生成和工程力学性质及其变化规律; 2.掌握土的物理性质指标的测定方法和指标间的相互转换; 3.熟悉土的抗渗性与工程分类。 二、教学重点:土的组成、土的物理性质指标、物理状态指标。 三、教学难点:指标间的相互转换及应用。 四、教学时数: 6 学时。 五、习题:

第一章土的物理性质及工程分类 一、土的生成与特性 1.土的生成 工程领域土的概念:土是指覆盖在地表的没有胶结和弱胶结的颗粒堆积物,土与岩石的区分仅在于颗粒胶结的强弱,土和石没有明显区分。 土的生成:岩石在各种风化作用下形成的固体矿物、流体水、气体混合物。 不同风化形成不同性质的土,有下列三种: (1)物理风化:只改变颗粒大小,不改变矿物成分。由物理风化生成土为粗粒土(如块碎石、砾石、砂土),为无粘性土。 (2)化学风化:矿物发生改变,生成新成分—次生矿物。由化学风化生成土为细粒土,具有粘结力(粘土和粘质粉土),为粘性土。 (3)生物风化:动植物与人类活动对岩体的破坏。矿物成分没有变化。 2.土的结构和构造 (1)土的结构 定义:土颗粒间的相互排列和联结形式称为土的结构。 1)种类: ●单粒结构:每一个颗粒在自重作用下单独下沉并达到稳态。 ●蜂窝结构:单个下沉,碰到已下沉的土颗粒,因土粒间分子引力大于重力不再下沉,形成大孔隙蜂窝状结构。 ●絮状结构:微粒极细的粘土颗粒在水中长期悬浮,相互碰撞吸引形成小链环状土集粒。小链之间相互吸引,形成大链环,称絮状结构。 图1.1 土的结构 3)工程性质: 密实的单粒结构工程性质最好,蜂窝结构与絮状结构如被扰动破坏天然结构,则强度低、压缩性高,不可用做天然地基。

土层的工程分类及性质

土层的工程分类及性质 一、土的工程分类 在建筑施工中,按照开挖的难易程度,土可分为八类:一类土(松软土)、二类土(普通土)、三类土(坚土)、四类土(砂砾坚土)、五类土(软石)、六类土(次坚石)、七类土(坚石)、八类土(特坚石)。一至四类为土,五至八类为岩石。 二、土的工程性质 1、土的密度 (1)土的天然密度土在天然状态下单位体积的质量,称为土的天然密度。 (2)土的干密度单位体积中土的固体颗粒的质量称为土的干密度。注:土的干密度越大,表示土越密实。工程上把土的干密度作为评定土体密实程度的标准,以控制基坑底压实及填土工程的压实质量。 2、土的含水量 土的含水量是土中水的质量与固体颗粒质量之比,以百分数表示。注:土的干湿程度用含水量表示。5%以下称干土、5%—30%称潮湿土、30%以上称湿土。含水量越大,土就越湿,对施工越不利。 3、土的可松性 自然状态下的土经开挖后,其体积因松散而增大,以后虽经回填压实,其体积仍不能恢复原状,这种性质称为土的可松性。土的可松性程度用可松性系数表示。

4、土的渗透性 土的渗透性指水流通过土中孔隙的难易程度,水在单位时间内穿透土层的能力称为渗透系数,用表示,单位为。注:土的渗透性大小取决于不同的土质。地下水的流动以及在土中的渗透速度都与土的渗透性有关。 下面来介绍一下,岩石风化。一般情况下,岩体的风化程度呈现出由表及里逐渐减弱的规律。但由于岩体中岩性并不均一,且有断裂存在,所以岩体风化的情况并不一定完全符合一般规律。岩体风化厚度一般为数米至数十米,沿断裂破碎带和易风化岩层,可形成风化较剧的岩层。断层交会处还可形成风化囊。在这两种情况下深度可超过百米。岩体风化分为:①物理风化,如气温变化使岩石胀缩导致破裂等;②化学风化,如低价铁的黄铁矿在水参与下变为高价铁的褐铁矿;③生物风化,如植物根系可使岩石的裂隙扩张等。岩体风化的速度和程度取决于岩石的性质和结构、地质构造、气候条件、地形条件、人类活动的影响等。 另外,按照岩石分化程度不同可以分为:1、未风化:岩质新鲜偶见风化痕迹。2、微风化:结构基本未变,仅节理面有渲染或略有变色,有少量风化裂隙。3、中风化:结构部分破坏,沿节理面有次生矿物,有风化裂隙发育,岩体被切割成岩块。用镐难挖,干钻不易钻进。4、强风化:结构大部分破坏,矿物成分显著变化,风化裂隙发育,岩体破碎,用镐可挖,干钻不易钻进。5、全风化:结构基本破坏,但尚可辨认,有残余结构强度,可用镐挖,干钻可钻进。6、残积土:组织结构全部破坏,已成土状,锹镐易开挖,干钻易钻进,具可塑。

