北师大版数学高一(北师大)必修4素材 2.1平面向量疑难问题辨析(2)
- 格式:doc
- 大小:47.00 KB
- 文档页数:1
word资料可编辑试题试卷参考学习高一数学期中复习2--- 平面向量例1. 已知A、B、C分别为ABC△的三边a、b、c所对的角,向量)sin,(sinBAm?,)cos,(cosABn?,且Cnm2sin??.(Ⅰ)求角C的大小;(Ⅱ)若Asin,Csin,Bsin成等差数列,且18)(???ACABCA,求边c的长.例2.如图,已知△ABC中,|AC|=1,∠ABC=23?,∠BAC=θ,记()fABBC??。
(1)求()f?关于θ的表达式;(2)求()f?的值域。
word资料可编辑试题试卷参考学习例3.已知ABC?中,角ABC、、的对边分别为abc、、,且满足(2)coscosacBbC??。
(I)求角B的大小;(Ⅱ)设(sin,1),(1,1)mAn???,求m n的最小值。
平面向量检测1.给出下列等式:(1)a·0 =0;(2)0·a=0;(3)若a,b同向共线,则a·b=|a|·|b|;(4)a≠0,b≠0,则a·b≠0;(5)a·b=0,则a·b中至少有一个为0;(6)若a,b均是单位向量,则a2=b2.以上成立的是( ).A.(1)(2)(5)(6) B.(3)(6) C.(2)(3)(4) D.(3)(6) 2.已知向量a=(1,3),b=(3+1,3-1),则a与b的夹角为( ).A.π 4 B.π 3 C.π 2 D.3π 4word资料可编辑试题试卷参考学习3.设a,b是共线的单位向量,则|a+b|的值是( ).A.等于2 B.等于0 C.大于2 D.等于0或等于24.已知线段AB的中点为C,则AB→-BC→=( ).A.3AC→ B.AC→C.CA→ D.3CA→5.已知△ABC中,CB→=a,CA→=b,a·b<0,S△a|=3,|b|=5,则a与b的夹角为( ).ABC=154,|A.30° B.-150° C.150° D.30°或150°6.下列向量组中,能作为表示它们所在平面内所有向量的基底的是( ).A.e1=(0,0),e2=(1,-2) B.e1=(-1,2),e2=(5,7)C.e1=(3,5),e2=(6,10) D.e1=(2,-3),e2= 12,-3 47.已知非零向量a,b,若a+2b与a-2b互相垂直,则|a||b|等于( ).A.1 4 B.4 C.1 2 D.28.点O是△ABC所在平面内的一点,满足OA→·OB→=OB→·OC→=OC→·OA→,则点O是△ABC的( ).A.三条内角的角平分线的交点 B.三条边的垂直平分线的交点C.三条中线的交点 D.三条高的交点9.点P在平面上做匀速直线运动,速度向量v=(4,-3)(即点P的word资料可编辑试题试卷参考学习运动方向与v相同,且每秒移动的距离为|v|个单位).设开始时点P的坐标为(-10,10),则5秒后点P的坐标为( ).A.(-2,4) B.(-30,25) C.(10,-5) D.(5,-10)10.在△ABC中,M是BC的中点,AM=1,点P在AM上且满足AP→=2PM→,则PA→·(PB→+PC→)等于( ). A.-49 B.-4 3C.4 3D.4911.已知向量a与b的夹角为120°,|a|=1,|b|=3,则|5a-b|=________.12.已知e为单位向量,||a=4,ae与的夹角为?32,则a e在方向上的投影为13.与a=(12,5)平行的单位向量是________..14.在等腰直角三角形ABC中,斜边AC=22,则CAAB?=_________15.如果向量与b的夹角为θ,那么我们称×b 为向量与b的“向量积”,×b是一个向量,它的长度| ×b|=| ||b|sinθ,如果| |=3, |b |=2, ·b=-2,则| ×b|=______。
复习课(二) 平面向量平面向量的有关概念及线性运算1.本考点多以选择、填空题形式考查,着重考查向量的有关概念辨别、平面向量的线性运算及共线向量定理,难度中档.2.知识归纳整合 (1)向量与有向线段:向量常用有向线段表示,它们是两个不同概念,有向线段由起点、终点方向唯一确定,而向量是由大小和方向来确定的.(2)零向量和单位向量是两个特殊的向量.它们的模确定,但方向不确定,在解题时注意它们的特殊性.如“若a ∥b ,b ∥c ,则a ∥c ”是假命题,因为当b 为零向量时,a 与c 为任意向量,两者不一定平行.(3)共线向量也叫平行向量,两向量所在的直线可以共线也可以平行. (4)相等向量一定是平行向量. (5)向量a 的单位向量为a|a |.(6)向量加法三角形法则:AB +BC =AC ,首尾相连,只需找到第一个向量的起点,最后一个向量的终点,则和向量就可找到.(7)向量减法的三角形法则:AB -AC =CB .差向量是第二个的终点指向第一个向量的终点的向量.(8)λa 依然是一个向量,与a 的方向相同(λ>0)或相反(λ<0). [典例] (1)下列命题中,正确命题的个数是 ( ) ①单位向量都共线; ②长度相等的向量都相等; ③共线的单位向量必相等;④与非零向量a 共线的单位向量是a|a |.A .3B .2C .1D .0(2)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB +FC = ( ) A .BC B .AD C.12BC D.12AD(3)若a ,b 是两个不共线的非零向量,a 与b 起点相同,则当t 为何值时,a ,tb ,13(a+b )三向量的终点在同一条直线上.[解析] (1)根据单位向量的定义,可知①②③明显是错误的,对于④,与非零向量a 共线的单位向量是a |a|或-a|a|,故④也是错误的.(2)由向量的加法法则,得BE =12(BA +BC ),CF =12(CB +CA ),因此EB +FC =-12(BA +BC )-12(CB +CA )=-12(BA +CA )=12(AB +AC )=12×2AD =AD ,故选 B.[答案] (1)D (2)B(3)解:设OA =a ,OB =tb ,OC =13(a +b ),∴AC =OC -OA =13(a +b )-a =-23a +13b ,AB =OB -OA =tb -a .要使A ,B ,C 三点共线,只需AC =λAB , 即-23a +13b =λ(tb -a ).又非零向量a ,b 不共线,∴⎩⎨⎧ 13=λt ,-λ=-23,∴⎩⎨⎧t =12,λ=23.∴当t =12时,三向量终点在同一条直线上.[类题通法](1)辨别向量概念问题时:一要紧扣相关定义,二要注意零向量易忽视. (2)平面向量的线性运算:①常用的法则是平行四边形法则和三角形法则,一般共起点的向量求和用平行四边形法则,求差用三角形法则,求首尾相连向量的和用三角形法则.②找出图形中的相等向量、共线向量,将所求向量与已知向量转化到同一个平行四边形或三角形中求解.[题组训练]1.已知两个非零向量a ,b 满足|a +b |=|a -b |,则下列结论正确的是 ( )A .a ∥bB .a ⊥bC .|a |=|b |D .a +b =a -b解析:选B 因为|a -b |=|a +b |,由向量的加法和减法法则,知以a ,b 为邻边的平行四边形对角线相等,故该平行四边形是一个矩形,所以a ⊥b . 2.如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB =a ,AC =b ,则AD = ( ) A .a -12b B.12a -bC .a +12b D.12a +b解析:选D 连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD =12AB =12a ,所以AD =AC +CD =b +12a . 3.如图,在平行四边形ABCD 中,AE =13AB ,AF =14AD ,CE 与BF 相交于点G ,若AB =a ,AD =b ,则AG =( ) A.27a +17b B.27a +37b C.37a +17b D.47a +27b解析:选C 设AG =ma +nb (m ,n ∈R),则AG =mAB ―→+4n AF ,∵F ,G ,B 三点共线,∴m +4n =1.连接AC ,则CG =AG -AC =AG -(AB +AD )=(m -1)a +(n -1)b ,CE =BE -BC =-23AB -AD =-23a -b .∵C ,G ,E 三点共线,∴m -1-23=n -1-1,即3m -2n =1. 联立⎩⎪⎨⎪⎧m +4n =1,3m -2n =1,解得⎩⎨⎧m =37,n =17.∴AG =37a +17b .平面向量的坐标运算1.考情本考点多以选择题、填空题形式考查,着重考查平面向量的坐标运算及共线向量定理的坐标表示及数量积的坐标运算,难度中档.2.知识归纳整合(1)向量加法、减法、数乘向量的坐标运算 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.a ∥b ⇔x 1y 2-x 2y 1=0, a ·b =x 1x 2+y 1y 2.(2)向量坐标与起点、终点坐标的关系及向量的模①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB =(x 2-x 1,y 2-y 1), |AB |=(x 2-x 1)2+(y 2-y 1)2.[典例] (1)(四川高考)设向量a =(2,4)与向量b =(x,6)共线,则实数x = ( ) A .2 B .3C .4D .6(2)已知点A (0,1),B (3,2),向量AC =(-4,-3),则向量BC =( ) A .(-7,-4) B .(7,4) C .(-1,4) D .(1,4)(3)已知△ABC 三个顶点的坐标分别为A (3,4),B (0,0),C (c,0). ①若AB ·AC =0,求c 的值; ②若c =5,求cos A 的值.[解析] (1)∵a ∥b ,∴2×6-4x =0,解得x =3. (2)法一:设C (x ,y ),则AC =(x ,y -1)=(-4,-3),所以⎩⎪⎨⎪⎧x =-4,y =-2,从而BC =(-4,-2)-(3,2)=(-7,-4).故选A. 法二:AB =(3,2)-(0,1)=(3,1),BC =AC -AB =(-4,-3)-(3,1)=(-7,-4).故选A.[答案] (1)B (2)A(3)解:①AB =(-3,-4),AC =(c -3,-4). 由AB ·AC =0,可得 -3(c -3)+16=25-3c =0, 所以c =253.②∵AB =(-3,-4),AC =(c -3,-4)=(2,-4),∴cos A =AB ·AC| AB ||AC |=-6+16520=55.[类题通法](1)向量坐标不是向量的终点坐标,与向量的始点、终点有关系.(2)对向量坐标运算注意a ∥b ,a ·b 的坐标运算形式易混淆.[题组训练]1.已知向量a =(1,2),(a +b )∥b ,则b 可以为 ( )A .(1,2)B .(1,-2)C .(2,1)D .(2,-1)解析:选A 设b =(x ,y ),则a +b =(x +1,y +2),因为(a +b )∥b ,所以(x +1)y -x (y +2)=0,化简得y -2x =0,只有A 满足.2.已知向量a =(1,0),b =(0,1),c =ka +b (k ∈R),d =a -b ,如果c ∥d ,那么 ( )A .k =1且c 与d 同向B .k =1且c 与d 反向C .k =-1且c 与d 同向D .k =-1且c 与d 反向解析:选D ∵a =(1,0),b =(0,1),若k =1,则c =a +b =(1,1),d =a -b =(1,-1),显然,c 与d 不平行,排除A ,B.若k =-1,则c =-a +b =(-1,1),d =a -b =-(-1,1),即c ∥d 且c 与d 反向.3.(江苏高考)已知向量a =(2,1),b =(1,-2),若ma +nb =(9,-8)(m ,n ∈R),则m -n 的值为________.解析:∵ma +nb =(2m +n ,m -2n )=(9,-8),∴⎩⎪⎨⎪⎧ 2m +n =9,m -2n =-8,∴⎩⎪⎨⎪⎧m =2,n =5,∴m -n =2-5=-3. 答案:-3平面向量的数量积1.考情本考点在各种题型均有考查,在解答题中常与三角函数交汇考查,着重考查数量积的计算、模、夹角及垂直问题,难度中档.2.知识归纳整合 (1)平面向量数量积①a ,b 是两个非零向量,它们的夹角为θ,则|a ||b |·cos θ叫作a 与b 的数量积,记作a·b ,即a·b =|a ||b |·cos θ.规定0·a =0.当a ⊥b 时,θ=90°,这时a·b =0. ②a·b 的几何意义:a·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. (2)已知非零向量a =(x 1,y 1),b =(x 2,y 2).[典例] (1)在直角梯形ABCD 中,AB ∥CD ,AD ⊥AB ,B =45°,AB =2CD =2,M 为腰BC 的中点,则MA ·MD = ( )A .1B .2C .3D .4(2)如果向量a 和b 满足|a |=1,|b |=2,且a ⊥(a -b ),那么a 和b 的夹角θ的大小为 ( )A .30°B .45°C .75°D .135°(3)已知向量a =(cos α,sin α),b =(cos β,sin β),0<β<α<π. ①若|a -b |=2,求证:a ⊥b ;②设c =(0,1),若a +b =c ,求α,β的值.[解析] (1)由题意,得MA ·MD =⎝⎛⎭⎫12CB +BA ·⎝⎛⎭⎫-12 CB +CD =-14|CB |2+12CB ·CD -12CB ·BA +BA ·CD =-14×(2)2+12×2×1×cos 135°-12×2×2×cos 135°+2×1×cos 0°=-12-12+1+2=2.(2)由a ·(a -b )=0,∴a 2-a ·b =0, ∴a·b =1.又cos θ=a·b |a |·|b |=11×2=22,且0°≤θ ≤180°,∴θ=45°.[答案] (1)B (2)B(3)解:①证明:由题意得|a -b |2=2, 即(a -b )2=a 2-2a ·b +b 2=2. 又因为a 2=b 2=|a |2=|b |2=1, 所以2-2a ·b =2,即a ·b =0,故a ⊥b .②因为a +b =(cos α+cos β,sin α+sin β)=(0,1),所以⎩⎪⎨⎪⎧cos α+cos β=0,sin α+sin β=1.由此得,cos α=cos(π-β), 由0<β<π,得0<π-β<π. 又0<α<π,故α=π-β.代入sin α+sin β=1得,sin α=sin β=12,而α>β,所以α=5π6,β=π6.[类题通法](1)平面向量数量积的计算方法:①已知向量a ,b 的模及夹角θ,利用公式a ·b =|a ||b |cos θ求解. ②已知向量a ,b 的坐标,利用数量积的坐标形式求解.(2)对于向量数量积与线性运算的综合运算问题,可先利用数量积的运算律化简,再进行运算.(3)计算|a |时注意|a |=a 2,易出错.[题组训练]1.已知向量a ,b 满足|a |=1,|b |=2,且a 在b 方向上的投影与b 在a 方向上的投影相等,则|a -b |= ( ) A .1 B. 3 C. 5 D .3解析:选C 由于投影相等,故有|a |cos 〈a ,b 〉=|b |cos 〈a ,b 〉,因为|a |=1,|b |=2,所以cos 〈a ,b 〉=0,即a ⊥b ,则|a -b |=|a |2+|b |2-2a ·b = 5.2.已知在直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|PA +3 PB 的最小值为________.解析:建立如图所示的平面直角坐标系,设DC =h ,则A (2,0),B (1,h ).设P (0,y )(0≤y ≤h ),则PA =(2,-y ),PB =(1,h -y ),∴|PA +3 PB |=25+(3h -4y )2≥25=5.故|PA+3PB |的最小值为5. 答案:53.在平行四边形ABCD 中,AC =(1,2),BD =(-3,2),则AD ·AC =________. 解析:AD ·AC ―→=⎣⎡⎦⎤12(AC +BD )·AC =12[(1,2)+(-3,2)]·(1,2)=(-1,2)·(1,2)=3. 答案:31.如图,在正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个三等分点,那么EF =( )A.12AB -13ADB.14AB +12AD C.13AB +12DA D.12AB -23AD 解析:选D 在△CEF 中,EF =EC +CF .因为点E 为DC 的中点,所以EC =12DC .因为点F 为BC 的一个三等分点,所以CF =23CB .所以EF =12DC +23CB =12AB +23DA =12AB -23AD .故选D.2.已知向量a =(m,1),b =(m 2,2).