数值分析小论文
- 格式:doc
- 大小:293.50 KB
- 文档页数:9
牛顿迭代法及其应用[摘要]本文研究应用泰勒展开式构造出牛顿迭代法,论证了它的局部收敛性和收敛阶。
分别讨论了单根情形和重根情形,给出了实例应用。
最后给出了离散牛顿法的具体做法。
[关键词] 关键词:泰勒展开式,牛顿迭代法及其收敛性,重根,离散牛顿法。
1.牛顿法及其收敛性求方程f(x)=0的根,如果已知它的一个近似,可利用Taylor展开式求出f(x)在附近的线性近似,即,ξ在x与之间忽略余项,则得方程的近似右端为x的线性方程,若,则解,记作,它可作为的解的新近似,即(2.4.1)称为解方程的牛顿法.在几何上求方程的解,即求曲线y=f(x)与x轴交点.若已知的一个近似,通过点(,f())作曲线y=f(x)的切线,它与x轴交点为,作为的新近似,如图1所示图1关于牛顿法收敛性有以下的局部收敛定理.定理1设是f(x)=0的一个根,f(x)在附近二阶导数连续,且,则牛顿法(2.4.1)具有二阶收敛,且(2.4.2)证明由式(2.4.1)知迭代函数,,,而,由定理可知,牛顿迭代(2.4.1)具有二阶收敛,由式可得到式(2.4.2).证毕.定理表明牛顿法收敛很快,但在附近时才能保证迭代序列收敛.有关牛顿法半局部收敛性与全局收敛定理.此处不再讨论.例1用牛顿法求方程的根.,牛顿迭代为取即为根的近似,它表明牛顿法收敛很快.例2设>0,求平方根的过程可化为解方程.若用牛顿法求解,由式(2.4.1)得(2.4.3)这是在计算机上作开方运算的一个实际有效的方法,它每步迭代只做一次除法和一次加法再做一次移位即可,计算量少,又收敛很快,对牛顿法我们已证明了它的局部收敛性,对式(2.4.3)可证明对任何迭代法都是收敛的,因为当时有即,而对任意,也可验证,即从k=1开始,且所以{}从k=1起是一个单调递减有下界的序列,{}有极限.在式(2.4.3)中令k→∞可得,这就说明了只要,迭代(2.4.3)总收敛到,且是二阶收敛.在例2.4的迭代法(3)中,用式(2.4.3)求只迭代3次就得到=1.732 051,具有7位有效数字.求非线性方程f(x)=0的根x*,几何上就是求曲线y=f(x)与x轴交点x*,若已知曲线上一点过此点作它的切线。
数值分析毕业论文数值分析毕业论文数值分析是一门研究利用计算机和数学方法解决实际问题的学科。
在现代科学和工程领域中,数值分析扮演着重要的角色。
数值分析毕业论文是数值分析专业学生完成学业的重要组成部分,也是展示他们研究能力和学术水平的重要机会。
一、选题数值分析毕业论文的选题是非常重要的。
一个好的选题能够体现学生的研究兴趣和专业知识,并且具备一定的研究价值和实际应用意义。
选题应该能够解决实际问题或者填补学术空白,同时也要符合自身的研究能力和时间限制。
二、文献综述在开始撰写毕业论文之前,进行文献综述是必不可少的。
文献综述可以帮助学生了解当前研究的最新进展和研究方向,从而确定自己的研究方向和方法。
通过对相关文献的阅读和分析,学生可以了解前人的研究成果和不足之处,为自己的研究提供借鉴和启示。
三、问题陈述在毕业论文中,学生需要清晰地陈述自己研究的问题和目标。
问题陈述应该明确、简洁,并且具备一定的可行性和独创性。
学生需要解释为什么选择这个问题,并且说明解决这个问题的重要性和意义。
问题陈述是整个毕业论文的基础,也是读者了解研究内容的入口。
四、理论分析在毕业论文中,学生需要对所研究的问题进行理论分析。
理论分析是通过数学模型和方法来解决问题的过程。
学生需要运用数值分析的理论知识和方法,对问题进行建模和分析,并且给出相应的数学推导和证明。
理论分析是毕业论文的核心部分,也是学生研究能力的体现。
五、数值实验除了理论分析,毕业论文还需要进行数值实验。
数值实验是通过计算机模拟和仿真来验证理论分析的结果和方法的有效性。
学生需要编写相应的数值算法和程序,进行计算和分析,并且对结果进行解释和讨论。
数值实验是将理论知识应用到实际问题中的过程,也是毕业论文的重要组成部分。
六、结果讨论在毕业论文中,学生需要对数值实验的结果进行讨论和分析。
学生应该解释结果的意义和影响,并且与前人的研究成果进行比较和对比。
学生还可以提出自己对结果的解释和看法,并且指出研究中存在的不足之处和改进的方向。
齐齐哈尔大学《模糊数学》课程作业题目学院理学院专业班级信息与计算科学121班学生姓名杨志鹏课程作业成绩:2014年12月20日摘要高等学校助学金等级主要依据对学生家庭经济困难认定来评定的。
随着我国经济的发展,国家对高等学校贫困生助学金资助力度和覆盖面的加大,出现了给与不给助学金相差悬殊。
此外,家庭经济困难学生认定工作包含了太多的因素,而当前我国高校已经有的认定方法主要是定性的而不是定量的方法,这种方法存在一定程度的主观因素过强、信息不对等问题,不能解决出现的新问题。
目前各高校对贫困生认定方法主要有三类,横向比较界定法、消费水平界定方法和最低生活保障线比照界定法。
基于我国高校实践,共有十种具体认定方法,分别为三级证明法、相关困难证件法、班主任和辅导员评判、班委会选举产生、通过家庭经济情况直接认定、消费水平和饭卡监控法、居民最低生活保障线界定、根据贫困程度区分、署期家访和家庭问卷调研、设定贫困认定组、定期复查和抽查确立地方高等院校奖助学金评定中贫困生认定的量化模式,即在奖助学金评定中设定家庭贫困程度、学习成绩、德育表现和生活节俭程度四个指标,并对指标进行量化,然后对指标进行综合,该贫困生认定资助量化模式克服了评定人员的主观偏差,其操作简单易行、结果客观公正,具有较好的适用和推广价值。
关键词:助学金;模糊评价法;评定;应用模型的建立通过数学模型的方法帮助解决贫困生等级评定问题,将贫困生等级评定问题由定性转化为定量以使贫困生等级界定易于区分、评定工作易于实施,使资助政策更好地落实,充分体现“公平、公开、公正”的原则。
基于此,贫困生等级的判定可归为两大问题,问题一是建立合理的数学模型,定量化求出因素集中每个因素的影响程度,即因子权重矩阵。
因子权重的计算可以使用层次分析法,但是在本文中涉及的数据较多,考虑到本题中数据数据量大,可以从中随机抽样,随机抽样所得的数据近似服从正态分布,然后对样本进行直觉法评定样本中的贫困生等级,评定结果主要是用模糊数学统计法计算因素集的隶属度,与最后贫困生等级综合评定无关。
《数值分析与科学计算概述》研究第一章对象描述一、数值分析与科学计算的概念科学计算即数值计算,科学计算是指应用计算机处理科学研究和工程技术中所遇到的数学计算。
在现代科学和工程技术中,经常会遇到大量复杂的数学计算问题,这些问题用一般的计算工具来解决非常困难,而用计算机来处理却非常容易。
科学计算是一门工具性、方法性、边缘性的学科,发展迅速,它与理论研究和科学实验成为现代科学发展的三种主要手段,它们相辅相成又互相独立,在实际应用中导出的数学模型其完备形式往往不能方便地求出精确解,于是只能转化为简化模型求其数值解,如将复杂的非线性模型忽略一些因素而简化为可以求出精确解的线性模型,但这样做往往不能满足近似程度的要求,因此使用数值方法直接求解做较少简化的模型,可以得到满足近似程度要求的结果,使科学计算发挥更大的作用。
自然科学规律通常用各种类型的数学方程式表达,科学计算的目的就是寻找这些方程式的数值解。
这种计算涉及庞大的运算量,简单的计算工具难以胜任。