岩土工程介绍及发展研究方向

岩土工程介绍及发展研究方向 展望岩土工程的发展,笔者认为需要综合考虑岩土工程学科特点、工程建设对岩土工程发展的要求,以及相关学科发展对岩土工程的影响。 岩土工程研究的对象是岩体和土体。岩体在其形成和存在的整个地质历史过程中,经受了各种复杂的地质作用,因而有着复杂的结构和地应力场环境。而不同地区的不同类型的岩体,由于经历的地质作用过程不同,其工程性质往往具有很大的差别。岩石出露地表后,经过风化作用而形成土,它们或留存在原地,或经过风、水及冰川的剥蚀和搬运作用在异地沉积形成土层。在各地质时期各地区的风化环境、搬运和沉积的动力学条件均存在差异性,因此土体不仅工程性质复杂而且其性质的区域性和个性很强。 岩石和土的强度特性、变形特性和渗透特性都是通过试验测定。在室内试验中,原状试样的代表性、取样过程中不可避免的扰动以及初始应力的释放,试验边界条件与地基中实际情况不同等客观原因所带来的误差,使室内试验结果与地基中岩土实际性状发生差异。在原位试验中,现场测点的代表性、埋设测试元件时对岩土体的扰动,以及测试方法的可靠性等所带来的误差也难以估计。 岩土材料及其试验的上述特性决定了岩土工程学科的特殊性。岩土工程是一门应用科学,在岩土工程分析时不仅需要运用综合理论知识、室内外测成果、还需要应用工程师的经验,才能获得满意的结果。在展望岩土工程发展时不能不重视岩土工程学科的特殊性以及岩土工程问题分析方法的特点。 土木工程建设中出现的岩土工程问题促进了岩土工程学科的发展。例如在土木工程建设中最早遇到的是土体稳定问题。土力学理论上的最早贡献是1773年库伦建立了库伦定律。随后发展了Rankine(1857)理论和Fellenius(1926)圆弧滑动分析理论。为了分析软粘土地基在荷载作用下沉降随时间发展的过程,Terzaghi(1925)发展了一维固结理论。回顾