若存在λ∈R ,使得a +λb =0,则m = ( ) A .0 B .2 C .0或2 D .0或-2 解析:选C ∵a =(m,1),b =(m 2,2),a +λb =0, ∴(m +λm 2,1+2λ)=(0,0),即⎩⎪⎨⎪⎧m +λm 2=0,1+2λ=0,∴⎩⎪⎨⎪⎧λ=-12,m =0或2.故选C. 3.已知向量OA =(3,-4),OB =(6,-3),OC =(2m ,m +1).若AB ∥OC ,则实数m 的值为 ( )A.15 B .-35 C .-17D .-3解析:选D AB =OB -OA =(3,1),由AB ∥OC ,得3(m +1)=2m ,解得m =-3,故选D.4.在△ABC 中,(BC +BA )·AC =|AC |2,则△ABC 的形状一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形解析:选C 由(BC +BA )·AC =|AC |2,得AC ·(BC +BA -AC )=0,即AC ·(BC+BA +CA )=0,∴2AC ·BA =0,∴AC ⊥BA ,∴A =90°.故选C.5.已知向量a ,b 的夹角为120°,|a |=|b |=1,c 与a +b 同向,则|a -c |的最小值为 ( ) A .1 B.12C.34D.32 解析:选D ∵|a |=|b |=1,c 与a +b 同向, ∴a 与c 的夹角为60°. 又|a -c |=a 2-2a·c +c 2=1-|c |+|c |2=⎝⎛⎭⎫|c |-122+34,故|a -c |min =32. 6.已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,sin B =1,向量p =(a ,b ),q=(1,2).若p ∥q ,则C 的大小为 ( )A.π6B.π3C.π2D.2π3解析:选B 由sin B =1,得B =π2,所以在△ABC 中,cos C =a b .又由p =(a ,b ),q =(1,2),p ∥q ,得2a -b =0,a =b 2,故cos C =12,所以C =π3. 7.对于向量a ,b ,当且仅当________________时,有|a -b |=||a |-|b ||.解析:当a ,b 不同向时,根据向量减法的几何意义,知一定有|a -b|>||a |-|b ||,所以只有两向量共线且同向时,才有|a -b |=||a |-|b ||.答案:a 与b 同向8.设e 1,e 2为单位向量,且e 1,e 2的夹角为π3,若a =e 1+3e 2,b =2e 1,则向量a 在b 方向上的射影为________.解析:依题意得|e 1|=|e 2|=1,且e 1·e 2=12,|b |=2,所以向量a 在b 方向上的射影为|a |cos 〈a ,b 〉=a·b |b |=2+6×122=52. 答案:529.已知向量a =(2,5),b =⎝⎛⎭⎫14,y ,且a ⊥(a +2b ),则y =________.解析:由题意,知a +2b =⎝⎛⎭⎫52,5+2y ,因为a ⊥(a +2b ),所以5+5(5+2y )=0,解得y=-3.答案:-310.已知点A (-1,2),B (2,8)及AC =13AB ,DA =-13BA ,求点C ,D 和CD 的坐标. 解:设C (x 1,y 1),D (x 2,y 2).由题意可得AC =(x 1+1,y 1-2),AB =(3,6),DA =(-1-x 2,2-y 2),BA =(-3,-6).∵AC =13AB ,DA =-13BA , ∴(x 1+1,y 1-2)=13(3,6)=(1,2),(-1-x 2,2-y 2)=-13(-3,-6)=(1,2). 则有⎩⎪⎨⎪⎧ x 1+1=1,y 1-2=2,⎩⎪⎨⎪⎧ -1-x 2=1,2-y 2=2, 解得⎩⎪⎨⎪⎧ x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=-2,y 2=0. ∴C ,D 的坐标分别为(0,4)和(-2,0),因此CD =(-2,-4).11.如图,平行四边形ABCD 中,点E ,F 分别是边AD ,DC 的中点,BE ,BF 与AC 分别交于点R ,T ,证明:R ,T 为AC 的三等分点.证明:设AB =a ,AD =b ,则AC =a +b ,BE =12b -a . 由于AR 与AC 共线,因此存在实数m ,使得AR =m (a +b ).又BR 与BE 共线,因此存在实数n ,使得BR =n BE =n ⎝⎛⎭⎫12b -a . 由AR =AB +BR =AB +n BE ,得m (a +b )=a +n ⎝⎛⎭⎫12b -a ,整理得(m +n -1)a +⎝⎛⎭⎫m -12n b =0. 由于向量a ,b 不共线,所以有⎩⎪⎨⎪⎧m +n -1=0,m -12n =0, 解得⎩⎨⎧m =13,n =23.所以AR ―→=13AC . 同理TC ―→=13A AC ,所以RT ―→=13AC ,所以AR =RT =TC , 所以R ,T 为AC 的三等分点.12.已知向量a =(cos θ,sin θ),θ∈[]0,π,向量b =(3,-1).(1)若a ⊥b ,求θ的值;(2)若|2a -b |<m 恒成立,求实数m 的取值范围.解:(1)∵a ⊥b ,∴3cos θ-sin θ=0,得tan θ= 3.又θ∈[]0,π,∴θ=π3. (2)∵2a -b =(2cos θ-3,2sin θ+1),∴|2a -b |2=(2cos θ-3)2+(2sin θ+1)2=8+8⎝⎛⎭⎫12sin θ-32cos θ=8+8sin ⎝⎛⎭⎫θ-π3. 又θ∈[]0,π,∴θ-π3∈⎣⎡⎦⎤-π3,2π3. ∴sin ⎝⎛⎭⎫θ-π3∈⎣⎡⎦⎤-32,1. ∴|2a -b |2的最大值为16.∴|2a -b |的最大值为4.又|2a -b |<m 恒成立,∴m >4.,即实数m 的取值范围为(4,+∞).。
平面向量应用易错辩析运用向量知识解题常可收到化繁为简、化难为易的神奇功效,随着新教材的逐步实施,它已成为高考数学的新宠。
但学生在初学这部分内容时,往往会出现这样或那样的错误,现列举几种常见错误,以期起到防患于未然的作用。
一、忽略共线向量致误例1、已知同一平面上的向量、、两两所成的角相等,并且1||=,2||=,3||=,求向量++的长度。
错解:易知、、皆为非零向量,设、、所成的角均为θ,则 3603=θ,即 120=θ,所以,1120cos ||||-=⋅=⋅ b a b a ,同理3-=⋅,23-=⋅,由⋅+⋅+⋅+++=++222||2222=3,故3||=++。
剖析:本例误以为a 、b 、c 皆为非共线向量,而当向量a 、b 、c 共线且同向时,所成的角也相等均为0,符合题意。
正解:(1)当向量a 、b 、c 共线且同向时,所成的角均为 0,所以||c b a ++ 6||||||=++=c b a ;(2)当向量a 、b 、c 不共线时,同错解.综上所述, 向量++的长度为6或3。
二、忽视两向量夹角的意义致误例2、正ABC ∆的边长为1,且=,=,=,求||++的值。
错解:由于正ABC ∆的边长为1,所以, 60=∠=∠=∠C B A 且1||||||===, 所以,21cos ||||=∠⋅=⋅C b a b a ,同理可得21=⋅c b ,21=⋅a c , 由⋅+⋅+⋅+++=++222||2222=6,故6||=++。
剖析:本题误以为a 与b 的夹角为BCA ∠。
事实上,两向量的夹角应为平面上同一起点表示向量的两条有向线段之间的夹角,范围是]180,0[,因此,a 与b 的夹角应为BCA ∠- 180。
正解:作=,与的夹角即与的夹角为 120180=∠-BCA ,所以,21120cos ||||-=⋅=⋅ ,同理可得21-=⋅,21-=⋅, 由a c c b b a c b a c b a ⋅+⋅+⋅+++=++222||2222=0,故0||=++c b a 。
02第二章平面向量§1 从位移、速度、力到向量课时过关·能力提升1.下列说法中正确的是( ) A.若|a |=|b |,则a =bB.若A ,B ,C ,D 是不共线的四点,则“AB⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ ”是“四边形ABCD 是平行四边形”的等价条件 C.若非零向量AB⃗⃗⃗⃗⃗ ∥CD ⃗⃗⃗⃗⃗ ,则AB ∥CD D .AB⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ 的等价条件是A 与C 重合,B 与D 重合 解析:本题考查向量的有关概念,只有选项B 正确. 答案:B 2.如图,在梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F 分别在两腰AD ,BC 上,EF 过点P ,且EF ∥AB ,则下列等式成立的是( ) A .AD ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ B.AC ⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ C .PE⃗⃗⃗⃗⃗ =PF ⃗⃗⃗⃗⃗ D.EP ⃗⃗⃗⃗⃗ =PF ⃗⃗⃗⃗⃗ 解析:根据相等向量的定义,分析可得.A 中,AD⃗⃗⃗⃗⃗ 与BC ⃗⃗⃗⃗⃗ 方向不同,AD ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ 错误;B 中,AC ⃗⃗⃗⃗⃗ 与BD ⃗⃗⃗⃗⃗⃗ 方向不同,AC⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ 错误;C 中,PE ⃗⃗⃗⃗⃗ 与PF ⃗⃗⃗⃗⃗ 方向相反,PE ⃗⃗⃗⃗⃗ =PF ⃗⃗⃗⃗⃗ 错误;D 中,EP ⃗⃗⃗⃗⃗ 与PF ⃗⃗⃗⃗⃗ 方向相同,且长度都等于线段EF 长度的一半,EP ⃗⃗⃗⃗⃗ =PF ⃗⃗⃗⃗⃗ 正确. 答案:D 3.如图,梯形ABCD 为等腰梯形,则向量AB ⃗⃗⃗⃗⃗ 与DC⃗⃗⃗⃗⃗ 的关系是( )A .AB ⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ B.|AB ⃗⃗⃗⃗⃗ |=|DC ⃗⃗⃗⃗⃗ | C .AB ⃗⃗⃗⃗⃗ >DC ⃗⃗⃗⃗⃗D .AB⃗⃗⃗⃗⃗ <DC ⃗⃗⃗⃗⃗ 解析:|AB ⃗⃗⃗⃗⃗ |与|DC ⃗⃗⃗⃗⃗ |表示等腰梯形两腰的长度,故两者相等. 答案:B4.已知A={与a 共线的向量},B={与a 长度相等的向量},C={与a 长度相等、方向相反的向量},其中a 为非零向量,则下列命题中错误的是( ) A .C ⫋A B .A ∩B={a } C .C ⫋B D .A ∩B ⫌{a }答案:B 5.有下列说法:①若向量a 与向量b 不平行,则a 与b 的方向一定不相同; ②若向量AB ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ 满足|AB ⃗⃗⃗⃗⃗ |>|CD ⃗⃗⃗⃗⃗ |,且AB ⃗⃗⃗⃗⃗ 与CD ⃗⃗⃗⃗⃗ 同向,则AB ⃗⃗⃗⃗⃗ >CD ⃗⃗⃗⃗⃗ ; ③若|a |=|b |,则a ,b 的长度相等,且方向相同或相反; ④由于零向量的方向不确定,故其不能与任何向量平行. 其中,说法正确的个数是( ) A.1B.2C.3D.4解析:对于①,由共线向量的定义,知两向量不平行,方向一定不相同,故①正确;对于②,因为向量不能比较大小,故②错误;对于③,由|a |=|b |,只能说明a ,b 的长度相等,确定不了它们的方向,故③错误;对于④,零向量与任意向量平行,故④错误. 答案:A 6.如图,设O 是正方形ABCD 的中心,则有下列结论:①AO ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ ;②AO ⃗⃗⃗⃗⃗ ∥AC ⃗⃗⃗⃗⃗ ;③AB ⃗⃗⃗⃗⃗ 与CD ⃗⃗⃗⃗⃗ 共线;④AO ⃗⃗⃗⃗⃗ =BO⃗⃗⃗⃗⃗ .其中,所有正确结论的序号为 . 答案:①②③ 7.如图,在△ABC 中,已知|AC ⃗⃗⃗⃗⃗ |∶|BC ⃗⃗⃗⃗⃗ |=|AD ⃗⃗⃗⃗⃗ |∶|DB ⃗⃗⃗⃗⃗⃗ |,AC ⃗⃗⃗⃗⃗ 的模为2,BC ⃗⃗⃗⃗⃗ 的模为3,AD ⃗⃗⃗⃗⃗ 的模为1,则DB ⃗⃗⃗⃗⃗⃗ 的模为 .解析:∵|AC⃗⃗⃗⃗⃗ |∶|BC ⃗⃗⃗⃗⃗ |=|AD ⃗⃗⃗⃗⃗ |∶|DB ⃗⃗⃗⃗⃗⃗ |,且|AC ⃗⃗⃗⃗⃗ |=2,|BC ⃗⃗⃗⃗⃗ |=3,|AD ⃗⃗⃗⃗⃗ |=1, ∴|DB⃗⃗⃗⃗⃗⃗ |=32. 答案:328.已知a ,b 是任意两个向量,有下列条件:①a=b ;②|a|=|b|;③a 与b 的方向相反;④a =0或b =0;⑤a 与b 都是单位向量. 其中,使向量a 与b 平行的有 .(只填序号) 解析:根据平行向量的概念,可知①③④均能得到a ∥b . 答案:①③④★9.如图,O 是正三角形ABC 的中心,四边形AOCD 和四边形AOBE 均为平行四边形,则与向量AD ⃗⃗⃗⃗⃗ 相等的向量为 ;与向量OA ⃗⃗⃗⃗⃗ 共线的向量为 ;与向量OA ⃗⃗⃗⃗⃗ 的模相等的向量为 .(填图中所画出的向量)解析:∵O 是正三角形ABC 的中心,∴OA=OB=OC ,∴结合相等向量及共线向量的定义可知,与AD ⃗⃗⃗⃗⃗ 相等的向量有OC ⃗⃗⃗⃗⃗ ,与OA ⃗⃗⃗⃗⃗ 共线的向量有DC ⃗⃗⃗⃗⃗ ,EB ⃗⃗⃗⃗⃗ ,与OA ⃗⃗⃗⃗⃗ 的模相等的向量有OB ⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,EB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ . 答案:OC ⃗⃗⃗⃗⃗ DC ⃗⃗⃗⃗⃗ ,EB ⃗⃗⃗⃗⃗ OB ⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,EB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ 10.如图,在四边形ABCD 中,AB ⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ ,N,M 分别是AD,BC 上的点,且CN ⃗⃗⃗⃗⃗ =MA ⃗⃗⃗⃗⃗⃗ ,求证:四边形DNBM 是平行四边形. 证明∵AB ⃗⃗⃗⃗⃗ =DC⃗⃗⃗⃗⃗ , ∴四边形ABCD 为平行四边形, ∴AD ,BC 平行且相等.又CN ⃗⃗⃗⃗⃗ =MA ⃗⃗⃗⃗⃗⃗ ,∴四边形CNAM 为平行四边形, ∴AN ,MC 平行且相等, ∴AD-AN=BC-MC ,即DN=MB , ∴DN ,MB 平行且相等, ∴四边形DNBM 是平行四边形.★11.如图,A ,B ,C 三点的坐标依次是(-1,0),(0,1),(x ,y ),其中x ,y ∈R .当x ,y 满足什么条件时,向量OC ⃗⃗⃗⃗⃗ 与AB ⃗⃗⃗⃗⃗ 共线(其中O 为坐标原点)?解∵点A ,B 的坐标分别是(-1,0),(0,1),∴∠BAO=45°.①当点C (x ,y )的坐标满足x=y=0时,点C 与点O 重合,则有OC=0,即|OC ⃗⃗⃗⃗⃗ |=0,所以OC ⃗⃗⃗⃗⃗ =0,这时OC⃗⃗⃗⃗⃗ 与AB ⃗⃗⃗⃗⃗ 共线(零向量与任一向量都共线); ②当点C (x ,y )的坐标满足xy ≠0,且x=y ,即点C 在第一、三象限角平分线上时,有AB ∥OC ,这时OC ⃗⃗⃗⃗⃗ 与AB⃗⃗⃗⃗⃗ 共线. 综上可知,当x=y 时,OC ⃗⃗⃗⃗⃗ 与AB ⃗⃗⃗⃗⃗ 共线.。