在计算机出现之前,科学研究和工程设计主要依靠实验或试验提供数据,计算仅处于辅助地位。
计算机的迅速发展,使越来越多的复杂计算成为可能。
利用计算机进行科学计算带来了巨大的经济效益,同时也使科学技术本身发生了根本变化:传统的科学技术只包括理论和试验两个组成部分,使用计算机后,计算已成为同等重要的第三个组成部分。
数值分析也称计算方法,它与计算工具发展密切相关。
是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科,是数学的一个分支,它以数字计算机求解数学问题的理论和方法为研究对象。
为计算数学的主体部分。
在电子计算机出现以前,计算工具只有算盘,算图,算表和手摇及电动计算机。
计算方法只能计算规模较小的问题。
数值分析的任务是研究求解各类数学问题的数值方法和有关理论的学科。
数值分析的过程为构造算法、使用算法、分析算法。
数值分析是研究数值问题的算法,概括起来有四点:第一,面向计算机,要根据计算机的特点提供切实可行的计算方法。
关于数值分析课程教学改革的探讨【摘要】本文针对目前数值分析课程教学中存在的主要问题,围绕如何提高数值分析课程的教学水平和教学质量,从教学方法和教学手段等方面对该课程的教学改革进行了探讨。
提出了数值分析教学改革的观点:将数学建模融入到数值分析的教学中;创新教学手段,建设网络课程平台;改革考核方式等具体措施。
【关键词】数值分析教学改革教学方法数值分析又名计算方法,它主要研究运用计算机解决数学问题的理论和方法,是一门与计算机密切结合、实用性很强的数学课程。
通过本课程的学习,使学生能够熟练掌握各种常用数值算法的构造原理和分析理论,在提高计算机操作能力的同时,培养学生的逻辑思维能力,提高学生解决实际问题的能力,对学生后续课程的学习和今后进一步从事科学研究均具有现实意义。
但在实际教学中出现了学生学习兴趣不够高,教学效果不够理想等现象。
因此,如何提高数值分析课程的教学水平和教学质量是一个值得研究的课题。
本文针对数值分析课程的教学改革进行了一些有益的探讨。
一、高校数值分析教学中普遍存在的问题1.理论知识与实际应用脱节当前该课程的教学方式只是较多地注重计算公式的推导,收敛性、稳定性等定理的证明,实验课上也只是针对具体算法进行程序实现,导致很多学生虽然理论知识、公式掌握了不少,但却不知道这些公式应该用在什么地方、怎么用。
2.教学手段相对滞后数值分析是一门与现代科学技术密切相关的学科,该课程中经常会出现繁琐的算法公式推导、复杂数值误差的计算以及大量的数据处理。
凭一支粉笔和一块黑板的传统教学模式显然已不能适应现代的教学需求,不仅教师讲的累,学生听的更累,而且很难收到比较好的教学效果。
现代科学技术要求采用现代教学手段。
因此,我们必须对数值分析的教学手段进行创新,只有这样才能提高学生学习数值分析课程的积极性,从而达到较好的教学效果。
3.重理论,轻实验数值分析是一门实践性和应用性很强的课程,它要求学生在学习理论的同时,要能将学习到的理论内容加以实践,最简单的就是将相关的算法在计算机上加以实践和应用,因此上机实验是数值分析课程的一个重要环节。
基于ABAQUS软件的混凝土柱的有限元分析摘要:有限元法是工程分析中广泛应用的数值计算方法,由于它的通用性和有效性,受到工程技术界的高度重视。
ABAQUS 软件是国际上公认的最好的CAE大型通用分析软件之一。
本文对有限单元法进行简单介绍并采用ABAQUS软件分析一混凝土柱的受力问题。
关键词:ABAQUS,混凝土柱,有限元分析1 有限元理论概述1.1 有限元法基本思想有限元法的基本思想是将连续的求解区域离散为一组有限个、且按一定方式相互联结在一起的单元组合体。
由于单元能按不同的联结方式进行组合,且单元本身可以有不同形状,因此可以模型化几何形状复杂的求解区域。
有限元法作为数值分析方法的一个重要特点是利用在每一个单元内假设的近似函数,分片地表示全求解域上待求的未知场函数,单元内的近似函数通常由未知场函数或其导数在单元的各个节点的数值和其插值函数表达。
这样,一个问题的有限元分析中,未知场函数或其导数在各个节点上的数值就成为新的未知量(即自由度),从而使一个连续的无限自由度问题变成离散的有限自由度问题。
一经求解出这些未知量,就可通过插值函数计算出各个单元内场函数的近似值,从而得到整个求解域上的近似解。
显然,随着单元数目的增加,即单元尺寸的缩小,或者随着单元自由度的增加及插值函数精度的提高,解的近似程度将不断改进,如果单元是满足收敛要求的,近似解最后将收敛于精确解。
1.2 有限元法分类1.2.1 线弹性有限元法线弹性有限元法以理想弹性体为研究对象,所考虑的变形建立在小变形假设的基础上。
在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应变与位移也是线性关系。
线弹性有限元问题归结为求解线性方程组问题,所以只需要较少的计算时间。
如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。
线弹性有限元一般包括线弹性静力分析与线弹性动力分析两个主要内容。
学习这些内容需具备材料力学、弹性力学、结构力学、数值方法、矩阵代数、算法语言、振动力学、弹性动力学等方面的知识。
数值分析论文数值分析课程总结姓名:吴玉武学号:13121524 班级:数研1301目录第一章数值分析的历史背景 (2)1、背景 (2)2、发展历程 (3)第二章数值积分的主要方法 (3)1、牛顿-柯特斯求积公式 (3)2、梯形求积公式 (5)(1)梯形公式 (5)(2)复合梯形公式 (5)3、辛普森求积公式 (6)(1)辛普森公式 (6)(2)复合辛普森公式 (6)4、龙贝格求积公式 (6)(1)算法的基本思想 (6)(2)递推公式 (7)5、高斯求积公式 (7)(1)高斯型求积公式 (7)(2)常用的高斯型求积公式 (7)6、自适应求积方法 (8)7、振荡函数的积分方法 (8)8、奇异函数的积分 (9)(1)一个奇异点的函数 (9)(2)多个奇异点的函数积分方法10 第三章数值积分的应用 (10)第四章在学习过程中遇到的问题 (12)参考文献 (14)第一章 数值分析的历史背景 1、背景数值积分方法发展的前提是在17世纪以牛顿和莱布尼茨为首的一批数学家发展起来的微积分。
在最初的研究中,求解积分的方法便是找到求解原函数的方法,得到原函数,以此为基础解决其他问题。
但是在深入的研究中,逐渐发现一些函数的原函数求解极其困难,甚至无法表示出来,是超越函数,还有的根本没有原函数,比如对于延拓函数:sin ,0()1,0xx f x xx ⎧≠⎪=⎨⎪=⎩无法求出它的原函数,这时要求它的积分就无法使用牛顿-莱布尼茨公式了,解决积分的问题便受到阻碍。
这种情况下就需要寻求一种新的求积分的方法来解决这些问题了。
数值积分方法便在数学家们的需求下发展起来。
2、发展历程等距节点的多项式插值求积法的观点最早是1676年出现在Newton 给Leibniz 的一封信中。
1711年,Cotes在总结了牛顿的观点后,系统归纳了小于10个节点的插值求积方法,并发表了一篇相关论文。
1743年,Simpson发表他所研究的求积方法。
《常微分方程的数值解法》论文《常微分方程的数值解法》常微分方程(ODE)是研究物理过程的重要工具,其伴随着极大的应用价值。
当一个物理系统被简化为一个常微分方程,它就可以用于描述物理学中的各种现象。