土的工程地质性质

土的工程地质性质 一、土的成因类型特征 根据土的地质成因,土可分为残积土、坡积土、洪积土、冲积土、湖积土、海积土、冰积及冰水沉积土和风积土等类型。一定成因类型的土具有一定的沉积环境、具有一定的土层空间分布规律和一定的土类组合、物质组成及结构特征。但同一成因类型的土,在沉积形成后,可能遭到不同的自然地质条件和人为因素的变化,而具有不同的工程特性。 1. 残积土 形成原因:岩石经风化后未被搬运的原岩风化剥蚀后的产物,其分布主要受地形的控制,如在宽广的分水岭地带及平缓的山坡,残积土较厚。 工程特征:一般呈棱角状,无层理构造,孔隙度大;存在基岩风化层(带),土的成分和结构呈过渡变化。 工程地质问题: (1)建筑物地基不均匀沉降,原因土层厚度、组成成分、结构及物理力学性质变化大,均匀性差,孔隙度较大; (2)建筑物沿基岩面或某软弱面的滑动等不稳定问题,原因原始地形变化大,岩层风化程度不一。 2. 坡积土 形成原因:经雨雪水洗刷、剥蚀、搬运,及土粒在重力作用下顺着山坡逐渐移动形成的堆积物,一般分布在坡腰上或坡脚下,上部与残积土相接。 工程特征:具分选现象;下部多为碎石、角砾土;上部多为粘性土;土质(成分、结构)上下不均一,结构疏松,压缩性高,土层厚度变化大。 工程地质问题:建筑物不均匀沉降;沿下卧残积层或基岩面滑动等不稳定问题。 3. 洪积土 形成原因:碎屑物质经暴雨或大量融雪骤然集聚而成的暂时性山洪急流挟带在山沟的出口处或山前倾斜平原堆积形成的洪积土体。山洪携带的大量碎屑物质流出沟谷口后,因水流流速骤减而呈扇形沉积体,称洪积扇。 工程特征:具分选性;常具不规划的交替层理构造,并具有夹层、尖灭或透镜体等构造;近山前洪积土具有较高的承载力,压缩性低;远山地带,洪积物颗粒较细、成分较均匀、厚度较大。 工程地质问题:洪积土一般可作为良好的建筑地基,但应注意中间过渡地带可能地质较差,因为粗碎屑土与细粒粘性土的透水性不同而使地下水溢出地表形成沼泽地带,且存在尖灭或透镜体。 4. 冲积土 形成原因:碎屑物质经河流的流水作用搬运到河谷中坡降平缓的地段堆积而形成,发育于河谷内及山区外的冲积平原中。根据河流冲积物的形成条件,可分为河床相、河漫滩相、牛轭湖相及河口三角洲相。 工程特征:古河床相土压缩性低,强度较高,而现代河床堆积物的密实度较差,透水性强;河漫滩相冲积物具有双层结构,强度较好,但应注意其中的软弱土层夹层;牛轭湖相冲积土压缩性很高、承载力很低,不宜作为建筑物的天然地基;三角洲沉积物常常是饱和的软粘土,承载力低,压缩性高,但三角洲冲积物的最上层常形成硬壳层,可作低层或多层建筑物的地基。

4 岩土工程性质

第四章岩土体工程性质 一、名词解释 .岩石风化作用 岩石形成后,地表附近的完整岩石,会在温度、水溶液、气体及生物等自然因素作用下,逐渐产生裂隙、发生机械破碎和矿物成分的改变,丧失完整性,这个过程称为岩石风化作用。 .物理风化作用 岩石在自然因素作用下发生机械破碎,而无明显成分改变的风化作用称物理风化作用,又称机械风化作用。 .化学风化作用 岩石在自然因素作用下发生化学成分改变,从而导致岩石破坏为化学风化作用。 .生物风化作用 岩石风化过程有生物活动的参与称生物风化,如岩石裂隙中生长的树,随着树的生长,根系发育延伸,岩石被劈裂,即属生物物理风化;岩石表面生长的地衣分泌有机酸腐蚀岩石,使其分解,即属生物化学风化。 .风化程度 岩石风化后工程性质改变的程度。 .饱和重度 天然状态下,单位体积岩石土中包括固体颗粒、一定的水和孔(裂)隙三部分,若水把所有孔隙充满,则为岩土的饱和重度。 .岩石吸水率 在常压条件下,岩石浸入水中充分吸水,被吸收的水质量与干燥岩石质量之比为吸水率。 .液性指数 黏性土的天然含水率和塑限的差值与塑性指数之比。 .弹性模量 岩石的弹性模量是变形曲线弹性段(直线段)的斜率。 .岩体

岩体通常是指由各种岩石块体和不连续面组合而成的“结构物”。 .结构面 岩体被不连续界面分割,这些不连续界面被称为岩体的结构面。 二、单选 .冰劈作用是( )。 .物理风化 .生物风化 .化学风化 .差异风化 .因强烈蒸发使地下水浓缩结晶,导致岩石裂缝被结晶力扩大,叫做( )。 .热胀冷缩作用 .盐类结晶作用 .冰劈作用 .碳酸化作用 .黄铁矿在空气或水中生成褐铁矿,在化学风化中应属于( )。 .溶解作用 .水化作用 .氧化作用 .碳酸化作用 .硬石膏转变成石膏体积增大 倍,使岩石破坏,在化学风化中应属于( )。 .溶解作用 .水化作用 .氧化作用 .碳酸化作用 .生物物理风化的主要类型是( )。 .冰劈作用 .热胀冷缩作用 .盐类结晶作用 .根劈作用 .抗风化能力最强的矿物是( )。 .正长石 .斜长石 .石英 .方解石 .影响岩石风化的内部因素是( )。 ~ .湿度和压力 .化学活泼性流体 .岩石性质和地质构造 .矿物的联结力 .岩石浸水后强度降低的性能叫做岩石的( )。 .吸水性 .软化性 .可溶性 .崩解性 .土的含水率是指( )。 .土中水的质量与土粒质量之比 .土中水的质量与土体总重量之比 .土中水的体积与土粒体积之比 .土中水的体积与土体总体积之比 .判别黏性土软硬状态的指标是( )。 .塑性指数 .液限 .液性指数 .塑限 .岩石的强度指标,通常是用岩石的( )来表示。 .抗压强度 .抗拉强度 .抗剪强度 .抗扭强度