高中数学学习材料马鸣风萧萧*整理制作第二章平面向量§1从位移、速度、力到向量课时目标1.通过对物理模型和几何模型的探究,了解向量的实际背景,掌握向量的有关概念及向量的几何表示.2.掌握平行向量与相等向量的概念.1.向量:既有________,又有______的量叫向量.2.向量的几何表示:以A为起点,B为终点的向量记作________.3.向量的有关概念:(1)零向量:长度为____的向量叫做零向量,记作____.(2)单位向量:长度为____的向量叫做单位向量.(3)相等向量:____________且____________的向量叫做相等向量.(4)平行向量(共线向量):方向____________的________向量叫做平行向量,也叫共线向量.①记法:向量a平行于b,记作______.②规定:零向量与____________平行.一、选择题1.下列物理量:①质量;②速度;③位移;④力;⑤加速度;⑥路程;⑦密度;⑧功.其中不是向量的有()A.1个B.2个C.3个D.4个2.下列条件中能得到a=b的是()A.|a|=|b| B.a与b的方向相同C.a=0,b为任意向量D.a=0且b=03.下列说法正确的有()①方向相同的向量叫相等向量;②零向量的长度为0;③共线向量是在同一条直线上的向量;④零向量是没有方向的向量;⑤共线向量不一定相等;⑥平行向量方向相同.A.2个B.3个C.4个D.5个4.命题“若a∥b,b∥c,则a∥c”()A.总成立B.当a≠0时成立C.当b≠0时成立D.当c≠0时成立5.下列各命题中,正确的命题为()A.两个有共同起点且共线的向量,其终点必相同B .模为0的向量与任一向量平行C .向量就是有向线段D .|a |=|b |⇒a =b6.下列说法正确的是( )A .向量AB →∥CD →就是AB →所在的直线平行于CD →所在的直线B .长度相等的向量叫做相等向量C .零向量长度等于0D .共线向量是在一条直线上的向量二、填空题7.给出以下5个条件:①a =b ;②|a |=|b |;③a 与b 的方向相反;④|a |=0或|b |=0;⑤a 与b 都是单位向量.其中能使a ∥b 成立的是________.(填序号)8.在四边形ABCD 中,AB →=DC →且|AB →|=|AD →|,则四边形的形状为________.9.下列各种情况中,向量的终点在平面内各构成什么图形.①把所有单位向量移到同一起点;②把平行于某一直线的所有单位向量移到同一起点;③把平行于某一直线的一切向量移到同一起点.①__________;②____________;③____________.10.如图所示,E 、F 分别为△ABC 边AB 、AC 的中点,则与向量EF →共线的向量有________________(将图中符合条件的向量全写出来).三、解答题11.在如图的方格纸上,已知向量a ,每个小正方形的边长为1.(1)试以B 为终点画一个向量b ,使b =a ;(2)在图中画一个以A 为起点的向量c ,使|c |=5,并说出向量c 的终点的轨迹是什么?12.如图所示,△ABC 的三边均不相等,E 、F 、D 分别是AC 、AB 、BC 的中点.(1)写出与EF →共线的向量;(2)写出与EF →的模大小相等的向量;(3)写出与EF →相等的向量.能力提升13.如图,已知AA ′→=BB ′→=CC ′→.求证:(1)△ABC ≌△A ′B ′C ′;(2)AB →=A ′B ′→,AC →=A ′C ′→.14.如图所示,O 是正六边形ABCDEF 的中心,且OA →=a ,OB →=b ,OC →=c .(1)与a 的模相等的向量有多少个?(2)与a 的长度相等,方向相反的向量有哪些?(3)与a 共线的向量有哪些?(4)请一一列出与a ,b ,c 相等的向量.1.向量是既有大小又有方向的量,解决向量问题时一定要从大小和方向两个方面去考虑.2.向量不能比较大小,但向量的模可以比较大小.如a >b 没有意义,而|a |>|b |有意义.3.共线向量与平行向量是同一概念,规定:零向量与任一向量都平行.第二章 平面向量§1 从位移、速度、力到向量答案知识梳理1.大小 方向 2.AB → 3.(1)0 0 (2)1 (3)长度相等 方向相同 (4)相同或相反非零 ①a ∥b ②任一向量作业设计1.D 2.D3.A [②与⑤正确,其余都是错误的.]4.C [当b =0时,不成立,因为零向量与任何向量都平行.]5.B [由于模为0的向量是零向量,只有零向量的方向不确定,它与任一向量平行,故选B .]6.C [向量AB →∥CD →包含AB →所在的直线平行于CD →所在的直线和AB →所在的直线与CD →所在的直线重合两种情况;相等向量不仅要求长度相等,还要求方向相同;共线向量也称为平行向量,它们可以是在一条直线上的向量,也可以是所在直线互相平行的向量,所以A 、B 、D 均错.]7.①③④解析 相等向量一定是共线向量,①能使a ∥b ;方向相同或相反的向量一定是共线向量,③能使a ∥b ;零向量与任一向量平行,④成立.8.菱形解析 ∵AB →=DC →,∴AB 綊DC∴四边形ABCD 是平行四边形,∵|AB →|=|AD →|,∴四边形ABCD 是菱形.9.①单位圆 ②相距为2的两个点 ③一条直线10.FE →,BC →,CB →解析 ∵E 、F 分别为△ABC 对应边的中点,∴EF ∥BC ,∴符合条件的向量为FE →,BC →,CB →.11.解 (1)根据相等向量的定义,所作向量与向量a 平行,且长度相等(作图略).(2)由平面几何知识可知所有这样的向量c 的终点的轨迹是以A 为圆心,半径为5的圆(作图略).12.解 (1)因为E 、F 分别是AC 、AB 的中点,所以EF 綊12BC .又因为D 是BC 的中点, 所以与EF →共线的向量有:FE →,BD →,DB →,DC →,CD →,BC →,CB →.(2)与EF →模相等的向量有:FE →,BD →,DB →,DC →,CD →.(3)与EF →相等的向量有:DB →与CD →.13.证明 (1)∵AA ′→=BB ′→,∴|AA ′→|=|BB ′→|,且AA ′→∥BB ′→.又∵A 不在BB ′→上,∴AA ′∥BB ′.∴四边形AA ′B ′B 是平行四边形.∴|AB →|=|A ′B ′→|.同理|AC →|=|A ′C ′→|,|BC →|=|B ′C ′→|.∴△ABC ≌△A ′B ′C ′.(2)∵四边形AA ′B ′B 是平行四边形,∴AB →∥A ′B ′→,且|AB →|=|A ′B ′→|.∴AB →=A ′B ′→.同理可证AC →=A ′C ′→.14.解 (1)与a 的模相等的向量有23个.(2)与a 的长度相等且方向相反的向量有OD →,BC →,AO →,FE →.(3)与a 共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →.(4)与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,F A →;与c 相等的向量有FO →,ED →,AB →.。
一、选择题1.已知函数()sin (0)2f x x a a π⎛⎫=>⎪⎝⎭,点A ,B 分别为()f x 图象在y 轴右侧的第一个最高点和第一个最低点,O 为坐标原点,若OAB 为钝角三角形,则a 的取值范围为( )A .10,(2,)2⎛⎫+∞ ⎪⎝⎭ B .30,(1,)3⎛⎫⋃+∞ ⎪⎝⎭C .3,1⎛⎫ ⎪ ⎪⎝⎭D .(1,)+∞2.已知非零向量a →,b →夹角为45︒,且2a =,2a b -=,则b →等于( )A .22B .2C .3D .23.已知1a =,2b =,则a b a b ++-的最大值等于( ) A .4B .37+C .25D .54.如图,在梯形ABCD 中,//AB CD ,6AB =,3AD CD ==,E 是CD 的中点,14DF DA =,若12AE BF ⋅=-,则梯形ABCD 的高为( )A .1B 6C 5D .25.已知,M N 为单位圆22:1O x y +=上的两个动点,且满足1MN =,()3,4P ,则2PM PN -的最大值为( )A .53+B .53C .523+D .56.已知a ,b 为单位向量,2a b a b +=-,则a 在a b +上的投影为( )A .13B .26C 6D .237.若2a b c ===,且0a b ⋅=,()()0a c b c -⋅-≤,则a b c +-的取值范围是( )A .[0,222]B .[0,2]C .[222,222]-+D .[222,2]-8.已知ABC ∆为等边三角形,则cos ,AB BC =( )A .3-B .12-C .12D .329.设O 为ABC 内一点,已知2332OA OB OC AB BC CA ++=++,则::AOB BOC COA S S S ∆∆∆= ( )A .1:2:3B .2:3:1C .3:1:2D .3:2:110.已知等边ABC 的边长为2,若3BC BE =,AD DC =,则BD AE ⋅等于( ) A .103B .103-C .2D .2-11.在ABC ∆中,2,3,60,AB BC ABC AD ==∠=为BC 边上的高,O 为AD 的中点,若AO AB BC λμ=+,其中,R λμ∈,则λμ+等于( ) A .1 B .12C .13 D .2312.在ABC 中,D 是BC 边上的一点,F 是AD 上的一点,且满足2AD AB AC =+和20FD FA +=,连接CF 并延长交AB 于E ,若AE EB λ=,则λ的值为( ) A .12B .13C .14D .15二、填空题13.已知向量()3,2OA =,()2,1OB =,O 点为坐标原点,在x 轴上找一个点M ,使得AM BM ⋅取最小值,则M 点的坐标是___________.14.如图,在Rt ABC ∆中,2,60,90AB BAC B =∠=︒∠=︒,G 是ABC ∆的重心,则GB GC ⋅=__________.15.如图,边长为2的菱形ABCD 的对角线相交于点O ,点P 在线段BD 上运动,若1AB AO ⋅=,则AP PD ⋅的最大值为______.16.如图,在矩形ABCD 中,3AB =,4=AD ,圆M 为BCD △的内切圆,点P 为圆上任意一点, 且AP AB AD λμ=+,则λμ+的最大值为________.17.在ABC 中,22AC AB ==,120BAC ∠=,O 是BC 的中点,M 是AO 上一点,且3AO MO =,则MB MC ⋅的值是______.18.已知(2,1)a =,(3,4)b =,则a 在b 的方向上的投影为________. 19.在ABC ∆中,1AC BC ==,3AB =CE xCA =,CF yCB =,其中(),0,1x y ∈,且41x y +=,若M ,N 分别为线段EF ,AB 中点,当线段MN 取最小值时x y +=__________.20.已知向量(1,3)a =,1(2,)2b =-,若单位向量c 与2a b -平行,则c =___________.三、解答题21.已知()1,2a =,()2,1b =-,k 为何值时, (1)ka b +与a b -垂直? (2)ka b +与a b -平行?22.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,向量()()sin sin ,sin sin ,sin sin ,sin m B C A B n B C A =++=-,且m n ⊥.(1)求角C 的大小; (2)若3c =,求2a b +的取值范围.23.已知4a =,8b =,a 与b 的夹角是120(1)计算:①a b +,②42a b-;(2)当k 为何值时,2a b +()与ka b -()垂直? 24.如图,正六边形ABCDEF 的边长为1.M ,N 分别是BC ,DE 上的动点,且满足BM DN =.(1)若M ,N 分别是BC ,DE 的中点,求AM AN ⋅的值; (2)求AM AN ⋅的取值范围.25.已知()sin ,3a x x =,()cos ,cos b x x =-,函数3()2f x a b =⋅+. (1)求函数()f x 图象的对称轴方程; (2)若方程1()3f x =在()0,π上的解为1x ,2x ,求()12cos x x +的值. 26.已知向量(1,2)a =-,||25b =. (1)若b a λ=,其中0λ<,求b 的坐标; (2)若a 与b 的夹角为23π,求()(2)a b a b -⋅+的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】首先根据题的条件,将三角形三个顶点的坐标写出来,之后根据三角形是钝角三角形,利用向量夹角为钝角的条件,从而转化为向量的数量积0OA OB ⋅<或0AB AO ⋅<,找出a 所满足的条件,最后求得结果. 【详解】 由题意得24,(0,0),(,1),(3,1)2T a O A a B a aππ==-,因为OAB 为钝角三角形,所以0OA OB ⋅<或0AB AO ⋅<,即2310a -<,或2220a -+<,从而30a <或1a >. 故选:B.该题考查的是有关利用钝角三角形求对应参数的取值范围,涉及到的知识点有正弦型函数图象上的特殊点的坐标,钝角三角形的等价转化,向量的数量积坐标公式,属于中档题.2.A解析:A 【分析】根据数量积的运算,2a b →→-=两边平方即可求解. 【详解】2a b →→-=,=2a →,a→,b →夹角为45︒, 2222()24a b a b a a b b →→→→→→→→∴-=-=-⋅+=, 2422||cos||44b b π→→∴-⨯+=,解得:||b →= 故选:A 【点睛】本题主要考查了向量数量积的运算性质,数量积的定义,属于中档题.3.C解析:C 【分析】利用基本不等式得到222a b a b a b a b ++-++-≤,然后利用平面向量数量积运算求解. 【详解】因为1a =,2b =,所以222222252a b a ba b a b a b ++-++-≤=+=,当且仅当a b a b +=-,即a b ⊥时取等号, 故选:C 【点睛】本题主要考查平面向量的数量积运算以及基本不等式的应用,属于中档题.4.C解析:C以,AD AB 为一组基底,表示向量,AE BF ,然后利用12AE BF ⋅=-,求得2cos 3BAD ∠=,然后由梯形ABCD 的高为sin AD BAD ⋅∠求解. 【详解】因为14AE AD DE AD AB =+=+,34BF AF AB AD AB =-=-, ∴22133113444416AE BF AD AB AD AB AD AB AD AB ⎛⎫⎛⎫⋅=+⋅-=--⋅ ⎪ ⎪⎝⎭⎝⎭, 223113cos 4416AD AB AD AB BAD =--⋅∠, 31117936cos 12448BAD =⨯-⨯-∠=-, ∴2cos 3BAD ∠=,∴sin 3BAD ∠==, ∴梯形ABCD 的高为sin AD BAD ⋅∠=.故选:C . 【点睛】本题主要考查平面向量的数量积的运算以及平面向量的基本定理,还考查了数形结合的思想和运算求解的能力,属于中档题.5.A解析:A 【分析】根据条件可知22PM PN PO OM ON -=+-2PO OM ON ≤+-,即可求出最大值. 【详解】由1MN =可知,OMN 为等边三角形,则1cos602OM ON OM ON ⋅=⋅⋅︒=, 由PM PO OM =+,PN PO ON =+,得22PM PN PO OM ON -=+-2PO OM ON ≤+-,()224413OM ON OM ON -=-⋅+=,又()3,4P ,则5PO =,因此当PO 与2OM ON -同向时,等号成立,此时2PM PN -的最大值为5+故选:A. 【点睛】本题考查向量模的大小关系,属于中档题.6.C解析:C 【分析】由题意结合平面向量数量积的运算可得13a b⋅=,进而可得()ba a+⋅、a b+,代入投影表达式即可得解.【详解】因为a,b为单位向量,所以1==a b,又2a b a b+=-,所以()()222a b a b+=-所以22222242a ab b a a b b+⋅+=-⋅+,即121242a b a b+⋅+=-⋅+,所以13a b⋅=,则()2263a b a b+=+=,()243a ab a a b⋅+=+⋅=,所以a在a b+上的投影为()46326a a ba b⋅+==+.故选:C.【点睛】本题考查了平面向量数量积的应用,考查了一个向量在另一个向量上投影的求解,属于中档题.7.D解析:D【解析】如图所示:OA a=,OB b=,OC c=,OD a b=+∵()()0a cb c-⋅-≤,∴点C在劣弧AB上运动,a b c +-表示C 、D 两点间的距离CD .CD 的最大值是BD =2,CD 最小值为OD 2222-=-.故选D8.B解析:B 【分析】判断,AB BC 两向量夹角容易出错,是23π,而不是3π 【详解】由图发现,AB BC 的夹角不是B 而是其补角23π,21cos ,cos32AB BC π<>==- 【点睛】本题考查的是两向量夹角的定义,属于易错题,该类型题建议学生多画画图.9.B解析:B 【分析】根据23OA OB OC ++=32AB BC CA ++,化简得到12033OA OB OC ++=,设12,33OB OD OC OE ==,则O 为ADE 的重心,有AODAOEDOES SS==,则93,,232AOB BOC AOC S S S S S S ∆∆∆===求解. 【详解】由23OA OB OC ++=32AB BC CA ++,得233322OAOA OB OC OB OA OC OB OA OC ++=-+-+-, 整理得:320OA OB OC ++=,12033OA OB OC ∴++=,设12,33OB OD OC OE ==,则0OA OD OE ++=,即O 为ADE 的重心,AODAOEDOESSSS ∴===,则93,,232AOB BOC AOC S S S S S S ∆∆∆===, 93::3::2:3:122AOB BOC AOC S S S ∆∆∆∴==,故选:B. 【点睛】本题主要考查平面向量的平面几何中的应用,属于中档题.10.D解析:D 【分析】 根据题意得出()12BD BA BC =+,13AE BC BA =-,运用数量积求解即可. 【详解】解:等边△ABC 的边长为2,3BC BE =,AD DC =, ∴()12BD BA BC =+,1313A AB BE AB B E BC A C B =+=+=-, ∴()221111223233BD AE BA BC BC BA BC BA BC BA ⎛⎫⎛⎫+-=--⋅ ⎪ ⎪⎝=⎭⎝⎭, 112144222332⎛⎫=⨯⨯--⨯⨯⨯ ⎪⎝⎭, 2=-.