但是,大多数现实系统的常微分方程未能得到解析解,因此,数值解法就变得非常重要。
本文将研究并比较几种常见的常微分方程数值解法,诸如Euler法、奇异点法、Runge-Kutta法、前向差分法等,以便更好地提供协助解决常微分方程。
首先,Euler法是常用的数值解法之一,它主要用于解决常微分方程模型。
其核心思想是将微分方程通过采用不断变化的步长对状态量求近似值,并通过预测下一步的值来求解微分方程,从而达到求解常微分方程的目的,且操作简单、容易理解。
但是,由于其步长的不动性,往往使得其精度较低,因此,当遇到复杂环境时,Euler法的表现就有些不尽如人意。
此外,另一种常见的数值解法是奇异点法。
此法将一个微分方程情况分解成多个分段函数,每一段函数都可以精确求解,从而可以求解复杂的微分方程。
它的特点是分段的每一部分的精度和复杂度都较低,而且运行效率也较快,但是,奇异点法的精度需要在段间合理设定,然后再进行微调,以保证数值模拟的准确性。
其次,Runge-Kutta法是一种常用的数值解法,它可以有效地求解一些常微分方程,其原理是利用积分函数插值,然后利用积分函数求近似值,最后根据边界条件求取解析结果。
Runge-Kutta法的步长可以随着计算过程的进行而逐步变化,这样可以使得误差得到有效控制,而且可以有效地控制误差,保证算法精度,但是由于其计算效率较低,因此在求解复杂的常微分方程时,Runge-Kutta法的表现并不尽人意。
最后,前向差分法是一种求解常微分方程的数值解法,它利用求取未知函数的一阶导数和二阶导数的值,然后通过求解一次和二次中点差分的方式,从而得到数值解。
它的有点是能够得到较高的精确度,且即使步长变化时也可以控制误差,但前向差分法要求在微分方程中必须有高阶导数,这就要求微分方程是复杂的,除此之外,除了必须计算高次导数外,它的计算量也比较大。
数值分析小论文线性方程组的直接解法线性方程组的直接解法是指通过一系列的代数运算直接求解线性方程组的解。
线性方程组是数值分析中非常重要的问题,广泛应用于工程、科学、计算机图形学等领域。
在线性方程组的直接解法中,最常用的方法是高斯消元法,它是一种基于矩阵变换的方法。
高斯消元法将线性方程组表示为增广矩阵,并通过一系列的行变换将增广矩阵转化为行阶梯形矩阵,从而得到方程组的解。
高斯消元法的主要步骤包括消元、回代和得到方程组的解。
消元是高斯消元法的第一步,通过一系列的行变换将增广矩阵的元素转化为上三角形式。
在消元过程中,我们首先找到主元素,即矩阵的对角线元素,然后将其它行的元素通过消元操作转化为0,从而使得矩阵逐步变成上三角形矩阵。
回代是高斯消元法的第二步,通过一系列的回代操作求解线性方程组。
回代操作是从上三角形矩阵的最后一行开始,通过依次求解每个未知数的值,最终得到方程组的解。
高斯消元法的优点是算法简单易于实现,可以在有限的步骤内求解线性方程组,适用于一般的线性方程组问题。
但是高斯消元法也存在一些问题,例如当矩阵的主元素为0时,无法进行消元操作,此时需要通过行交换操作来避免这种情况。
另外,高斯消元法对病态矩阵的求解效果较差,容易引起舍入误差累积,导致解的精度下降。
在实际应用中,为了提高求解线性方程组的效率和精度,人们常常使用一些改进的直接解法,例如列主元高斯消元法和LU分解法。
列主元高斯消元法通过选择最大主元来避免主元为0的情况,进一步提高了求解线性方程组的精度。
LU分解法将矩阵表示为两个矩阵的乘积,从而将线性方程组的求解问题转化为两个三角形矩阵的求解问题,提高了求解效率。
综上所述,线性方程组的直接解法是一种基于矩阵变换的方法,通过一系列的代数运算求解线性方程组的解。
高斯消元法是最常用的直接解法之一,它简单易于实现,适用于一般的线性方程组问题。
在实际应用中,可以通过改进的直接解法来进一步提高求解效率和精度。
数值分析论文_范文数值分析是研究如何利用计算机以数值方法解决实际问题的一门学科。
它涉及到一系列的算法和技术,用于近似求解数学问题。
本文将就数值分析的基本概念和应用进行讨论。
首先,数值分析涉及到数值计算技术的研究和开发。
数值计算是一种近似计算的方法,通过将问题转化为可以在计算机上求解的形式,来获得近似解。
数值计算涉及到各种技术和算法,例如数值积分、数值微分、线性系统的求解等等。
这些方法都是通过逐步逼近问题的精确解来得到近似结果的。
其次,数值分析的应用十分广泛。
数值分析的方法可以应用于物理学、工程学、经济学等各个领域。
例如,在物理学中,数值分析可以用于模拟和求解复杂的物理现象,如流体力学、量子力学等。
在工程学中,数值分析可以用于解决结构力学、电磁场分析等问题。
在经济学中,数值分析可以用于建立数学模型来预测市场变化、评估经济政策等。
数值分析也面临一些挑战和困难。
首先,数值分析的结果往往是近似解,而不是精确解。
这就需要仔细评估结果的误差和收敛性。
其次,数值分析的计算量通常很大,需要高性能计算机和合理的算法设计。
还有,数值分析的应用通常需要对实际问题进行建模和参数设定,这就需要领域知识和数学建模的技巧。
总之,数值分析是一门研究如何利用计算机以数值方法解决实际问题的学科。
它涉及到数值计算的技术和方法,并应用于物理学、工程学、经济学等各个领域。
数值分析的应用面临一些挑战和困难,但随着计算机技术的进步和算法的改进,数值分析在实际问题中发挥的作用越来越大。
纸浆模塑制品结构单元承载能力与缓冲性能数值分析*计宏伟1,王和敏2,陈金龙2(1. 天津商业大学包装工程系,天津,天津300134;2. 天津大学力学系,天津,天津300072)摘要:纸浆模塑包装制品的承载与缓冲功能是通过制品中各结构单元来实现的,结构单元的形态和几何尺寸直接影响整个制品的承载能力和缓冲性能。
应用ANSYS有限元软件分析了纸浆模塑结构单元在压缩载荷作用下的非线性变形特性和屈曲行为,给出了结构单元的临界载荷,由此确定了结构单元的临界承载力。
与此同时,计算分析了结构单元厚度变化对承载能力和缓冲性能的影响。
结果显示,随着结构单元壁厚的增加其承载能力也随之增加,但缓冲效果变弱,因此在纸浆模塑缓冲结构设计时必须平衡两者,针对不同包装要求调整纸浆模塑厚度,设计出满足不同承载要求且缓冲性能优良的包装结构。
关键词:纸浆模塑;结构单元;压缩屈曲;有限元中图分类号:TB482.2 文献标识码:ANUMERICAL ANALYSIS FOR LOAD-BEARING CAPACITY AND CUSHIONING PERFORMANCE OF STRUCTURAL UNIT OF MOLDEDPULP PRODUCT*JI Hong-wei1, WANG He-min2, CHEN Jin-long2(1. Dept. of Packaging Engineering, Tianjin Commerce University, Tianjin 300134, China; 2. Dept. of Mechanics, Tianjin University, Tianjin 300072, China) Abstract: The overall load-bearing capacity and cushioning function of a molded pulp packaging result from those of structural