各岩土层岩性特征

各岩土层岩性特征(土方挖填种类): 拟建场区在勘探深度范围内主要揭示4个单元地层,由上而下由新到老依次为:(1)人工填土、杂填土地层,由于场区位于武汉市内,人为活动频繁、建筑物密集,表层普遍分布填土地层;(2)第四系全新统冲洪积粉质黏土,可塑~硬塑,局部发育有淤泥质粉质黏土夹层,软~流塑状;(3) 第四系坡残积碎石土,硬塑,该层为初勘阶段售1、2、4钻孔揭示,本次详勘未见此层;(4)~(6)下伏基岩为泥盆系上统页岩、石英砂岩、局部钻孔揭示到灰岩。 详述如下: (1)人工填土、杂填土:色杂,主要以建筑垃圾组成,含少量黏性土、生活垃圾等,堆填时间大部分小于10年,部分为新近拆迁期间回填,分布于整个场区。层面标高20.10~27.84m,地层厚度0.2~6.5m。 (2)淤泥质粉质黏土:灰褐色,流塑~软塑,潮湿,含大量有机质,具有腥臭味,多分布于表层,局部以透镜体形式分布于可塑状粉质黏土层中,幼儿园、C、B89、A9楼盘地基都有分布。层面标高14.90~26.62m,层面埋深0~10m,地层厚度0.6~4.6m。 (3)可塑状粉质黏土:粉质黏土,褐黄色~灰白色,可塑,局部含有铁质结核。层面标高 6.1~27.44m,平均标高18.85m,层面埋深0~15.3m,平均埋深4.15m,地层厚度0.4m~16.3m,平均厚度6.2m。 (4)硬塑状黏土:粉质黏土,褐黄色~灰褐色,硬塑,局部夹有碎石。层面标高1.19~26.22m,平均标高14.61m,层面埋深0~20.6m,平均埋深9.40m,地层厚度5m~9m,平均厚度8m。 (5)坡残积碎石土,暗红色~褐黄色,饱和,密实,碎石成份以石

地基土(岩)的工程分类定义及意义

地基土(岩)的工程分类定义及意义 (岩)的工程分类定义及意义 1、定义:地基土(岩)的工程分类是根据对土(岩)的工程性质最有影响的基本特征指标,把工程性质接近的土划分为一类并定以相应的名称。 2、意义:地基土(岩)的工程分类有利于工程技术人员选择正确的研究土(岩)性质的方法,对土(岩)做出合理的评价,便于统一认识交流经验。 二、地基土(岩)的工程分类 作为建筑物地基的土(岩)是根据土的颗粒级配,土的塑性,土的成因和土的特殊工程性质来划分土的类型。地基规范将地基土(岩)划分为岩石、碎石土、砂土、粉土、粘性土和人工填土六大类。 (一)岩石 1、定义:岩石是由一种和几种矿物组成的具有一定结构和构造的集合体。工程作用涉及到的地质体称为岩体。岩体为由岩石组成的岩块及在结构面切割下具有一定的结构和构造。 2、分类: (1)按饱和单轴抗压强度标准值分为坚硬岩、较硬岩、较软岩、软岩和极软岩; (2)按风化程度分为风化、微风化、中风化、强风化和全风化岩石。(二)碎石土 1、定义:碎石土是粒径大于2mm的颗粒含量超过全重50%的土。 2、分类: 碎石土根据颗粒级配和形状进一步划分为漂石、块石、卵石、圆砾和角