故选:D . 【点睛】本题考查了平面向量的运算,数量积的求解,关键是分解向量,属于中档题.11.D解析:D 【分析】根据题设条件求得13BD BC =,利用向量的线性运算法则和平面向量的基本定理,求得1126AO AB BC =+,得到11,26λμ==,即可求解.【详解】 在ABC ∆中,2,60,AB ABC AD =∠=为BC 边上的高, 可得1sin 212BD AB ABC =∠=⨯=,又由3BC =,所以13BD BC =, 由向量的运算法则,可得13AD AB BD AB BC =+=+, 又因为O 为AD 的中点,111226AO AD AB BC ==+, 因为AO AB BC λμ=+,所以11,26λμ==,则23λμ+=. 故选:D. 【点睛】本题主要考查了平面向量的线性运算法则,以及平面向量的基本定理的应用,其中解答中熟记向量的运算法则,结合平面向量的基本定理,求得1126AO AB BC =+是解答的关键,着重考查推理与运算能力.12.C解析:C 【分析】首先过D 做//DG CE ,交AB 于G ,根据向量加法的几何意义得到D 为BC 的中点,从而得到G 为BE 的中点,再利用相似三角形的性质即可得到答案. 【详解】如图所示,过D 做//DG CE ,交AB 于G .因为2AD AB AC =+,所以D 为BC 的中点. 因为//DG CE ,所以G 为BE 的中点, 因为20FD FA +=,所以:1:2AF FD =.因为//DG CE ,所以::1:2AE EG AF FD ==,即12AE EG =. 又因为EG BG =,所以14AE EB =, 故14AE EB =. 故选:C 【点睛】本题主要考查了向量加法运行的几何意义,同时考查了相似三角形的性质,属于中档题.二、填空题13.【分析】设点的坐标是求出再利用配方法可得答案【详解】设点的坐标是即因为向量所以当时有最小值此时点的坐标是故答案为:【点睛】方法点睛:平面向量求最值有三种常见方法:1几何法;2三角函数有界法;3二次函解析:5,02⎛⎫⎪⎝⎭【分析】设M 点的坐标是(),0t ,求出AM BM ⋅,再利用配方法可得答案. 【详解】设M 点的坐标是(),0t ,即(),0OM t =, 因为向量()3,2OA =,()2,1OB =, 所以()3,2AM OM OA t =-=--,()2,1BM OM OB t =-=--, ()()()()3221AM BM t t ⋅=--+-⨯- 22575824t t t ⎛⎫=-+=-+ ⎪⎝⎭,当52t =时,AM BM ⋅有最小值74,此时M 点的坐标是5,02⎛⎫⎪⎝⎭, 故答案为:5,02⎛⎫ ⎪⎝⎭. 【点睛】方法点睛:平面向量求最值有三种常见方法:1、几何法;2、三角函数有界法;3、二次函数配方法.14.【解析】分析:建立平面直角坐标系结合平面向量数量积的坐标运算整理计算即可求得最终结果详解:建立如图所示的平面直角坐标系则:由中心坐标公式可得:即据此有:结合平面向量数量积的坐标运算法则可得:点睛:求 解析:209-【解析】分析:建立平面直角坐标系,结合平面向量数量积的坐标运算整理计算即可求得最终结果.详解:建立如图所示的平面直角坐标系,则:()0,2A ,()0,0B ,()C ,由中心坐标公式可得:2003G ⎫++⎪⎪⎝⎭,即23G ⎫⎪⎭,据此有:223,33GB ⎛⎫=-- ⎪⎝⎭,423,33GC ⎛⎫=-⎪⎝⎭, 结合平面向量数量积的坐标运算法则可得:2422203333339GB GC ⎛⎫⎛⎫⎛⎫⋅=-⨯+-⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.15.【分析】以为原点和分别为和轴建立的平面直角坐标系求得设得到即可求解【详解】以为原点和分别为和轴建立如图所示的平面直角坐标系设则因为可得联立方程组解答所以设则当时取得最大值最大值为故答案为:【点睛】本解析:34【分析】以O 为原点,OC 和OD 分别为x 和y 轴建立的平面直角坐标系,求得(1,0),3)A D -,设(0,),[3,3]P t t ∈,得到233(4AP PD t ⋅=--+,即可求解. 【详解】以O 为原点,OC 和OD 分别为x 和y 轴建立如图所示的平面直角坐标系, 设(,0),(0,),0,0A a B b a b -->>,则224a b +=, 因为1AB AO ⋅=,可得2(,)(,0)1a b a a -⋅==, 联立方程组,解答1,3a b ==(1,0),3)A D -,设(0,),[3,3]P t t ∈,则22333(1,)3)3(244AP PD t t t t t ⋅=⋅=-+=--+≤, 当3t =AP PD ⋅取得最大值,最大值为34.故答案为:34.【点睛】本题主要考查了平面向量的数量积的运算及应用,此类问题通常采取建立直角坐标系,利用平面向量的坐标运算求解,着重考查转化思想,以及运算与求解能力,属于基础题.16.【分析】以点B 为坐标原点建立平面直角坐标系如下图所示由已知条件得出点坐标圆M 的方程设由得出再设(为参数)代入中根据三角函数的值域可求得最大值【详解】以点B 为坐标原点建立平面直角坐标系如下图所示因为在 解析:116【分析】以点B 为坐标原点,建立平面直角坐标系如下图所示,由已知条件得出点坐标,圆M 的方程,设(),P x y ,由AP AB AD λμ=+,得出134y x λμ⎧=-⎪⎪⎨⎪=⎪⎩,再设3cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数),代入λμ+中,根据三角函数的值域,可求得最大值. 【详解】以点B 为坐标原点,建立平面直角坐标系如下图所示,因为在矩形ABCD 中,3AB =,4=AD ,所以圆M 的半径为3+4512r -==, 所以()0,0B ,()0,3A ,()4,0C ,()4,3D,()3,1M ,圆M 的方程为()()22311x y -+-=,设(),P x y ,又AP AB AD λμ=+,所以()()(),30,34,0x y λμ-=-+,解得134y x λμ⎧=-⎪⎪⎨⎪=⎪⎩,又点P 是圆M 上的点,所以3cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数),所以()1sin 3cos 517sin 1+1+34312124+y x θθβθλμ+=+--+=-=,其中3tan 4β=, 所以,当()sin 1βθ-=时,λμ+取得最大值116, 故答案为:116.【点睛】本题考查向量的线性表示,动点的轨迹中的最值问题,属于中档题.17.【分析】用表示向量然后利用平面向量数量积的运算律可求得的值【详解】为的中点故答案为:【点睛】本题考查平面向量数量积的计算解答的关键就是选择合适的基底表示向量考查计算能力属于中等题解析:53-【分析】用AB 、AC 表示向量MB 、MC ,然后利用平面向量数量积的运算律可求得MB MC ⋅的值. 【详解】O 为BC 的中点,()12AO AB AC ∴=+, 3AO MO =,()1136MO AO AB AC ∴==+,()2133AM AO AB AC ==+, ()()11233MB AB AM AB AB AC AB AC ∴=-=-+=-, ()()11233MC AC AM AC AB AC AC AB ∴=-=-+=-, 22AC AB ==,120BAC ∠=,()()()22112252299MB MC AB AC AC AB AB AC AB AC ∴⋅=-⋅-=⋅--221155122122923⎡⎤⎛⎫=⨯⨯⨯--⨯-⨯=- ⎪⎢⎥⎝⎭⎣⎦.故答案为:53-. 【点睛】本题考查平面向量数量积的计算,解答的关键就是选择合适的基底表示向量,考查计算能力,属于中等题.18.2【分析】根据向量在的方向上的投影为结合向量的数量积的坐标运算和模的计算公式即可求解【详解】由题意向量可得则在的方向上的投影为故答案为:【点睛】本题主要考查了平面向量数量积的坐标运算和模计算公式的应解析:2 【分析】根据向量a 在b 的方向上的投影为a b b⋅,结合向量的数量积的坐标运算和模的计算公式,即可求解. 【详解】由题意,向量(2,1)a =,(3,4)b =,可得231410a b ⋅=⨯+⨯=,2345b =+=,则a 在b 的方向上的投影为1025a b b⋅==. 故答案为:2. 【点睛】本题主要考查了平面向量数量积的坐标运算和模计算公式的应用,以及向量的投影的概念与计算,其中解答熟记平面向量的数量积、模及投影的计算公式是解答的关键,着重考查推理与运算能力.19.【分析】根据平面向量的数量积运算求得的值再利用中线的性质表示出由此求得计算当的最小时的值即可【详解】解:连接如图所示:由等腰三角形中知所以∵是的中线∴同理可得∴又∴故当时有最小值此时故答案为:【点睛 解析:47【分析】根据平面向量的数量积运算求得CA CB 的值,再利用中线的性质表示出CM 、CN ,由此求得MN ,计算当||MN 的最小时x y +的值即可. 【详解】解:连接CM ,CN ,如图所示:由等腰三角形中,1AC BC ==,3AB =120ACB ∠=︒,所以1=2CA CB ⋅-.∵CM 是CEF ∆的中线,∴()()1122CM CE CF xCA yCB =+=+. 同理可得()1=2CN CA CB +. ∴()()111122MN CN CM x CA y CB =-=-+-, ()()()()222111111114224MN x x y y ⎛⎫=-+--⨯-+- ⎪⎝⎭, 又41x y +=, ∴222131424MN y y =-+,(),0,1x y ∈. 故当17y =时,2MN 有最小值,此时3147x y =-=. 故答案为:47. 【点睛】本题考查了平面向量数量积公式及其运算性质问题,也考查了二次函数求最值的应用问题,属于中档题.20.或【分析】由向量的坐标运算求出并求出它的模用除以它的模得一向量再加上它的相反向量可得结论【详解】由题意∴又∴或故答案为:或【点睛】易错点睛:本题考查求单位向量一般与平行的单位向量有两个它们是相反向量解析:34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭. 【分析】由向量的坐标运算求出2a b -,并求出它的模,用2a b -除以它的模,得一向量,再加上它的相反向量可得结论. 【详解】由题意2(1,3)(4,1)(3,4)a b -=--=-,∴222(3)45a b -=-+=,又234,552a ba b -⎛⎫=- ⎪⎝⎭-,∴c =34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭. 故答案为:34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭.【点睛】易错点睛:本题考查求单位向量,一般与a 平行的单位向量有两个,它们是相反向量:a a±.只写出一个向量a a是错误的.三、解答题21.(1)1(2)-1 【分析】(1)分别表示出ka b +与a b -,再利用数量积为0求解即可; (2)若ka b +与a b -平行,则等价于22131k k -+=,化简即可; 【详解】 (1)()()()1,22,12,21ka b k k k +=+-=-+()3,1a b -=当()()ka a b b +⊥-时()()2,213,10k k -+⋅=36210k k ∴-++= 1k ∴=时()()ka a b b +⊥-(2)当()ka b +与()a b -平行时22131k k -+= 1k ∴=-1k ∴=-时,()ka b +与()a b -平行【点睛】本题考查向量加法与减法的坐标运算,由两向量平行与垂直求参数,属于基础题22.(1)2C 3π=;(2).【分析】(1)根据向量m n ⊥得到22sin sin (sin sin )sin 0B C A B B -++=,再由正弦定理将边化为角的表达式,结合余弦定理求得角C 的值.(2)利用正弦定理求的△ABC 的外接圆半径,将2a b +表示成A 与B 的三角函数式,利用辅助角公式化为角A 的函数表达式;再由角A 的取值范围求得2a b +的范围. 【详解】 (1)∵m n ⊥ ∴0m n ⋅=∴22sin sin (sin sin )sin 0B C A B B -++= ∴222c a b ab =++ ∴1cos 2C =- 又()0,C π∈ . ∴23C π=.(2)∵23C π=,c =∴△ABC 外接圆直径2R=2∴24sin 2sin a b A B +=+4sin 2sin 3A A π⎛⎫=+- ⎪⎝⎭4sin sin A A A =+-3sin A A =6A π⎛⎫=+ ⎪⎝⎭∵0,3A π⎛⎫∈ ⎪⎝⎭∴,662A πππ⎛⎫+∈ ⎪⎝⎭∴1sin ,162A π⎛⎫⎛⎫+∈ ⎪ ⎪⎝⎭⎝⎭∴2a b + 的取值范围是 .【点睛】本题考查了向量垂直的坐标表示,正弦定理、余弦定理的综合应用,辅助角公式化简三角函数表达式,知识点多,较为综合,属于中档题.23.(1)①②2)7k =-. 【分析】利用数量积的定义求解出a b ⋅的值;(1)将所求模长平方,从而得到关于模长和数量积的式子,代入求得模长的平方,再开平方得到结果;(2)向量互相垂直得到数量积等于零,由此建立方程,解方程求得结果. 【详解】由已知得:cos ,48cos12016a b a b a b ⋅=⋅=⨯⨯=-(1)①222216326448a b a a b b +=+⋅+=-+= 43a b ∴+=②2224216164256256256768a b a a b b -=-⋅+=++= 42163a b ∴-=(2)若2a b +与ka b -垂直,则()()20a b ka b +⋅-=()222120ka k a b b ∴+-⋅-=即:1616(21)2640k k ---⨯=,解得:7k =- 【点睛】本题考查利用数量积求解向量的模长、利用数量积与向量垂直的关系求解参数的问题.求解向量的模长关键是能够通过平方运算将问题转化为模长和数量积运算的形式,从而使问题得以求解. 24.(1)118;(2)31.2⎡⎤⎢⎥⎣⎦. 【分析】(1)首先以点A 为坐标原点建立平面直角坐标系.求AM ,AN 的坐标,再求数量积;(2)首先利用BM DN =,设BM DN t ==,表示向量AM ,AN ,利用数量积的坐标表示转化为二次函数求取值范围. 【详解】(1)如图,以AB 所在直线为x 轴,以A 为坐标原点建立平面直角坐标系.因为ABCDEF 是边长为1的正六边形,且M ,N 分别是BC ,DE 的中点,所以53,44M ⎛⎫ ⎪ ⎪⎝⎭,132N ⎛ ⎝, 所以5311848AM AN ⋅=+=. (2)设BM DN t ==,则[]0,1t ∈.所以312t M ⎛⎫+ ⎪ ⎪⎝⎭,(13N t -.所以()()223113111122222t AM AN t t t t t ⎛⎫⋅=+⋅-+=-++=--+ ⎪⎝⎭. 当0t =时,AM AN ⋅取得最小值1; 当1t =时,AM AN ⋅取得最大值32. 所以AM AN ⋅的取值范围为31.2⎡⎤⎢⎥⎣⎦.【点睛】本题考查数量积的坐标表示,重点考查计算能力,属于基础题型. 25.(Ⅰ)5()212k x k Z ππ=+∈; (Ⅱ)13. 【分析】(1)先根据向量数量积的坐标表示求出()f x ,利用二倍角公式与辅助角公式化简()f x ,结合正弦函数的对称性即可求出函数的对称轴;(2)由方程1()3f x =在()0,π(上的解为12,x x ,及正弦函数的对称性可求12x x +,进而可得结果. 【详解】解:(),a sinx =,(),b cosx cosx =-,()2311212222232cos x f x a b sinxcosx x sin x sin x π+⎛⎫∴=⋅+===-- ⎪⎝⎭()1令112232x k πππ-=+可得512x k ππ=+,k z ∈∴函数()f x 图象的对称轴方程512x k ππ=+,k z ∈()2方程()13f x =在()0,π上的解为1x ,2x ,由正弦函数的对称性可知12526x x k ππ+=+,1x ,()20,x π∈,()1212562x x cos x x π∴+=∴+=-.【点睛】本题主要考查了向量数量积的坐标表示,正弦函数的对称性的应用,属于基础试题.以三角形和平面向量为载体,三角恒等变换为手段,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公式,一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.26.(1)(2,4)-;(2)5-.【分析】(1)由向量模的坐标表示求出λ,可得b 的坐标;(2)根据向量数量积的运算律及数量积的定义计算.【详解】(1)由题知(,2)b λλ=-,2||(|b λλ=+==2λ=-,故(2,4)b =-;(2)21(a =+=∴222221()(2)22||||cos105220532a b a b a a b b a a b b π⎛⎫-⋅+=-⋅-=-⋅-=-⋅--=- ⎪⎝⎭.【点睛】 本题考查向量模的坐标表示,考查向量数量积的运算律,掌握数量积的运算律是解题关键.。