units. For each structural unit, its geometrical shape and dimensions can be identified to determine the performance of molded pulp product. The commercial code ANSYS was employed in the present study due to its high performance in non-linear analyses. The non-linear buckling behavior of the structural unit can be studied by numerical simulation, resulting in the bucking critical load under compression, to be used to evaluate the load-bearing capacity of the structural unit. In addition to the analyzing on load-bearing capacity, numerical simulations of the structural units are carried out to evaluate the influence of the wall thickness under static compressive loading. The research shows that the wall thickness significantly influences the buckling bearing capacity of the structural unit subjected to axial compression. With the increase of wall thickness, the bearing capacity of the structural unit increases while cushioning performance decreases. So both load-bearing capacity and cushioning performance must be compromised in the design of molded pulp cushioning packaging, and the wall thickness can be selected according to the required packaging performance.Key words: molded pulp; structural unit; compression buckling; finite element纸浆模塑是一种立体造纸技术产品。
蒙特卡洛方法及其应用蒙特卡洛方法是以概率和统计的理论、方法为基础的一种数值计算方法,将所求解的问题同一定的概率模型相联系,用计算机实现统计模拟或抽样,以获得问题的近似解,故又称随机抽样法或统计试验法。
方法分类:蒙特卡洛方法是一种数值计算方法。
其中它既可以作为随机模拟方法,通过一个合适的概率模型不断产生随机数序列来模拟过程。
自然界中有的过程本身就是随机的过程,物理现象中如粒子的衰变过程,粒子在介质中的输运过程等等。
当然蒙特卡洛方法也可以借助概率模型来解决不直接具有随机性的确定性问题。
即,通过数值求解一个个的粒子运动方程来模拟整个系统的行为。
如分子动力学方法以及原胞自动机方法等。
所以总的来说,大概分为两类:随机性问题和确定性问题。
基本算法:(1)构造或描述概率过程。
对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。
即要将不具有随机性质的问题转化为随机性质的问题。
(2)实现从已知概率分布抽样。
构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量,就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。
最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布。
随机数就是具有这种均匀分布的随机变量。
随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。
产生随机数的问题,就是从这个分布的抽样问题。
在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。
另一种方法是用数学递推公式产生。
这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。
不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。
数值分析结课论文论文题目:浅谈数值分析在解决实际问题中的应用学校:天津商业大学专业班级:数学类 1 0 0 3 班姓名:何铭学号:2 0 1 0 2 3 4 1摘要:数值分析是一门历史悠久的高等教育课程之一。
是其他数学课程与应用的根底。
同时它的应用也非常广泛,在经济生活以与科研教育领域都有应用。
随着科学技术和信息技术的飞速开展,通过计算机编程方面的开发应用,数值分析也被更加广泛的应用于学习和生活中,使得人们对数值分析有了更深刻的了解以与最全面的认识。
正文:数值分析的原理和方法在各学科中的应用越来越广泛,因此将原来的主要面向应用数学专业开设的数值分析面向理工科大学中数学要求较高的专业本科生。
同时由于科学与计算机的开展,计算机算法语言的多样化与数学软件的普与,要求数值分析更加强调算法原理与理论分析,而且参加了数学软件例如:MATLAB的学习以便学习与应用。
数值分析目前涵盖了四大板块:极限论、微分学、积分学、级数理论,使得数学分析对计算机、物理、化学、生物、电教、经济学等课程产生了直接而重要的影响。
另外,数学分析不仅在内容上为后继课程学习提供了必要的根底知识,而且它所蕴涵的分析数学思想、逻辑推理方法、解决问题的技巧,对于整个高等数学的学习与科学研究都起到基石和推波助澜的作用。
几十年来由于计算机与科学技术的快速开展,求解各种数学问题的数值方法也越来越多地应用于科学技术领域,新的计算性交叉学科分支不断涌现,如?:计算力学,计算物理,计算化学,计算生物学,计算经济学,统称科学计算,它涉与数学的各个分支,研究它们适合于计算机编程的算法就是计算数学的研究X畴。
计算数学是各种计算性学科的共性根底,兼有根底性、应用性和边缘性的数学学科。
科学计算开展迅速,它与理论研究和科学实验成为现代科学开展的三种主要手段,它们相辅相成又互相独立,在实际应用中导出的数学模型其完备形式往往不能方便地求出准确解,于是只能转化为简化模型求其数值解,如较复杂的非线性模型忽略一些因素而简化为可以求出准确解的线性模型,但这样做往往不能满足近似程度的要求,因此使用数值方法直接求解做较少简化的模型,可以得到满足近似程度要求的结果,使科学计算发挥更大的作用,这正是得益于计算机与计算数学的快速开展。