砾。 注:定名时应根据粒组含量由大到小以最先符合者确定。 (三)砂土 1、定义:砂土是指粒径大于2mm的颗粒含量不超过全重50%,粒径大于0.075mm的颗粒超过全重50%的土。 2、分类:砂土按其颗粒级配分为砾砂、粗砂、中砂、细砂和粉砂。注:定名时应根据粒组含量由大到小以最先符合者确定。 砂土是无粘性材料。但如果砂是湿的或很湿的,水的表面张力可以使砂土产生细粘聚力,而当砂处于干燥或饱和状态时则消失。砂是一种有利的建筑材料。 (四)粉土 粉土是塑性指数Ip小于或等于10,粒径大于0.075mm的颗粒含量不超过全重50%的土。粉土的性质介于砂土或粘性土之间。粉土中其粒径为0.05~0.005mm的粉粒占绝大多数,水与土粒之间的作用明显地不同于粘性土和砂,主要表现粉粒的特征。粉土常显示出一些粘聚力或粒间引力和吸附力。粉土一般不是很好的地基材料,它难以压实,太湿时在压实时易成“橡皮土”。 (五)粘性土 1、定义:粘性土是塑性指数Ip大于10的土。 2、分类:地基规范按塑性指数将粘性土进一步划分为: 粘土Ip>17 粉质粘土10<Ip≤17

岩土工程复习题及答案

1.简述采矿工程中岩体力学的特点。 ①采矿工程多处于地下较深处,而其它地下工程多在距地表较近(几十米)的范围内; ②对矿山工程,只要求在开采期间不破坏,在采后能维持平衡状态不影响地表安全即可,故其计算精度、安全系数及加固等方面均低于国防、水利工程的标准;③矿山地质条件复杂,又受矿床赋存条件限制,故采矿工程的位置选择性不大,同时采掘工作面不断变化,因而采矿工程岩石力学具有复杂性的特点 2.绘图并说明岩石的应力-应变全过程曲线。 3. 3、简述岩石在三向压力作用下的变形规律。 1、裂隙压密阶段(OA)。曲线上凹,体积缩小;A点: 压密极限 2、线弹性变形阶段(AB)。呈直线,体积仍缩小;B 点:弹性极限 3、微裂隙稳定发展阶段(BC)。近似线弹性,体积变 形由缩小转为增大,发生“扩容”;C点:屈服极限 屈服点:岩石从弹性变为塑性的转折点 4、非稳定发展阶段(CD) 5、裂隙扩展、新裂隙产生,体积膨胀加剧,显示 宏观破坏迹象,岩石承载能力达到极限;D点:峰值强度/强度极限,即单轴抗压强度 6、残余强度阶段(DE)岩石全面破坏,承载能力下 降,但尚有承载力,此为岩石材料特点之一 岩石三向压力(σ1>σ2=σ3)作用下变形规律 1随着围压(σ2=σ3)增大,岩石抗压强度显著增加; 2随着围压(σ2=σ3)增大,岩石变形显著增大; 3随着围压(σ2=σ3)增大,岩石弹性极限显著增大; 4随着围压(σ2=σ3)增大,岩石性质发生变化:由弹性→塑性

4. 解释岩石的不稳定蠕变曲线,试述如何利用它进行岩体工程破坏的预报? 5. 绘图并说明岩石力学介质常用的理论模型。 ①岩石自身性质 ⑴ 虎克体——弹簧元件 理想弹性元件,呈线弹性,完全服从虎克定律,其力学关系为 由于弹性模量E 为常量,故变形与时间无关,有 dt d E dt d ε σ= ⑴ 过渡蠕变阶段(Ⅰ) 在加载瞬间有一弹性变形ε0,继而以较快的速度增长,随后蠕变速度逐渐降低,并过渡到等速蠕变阶段。 若在此阶段内卸载,则会出现瞬间弹性变形(PQ 段),和通过一段时间才能恢复的变形(QR 段) ⑵ 稳定蠕变阶段(Ⅱ) 变形缓慢,应变与时间近于线性关系,变形速度保持恒定 若在此阶段卸载,则不仅出现瞬间的弹性恢复(TU 段)和弹性后效(UV 段),还会有不可恢复的永久变形残留 ⑶加速蠕变阶段(Ⅲ) 蠕变速度加快,内部裂隙迅速发展,促使变形加剧,直到破坏 * 利用蠕变曲线进行岩石工程破坏预报。若发现岩体某部分位移速度开始由等速转入加速发展时,表明即将发生破坏;若给出加速蠕变起始点时间,及时撤离,可避免灾难发生 ⑶ 牛顿体——阻尼元件 是一种理想的粘性流体,其流动性质服从牛顿粘性定律,即粘性体的流动速度(或应变速度)与应力成比例关系: η——液体粘性系数 ⑵ 库仑体——摩擦元件 理想塑性体,其力学关系为: ???≥∞ →<=) () (000σσσσε σ0——屈服极限