轻松识别几个易混概念识别一:向量与有向线段的区别(1)向量只有大小和方向两个要素,与起点无关,又称为自由向量.只要大小和方向相同,则这两个向量就是相同的向量.(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.有向线段是具有向量两要素的最简单的几何图形.故向量可以用有向线段表示.(3)对于一个向量,只要不改变它的大小和方向,是可以自由平行移动的,因此,在用有向线段表示向量时,可以自由选择起点,所以任何一组平行向量都可以移到同一直线上. 识别二:零向量、单位向量概念(1)长度为0的向量叫零向量,记作0.0的起点和终点重合,因此0向量有两个特征:一是长度为0(注意0与0的含义与书写区别);二是方向不确定,或者说任何方向都是0向量的方向.(2)长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都只是限制了大小.对于单位向量的认识:有无数个单位向量,在统一的单位长度下,所有的单位向量的大小都是一个单位,所以单位向量的大小都相等,但单位向量不一定相等.因为不同的单位向量有不同的方向,即使是共线的单位向量,它们也不一定相等,因为它们有可能方向相反.例1下列命题中不正确的是 ( )A .零向量没有方向B .零向量只与零向量相等C .零向量的模为0D .零向量与任何向量共线解:零向量有方向,它的方向可以是任意的,应选A .评注:零向量是指长度为0的向量,并规定“0与任一向量平行”,说明零向量的方向不确定.例2判断下列命题的正误:(1)单位向量都共线;(2)单位向量都相等;(3)共线的单位向量必相等;(4)与非零向量a 共线的单位向量是||a a . 解:(1)(2)(3)(4)均不正确.因为共线向量的方向可能相同或相反,所以(4)中与共线的单位向量有两个:||a a . 评注:长度等于1个单位长度的向量叫单位向量.注意这里并未强调向量的方向.识别三:平行向量、共线向量、相等向量由于三者联系较为紧密,所以不少同学经常将三者混为一谈,给解题带来了一些不必要的麻烦,但如果我们能准确识别三者及其关系并应用其知识进行解题,也会给解题带来很大的方便.(1)平行向量①概念:方向相同或相反的非零向量叫做平行向量.②表示方法:如果a 、b 、c 是非零向量且方向相同或相反(向量所在的直线平行或重合),则可记为////a b c .③注意点:任一向量都与它自身是平行向量,并且规定:零向量与任一向量是平行向量.(2)共线向量①概念:共线向量也就是平行向量,其要求是几个非零向量的方向相同或相反,其所在直线可以平行也可以重合.②含义:“共线”的含义不是平面几何中“共线”的含义.实际上,共线向量有以下四种情况:方向相同且模相等;方向相同且模不等;方向相反且模相等;方向相反且模不等.因此,任意一组共线向量都可以移到同一条直线上.(3)相等向量①概念:长度相等且方向相同的向量叫做相等向量.②识别依据:两个向量只有当它们的模相等,同时方向又相同时,才能称它们相等.如=a b ,就意味着||||=a b ,且a 与b 的方向相同.③理解拓展:由向量相等的定义可以知道,对于一个向量,只要不改变它的大小和方向,是可以平行移动的,都可以用同一条有向线段表示,因此,用有向线段表示向量时,可以任意选取有向线段的起点.(4) 平行向量、共线向量、相等向量三者的异同点①共线向量即为平行向量;②共线向量不一定是相等向量,但相等向量一定是共线向量.例3下列命题正确的是 ( )A .a 与b 共线,b 与c 共线,则a 与c 也共线B .任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C .向量a 与b 不共线,则a 与b 都是非零向量D .有相同起点的两个非零向量不平行解:由于零向量与任一向量都共线,所以A不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确;对于C,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a 与b都是非零向量,所以应选C.。
一、选择题1.已知向量a 、b 满足||||2a b a b ==⋅=,若,,1x y R x y ∈+=,则1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值为( )A .1B .3C .7D .32.已知a 与b 的夹角为60,4a =,则a b λ-(R λ∈)的最小值为( ) A .23B .72C .103D .4333.已知ABC 是顶角A 为120°腰长为2的等腰三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是( )A .12-B .32-C .14-D .-14.已知函数()sin (0)2f x x a a π⎛⎫=>⎪⎝⎭,点A ,B 分别为()f x 图象在y 轴右侧的第一个最高点和第一个最低点,O 为坐标原点,若OAB 为钝角三角形,则a 的取值范围为( ) A .10,(2,)2⎛⎫+∞ ⎪⎝⎭ B .30,(1,)3⎛⎫⋃+∞ ⎪⎝⎭C .3,13⎛⎫ ⎪ ⎪⎝⎭D .(1,)+∞ 5.若平面向量与的夹角为,,,则向量的模为( ) A .B .C .D .6.已知非零向量a →,b →夹角为45︒,且2a =,2a b -=,则b →等于( )A .22B .2C .3D .27.已知a ,b 为单位向量,2a b a b +=-,则a 在a b +上的投影为( )A .13B .26-C .6 D .228.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,则AE AF ⋅=( )A .52 B .52-C .4D .4-9.已知等边ABC 的边长为2,若3BC BE =,AD DC =,则BD AE ⋅等于( ) A .103B .103-C .2D .2-10.已知向量a 、b 、c 满足0a b c ++=,且a b c <<,则a b ⋅、b c ⋅、a c ⋅中最小的值是( ) A .a b ⋅B .a c ⋅C .b c ⋅D .不能确定11.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量(,)m a b b c =++,(,)n c b a =-,若//m n ,则C =( )A .56π B .23π C .3π D .6π 12.设非零向量a 与b 的夹角是23π,且a a b =+,则22a tb b+的最小值为()AB C .12D .1二、填空题13.已知向量a ,b 及实数t 满足|(1)(1)|1t a t b ++-=,若22||||1a b -=,则t 的最大值是________.14.已知平面向量a ,b 的夹角为120︒,且1a b ⋅=-,则a b -的最小值为________. 15.在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G ,作用在行李包上的两个拉力分别为1F ,2F ,且12F F =,1F 与2F 的夹角为θ.给出以下结论:①θ越大越费力,θ越小越省力; ②θ的范围为[]0,π; ③当2πθ=时,1F G =;④当23πθ=时,1F G =.其中正确结论的序号是______.16.已知平面向量a ,b ,c 满足45a b ⋅=,4a b -=,1c a -=,则c 的取值范围为________.17.在梯形ABCD 中,//AB CD ,1CD =,2AB BC ==,120BCD ∠=︒,动点P 和Q 分别在线段BC 和CD 上,且BP BC λ=,14DQ DC λ=,则AP BQ ⋅的最大值为______.18.已知向量a 、b 满足1a b +=,2a b -=,则a b +的取值范围为___________. 19.已知平面向量2a =,3b =,4c =,4d =,0a b c d +++=,则()()a b b c +⋅+=______.20.如图,在四边形ABCD 中,60B ∠=︒,2AB =,6BC =,1AD =,若M ,N 是线段BC 上的动点,且||1MN =,则DM DN ⋅的取值范围为_________.三、解答题21.已知()3,0a =,(1,3)b =. (Ⅰ)求a b ⋅和b 的值;(Ⅱ)当()k k ∈R 为何值时,向量a 与k +a b 互相垂直?22.已知在直角坐标系中(O 为坐标原点),()2,5OA =,()3,1OB =,(),3OC x =. (1)若A ,B ,C 共线,求x 的值;(2)当6x =时,直线OC 上存在点M 使MA MB ⊥,求点M 的坐标. 23.已知(),2A x ,()2,3B ,()2,5C -.(1)若1x =,判断ABC 的形状,并给出证明; (2)求实数x 的值,使得CA CB +最小;(3)若存在实数λ,使得CA CB λ=,求x 、λ的值.24.已知123PP P 三个顶点的坐标分别为123(cos ,sin ),(cos ,sin ),(cos ,sin )P P P ααββγγ,且1230OP OP OP ++=(O 为坐标原点).(1)求12POP ∠的大小; (2)试判断123PP P 的形状.25.如图,在ABC 中,1AB AC ==,120BAC ∠=.(Ⅰ)求AB BC 的值;(Ⅱ)设点P 在以A 为圆心,AB 为半径的圆弧BC 上运动,且AP x AB y AC →→→=+,其中,x y R ∈. 求xy 的最大值.26.ABC 中,点()2,1A 、()1,3B 、()5,5C . (1)若D 为BC 中点,求直线AD 所在直线方程; (2)若D 在线段BC 上,且2ABDACDSS=,求AD .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用已知条件求出向量a 、b 的夹角,建立直角坐标系把所求问题转化为解析几何问题. 【详解】设a 、b 所成角为θ, 由||||2==a b ,2a b ,则1cos 2θ=,因为0θπ≤≤ 所以3πθ=,记a OA =,b OB =,以OA 所在的直线为x 轴,以过O 点垂直于OA 的直线为y 轴, 建立平面直角坐标系,则()2,0A ,(B ,所以()2,0a OA ==,(1,b OB ==,()(1)2x a xb x -+=-,所以((1)2x a xb x -+=-=,表示点()P x 与点()2,0A 两点间的距离, 由,,1x y R x y ∈+=113,22222ya y b y x ⎛⎫⎛⎛⎫+-=+-=-- ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭, 所以1322ya y b x ⎛⎫⎛+-=- ⎪ ⎝⎭,表示点()P x 与点32Q ⎛⎝⎭两点间的距离, ∴1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值转化为P 到,A Q 两点的距离和最小,()P x 在直线y =上,()2,0A 关于直线y =的对称点为(R -,PQ PA ∴+的最小值为QR == 故选:C 【点睛】关键点点睛:本题考查了向量模的坐标运算以及模转化为两点之间距离的转化思想,解题的关键是将向量的模转化为点()P x 到()2,0A 、3,22Q ⎛⎫⎪ ⎪⎝⎭两点间的距离,考查了运算求解能力.2.A解析:A 【分析】根据向量的模的表示方法得22222a b a a b b λλλ-=-⋅+,再配方即可得答案. 【详解】解:根据向量模的计算公式得:()()222222216421212a b a a b b b bb λλλλλλ-=-⋅+=-+=-+≥,当且仅当2b λ=时等号成立;所以23a b λ-≥,当且仅当2b λ=时等号成立; 故选:A. 【点睛】方法点睛:向量模的计算公式:22a a a a =⋅=3.A解析:A 【分析】以BC 为x 轴,BC 的垂直平分线DA 为y 轴,D 为坐标原点建立平面直角坐标系,表示出向量PA ,PB ,PC ,得到2()22(1)PA PB PC x y y ⋅+=--,进而可求出结果. 【详解】如图,以BC 为x 轴,BC 的垂直平分线DA 为y 轴,D 为坐标原点建立平面直角坐标系,则(0,1)A ,(3,0)B ,(3,0)C ,设(,)P x y ,所以(,1)PA x y =--,(3,)PB x y =--,(3,)PC x y =-, 所以(2,2)PB PC x y +=--,2()22(1)PA PB PC x y y ⋅+=--2211122()222x y =+--≥-当1(0,)2P 时,所求的最小值为12-.故选:A 【点睛】方法点睛:向量求最值的方法有以下: 1.利用三角函数求最值; 2.利用基本不等式求最值; 3.建立坐标系求最值;本题的关键在于建立坐标系,列出相应的式子求解4.B解析:B 【分析】首先根据题的条件,将三角形三个顶点的坐标写出来,之后根据三角形是钝角三角形,利用向量夹角为钝角的条件,从而转化为向量的数量积0OA OB ⋅<或0AB AO ⋅<,找出a 所满足的条件,最后求得结果. 【详解】 由题意得24,(0,0),(,1),(3,1)2T a O A a B a aππ==-,因为OAB 为钝角三角形,所以0OA OB ⋅<或0AB AO ⋅<,即2310a -<,或2220a -+<,从而30a <<或1a >. 故选:B. 【点睛】该题考查的是有关利用钝角三角形求对应参数的取值范围,涉及到的知识点有正弦型函数图象上的特殊点的坐标,钝角三角形的等价转化,向量的数量积坐标公式,属于中档题.5.C解析:C 【解析】,,又,,则,故选6.A解析:A 【分析】根据数量积的运算,2a b →→-=两边平方即可求解. 【详解】2a b →→-=,=2a →,a →,b →夹角为45︒,2222()24a b a b a a b b →→→→→→→→∴-=-=-⋅+=, 2422||cos||44b b π→→∴-⨯+=,解得:||b →= 故选:A 【点睛】本题主要考查了向量数量积的运算性质,数量积的定义,属于中档题.7.C解析:C 【分析】由题意结合平面向量数量积的运算可得13a b ⋅=,进而可得()b a a +⋅、a b +,代入投影表达式即可得解. 【详解】因为a ,b 为单位向量,所以1==a b , 又2a b a b +=-,所以()()222a ba b +=-所以22222242a a b b a a b b +⋅+=-⋅+,即121242a b a b +⋅+=-⋅+, 所以13a b ⋅=,则()2263a b a b+=+=,()243a a b a a b ⋅+=+⋅=,所以a 在a b +上的投影为()4326a a b a b⋅+==+ 故选:C. 【点睛】本题考查了平面向量数量积的应用,考查了一个向量在另一个向量上投影的求解,属于中档题.8.C解析:C 【分析】建立直角坐标系,利用向量的坐标运算求解即可. 【详解】以点A 为坐标原点,建立如下图所示的直角坐标系(0,0),(2,1),(1,2)A E F(2,1),(1,2)AE AF ∴==21124AE AF ∴⋅=⨯+⨯= 故选:C【点睛】本题主要考查了求平面向量的数量积,属于中档题.9.D解析:D 【分析】 根据题意得出()12BD BA BC =+,13AE BC BA =-,运用数量积求解即可. 【详解】解:等边△ABC 的边长为2,3BC BE =,AD DC =, ∴()12BD BA BC =+,1313A AB BE AB B E BC A C B =+=+=-, ∴()221111223233BD AE BA BC BC BA BC BA BC BA ⎛⎫⎛⎫+-=--⋅ ⎪ ⎪⎝=⎭⎝⎭, 112144222332⎛⎫=⨯⨯--⨯⨯⨯ ⎪⎝⎭, 2=-.故选:D . 【点睛】本题考查了平面向量的运算,数量积的求解,关键是分解向量,属于中档题.10.C解析:C 【分析】由0a b c ++=,可得2222222().2()a b c a b b c a b c =-+=-+、2222()a c b a c =-+,利用||||||a b c <<,即可比较. 【详解】解:由0a b c ++=,可得()c a b =-+,平方可得2222()a b c a b =-+. 同理可得2222()b c a b c =-+、2222()a c b a c =-+,||||||a b c <<,∴222a b c <<则a b 、b c 、a c 中最小的值是b c . 故选:C . 【点睛】本题考查了向量的数量积运算,属于中档题.11.B解析:B 【分析】由//m n ,可得()()()0a b a c b b c +⨯--⨯+=.结合余弦定理,可求角C . 【详解】(,),(,)m a b b c n c b a =++=-,且//m n ,()()()0a b a c b b c ∴+⨯--⨯+=,整理得222c a b ab =++. 又22212cos ,cos 2c a b ab C C =+-∴=-.