数值分析方法在实际问题中的应用摘要:数值分析方法是现代科学计算中常用的数值计算方法,其研究并解决数值问题的近似解,是数学理论与计算机同实际问题的有机结合;本文对拉格朗日插值法和数值积分法的基本原理做了简要阐述;从实际问题出发,分别探究了拉格朗日插值法在油罐储油量中的应用、数值积分法在预测森林伐量中的应用。
关键词:拉格朗日插值法、数值积分法、原理、应用1. 拉格朗日插值法原理介绍及应用拉格朗日插值法是一种多项式插值法,在很多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解。
如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值。
这样的多项式称为拉格朗日(插值)多项式。
1.1 拉格朗日插值多项式 (1)问题提出已知函数()y f x =在n+1个不同的点,,,01x x xn 上的函数值分别为01,,,n y y y , 求一个次数不超过n 的多项式()n P x , 使其满足()n i i P x y =,()0,1,,i n =即n+1个不同的点可以唯一决定一个n 次多项式。
(2)插值基函数过n+1个不同的点分别决定n+1个n 次插值基函数01(),(),,()n l x l x l x 。
每个插值基本多项式()i l x 满足:(i).()i l x 是n 次多项式;(ii).()1i i l x =,而在其它n 个()()0,i k l x k i =≠。
由于()()0,i k l x k i =≠,故()il x 有因子:011()()()()i i n x x x x x x x x -+----因其已经是n 次多项式,故而仅相差一个常数因子。
令:011()()()()()i i i n l x a x x x x x x x x -+=----由()1i i l x =,可以定出a ,进而得到:011011()()()()()()()()()i i n i i i i i i i n x x x x x x x x l x x x x x x x x x -+-+----=----,,(3)n 次拉格朗日型插值多项式()n P x()n P x 是n+1个n 次插值基本多项式01(),(),,()n l x l x l x 的线性组合,相应的组合系数是01,,,ny y y 。
曲线拟合的最小二乘法姓名:学号:专业:材料工程学院:材料科学与工程学院科目:数值分析曲线拟合的最小二乘法一、目的和意义在物理实验中经常要观测两个有函数关系的物理量。
根据两个量的许多组观测数据来确定它们的函数曲线,这就是实验数据处理中的曲线拟合问题。
这类问题通常有两种情况:一种是两个观测量x 与y 之间的函数形式已知,但一些参数未知,需要确定未知参数的最佳估计值;另一种是x 与y 之间的函数形式还不知道,需要找出它们之间的经验公式。
后一种情况常假设x 与y 之间的关系是一个待定的多项式,多项式系数就是待定的未知参数,从而可采用类似于前一种情况的处理方法。
在两个观测量中,往往总有一个量精度比另一个高得多,为简单起见把精度较高的观测量看作没有误差,并把这个观测量选作 x,而把所有的误差只认为是y的误差。
设 x 和 y 的函数关系由理论公式y=f(x;c1,c2,……cm)(0-0-1)给出,其中 c1,c2,……cm 是 m 个要通过实验确定的参数。
对于每组观测数据(xi,yi)i=1,2,……,N。
都对应于xy 平面上一个点。
若不存在测量误差,则这些数据点都准确落在理论曲线上。
只要选取 m 组测量值代入式(0-0-1),便得到方程组yi = f (x ;c1 ,c2 ,……cm)(0-0-2)式中 i=1,2,……,m.求 m 个方程的联立解即得 m 个参数的数值。
显然N<m 时,参数不能确定。
y 2 y 在 N>m 的情况下,式(0-0-2)成为矛盾方程组,不能直接用解方程的方法求得 m 个参数值,只能用曲线拟合的方法来处理。
设测量中不存在着系统误差,或者说已经修正,则 y 的观测值 yi 围绕着期望值 <f (x ;c1,c2,……cm)> 摆 动,其分布为正态分布,则 yi 的概率密度为p y i1 exp,式中i是分布的标准误差。
为简便起见,下面用 C 代表(c1,c2,……cm )。
数值分析期末总结论文一、课程概述数值分析是计算数学的重要分支,主要研究数值计算方法和算法,并通过计算机实现,解决实际问题中数字计算的相关难题。
本学期的数值分析课程主要介绍了数值计算中的数值误差、插值与逼近、数值积分与数值微分以及常微分方程的数值解法等内容。
二、知识点总结1. 数值误差在计算过程中,由于计算机系统的有限位数表示和处理能力的限制,导致数值计算结果与精确解之间存在误差。
数值误差主要包括截断误差和舍入误差。
我们学习了数值计算中的绝对误差和相对误差,并介绍了浮点数表示法和浮点数运算的原理。
另外,对于一些特殊函数,如指数函数和三角函数,我们还学习了它们的数值计算方法。
2. 插值与逼近在实际问题中,往往需要根据已知数据点,通过插值或逼近方法得到未知点的近似值。
我们学习了插值多项式的构造方法,包括拉格朗日插值和牛顿插值。
在逼近方法中,我们学习了最小二乘逼近原理,介绍了线性最小二乘逼近和非线性最小二乘逼近的相关概念和方法。
3. 数值积分与数值微分数值积分是计算定积分的近似值的方法。
我们学习了数值积分的基本概念和方法,包括梯形法则、辛普森法则和高斯积分法。
与数值积分相对应的是数值微分,它是计算导数的近似值的方法。
我们学习了差商公式和微分方程初值问题的数值解法。
4. 常微分方程的数值解法常微分方程是自然科学和工程技术领域中常见的数学模型。
我们学习了常微分方程数值解法的基本思想和方法,包括欧拉法、改进欧拉法、四阶龙格-库塔法等。
三、学习收获1. 理论知识:通过本学期的学习,我对数值分析领域的基本概念和方法有了更深入的理解。
掌握了数值计算中的数值误差分析方法,为后续计算准确性估计提供了基础。
了解并熟悉了插值与逼近方法,为解决实际问题提供了有效途径。
学习了数值积分与数值微分的基本原理和计算方法,提高了数值计算的准确性和效率。
初步了解了常微分方程的数值解法,为解决实际科学问题提供帮助。
2. 实践能力:通过编程实践,我得到了锻炼和提高。
各专业完整优秀毕业论文设计图纸AgGaSe2晶体的非线性光学数值分析物理与电子信息学院物理学(师范)专业2007级指导老师:摘要:。
根据非线性光学原理,较完整的对AgGaSe2晶体的光学震荡参数进行了数值分析,我们可以知道AgGaSe2晶体属于负单轴晶体,它是一种多功能晶体,它具有非线性光学性质,其非线性光学系数较大,而且能够实现非临界相位匹配,但由于这种晶体的抗激光损伤阈值较低,从而大大的减小了它的二次谐波发生的转换效率。
然后计算得到在一定的泵浦光波长下,AgGaSe2晶体的角度调谐曲线和在温度20℃时AgGaSe2晶体折射率色散关系图、允许失配角、有效长度。
其结果会对AgGaSe2光学参量研究具有一定参考价值。