连云港地区软土的工程地质性质及岩土工程勘察的注意问题

连云港地区软土的工程地质性质及岩土工程勘察的注意问题 摘要:本文叙述了连云港市区软土分布成因、特征物理学性质,根据大量工作实践,提出工程勘察中应注意的八个问题。 关键词:软土、性质、工程勘察、注意问题。 1连云港市区软土分布、成因 连云港地处于黄海之滨,包括东海县、赣榆县、灌云县、藻南县等四个县,新浦区、海州区、连云区等三个区,地貌上多属黄海海积平原,其中有我国著名的花果山(云台山)为低山丘陵。连云港市区除了云台山及孔望山、锦屏山之外都普遍分布着厚度1-25米不等的软土。本人根据大量工作实践,总结出一条经验:一般自然地面标高在4.00米(黄海高程)以下的区域会存在软土,即使在山前地带也存在。而地面标高在5.00米以上的区域则不会存在软土(特殊情况例外,如山前的近代滑坡体、崩塌堆积物的下部可能会有)。 下表为连云港市区不同地段软土顶底板埋深 地点华联火车站海州墟沟出口加工区开发区浦南燕尾港 顶板深度 1.0-1.5 1.5-2.0 1.5-2.0 1.5-2.5 1-1.5 1.5-2.0 1.5-2.0 1-2.0 底板深度11-11.5 11.5-12.0 10-12* 4-12 11-13* 10-13 5.5- 6.5 16-18 *海州区山前个别地区淤泥厚度可达20米 **开发区山前个别地区淤泥厚度可达25米(古海冲沟) 连云港市区除了山区之外的平原区,都广泛分布着软土。据东海县志记载:在明代还是为海中的“仙山”,正如吴承恩所描写的花果山。当我们从山下向云台山上爬或走时,来到一片陡坡或山涯前,常常看到原来海浪冲蚀的“海蚀穴”,在近代还是一片汪洋大海。软土的成因为海积-冲海积。排除局部的海沟和山前因素,连云港市区的软土深度一般在10-13米。 2特征

土木工程地质_白志勇_第四章岩石及特殊土的工程性质

第四章 岩石及特殊土的工程性质 第一节 岩石的物理性质 一、密度和重度: 密度:单位体积的质量(ρ)。(g/cm 3) ? ?? ??饱和密度 干密度/天然密度Ms/V V M 重度:单位体积的重量(γ)。(N/cm 3) 2 m /s 1kg 1N ?=?=g ργ 二、颗粒密度和比重(相对密度) 颗粒密度:单位体积固位颗粒的质量(s ρ)。(g/cm 3) V M s s = ρ 比重(相对密度):单位体积固体颗粒的重力与4℃时同体积水的重力之比 (d s )。 w s s d ρρ= 三、孔隙度和孔隙比: 孔隙度:孔隙体积与岩石总体积之比(n )。% 1 00?= V V n n 孔隙比:孔隙体积与岩石中固体颗粒体积之比(e )。s n V V e = 第二节 岩石的水理性质 一、吸水性:指岩石吸收水的性能。其吸水程度用吸水率表示。 吸水率:(常压条件下)吸入水量与干燥岩石质量之比。% 10011?= s w G G w 饱水率:(150个大气压下或真空)吸入水量与干燥岩石质量之比。 % 10022?= s w G G W