()20,,3C C ππ∈∴=.故选:B. 【点睛】本题考查向量共线的坐标表示和余弦定理,属于基础题.12.B解析:B 【分析】利用向量a 与b 的夹角是23π,且a a b =+,得出a b a b ==+,进而将22a tb b+化成只含有t 为自变量的二次函数形态,然后利用二次函数的特性来求出最值. 【详解】对于a ,b 和a b +的关系,根据平行四边形法则,如图a BA CD ==,b BC =,a b BD +=,23ABC π∠=,3DCB π∴∠=, a a b =+,CD BD BC ∴==, a b a b ∴==+, 2222222==222a tb a tb a tb bbb+++,a b =,22222222244cos 223=224a t a b t b a tb a tb b b bπ++++=, 22222222244cos 4231244a t a b t b a t a at a t t b aπ++-+==-+当且仅当1t =时,22a tb b+的最小值为故选:B. 【点睛】本题考查平面向量的综合运用,解题的关键点在于把22a tb b+化成只含有t 为自变量的二次函数形态,进而求最值.二、填空题13.【分析】根据整理为再两边平方结合得到然后利用基本不等式求解【详解】因为所以两边平方得因为即所以而所以解得当且仅当时等号成立所以的最大值是故答案为:【点睛】关键点点睛:本题关键是由这一信息将转化为再遇解析:14【分析】根据|(1)(1)|1t a t b ++-=,整理为()()||1t a b a b ++-=,再两边平方结合22||||1a b -=,得到()()22212ta b a b t ++-=-,然后利用基本不等式求解.【详解】因为|(1)(1)|1t a t b ++-=,所以()()||1t a b a b ++-=,两边平方得()()()()22221t a b t a b a b a b +++-+-=, 因为22||||1a b -=,即()()1a b a b +-=, 所以()()22212t a b a b t ++-=-,而()()()()22222t a b a b t a b a b t ++-≥+⋅-=,所以122t t -≥, 解得14t ≤,当且仅当()()t a b a b +=-时等号成立, 所以t 的最大值是14故答案为:14【点睛】关键点点睛:本题关键是由22||||1a b -=这一信息,将|(1)(1)|1t a t b ++-=,转化为()()||1t a b a b ++-=,再遇模平方,利用基本不等式从而得解.14.【分析】先利用平面向量的夹角为且解出然后求解的最值即可得到的最值【详解】因为所以而当且仅当时等号成立所以故答案为:【点睛】本题考查平面向量数量积的运用考查模长最值的求解难度一般【分析】先利用平面向量a ,b 的夹角为120︒,且1a b ⋅=-解出2a b ⋅=,然后求解2a b -的最值即可得到a b -的最值. 【详解】因为1·cos 12a b a a b b θ⋅=⋅=-⋅=-,所以2a b ⋅=, 而2222222226a b a a b b a b a b -=-⋅+=++≥⋅+=,当且仅当2a b ==时等号成立,所以6a b -≥. 【点睛】本题考查平面向量数量积的运用,考查模长最值的求解,难度一般.15.①④【分析】根据为定值求出再对题目中的命题分析判断正误即可【详解】解:对于①由为定值所以解得;由题意知时单调递减所以单调递增即越大越费力越小越省力;①正确对于②由题意知的取值范围是所以②错误对于③当解析:①④. 【分析】根据12G F F =+为定值,求出(22121cos GF θ=+,再对题目中的命题分析、判断正误即可. 【详解】解:对于①,由12G F F =+为定值, 所以()2222121212cos 21cos G F F F F F θθ=++⨯⨯=+,解得(22121cos GF θ=+;由题意知()0,θπ∈时,cos y θ=单调递减,所以21F 单调递增, 即θ越大越费力,θ越小越省力;①正确.对于②,由题意知,θ的取值范围是()0,π,所以②错误. 对于③,当2πθ=时,2212GF =,所以122F G =,③错误. 对于④,当23πθ=时,221F G =,所以1F G =,④正确. 综上知,正确结论的序号是①④. 故答案为:①④. 【点睛】此题考查平面向量数量积的应用,考查分析问题的能力,属于中档题16.【分析】结合已知条件画出图象由的几何意义求得的取值范围【详解】如图所示设设是线段的中点依题意可知由于所以即解得所以即所以根据向量模的几何意义可知点在以为圆心为半径的圆上所以所以即的取值范围为故答案为 解析:[]4,10【分析】结合已知条件画出图象,由c 的几何意义求得c 的取值范围. 【详解】如图所示,设,,OA a OB b OC c ===,设D 是线段AB 的中点. 依题意可知4,1,2AB AC AD BD ====, 由于45a b ⋅=所以45OA OB ⋅=,即()()()()222224544OA OB OA OB OD BA +---==222441644OD BAOD --==,解得7OD =.所以59OD AD OA OD AD =-≤≤+=, 即59OA ≤≤,所以418,6110OA OA ≤-≤≤+≤根据向量模的几何意义可知,点C 在以A 为圆心,1为半径的圆上, 所以()()minmax11OA OC OA -≤≤+,所以410OC ≤≤,即c 的取值范围为[]4,10. 故答案为:[]4,10【点睛】本小题主要考查向量数量积的运算,考查向量模的几何意义,属于中档题.17.【分析】由题可知据平面向量的混合运算法则可化简得到;设函数由对勾函数的性质推出在上的单调性求出最大值即可得解【详解】根据题意作出如下所示图形:∵∴又P 和Q 分别在线段和上∴解得设函数由对勾函数的性质可解析:54【分析】由题可知114CQ DCλ⎛⎫=-⎪⎝⎭,1,14λ⎡⎤∈⎢⎥⎣⎦,据平面向量的混合运算法则可化简得到117524AP BQλλ⋅=+-;设函数()117524fλλλ=+-,1,14λ⎡⎤∈⎢⎥⎣⎦,由对勾函数的性质推出()fλ在1,14λ⎡⎤∈⎢⎥⎣⎦上的单调性,求出最大值即可得解.【详解】根据题意,作出如下所示图形:∵BP BCλ=,14DQ DCλ=,∴114CQ DQ DC DCλ⎛⎫=-=-⎪⎝⎭,又P和Q分别在线段BC和CD上,∴011014λλ≤≤⎧⎪⎨≤≤⎪⎩,解得1,14λ⎡⎤∈⎢⎥⎣⎦.()()()114AP BQ AB BP BC CQ AB BC BC DCλλ⎡⎤⎛⎫⋅=+⋅+=+⋅+-⎪⎢⎥⎝⎭⎣⎦2111144AB BC AB DC BC BC DCλλλλ⎛⎫⎛⎫=⋅+-⋅++-⋅⎪ ⎪⎝⎭⎝⎭11117 22cos120121cos04121cos12054424λλλλλλ⎛⎫⎛⎫=⨯⨯︒+-⨯⨯⨯︒+⨯+-⨯⨯⨯︒=+- ⎪ ⎪⎝⎭⎝⎭.设函数()117524fλλλ=+-,1,14λ⎡⎤∈⎢⎥⎣⎦,由对勾函数的性质可知,()fλ在110,410⎡⎢⎣⎭上单调递减,在10,110⎛⎤⎥⎝⎦上单调递增,∵114f⎛⎫=-⎪⎝⎭,()514f=,∴()()max514f fλ==,即AP BQ⋅的最大值为54.故答案为:54.【点睛】本题考查平面向量的应用,考查数量积的定义,考查函数的单调性与最值,属于中档题.18.【分析】易得结合可得又可得即可求解【详解】则则又故答案为:【点睛】本题考查向量模的取值范围的计算考查了向量模的三角不等式的应用考查计算能力属于中等题解析:⎡⎣【分析】 易得()2225a b+=,结合()()22225a ba b+≤+=,可得5a b +≤.又a b a b +≥±,可得2a b ±≥,即可求解.【详解】1a b +=,2a b -=,2221a a b b ∴+⋅+=,2224a a b b -⋅+=,()2225a b∴+=,则()()22225a b a b +≤+=,则5a b +≤.又a b a b +≥±,2a b ∴+≥,25a b ∴≤+≤.故答案为:⎡⎣.【点睛】本题考查向量模的取值范围的计算,考查了向量模的三角不等式的应用,考查计算能力,属于中等题.19.【分析】根据得到然后两边平方结合求得再由求解即可【详解】因为所以所以所以因为所以故答案为:【点睛】本题主要考查平面向量的数量积运算还考查了运算求解的能力属于中档题解析:52【分析】根据0a b c d +++=,得到++=-a b c d ,然后两边平方结合2a =,3b =,4c =,4d =,求得⋅+⋅+⋅a b a c b c ,再由()()a b b c +⋅+=2⋅+⋅+⋅+a b a c b c b 求解即可. 【详解】因为0a b c d +++=, 所以++=-a b c d , 所以()()22++=-a b cd ,所以()()()()2222222+++⋅+⋅+⋅=-ab c a b a c b c d,因为2a =,3b =,4c =,4d =, 所以132⋅+⋅+⋅=-a b a c b c , ()()a b b c +⋅+=252⋅+⋅+⋅+=a b a c b c b . 故答案为:52【点睛】本题主要考查平面向量的数量积运算,还考查了运算求解的能力,属于中档题.20.【分析】首先以点为原点建立空间直角坐标系利用向量的坐标表示再求取值范围【详解】如图建立平面直角坐标系当时取得最小值当时取得最大值所以的取值范围为故答案为:【点睛】关键点点睛:本题的关键是利用坐标法解解析:11,154⎡⎤⎢⎥⎣⎦【分析】首先以点B 为原点,建立空间直角坐标系,利用向量的坐标表示DM DN ⋅,再求取值范围. 【详解】如图,建立平面直角坐标系,()1,3A ,()2,3D ,(),0M x ,()1,0N x +,()2,3DM x =--,()1,3DN x =--,[]0,5x ∈,()()212335DM DN x x x x ⋅=--+=-+231124x ⎛⎫=-+ ⎪⎝⎭,当32x =时,取得最小值114,当5x =时,取得最大值15,所以DM DN ⋅的取值范围为11,154⎡⎤⎢⎥⎣⎦故答案为:11,154⎡⎤⎢⎥⎣⎦【点睛】关键点点睛:本题的关键是利用坐标法解决数量积的范围问题.三、解答题21.(Ⅰ)3⋅=a b ,b =2;(Ⅱ)3k =-. 【分析】(Ⅰ)根据数量积与模的坐标表示计算; (Ⅱ)由向量垂直的坐标表示求解. 【详解】(Ⅰ)由题意3103a b ⋅=⨯+=;21(2b =+=.(Ⅱ)(3,3)a kb k k +=+, 因为向量a 与k +a b 互相垂直,所以()3(3)0a a kb k ⋅+=+=,解得3k =-. 【点睛】本题考查向量数量积与模的坐标表示,考查向量垂直的坐标表示,属于基础题. 22.(1)52x =;(2)()2,1或2211,55⎛⎫⎪⎝⎭. 【分析】(1)利用//AB BC ,结合向量共线的坐标表示列方程,解方程求得x 的值.(2)设M 点的坐标为()6,3λλ,利用MA MB ⊥,结合向量垂直的坐标表示列方程,解方程求得λ的值,进而求得M 点的坐标. 【详解】(1)()1,4AB OB OA =-=-;()3,2BC OC OB x =-=- ∵A 、B 、C 共线,∴//AB BC ∴()2430x +-= ∴52x =. (2)∵M 在直线OC 上,∴设()6,3OM OC λλλ== ∴()26,53MA OA OM λλ=-=--()36,13MB OB OM λλ=-=--∵MA MB ⊥∴()()()()263653130λλλλ--+--= 即:24548110λλ-+=解得:13λ=或1115λ=. ∴()2,1OM =或2211,55OM ⎛⎫=⎪⎝⎭. ∴点M 的坐标为()2,1或2211,55⎛⎫⎪⎝⎭. 【点睛】本小题主要考查向量共线、垂直的坐标表示,属于中档题. 23.(1)ABC ∆为直角三角形;(2)5;(3)34,2x λ==. 【分析】(1)根据已知点的坐标求出向量的坐标,然后利用向量数量积为0,即可证明; (2)根据题意可得()6,5CA CB x +=+-,再利用向量的模的运算以及二次函数求得最值;(3)利用向量共线可得方程组,解得即可. 【详解】(1)当1x =时,ABC ∆为直角三角形.证明如下:当1x =时,由()1,2A ,()2,3B ,()2,5C -,则()3,3AC =-,()1,1AB =, 此时31310AC AB ⋅=-⨯+⨯=,即AC AB ⊥,即2A π∠=,所以,ABC ∆为直角三角形.(2)由题意,()2,3CA x =+-,()4,2CB =-,则()6,5CA CB x +=+-, 所以,()6255CA CB x +=++≥,当且仅当6x =-时取等号.故当6x =-时,CA CB +取得最小值为5.(3)由题意,()2,3CA x =+-,()4,2CB =-,因CA CB λ=,所以2432x λλ+=⎧⎨-=-⎩,解得432x λ=⎧⎪⎨=⎪⎩.【点睛】本题考查平面向量的坐标运算及数量积运算,考查了向量共线,训练了利用配方法求函数的最值,属于基础题. 24.(1)1223POP π∠=;(2)123PP P 是等边三角形. 【分析】(1)根据1231OP OP OP ===和1230OP OP OP ++=可得1212OP OP ⋅=-,从而可求12POP ∠的大小.(2)结合(1)可求得231321||||||3PP P P PP ===, 从而可得123PP P 是等边三角形. 【详解】解:(1)题意知1231OP OP OP === ∵123OP OP OP +=-, ∴()22123OP OP OP +=∴222121232OP OP OP OP OP +⋅+= ∴1221OP OP ⋅=-,即1212OP OP ⋅=-, ∴1212121cos 2OP OP POP OP OP ⋅∠==-⋅,∴[]120,POP π∠∈,∴1223POP π∠=. (2)∵1221PP OP OP =-, ∴22122122121||()23PP OP OP OP OP OP OP =-=-⋅+=同理:1323||||3PP P P == ∴123PP P 是等边三角形.【点睛】本题考查向量的夹角的计算以及三角形形状的判断,注意根据各向量的模长相等且为1对向量等式平方,从而得到夹角的大小,本题属于中档题. 25.(Ⅰ)32- ;(Ⅱ)1. 【分析】(I )建立坐标系,求出向量坐标,代入数量积公式计算; (II )利用向量坐标运算,得到三角函数,根据三角函数求出最大值. 【详解】(Ⅰ)()AB BC AB AC AB →→→→→⋅=⋅-213122AB AC AB →→→=⋅-=--=-.(Ⅱ)建立如图所示的平面直角坐标系,则(1,0)B ,1(2C -. 设(cos ,sin )P θθ,[0,]3θ2π∈,由AP x AB y AC →→→=+, 得13(cos ,sin )(1,0)(2x y θθ=+-. 所以3cos ,sin 22y x y θθ=-=. 所以3cos sin 3x θθ=+,33y θ=, 2232311cos sin 2cos 2333xy θθθθθ+=+- 2311(2cos 2)3223θθ=-+ 21sin(2)363πθ=-+, 因为2[0,]3πθ∈,72[,]666πππθ-∈-. 所以,当262ππθ-=,即3πθ=时,xy 的最大值为1. 【点睛】本题主要考查了平面向量的数量积运算,向量的坐标运算,正弦型函数的图象与性质,属于中档题.26.(1)35y x =-;(2)55 AD =【分析】(1)求出线段BC 中点D 的坐标,利用斜率公式求得直线AD 的斜率,然后利用点斜式可得出直线AD 所在直线的方程;(2)由2ABD ACD S S =可得2BD DC =,可得23AD AB BC =+,可计算出平面向量AD 的坐标,进而可求得AD 的值.【详解】(1)D 为BC 中点,()3,4D ∴,直线AD 的斜率14323k -==-, 所以直线AD 所在的直线方程为:()433y x -=-,即AD 直线方程为35y x =-; (2)因为2ABD ACD S S =,所以2BD DC =,则23BD BC =, 又由()()225101,24,2,3333A B D D A AB B B C =+⎪⎛⎫==-+=+⎝⎭,所以5 33AD ⎛== ⎭⎝⎭. 【点睛】本题考查直线方程的求解,同时也考查了利用三角形面积的倍数关系求向量的模,考查计算能力,属于中等题.。