关键字:AgGaSe2晶体;非线性光学;数据分析AgGaSe2 nonlinear optical crystal of numerical analysisLipinsiPhysical and electronic information college physics Grade 2007Instructor: zengtixianAbstract: According to nonlinear optics,and more complete numerical analysison to shock parameters Crystals of AgGaSe2 ,surely in this essay,AgGaSe2crystal is Negative uniaxial crystal. It is a multi-crystal. It has nonlinear optical properties, its large nonlinear optical coefficient, and to achieve non-critical phase matching, but because the crystals with lower resistance to laser damage threshold, and thus greatly decreasing the Er Ci it harmonic wave conversion efficiency occur.Then calculated the pump modulation in certain wavelengths AgGaSe2 crystals, the Angle of the temperature curve and attune AgGaSe2 crystal refractive index when 20 ℃, allowing dispersion relation graph supporting, effective length lost.the results of optical parameters of AgGaSe2 will have some reference value.Key words:AgGaSe2 crystals Nonlinear optical Data analysis目录摘要 (1)ABSTRACT (1)第一章绪论 (3)非线性光学的发展 (4)1.2AgGaSe2晶体的发展和应用 (4) (5)第二章AgGaSe2结构及物理属性 (5)晶体结构 (5)AgGaSe2AgGaSe物理属性 (8)2常用非线性光学晶体及其主要特性参数 (8)AgGaSe的基本特性参数 (10)2第三章AgGaSe2晶体的非线性光学参数分析 (12)非线性光学基础 (12)二阶非线性光学效应 (13)3.3非线性极化系数 (14)相位匹配及实现方法 (15)相位匹配角 (18) (21) (22)最优位相匹配 (23)参考文献 (24)致谢 (24)第一章绪论非线性光学是一门介于基础与应用之间的学科,随着实验与理论的深入,它几乎在所有的科学领域中都获得广泛的应用。
学习数值分析课程重要性研究内容摘要:学习《数值分析》是数学学习和应用中不可缺少的一部分,通过对此课程的学习可以更好的掌握数学方面的应用。
通过对数值计算中算法设计的技巧、插值法、解线性方程组的直接接法和迭代法的学习可以更好的了解数值分析在解决问题中的重要性。
关键字:开方求值;迭代法;高斯消去;拉格朗日插值1.导言《数值分析》是理工科院校应用数学、力学、物理、计算机软件等专业的学生必须掌握的一门重要的基础课程。
它是研究用计算机解决数学问题的数值方法及其理论.它既有纯数学高度抽象性与严密科学性的特点,又有应用的广泛性与实际实验的高度技术性的特点,是一门与计算机使用密切结合的实用性很强的数学课程.通过本课程的学习,能使学生熟练掌握各种常用的数值算法的构造原理和过程分析,提高算法设计和理论分析能力,并且能够根据实际问题建立数学模型,然后提出相应的数值计算方法,并能编出程序在计算机上算出结果,这既能为学生在理论学习方面以及在计算机上解决实际问题等方面打下良好的基础,同时又能培养学生的逻辑思维能力和提高数学推理能力。
2、数值应用举例2.1迭代法与开方求值迭代法是一种按同一公式重复计算逐次逼近真值的算法,是数值计算普遍使用的重要方法,以开方运算为例,它不是四则运算因此在计算机上求开方值就要转化为四则运算,使用的就是迭代法.假定0>a ,求a 等价于解方程02=-a x (2.1.1)这是方程求根问题,可用迭代法求解.现在用简单的方法构造迭代法,先给一个初始近似00>x , 令x x x ∆+=0, x ∆是一个校正量,称为增量,于是(2.1.1)式化为a x x =∆+20)(展开后略去高阶项2)(x ∆则得)(2100x x a x -≈∆ 于是1000)(21x x a x x x x =+≈∆+= 它是真值a x =的一个近似,重复以上过程可得迭代公式,2,1,0),(211=+=+k x a x x kk k (2.1.2) 它可逐次求得,,,21 x x 若*lim x x k k =∞→ 则,*a x =容易证明序列}{k x 对任何00>x 均收敛,且收敛很快. 迭代法(2.1.2)每次迭代只做一次除法,一次加法与一次移位(右移一位就是除以2),计算量很小.计算机中求a 用的就是该迭代法.无论在实用上或理论上,求解线性或非线性方程,迭代法都是重要的方法. 例1:用迭代法求3,取20=x解:若计算精确到610-,由(2.1.1)公式可求得,732051.1,732051.1,73214.1,75.14321====x x x x 计算停止。
课程论文任务书学生姓名指导教师论文题目数值分析课程设计论文内容(需明确列出研究的问题):本文主要描述运用数值分析的知识来解决数学研究问题中的计算问题,包括运用拉格朗日插值公式以及牛顿插值公式来根据观测点来构造一个反应函数的特征并计算未观测到点的函数值、运用最小二乘法确定系数以及列主元Gauss消去法求解方程组。
资料、数据、技术水平等方面的要求:论文要符合一般学术论文的写作规范,具备学术性、科学性和一定的创造性。
文字要流畅、语言要准确、论点要清楚、论据要准确、论证要完整、严密,有独立的观点和见解。
内容要理论联系实际,计算数据要求准确,涉及到他人的观点、统计数据或计算公式等要标明出处,结论要写的概括简短。
参考文献的书写按论文中引用的先后顺序连续编码。
发出任务书日期完成论文(设计)日期学科组或教研室意见(签字)院、系(系)主任意见(签字)目录【摘要】 (Ⅰ)【关键词】 (Ⅰ)Abstract (Ⅱ)Keywords (Ⅱ)一、插值问题与插值多项式 (1)(一)基础知识 (1)(二)题目: (2)(三)程序清单: (5)(四)实验结果分析: (7)二、最小二乘法 (7)(一)基础知识 (7)(二)题目: (8)(三)程序清单: (9)(四)实验结果分析: (10)三、列主元Gauss消去法 (11)(一)基础知识 (11)(二)题目 (12)(三)程序清单: (12)(四)实验结果分析: (13)四、实验心得: (14)Ⅱ数值分析课程设计【摘要】数值分析是研究各种数学问题求解的数值计算方法,是数学中计算数学分支的重要内容。
近几十年来,随着计算机的飞速发展,数值计算方法的学习与研究越来越离不开计算机。
实际计算中遇到的数值问题只有与计算机相结合,算法与程序密切联系,形成切实可靠的数值软件才能为社会创造更大的社会财富。