饱水系数:岩石吸水率与饱水率之比。 2 1W W K w = (9.0~5.0=w K ) 二、透水性:指岩石能透过水的能力。用渗透系数K 表示。(m/s ) 达西层流定律:F I K F dl dh K Q ??=?? = 渗透系数: I V F I Q K =?= 三、软化性:指岩石浸水后强度降低的性质。用软化系数K R 表示。 软化系数:干燥单轴抗压强度。 饱和单轴抗压强度。→→= R R K c R 一般软化系数75.0<R K 的岩石具软化性。 四、抗冻性:指岩石抵抗冻融破坏的能力。 强度损失率: 冻融前的强度冻融前后强度差= l R 不抗冻的岩石 R L >25% 重量损失率: 冻融前的重量 冻融前后重量差= L G G L >2% K W >0.7 五、可溶性:指岩石被水溶解的性能。 六、膨胀性:指岩石吸水后体积增大的性能。 七、崩解性:岩石(干燥)泡水后,因内部结构破坏而崩解的性能。 第三节 岩石的力学性质 一、变形:岩石受力后发生形状改变的现象。主要变形模量和泊松比表示。 ??? ??? ? ??? ?? ? ===50 505001εσεσεσε σ= 割线模量塑性模量弹性模量变形模量、变形:E E E E s s t T 2、泊松比:指横向应变⊥ε与纵向应变11ε之比。

最新岩土工程勘察(中国地质大学)

绪论 一、岩土工程的含义和研究对象 1、岩土工程是以求解岩体与土体工程问题,包括地基与基础、边坡和地下工程等问题,作 为自己的研究对象。它涉及到岩体与土体的利用、整治和改造,包括岩土工程的勘察、设计、施工和监测四个方面。 2、岩土工程以工程地质学、土力学、岩体力学和基础工程学为理论基础,以解决在建设过 程中出现的与岩体和土体有关的工程技术问题,是一门地质与工程紧密结合的学科。 二、岩土工程勘察的任务和特点 具体任务归纳如下: (1)阐述建筑场地的工程地质条件,指出场地内不良地质现象的发育情况及其对工程建设的影响,对场地稳定性作出评价。(2)查明工程范围内岩土体的分布、性状和地下水活动条件,提供设计、施工和整治所需的地质资料和岩土技术参数。(3)分析、研究有关的岩土工程问题,并作出评价结论。(4)对场地内建筑总平面布置、各类岩土工程设计、岩土体加固处理、不良地质现象整治等具体方案作出论证和建议。(5)预测工程施工和运行过程中对地质环境和周围建筑物的影响,并提出保护措施的建议。 第一章岩土工程勘察基本技术要求 1.1 岩土工程勘察的分级 岩土工程勘察的等级,是由工程安全等级、场地和地基的复杂程度三项因素决定的。首先应分别对三项因素进行分级,在此基础上进行综合分析,以确定岩土工程勘察的等级划分。 (P7 表1-5) 四、岩土工程勘察等级 1.2 岩土工程勘察的阶段 《岩土工程勘察规范》明确规定勘察工作划分为规划勘察、初步勘察、详细勘察和施工图勘察四个阶段。 1)规划勘察:可行性研究勘察也称为选址勘察,其目的是要强调在可行性研究时勘察工作的重要性,特别是对一些重大工程更为重要。 2)初步勘察:初步勘察的目的,是密切结合工程初步设计的要求,提出岩土工程方案设 计和论证。 3)详细勘察:详细勘察的目的,是对岩土工程设计、岩土体处理与加固、不良地质现象的 防治工程进行计算与评价,以满足施工图设计的要求。 4)施工勘察:对工程地质条件复杂或有特殊施工要求的重要工程,还需要进行施工勘察。