一、选择题1.已知a 与b 的夹角为60,4a =,则a b λ-(R λ∈)的最小值为( )A .B .72C .103D 2.过点()3,1P 的直线l 与函数21()26x f x x -=-的图象交于A ,B 两点,O 为坐标原点,则()OA OB OP +⋅=( )A B .210C .10D .203.已知非零向量,a b 满足4,2a b ==,且a 在b 方向上的投影与b 在a 方向上的投影相等,则a b -等于( ) A .1B .25C .5D .34.在AOB ∆中,0,5,25,OA OB OA OB AB ⋅===边上的高为,OD D 在AB 上,点E 位于线段OD 上,若34OE EA ⋅=,则向量EA 在向量OD 上的投影为( ) A .12或32B .1C .1或12D .325.已知1a ,2a ,1b ,2b ,()*k b k ⋅⋅⋅∈N是平面内两两互不相等的向量,121a a-=,且对任意的1,2i = 及1,2,,j k =⋅⋅⋅,{}1,2i j a b -∈,则k 最大值为( ) A .3B .4C .5D .66.已知a ,b 是单位向量,a •b =0.若向量c 满足|c a b --|=1,则|c |的最大值为( )A 1BC .21+D .2+7.在△ABC 中,M 是BC 的中点.若AB =a ,BC =b ,则AM =( ) A .1()2a b + B .1()2a b - C .12a b + D .12a b +8.已知ABC ,若对任意m R ∈,BC mBA CA -≥恒成立,则ABC 为( ) A .锐角三角形B .钝角三角形C .直角三角形D .不确定9.在平行四边形ABCD 中,3DE CE =,若AE 交BD 于点M .且AM AB AD λμ=+,则λμ=( ) A .23B .32C .34D .4310.已知两个非零向量a ,b 的夹角为23π,且=2a b -,则·ab 的取值范围是( ) A .2,03⎛⎫- ⎪⎝⎭B .[)2,0-C .2,03⎡⎫-⎪⎢⎣⎭D .[)1,0-11.在ABC ∆中,D 为BC 边上一点,且AD BC ⊥,向量AB AC +与向量AD 共线,若10AC =,2BC =,0GA GB GC ++=,则AB CG=( )A .3B .5C .2D .10212.已知正项等比数列{}n a ,若向量()28,a a =,()8,2b a =,//a b ,则212229log log log (a a a ++⋯+= )A .12B .28log 5+C .5D .18二、填空题13.已知平面向量a ,b 不共线,且1a =,1a b ⋅=,记b 与2a b +的夹角是θ,则θ最大时,a b -=_______.14.已知正方形ABCD 的边长为4,若3BP PD =,则PA PB ⋅的值为_________________. 15.如图,在等腰三角形ABC 中,已知1AB AC ==,120A ∠=︒,E F 、分别是边AB AC 、上的点,且,AE AB AF AC λμ==,其中(),0,1λμ∈且41λμ+=,若线段EF BC 、的中点分别为M N 、,则MN 的最小值是_____.16.如图,直角梯形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =AD =4,CD =8,若7CE DE =-,3BF FC =,则AF ·BE =_____.17.如图,在ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点5BA CA ⋅=,2BF CF ⋅=-,则BE CE ⋅的值是________.18.在梯形ABCD 中,AB //CD ,90DAB ∠=,2AB =,1CD AD ==,若点M 在线段BD 上,则AM CM ⋅的最小值为______________.19.已知夹角为θ的两个单位向量,a b ,向量c 满足()()0a c b c -⋅-=,则c 的最大值为______.20.已知平面单位向量a ,b 满足1a b -≤.设向量2a b +与向量2a b -的夹角为θ,则cos θ的最大值为______. 三、解答题21.已知在直角坐标系中(O 为坐标原点),()2,5OA =,()3,1OB =,(),3OC x =. (1)若A ,B ,C 共线,求x 的值;(2)当6x =时,直线OC 上存在点M 使MA MB ⊥,求点M 的坐标. 22.解答下列问题:(1)求平行于直线3x+4y- 2=0,且与它的距离是1的直线方程; (2)求垂直于直线x+3y -5=0且与点P( -1,0)的距离是310的直线方程. 23.在ABC 中,角,,A B C 所对的边分别为,,a b c 且,b c A =∠的平分线为AD ,若AB AD mAB AC ⋅=⋅.(1)当2m =时,求cos A(2)当231,a b ⎛⎫∈ ⎪⎝⎭时,求实数m 的取值范围.24.如图,在OAB 中,P 为边AB 上的一点2BP PA =,6OA =,2OB =且OA 与OB 的夹角为60︒.(1)设OP xOA yOB =+,求x ,y 的值; (2)求OP AB ⋅的值.25.已知向量m ,n 不是共线向量,32a m n =+,64b m n =-,c m xn =+ (1)判断,a b 是否共线; (2)若//a c ,求x 的值26.已知△ABC 中,角A 、B 、C 的对边为a ,b ,c ,向量m (2cossin )2C C =-,, n =(cos2sin )2C C ,,且m n ⊥. (1)求角C ;(2)若22212a b c =+,试求sin()A B -的值【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据向量的模的表示方法得22222a b a a b b λλλ-=-⋅+,再配方即可得答案. 【详解】解:根据向量模的计算公式得:()()222222216421212a b a a b b b bb λλλλλλ-=-⋅+=-+=-+≥,当且仅当2b λ=时等号成立;所以23a b λ-≥,当且仅当2b λ=时等号成立; 故选:A. 【点睛】方法点睛:向量模的计算公式:22a a a a =⋅=2.D解析:D 【分析】判断函数()f x 的图象关于点P 对称,得出过点()3,1P 的直线l 与函数()f x 的图象交于A ,B 两点时,得出A ,B 两点关于点P 对称,则有 2OA OB OP +=,再计算()OA OB OP +⋅的值.【详解】()52121263x f x x x -==+-- ,∴函数21()26x f x x -=-的图象关于点()3,1P 对称,∴过点()3,1P 的直线l 与函数()2126x f x x -=-的图象交于A ,B 两点,且A ,B 两点关于点()3,1P 对称,∴ 2OA OB OP +=,则()()222223120OA OB OP OP +⋅==⨯+=.故选D . 【点睛】本题主要考查了函数的对称性,以及平面向量的数量积运算问题,是中档题.3.B解析:B 【解析】因为a 在b 方向上的投影与b 在a 方向上的投影相等,设这两个向量的夹角为θ,则cos cos 4cos 2cos 2a b πθθθθθ===⇒=,又由2()a b a b -=-且4,2a b ==,所以222()225a b a b a a b b -=-=-⋅+=,故选B.4.A解析:A 【解析】Rt AOB 中,0OA OB ⋅=,∴2AOB π∠=,∵5OA =,25OB =,∴5AB = , ∵AB 边上的高线为OD ,点E 位于线段OD 上,建立平面直角坐标系,如图所示; 则)5,0A、(025B ,、设(),D m n ,则OAD BAO ∽,∴OA ADAB OA=, ∴1AD =,∴15AD AB =, 即()(155,255m n =-,,求得45m =, ∴4525D ⎝⎭;则45254525OE OD λλ⎫===⎪⎪⎝⎭⎝⎭, 45255,EA ⎛⎫= ⎪ ⎪⎭;∵34OE EA ⋅=, ∴2454525354⎫⎫⋅-=⎪⎪⎪⎪⎭⎝⎭, 解得34λ=或14λ=;∴向量EA 在向量OD 上的投影为))452511ED OD OE λλ⎛⎫=-=-- ⎪⎪⎝⎭, 当34λ=时,5512ED ⎛== ⎝⎭;当14λ=时,353532ED ==⎝⎭. 即向量EA 在向量OD 上的投影为12或32,故选A.5.D解析:D 【分析】根据向量的几何意义把抽象问题具体化,转化到圆与圆的位置关系问题. 【详解】如图所示,设11OA a =,22OA a =,此时121A A =,由题意可知:对于任意的1,2i = 及1,2,,j k =⋅⋅⋅,{}1,2i j a b -∈, 作j j OB b =则有1j A B 等于1或2,且2j A B 等于1或2, 所以点(1,2,,)j B j k =同时在以(1,2)i A i =为圆心,半径为1或2的圆上,由图可知共有6个交点满足条件,故k 的最大值为6.故选:D. 【点睛】本题主要考查平面向量的线性运算和平面向量的应用.6.C解析:C 【分析】通过建立直角坐标系,利用向量的坐标运算和圆的方程及数形结合即可得出. 【详解】∵|a |=|b |=1,且0a b ⋅=,∴可设()10a =,,()01b =,,()c x y ,=.∴()11c a b x y --=--,. ∵1c a b --=, ∴(1)(x -+x ﹣1)2+(y ﹣1)2=1.∴c 的最大值11==.故选C . 【点睛】熟练掌握向量的坐标运算和圆的方程及数形结合是解题的关键.7.D解析:D 【分析】根据向量的加法的几何意义即可求得结果. 【详解】在ABC ∆中,M 是BC 的中点, 又,AB a BC b ==, 所以1122AM AB BM AB BC a b =+=+=+, 故选D. 【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的加法运算,属于简单题目.8.C解析:C 【分析】在直线AB 上取一点D ,根据向量减法运算可得到DC CA ≥,由垂线段最短可确定结论. 【详解】在直线AB 上取一点D ,使得mBA BD =,则BC mBA BC BD DC -=-=,DC CA ∴≥.对于任意m R ∈,都有不等式成立,由垂线段最短可知:AC AD ⊥,即AC AB ⊥,ABC ∴为直角三角形.故选:C . 【点睛】本题考查与平面向量结合的三角形形状的判断,关键是能够利用平面向量数乘运算和减法运算的几何意义准确化简不等式.9.B解析:B 【分析】根据已知找到相似三角形,用向量AB 、AD 线性 表示向量AM . 【详解】如图,平行四边形ABCD 中,3DE CE =,ABMEDM ,3322DE DC AB ∴==,()22223323555255AM ME AE AD DE AD AB AB AD ⎛⎫===+=+=+ ⎪⎝⎭. 32λμ= 故选:B 【点睛】此题考查平面向量的线性运算,属于中档题.10.C解析:C 【分析】对=2a b -两边平方后,结合2·cos 3a b a b π=⋅进行化简可得:224a b b +⋅+=;由基本不等式可得222a b a b +⋅,于是推出403a b<⋅,再结合平面向量数量积即可得解. 【详解】因为2a b -=,所以 2224a a b b -⋅+=,所以2222cos43b b a a π-⋅+=,即224a a b b +⋅+=, 由基本不等式的性质可知,222a b a b +⋅,403a b∴<⋅, 所以212·cos ,0323a b a b a b π⎡⎫=⋅⋅=-⋅∈-⎪⎢⎣⎭. 故选:C . 【点睛】本题主要考查平面向量数量积运算,考查利用基本不等式求最值,难度一般.对于平面向量的模长问题,一般采用平方处理,然后结合平面向量数量积的运算公式求解即可.11.B解析:B 【解析】取BC 的中点E ,则2AB AC AE +=与向量AD 共线,所以A 、D 、E 三点共线,即ABC ∆中BC 边上的中线与高线重合,则10AB AC ==因为0GA GB GC ++=,所以G 为ABC ∆的重心,则2222() 2.32BC GA GE AC ==-=所以2101,1 5.2AB CE CG CG===∴== 本题选择B 选项.12.D解析:D 【分析】本题先根据平行向量的坐标运算可得2816a a =,再根据等比中项的知识,可计算出54a =,在求和时根据对数的运算及等比中项的性质可得到正确选项.【详解】解:由题意,向量()28,a a =,()8,2b a =,//a b 则28820a a ⨯-⨯=,即2816a a =,根据等比中项的知识,可得228516a a a ==, 50a >,54a ∴=,212229log log log a a a ∴++⋯+ 2129log ()a a a =⋯2192837465log [()()()()]a a a a a a a a a =925log a =29log 4=18=.故选:D . 【点睛】本题主要考查等比数列的性质应用,以及数列与向量的综合问题.考查了转化与化归思想,平行向量的运算,对数的计算,逻辑思维能力和数学运算能力.属于中档题.二、填空题13.【分析】把表示为的函数利用函数的性质求出当最大时的值进而可求出的值【详解】设则所以易得当时取得最小值取得最大值此时故答案为:【点睛】本题考查平面向量的有关计算利用函数的思想求最值是一种常见思路属于中【分析】把cos θ表示为|b|的函数,利用函数的性质求出当θ最大时|b|的值,进而可求出a b -的值. 【详解】 设()0b x x =>,则()22·222b a b a b b x +=⋅+=+,22|2+|=448a b a a b b +⋅+=+,所以()2·2cos 28b a bb a bx θ+==++易得cos 0θ>,()()()2222222222211cos 124811411222263x x x x x x θ+===+⎛⎫-++--+⎪+++⎝⎭, 当24x=时,2cos θ取得最小值,θ取得最大值, 此时22||=212a b a a b b --⋅+=-= 【点睛】本题考查平面向量的有关计算,利用函数的思想求最值是一种常见思路.属于中档题.14.6【分析】建立平面直角坐标系求得点P 的坐标进而得到的坐标再利用数量积的坐标运算求解【详解】如图所示建立平面直角坐标系:则设因为解得所以所以所以故答案为:【点睛】本题主要考查平面向量的坐标表示和数量积解析:6 【分析】建立平面直角坐标系,求得点P 的坐标,进而得到,PA PB 的坐标,再利用数量积的坐标运算求解. 【详解】如图所示建立平面直角坐标系:则()()()()04,00,40,44A B C D ,,,,,设(),P x y ,()(),,4,4BP x y PD x y ==--, 因为3BP PD =,()()3434x x y y ⎧=⨯-⎪⎨=⨯-⎪⎩,解得33x y =⎧⎨=⎩,所以()3,3P ,所以()()3,1,3,3PA PB =-=--, 所以()()()33136PA PB ⋅=-⨯-+⨯-=, 故答案为:6. 【点睛】本题主要考查平面向量的坐标表示和数量积运算,还考查了运算求解的能力,属于中档题.15.【分析】根据条件及向量数量积运算求得连接由三角形中线的性质表示出根据向量的线性运算及数量积公式表示出结合二次函数性质即可求得最小值【详解】根据题意连接如下图所示:在等腰三角形中已知则由向量数量积运算 解析:77【分析】根据条件及向量数量积运算求得AB AC ⋅,连接,AM AN ,由三角形中线的性质表示出,AM AN .根据向量的线性运算及数量积公式表示出2MN ,结合二次函数性质即可求得最小值. 【详解】根据题意,连接,AM AN ,如下图所示:在等腰三角形ABC 中,已知1AB AC ==,120A ∠=︒则由向量数量积运算可知1cos 11cos1202AB AC AB AC A ⋅=⋅=⨯⨯=- 线段EF BC 、的中点分别为M N 、则()()1122AM AE AF AB AC λμ=+=+ ()12AN AB AC =+ 由向量减法的线性运算可得11112222MN AN AM AB AC λμ⎛⎫⎛⎫=-=-+-⎪ ⎪⎝⎭⎝⎭所以2211112222MN AB AC λμ⎡⎤⎛⎫⎛⎫=-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦222211111111222222222AB AC AB AC λμλμ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⨯-⨯-⨯⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭221111111112222222222λμλμ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⨯-⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 因为41λμ+=,代入化简可得22221312111424477MN μμμ⎛⎫=-+=-+ ⎪⎝⎭因为(),0,1λμ∈且41λμ+=10,4μ⎛⎫∴∈ ⎪⎝⎭所以当17μ=时, 2MN 取得最小值17因而minMN==故答案为: 7【点睛】本题考查了平面向量数量积的综合应用,向量的线性运算及模的求法,二次函数最值的应用,属于中档题.16.【分析】通过建立直角坐标系利用向量的坐标运算转化求解即可【详解】以为坐标原点建立直角坐标系如图:因为直角梯形ABCD 中AB ∥CDAB ⊥ADAB=AD=4CD=8若所以所以则故答案为:【点睛】本题考查 解析:11-【分析】通过建立直角坐标系,利用向量的坐标运算转化求解即可. 【详解】以A 为坐标原点,建立直角坐标系如图:因为直角梯形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =AD =4,CD =8,若7CE DE =-,3BF FC =所以(0,0)A ,(4,0)B ,(1,4)E ,(5,1)F , 所以(5,1)AF =,(3,4)BE =-, 则15411AF BE ⋅=-+=-. 