本文主要描述运用数值分析的知识来解决数学研究问题中的计算问题,包括运用拉格朗日插值公式以及牛顿插值公式来根据观测点来构造一个反应函数的特征并计算未观测到点的函数值、运用最小二乘法确定系数以及列主元Gauss消去法求解方程组。
题目:常微分方程数值解法在钢筋混凝土梁变形分析的应用算法:常微分方程数值解法组号:第9组组员:马宁涛邵鹏飞王丽君申陆林郭娜王倩聂广虎常微分方程数值解法在钢筋混凝土梁变形分析的应用邵鹏飞,马宁涛,申陆林,聂广虎(河南理工大学土木工程学院河南焦作454003)摘要:为了获得钢筋混凝土梁变形的规律,运用常微分方程数值解法,使用Matlab数值分析软件,根据实验数据对均布荷载集度在简支梁上不同位置所产生的弯矩值和挠度值的关系进行了函数分析,得出在保证梁的强度及其安全变形条件下,找到梁上最危险点,并提出了相关的措施建议。
结果表明:简支梁的位置中点处即为梁上最薄弱、危险位置。
这个规律可以有针对性的对钢筋混凝土梁进行加固处理提供理论依据,使梁具有更强的耐久性、抗拉及抗压性。
关键词:Matlab;材料力学;结构力学;数值分析;裂缝Using the Numerical Method for Ordinary Differential Equations to Distort the Analysis Application In the Simple Reinforced Concrete BeamShao Pengfei,Ma Ningtao,Shen Lulin,Nie Guanghu(School of Civil Engineering, Henan Polytechinc University, Jiaozuo, Henan, China, 454003) Abstract:In order to obtain the rule which the simple reinforced concrete beam distorts, using the numerical method for ordinary differential equations,and the Matlab numerical analysis software,having carried on the functional analysis to the relationship of bending moment value and amount of deflection value which is produced by equispaced load collection in the simple beam different position according to the experimental data,obtaining to find the most hazard point of the simple beam in guaranteeing the simple beam's intensity and the safe distortion condition,and statementing the related measure suggestions.The results indicate that the simple beam's center point position is the simple beam's weakest and most dangerous position. This rule can provide the theory basis to carry on reinforcement processing of the simple reinforced concrete beam that is target-oriented,causing the simple beam to have the stronger durability, tensile strength and compressive strength.Key words:Matlab;Materials mechanics;Structure mechanics;Numerical analysis;Crack 0.问题背景在土木工程学科结构工程研究设计领域的钢筋混凝土梁变形分析中,绘制内力图.寻找到危险点的位置是完成梁的截面设计或强度校核的关键环节,并对此危险点提出措施进行加固,防止梁发生破坏。
基于MATLAB曲线拟合对离散数据的处理和研究摘要:曲线拟合是数值分析中的一种普遍且重要的方法,求解拟合曲线的方法也有很多,这里主要介绍利用MATLAB曲线拟合工具箱对离散数据点做你和处理,并与利用最小二乘法求相应的拟合曲线的方法做对比,突出MATLAB曲线拟合工具箱的优点,并阐述了其适用的范围,最后通过利用MATLAB曲线拟合工具箱对实例中离散数据点的拟合来具体说明它的使用方法和优点。
关键字:数值分析;MATLAB;曲线拟合;最小二乘法一问题探究在很多的实际情况中,两个变量之间的关系往往很难用具体的表达式把它表示出来,通常只能通过实际测量得到一些互不相同的离散数据点,需需要利用这些已知的数据点估计出两个变量的关系或工件的具体轮廓,并要得到任意未知数据点的具体数据,这个过程就需要用到拟合或差值方法来实现,这里主要讨论拟合的方法。
曲线拟合可以通过MATLAB编程来完成,通常为了达到更好的讷河效果需要做多次重复修改,对于非线性曲线拟合还需要编写复杂的M-文件,运用MATLAB曲线拟合工具箱来实现离散数据点的曲线拟合是一种直观并且简洁的方法。
二曲线拟合的最小二乘法理论假设给定了一些数据点(Xi,Yi),人们总希望找到这样的近似的函数,它既能反映所给数据的一般趋势,又不会出现较大的偏差,并且要使构造的函数与被逼近函数在一个给定区间上的偏差满足某种要求。
这种思想就是所谓的“曲线拟合”的思想。
曲线拟合和差值不同,若要求通过所有给定的数据点是差值问题,若不要求曲线通过所有给定的数据点,而只要求反映对象整体的变化趋势,拟合问题,曲线拟合问题最常用的解决方法是线性最小二乘法[1],步骤如下:第一步:先选定一组函数r1(x),r2(x),…,rm(x),m<n,令:F(x)=a1 r1(x)+a2r2(x)+…+amrm(x)其中a1,a2,…,a m为待定系数。
第二步:确定的准则(最小二乘法准则):使n个点(x i,y i)与曲线y=f(x)的距离δi 的平方和最小。
记 J(a1,a2,…,a m)==]2=2问题归结为,求a1,a2,…,a m使J(a1,a2,…,a m)最小。
最小二乘法中如何选择数学模型很重要,用MATLAB解法曲线拟合问题通常有两种方法线性最小二乘法拟合和非线性最小二乘法拟合,对于两种方法的选择,要根据离散数据点位置关系来确定即首先将数据(Xi,Yi),i=1,2,…,n作图,通过直观判断确定。
线性最小二乘法通常是做多项式f(x)=a0+a1x1+…+a m x m拟合。
可利用已有的得程序a=ployval(x,y,m),其中m代表拟合多项式的次数。
多项式在x出y的值可用命令y=ployval(a,x)计算,做非线性最小二乘拟合时,应首先选择好适当的数学模型,如y=a,其中a,b为待定系数,此时可以把它转换成线性模型来计算,两边取对数得ln y=ln a +bx ,令Y=ln y ,记A=ln a ,于是有Y=A+bx ,求这个线性模型的最小二乘法问题。