疏浚岩土工程特性和分级

1、疏浚岩土分类

注:Q LL—液性指数;e—空隙比;RC-岩石单轴饱和极限抗压强度M C——粘性土质量

2、疏浚岩土工程特性和分级 63.5— 3

3、施工工艺 施工工艺——单从字面上看,施工工艺是一广义词,是指完成一项具体工作所用的方法,在疏浚方面包含范围较大,例如施工总体安排工艺、挖槽分条分层工艺、泥土处理工艺、施工顺序工艺、吹填工艺、抛填工艺、挖泥船操作工艺、耙吸船溢流施工工艺、抽舱施工工艺、边抛施工工艺......等等,统称施工工艺。 通常,我们所说的施工工艺在大的方面,主要是指根据项目施工土质条件、工况条件、合同要求等所确定的整体施工方法,例如多船型施工工艺(两种以上施工船型、方法),单船型施工工艺等;小的方面指具体确定的施工操作方法,如上面所举例子。具体工艺参数分别根据施工设备和条件确定。 4、结合工程实践说明绞吸挖泥船施工工艺 (1)施工布置原则:在施工平面布置上,要从有利船舶产能最佳发挥来综合确定施工开挖顺序和吹填的顺序。总体原则是在船舶有效吹距内,按挖近吹远、挖远吹近来确定开挖顺序,以保证管线长度平衡,避免施工中因安排不当出现管线过短和过长问题,影响船舶效率发挥。除非挖槽和吹填区同时有形象进度限制无法按上述原则安排。 (2)、分条方法:依据施工区风浪影响条件和船舶干扰影响条件确定分条方向。划分时要重点考虑有利于挖泥船抗风施工和避开施工干扰(把干扰讲到最低程度)。分条的宽度以挖泥船最佳挖宽为参数确定,一般绞吸船分条挖槽划分宽度稍小于船体长度(大概是船长的95%)。具体宽度根据施工区设计总宽条件灵活掌握。 (3)、分层方法,根据土质和泥层厚度来确定。 ①松散的砂质土(例如曹妃甸工地的疏浚土质,沙粒粒径较小,均匀,呈松散状,易坍塌),可采取大挖深小进尺施工法分层。因为这种土质易坍塌,采取大挖深小进尺法分层施工可减少移锚和倒台车时间,减少绞刀横

岩土工程专业

岩土工程学科 Geotechnical Engineering 专业代码081401 一、学科专业简介 岩土工程是以岩土的利用、改造与整治为研究对象的学科。土木、水利、交通及环境工程等所遇到的岩土问题有明显的共性。大型工程设施建设中,与岩土有关的地基基础部分的设计和施工对于整个工程的安全可靠、经济技术指标及功能的发挥起着重要的作用。由于岩土介质的特殊性,它与一般的结构工程的设计与施工有较大的区别,带有明显区域特征。岩土工程通常通过勘察、室内外试验测定、方案论证、设计计算、施工监测、反演分析、工程判断等特殊的工作程序解决工程问题,其主要研究内容包括:岩土基本工程性质、岩土工程设计方法、岩土工程施工技术与管理及测试分析技术等。因土性、时效、环境和工程特性等因素的复杂性,目前岩土工程还带有较强的经验性。随着现代科学技术的发展,新的设计理论与方法、新材料、新测试分析技术以及大型工程建设实践,为岩土工程学科的发展提供了有利的条件。 二、培养目标 应掌握岩土工程学坚实的基础理论和系统的专门知识,对本学科的现状和发展趋势有基本的了解;有严谨求实、勇于探索的科学态度和作风,具有从事科学研究工作的能力;较为熟练地掌握一门外国语,能阅读本专业的外文资料;能从事教学、科研、设计和技术管理或其他工程技术工作。 三、研究方向 (1)岩土的基本工程性质:岩土的本构理论、岩土试样采集、实验室试验与原位测试技术; (2)地基与基础工程:地基处理、浅基础、深基础、桩基础、深基础的开挖与支护、边坡稳定、岩土与结构相互作用、岩土体渗流理论及工程应用; (3)岩土工程数值分析技术及各类软件; (4)隧道与地下工程; (5)爆破与安全技术; 四、学习年限、学习时间及学分要求 1、学习年限:实行弹性学制,硕士生的学习年限一般为2至3年; 2、学习时间:硕士生原则上要求在一年内完成课程学习。必须在完成了规 定的课程学习,中期筛选通过,并进行开题后方能进行学位论文写作。学位论文研究、撰写及答辩的时间硕士生不少于1年; 3、学分要求:总学分不少于32学分;其中学位课不少于20学分,教学实 践记1学分,学术活动记1学分。

相关主题
文本预览
相关文档 最新文档