故答案为:11-【点睛】本题考查向量的坐标运算,向量的数量积的应用,是基本知识的考查.17.【分析】将均用表示出来进而将表示成与相关可以求出同时可用表示即可求出结果【详解】因为因此故答案为:【点睛】研究向量的数量积一般有两个思路一是建立平面直角坐标系利用坐标研究向量的数量积;二是利用一组基解析:58【分析】将,,,BA CA BF CF 均用,BC AD 表示出来,进而将BA CA ⋅,BF CF ⋅表示成与,FD BC相关,可以求出 2223,827FD BC ==,同时BE CE ⋅可用,FD BC 表示,即可求出结果.【详解】因为222211436=52244AD BC FD BC BA CA BC AD BC AD ()()--⋅=-⋅--==, 2211114223234FD BCBF CF BC AD BC AD ()()-⋅=-⋅--==-,因此2223,827FD BC ==,222211416.224458ED BC FD BC BE CE BC ED BC ED ()()--⋅=-⋅--===故答案为:58. 【点睛】研究向量的数量积,一般有两个思路,一是建立平面直角坐标系,利用坐标研究向量的数量积;二是利用一组基底表示所有向量,两种思路实质相同,但坐标法更易理解和化简. 对于涉及中线的向量问题,一般利用向量加、减法的平行四边形法则进行求解.18.【分析】根据建立平面直角坐标系设得到再求得的坐标利用数量积的坐标运算求解【详解】建立如图所示平面直角坐标系:因为所以设所以所以所以所以当时的最小值为故答案为:【点睛】本题主要考查平面向量的数量积运算 解析:920-【分析】根据AB //CD ,90DAB ∠=,2AB =,1CD AD ==,建立平面直角坐标系,设,01λλ=≤≤BM BD ,得到()22,λλ-M ,再求得,AM CM 的坐标,利用数量积的坐标运算求解. 【详解】建立如图所示平面直角坐标系:因为AB //CD ,90DAB ∠=,2AB =,1CD AD ==, 所以()2,0B ,()0,1D ,()1,1C ,设,01BM BD λλ=≤≤, 所以()()2,2,1λ-=-x y 所以()22,λλ-M ,所以()()22,,12,1λλλλ---==AM CM , 所以()()22,12,1λλλλ⋅=-⋅--AM CM ,227957251020λλλ⎛⎫=-+=-- ⎪⎝⎭,当710λ=时,AM CM ⋅的最小值为920-. 故答案为:920- 【点睛】本题主要考查平面向量的数量积运算,还考查了运算求解的能力,属于中档题.19.【分析】建立平面直角坐标系设出向量的坐标得出向量的终点的轨迹方程再运用点与圆的位置关系可以得到的最大值【详解】由已知建立平面直角坐标系设又所以所以点在以为圆心以为半径的圆上所以的最大值为所以的最大值 解析:cossin22θθ+【分析】建立平面直角坐标系,设出向量a b c ,,的坐标,得出向量c 的终点C 的轨迹方程,再运用点与圆的位置关系可以得到||c 的最大值. 【详解】由已知建立平面直角坐标系,设()()()10cos ,sin ,,OA a OB b OC c x y θθ======,,,又()()0a c b c -⋅-=,所以()22+1+cos sin +cos 0x x y y θθθ-⋅-⋅=,所以点C 在以1+cos sin ,22P θθ⎛⎫⎪⎝⎭为圆心,以sin 2R θ=为半径的圆上,所以c的最大值为+cos +sin 222OP R θθθ==, 所以c 的最大值为cos sin22θθ+,故答案为:cos sin22θθ+.【点睛】本题考查求向量的模的最值,建立平面直角坐标系,设出向量坐标,得出向量的终点的轨迹方程是解决本题的关键,属于中档题.20.【分析】设的夹角为由题可得则可化简得出即可求出最值【详解】是单位向量设的夹角为则由可得即可得则当时取得最大值为故答案为:【点睛】本题考查数量积的运算律解题的关键是先得出的夹角为满足的再将所求化为可求解析:14-【分析】设,a b 的夹角为α,由题可得1cos 2α≥,则可化简得出cos θ=-求出最值. 【详解】,a b 是单位向量,1a b ∴==,设,a b 的夹角为α,则由1a b -≤可得21a b -≤,即222cos 1a a b b α-⋅⋅+≤,可得1cos 2α≥,则()()22222222cos 224444a b a b a b a ba ab b a a b bθ+⋅-==+⋅-+⋅+⋅-⋅+==-=- 当1cos 2α=时,cos θ取得最大值为14-. 故答案为:14-. 【点睛】本题考查数量积的运算律,解题的关键是先得出,a b 的夹角为α满足的1cos 2α≥,再将所求化为cos θ=-. 三、解答题21.(1)52x =;(2)()2,1或2211,55⎛⎫⎪⎝⎭. 【分析】(1)利用//AB BC ,结合向量共线的坐标表示列方程,解方程求得x 的值.(2)设M 点的坐标为()6,3λλ,利用MA MB ⊥,结合向量垂直的坐标表示列方程,解方程求得λ的值,进而求得M 点的坐标. 【详解】(1)()1,4AB OB OA =-=-;()3,2BC OC OB x =-=- ∵A 、B 、C 共线,∴//AB BC ∴()2430x +-= ∴52x =. (2)∵M 在直线OC 上,∴设()6,3OM OC λλλ== ∴()26,53MA OA OM λλ=-=--()36,13MB OB OM λλ=-=--∵MA MB ⊥∴()()()()263653130λλλλ--+--=即:24548110λλ-+= 解得:13λ=或1115λ=. ∴()2,1OM =或2211,55OM ⎛⎫=⎪⎝⎭. ∴点M 的坐标为()2,1或2211,55⎛⎫ ⎪⎝⎭. 【点睛】本小题主要考查向量共线、垂直的坐标表示,属于中档题. 22.(1)3x+4y+3=0或3x+4y-7=0 (2) 3x-y+9=0或3x-y-3=0 【详解】试题分析:(1)将平行线的距离转化为点到线的距离,用点到直线的距离公式求解;(2)由相互垂直设出所求直线方程,然后由点到直线的距离求解. 试题解:(1)设所求直线上任意一点P (x ,y ),由题意可得点P 到直线的距离等于1,即34215x y d +-==,∴3x+4y-2=±5,即3x+4y+3=0或3x+4y-7=0.(2)所求直线方程为30x y c -+=,由题意可得点P,即d ==,∴9c =或3c =-,即3x-y+9=0或3x-y-3=0. 考点:1.两条平行直线间的距离公式;2.两直线的平行与垂直关系 23.(1)13;(2)322m <<【分析】(1)由题意得,1()2AD AB AC =+;从而可得1()22AB AB AC AB AC ⋅+=⋅;从而可得1cos 3||||AB AC A AB AC ⋅==;(2)222||||cos 2b a AB AC AB AC A -⋅=⋅=,从而可得2211112222AB AD AB m AB AC AB AC a b ⋅==+=+⋅⋅⎛⎫- ⎪⎝⎭;从而求取值范围..【详解】解:(1)由题意得,1()2AD AB AC =+;故1()22AB AB AC AB AC ⋅+=⋅; 故23AB AB AC =⋅; 故1cos 3||||AB AC A AB AC ⋅==;(2)||||cos AB AC AB AC A ⋅=⋅2222b a -=;故21122AB AD AB m AB ACAB AC ⋅==+⋅⋅222122b b a =+- 21122a b =+⎛⎫- ⎪⎝⎭;∵1,3a b ⎛∈ ⎝⎭,∴241,3a b ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭;故213122a b <<⎛⎫- ⎪⎝⎭; 在23112222a b <+<⎛⎫- ⎪⎝⎭.【点睛】本题考查了平面向量的应用即解三角形的应用,属于中档题. 24.(1)23x =,13y =;(2)623-. 【分析】(1)由向量的加减运算,可得()2233=+=+=+-OP OB BP OB BA OB OA OB ,进而可得答案.(2)用OAOB ,表示OP AB ⋅,利用向量数量积公式,即可求得结果. 【详解】(1)因为2BP PA =,所以23BP BA =. ()22213333OP OB BP OB BA OB OA OB OA OB =+=+=+-=+.又OP xOA xOB =-,又因为OA 、OB 不共线,所以,23x =,13y =(2)结合(1)可得:()2133OP AB OA OB OB OA ⎛⎫⋅=+⋅- ⎪⎝⎭.2222113333=⋅-+-⋅OA OB OA OB OA OB 22121333=⋅-+OA OB OA OB , 因为6OA =,2OB =,且OA 与OB 的夹角为60︒. 所以22112162626232333OP AB ⋅=⨯⨯⨯-⨯+⨯=-. 【点睛】本题考查了向量的加减运算、平面向量基本定理、向量的数量积运算等基本数学知识,考查了运算求解能力和转化的数学思想,属于基础题目. 25.(1),a b 不共线;(2)23x = 【分析】(1)根据平面向量共线定理判断. (2)由平面向量共线定理计算. 【详解】解:(1)若a 与b 共线,由题知a 为非零向量, 则有b a λ=,即64(32)m n m n λ-=+,6342λλ=⎧∴⎨-=⎩得到2λ=且2λ=-, λ∴不存在,即a 与b 不平行.(2) ∵//a c ,∴存在实数r ,使得c ra =, 即32m xn rm rn +=+, 即132r x r=⎧⎨=⎩,解得23x =.【点睛】本题考查平面向量共线定理,掌握平面向量共线定理是解题基础.26.(1)60C =︒;(2. 【分析】(1)利用两个向量垂直的性质,两个向量数量积公式以及二倍角公式,求得cos C 的值,可得C 的值.(2)利用两角差的正弦公式,正弦定理和余弦定理化简,可得结果.【详解】(1)由题意知,0m n =,即222cos 2sin 02C C -=,21cos 2(1cos )0C C +--=, 22cos cos 10C C +-=,即cos 1C =-,或1cos 2C =, 因为0C π<<,所以60C =︒.(2)2222221122a b c a b c =+⇒-=, 222222sin()sin cos sin cos 2222a a c b b b c a A B A B B A R ac R bc+-+--=-=- ()222214442a b c c sinC cR cR R -=====. 【点睛】本题主要考查两个向量数量积公式,两角差的正弦公式,正弦定理和余弦定理的应用,属于中档题.。
描述:高中数学必修4(北师版)知识点总结含同步练习题及答案第二章 平面向量 2.1 从位移、速度、力到向量一、知识清单平面向量的概念与表示二、知识讲解1.平面向量的概念与表示 向量的基本概念我们把既有方向,又有大小的量叫做向量(vector).带有方向的线段叫做有向线段.我们在有向线段的终点处画上箭头表示它的方向.以为起点、为终点的有向线段记做,起点写在终点的前面.有向线段包含三个要素:起点、方向、长度.向量可以用有向线段来表示.向量的大小,也就是向量的长度(或称模),记做 ,长度为 的向量叫做零向量(zero vector),记做 .零向量的方向不确定.长度等于 个单位的向量,叫做单位向量(unit vector).方向相同或相反的非零向量叫做平行向量 (parallel vectors),向量 、 平行,通常记做.规定零向量与任一向量平行,即对于任意向量,都有.相等向量与共线向量长度相等且方向相同的向量叫做相等向量(equal vector).向量 与 相等,记做 .A B AB −→−||AB −→−00 1a b ∥a b a →∥0→a →ab =a b例题:任一组平行向量都可以移动到同一直线上,因此,平行向量也叫做共线向量(collinear vectors).高考不提分,赔付1万元,关注快乐学了解详情。
下列四个命题:① 时间、速度、加速度都是向量;② 向量的模是一个正实数;③ 相等向量一定是平行向量;④ 共线向量一定在同一直线上;⑤ 若 , 是单位向量,则 ;⑥ 若非零向量 与 是共线向量,则四点 共线.其中真命题的个数为( )A. B. C. D.解:B只有③正确.a →b →=a →b →AB −→−CD −→−A ,B ,C ,D 0123下列说法正确的是( )A.零向量没有大小,没有方向B.零向量是唯一没有方向的向量C.零向量的长度为D.任意两个单位向量方向相同解:C零向量的长度为 ,方向是任意的,故 A,B 错误,C 正确,任意两个单位向量的长度相等,但方向不一定相同,故 D 错误.00如图所示, 是正六边形 的中心.(1)与 的模相等的向量有多少个?(2)是否存在与 长度相等、方向相反的向量?(3)与 共线的向量有哪些?解:(1)因为 的模等于正六边形的边长,而在图中,模等于边长的向量有 个,所以共有 个与 的模相等的向量.(2)存在,是 .(3)有 、、.O ABCDEF OA −→−OA −→−OA −→−OA −→−1211OA −→−F E −→−F E −→−CB −→−DO−→−。
必修四2.4.1 平面向量基本定理(讲)教学目标:(1)了解平面向量基本定理;(2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量 解决实际问题的重要思想方法;(3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.教学重点:平面向量基本定理.教学难点:平面向量基本定理的理解与应用.教学过程:一、 复习引入:1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa(1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa =0 2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa .二、讲解新课:平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e .探究:(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2) 基底不惟一,关键是不共线;(3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解;(4) 基底给定时,分解形式惟一. λ1,λ2是被a,1e ,2e 唯一确定的数量三、讲解范例:例1 已知向量1e ,2e 求作向量 2.51e +32e .例2 如图 ABCD 的两条对角线交于点M ,且AB =a ,AD =b ,用a ,b 表示MA ,MB ,MC 和MD例3已知 ABCD 的两条对角线AC 与BD 交于E ,O 是任意一点,求证:OA +OB +OC +OD =4OE例4(1)如图,OA ,OB 不共线,AP =t AB (t ∈R)用OA ,OB 表示OP .(2)设OA 、OB 不共线,点P 在O 、A 、B 所在的平面内,且(1)()OP t OA tOB t R =-+∈.求证:A 、B 、P 三点共线.例5 已知 a =2e 1-3e 2,b = 2e 1+3e 2,其中e 1,e 2不共线,向量c =2e 1-9e 2,问是否存在这样的实数,d a b λμλμ=+、使与c 共线.四、课堂练习:见教材五、小结(略)六、课后作业(略):七、板书设计(略)八、教学反思。
打印版本
高中数学 2.1 平面向量疑难问题辨析(2)
问:向量a 和实数a ,零向量和实数0各有什么区别?
答:向量a 有大小、方向.大小即向量a 的长度(或模),记作a ,它是非负实数.两个向量的关系只能说相等或不相等,共线或不共线,“大于”、“小于”对向量来说无意义.向量的长度(或模)可比较大小,而实数a 仅有大小,无方向可言.
“0”指长度为0的向量,即=00,方向是任意的.规定“0与任一向量平行(或共线)”;而实数0是一个无方向的实数.例如以下各式是错误的:a a -=0,AB BC CA ++=0,a +0a =,a a -=0.
问:向量的三角形法则、平行四边形法则有什么区别?
答:向量的三角形法则、平行四边形法则都是向量的几何运算.
求和向量时,若一个向量的终点为另一个向量的始点时,可用向量的三角形法则,即“始终相接,始指向终”;当两向量的始点相同时,可用向量的平行四边形法则.
求差向量时,可用三角形法则,即“同始连终,指向被减”,如OA OB BA -=..
当向量共线(或平行)时,平行四边形法则对向量求和不再适用,只能利用三角形法则,即向量加法、减法的三角形法则具有一般性.
向量的和、差的结果仍是向量.
问:a b b c ,∥∥,则a c ∥对吗?
答:不对,若b =0,则a 和c 可能不共线.
问:单位向量有什么特点?
答:给定一个非零向量a ,与a 同方向且长度等于1的向量,叫做a 的单位向量.它具有以下特点:①长度为1;②方向确定且与向量a 同向;③可有无数个.。