另外一种方法就是直接采用非线性拟合问题函数lsqcurvefit 和lsqnonlin来计算,两个命令都要先建立M-文件fun.m ,在其中定义函数f(x), 但两者定义M-文件的方式有所不同。
这些问题同样可以用MATLAB拟合工具箱[2]来实现,并且操作比较简单,误差等参数也能一目了然的观察到。
三 MATLAB曲线拟合工具箱MATLAB曲线拟合工具箱界面[3]是一个可视化的图形界面,具有强大的图形你和功能,其中包括:(1)可视化的展开一个或者多个数据集,并可用三点图来表示;(2)用残差和置信区间可视化的估计拟合结果的好坏;(3)通过其他界面还可以实现许多其他功能:比如输出、查看和平滑数据:拟合数据,比较拟合曲线和数据集:从拟合曲线中排除特殊的数据点:选定区间后可以显示拟合曲线和数据集。
它把计算,可视化和程序设计融合到一个交互的环境,在此环境中,利用强大的数值计算和图形功能,可高效求解一些复杂的工程问题及实现计算结果的可视化。
用MATLAB曲线拟合工具箱对离散数据进行拟合时,可使用MATLAB内部的库函数或用户自定义的方程对参数变量进行多项式、指数、有理数等形式的数据拟合。
四 MATLAB曲线拟合工具箱的应用举例在实际中,产品和工件的轮廓形状很难找到一个具体的数学表达式,通常只能通过实验或数学计算得到一些离散点及其上的数值点,此时就需要选择合适的数学模型对其进行曲线拟合,做出它的拟合曲线,从而估计出它的实际形状。
下面通过一个例子说明一下用MATLAB 曲线拟合工具箱对离散数据点进行曲线拟合,并与一般的方法作比较。
例1,已知机翼下轮廓上的数据如下表所示:表1 机翼下轮廓数据机翼长(x)0 3 5 7 9 11 12 13 14 15机翼宽(y)0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.4 1.6用这些数据拟合轮廓形状。
(1)用多项式最小二乘法编程方法:(分别用3次和4次进行拟合)。
>> x=[0,3,5,7,9,11,12,13,14,15];>> y=[0,1.2,1.7,2.0,2.1,2.0,1.8,1.2,1.4,1.6];>> A=polyfit(x,y,3)A =0.0013 -0.0523 0.5913 -0.0483>> z=polyval(A,x);>> plot(x,y,'k+',x,z,'r')同样的方法可以得到4次多项式拟合曲线,3次和4次得拟合的图像分别为:图1 三次拟合曲线图2 四次拟合曲线拟合得到的多项式分别为:f(x)=0.0013x3-0.0523x2+0.5913x-0.0483F(x)=0.0004x4-0.0099x3+0.0544x2+0.2767x+0.0214(1)用MATLAB曲线拟合工具箱计算:>> x=[0,3,5,7,9,11,12,13,14,15];>> y=[0,1.2,1.7,2.0,2.1,2.0,1.8,1.2,1.4,1.6];>>cftool进入拟合工具箱界面,然后点击Data按钮,在数据栏选择x和y界面分别为:图3 曲线拟合工具箱界面图4 “Data”对话框单击Create data set 按钮,然后单击Close 返回拟合工具箱界面,再单击Fiting 按钮,先选择3次拟合方法,即在Type of fit 中选择Ploynomial,然后在下面的选项中选择cubicploynomial(图5),单击Apply 进行拟合得到图像(图6);以及结果:Linear model。
Poly3:f(x) = p1*x^3 + p2*x^2 + p3*x + p4Coefficients (with 95% confidence boundsp1 = 0.00128 (-0.0008073, 0.003367)p2 = -0.05227 (-0.1001, -0.004396)p3 = 0.5913 (0.2892, 0.8934)p4 = -0.0483 (-0.5768, 0.4802)Goodness of fit:SSE: 0.2948R-square: 0.9143Adjusted R-square: 0.8714RMSE: 0.2217。
图5 “Fiting”对话框图6 3次拟合曲线从结果中可以看出,拟合得到的多项式:f(x)=0.0128x3-0.05227x2+0.5913x-0.0483,以及它的误差平方和SSE为0.2948,相关系数平方和R-square为0.9143,根的均方差RMSE 为0.2217。
若需要进行4次拟合,只需要Fiting中的New fit中选择4次多项式拟合就可以得到4次拟合图像和结果:所得拟合多项式为:F(x)=0.0003661x4-0.009906x3+0.05438x2+0.2767x+0.02141.误差平方和为0.1801。
用这两种方法所得的结果基本相同,显然4次比三次的拟合效果要好,并且用拟合工具箱求解更为方便直观。
图7 3次和4次多项式拟合下面在举一个非线性拟合的例子。
例2 用非线性拟合[6]的方法对下列一组数据进行拟合:快速静脉注射下的血药浓度数据t(h) 0.25 0.5 1 1.5 2 3 4 6 8c(μg/ml) 19.2118.1515.3614.112.989.327.455.243.01根据数据特点,选却数学模型:c(t)=a,其中,a、b是待定系数。
(1)编写M-文件:function f=curvefunl(x,tdata)F=x(1)*exp(-x(2))*tdata输入程序:tdata=[0.25,0.5,1,1.5,2,3,4,6,8];<<cdata=[19.21,18.15,15.36,14.10,12.89,9.32,7.45,5.24,3.01];<<x0=[20,0.1];<<x0=[0.2,0.05,0..05];X=lsqcurvefit(‘curvefunl’,x0,tdata,cdata)f=curvefunl(x,tdata)x=20.2413 0.2420f=19.0532 17.93.48 15.8911 14.0802 12.4757 9.7945 7.6894 4.7394 2.9211即c(t)=20.2413。
(2)用拟合工具箱计算:输入程序:>> tdata=[0.25,0.5,1,1.5,2,3,4,6,8];>> cdata=[19.21,18.15,15.36,14.10,12.89,9.32,7.45,5.24,3.01];>> cftool(tdata,cdata)打开拟合工具箱,在数据栏里选择数据,根据数据点的分布,选择Custom Equations ,然后在Custom Equations 中设置函数:c(t)=a后进行拟合,所得图像为:图8 非线性拟合拟合结果为:C(t)=20.24,与lsqucuevefit()函数方法结果相同。
由此看出拟合工具箱首先可以画出数据点的散点图,便于选择模型;其次操作简便,省去了复杂的编程工作,再次,结果以图像的和数据两种方式给出,直观形象,并且结果中还给出了判断拟合好坏的参数。
五结论本文给出了求离散数据点拟合曲线的MATLAB曲线拟合工具箱的方法,并与通常使用的利用拟合函数编程方法相比较,发现利用曲线拟合工具箱拟合曲线更加简捷和直观,并且可视性效果很好。