初中数学应用题较难题及答案
- 格式:doc
- 大小:64.00 KB
- 文档页数:10
中考数学辅导之—应用题(相关中考题)应用题部分一、填空题1、含盐18%的盐水a千克中,含纯盐_____千克。
2、某种储蓄月利率是0.8%,存入100元本金后,本息和y(元)与所存月数x之间的函数关系式为_____。
3、某种商品的进货价为每件a元,零售价为每件1100元,若商店按零售价的80%降价销售,仍可获利10%(相对于进货价),则a=_____元。
4、某钢铁厂去年1月份的钢产量为3000吨,3月份上升到3630吨,那么这两个月平均每月增长的百分率是_____。
5、托运行李p千克(p为整数)的费用为c,已知托运第一个1千克需付2元,以后每增加1千克(不足1千克按1千克计)需增加费用0.5元,则计算托运行李费用c的公式是_____。
6、学校锅炉房存了m天用的煤a吨,要使储存的煤比预定的时间多用n天,平均每天应当节约煤_____吨。
7、一商店将每台彩电先按进价提高40%标出销售价,然后在广告中宣传将以80%的优惠价出售,结果每台彩电赚了300元,那么每台彩电的进价是_____元。
8、钢笔的原价为每支a元,降低20%后的价格是_____元。
9、某商场销售一批电视机,1月份每台毛利润是售出价的20%(毛利润=售出价-买入价),2月份该商场将每台售出价调低10%(买入价不变),结果销售台数比1月份增加120%,那么2月份的毛利润总额与1月份的毛利润总额之比是_____。
二、选择题1、某商店上月的营业额是a万元,本月比上月增长15%,那么本月的营业额是:A、(a+1)15%万元B、15%a万元C、(1+15%)a万元D、(1+15%)2a万元2、某钢铁厂去年1月某种钢产量为5000吨,3月上升到7200吨,设平均每月增长的百分率为x,根据题意,得:A、5000(1+x)+5000(1+x)2=7200B、5000(1+x2)=7200C、5000(1+x)2=7200D、5000+5000(1+x)+5000(1+x)2=72003、某食品连续两次涨价10%后价格是a元,那么原价是:A、a121.元 B、a⨯112.元 C a⨯092.元 D、a09.元4、某校办工厂今年1月份生产课桌500张,因管理不善,2月份产量减少了10%,从3月份起加强管理,产量逐月上升,4月份产量达到648张,则该厂3、4月份的平均增长率为:A、10%B、15%C、20%D、25%5、一商店把货物按标价九价出售,仍可获利20%,若该货物的进价为每件21元,则每件的标价应为:A、27.72元B、28元C、29.17元D、30元6、某家具的标价为132元,若降价9折出售(即优惠10%),仍可获利10%(相对于进货价),则该家具的进货价是:A、108元B、105元C、106元D、118元7、学校组织一组学生春游,预计共需费用120元,后来又有2人参加,费用不变,这样每人可少分摊3元,原来这组学生的人数是:A、8B、10C、12D、158、某商店选用每千克28元的甲种糖3千克,每千克20元的乙种糖2千克,每千克12元的丙种糖5千克,混合成杂拌糖后出售,则这种杂拌糖平均每千克售价是:A、18元B、18.4元C、19.6元D、20元9、有一项工程,甲单独做要a天完成,乙单独做要b天完成,那么甲、乙合作完成这项工程所需的天数是:A、a bab+B、aba b+C、1a b+D、a b+210、甲、乙两人分别从相距s千米的两地同时出发,若同向而行,则t1小时快者追上慢者,若相向而行,则t2小时后,两人相遇,那么快者的速度是慢者速度的:A、tt t212+倍 B、t tt122+倍 C、t tt t1212-+倍 D、t tt t1212+-倍11、甲、乙两人分别从A、B两地同时出发,相向而行,在点C相遇后,甲又经过t1小时到达B地,乙又经过t2小时到达A地,设AC=s1,BC=s2,则tt12等于:A、ss21B、ss2212C、ss12D、ss122212、某班举办了一次集邮展览,展出的邮票若每人3张,则多24张,若每人4张,则少26张,这个班共展出邮票张数是:A、174B、178C、168D、164三、解答题1、甲、乙两地相距300千米,一辆客车从甲地出发驶向乙地;经过45分钟后,一辆货车以每小时比客车快10千米的速度由乙地出发驶向甲地,两车刚好在甲、乙两地的中点相遇,分别求出两车的速度。
初中数学应用题1、随着经济的发展,尹进所在的公司每年都在元月一次性的提高员工当年的月工资。
尹进2008年的月工资为2000元,在2010年时他的月工资增加到2420元,他2011年的月工资按2008到2010年的月工资的平均增长率继续增长. (1)尹进2011年的月工资为多少?(2)尹进看了甲、乙两种工具书的单价,认为用自己2011年6月份的月工资刚好购买若干本甲种工具书和一些乙种工具书,当他拿着选定的这些工具书去付书款时,发现自己计算书款时把这两种工具书的单价弄对换了,故实际付款比2011年6月份的月工资少了242元,于是他用这242元(1?,x 1=(2.则由2、D 区入发现【(1(2D 区入D y , 增加的安检通道数量为k .依题意有⎪⎪⎪⎩⎪⎪⎪⎨⎧⨯⨯-⨯⨯+=+⨯-+⨯⨯-⨯⨯=⨯-+⨯⨯-⨯⨯⨯=⨯-+.6060)912(201)10(%)501(60)912(,6060)912(2011060)912(,6060)911(201)10(2.160)911(n k y x n y x n y x 8分 ① ② ③或者⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⨯-=⨯⨯++⨯-+⨯-=⨯⨯⨯-+⨯-=⨯⨯⨯-+.60)912(60201)10(%)501(60)912(,60)912(602011060)912(,60)911(602011260)911(n k y x n y x n y x ,每分钟到达y , 增设W 【数据收集】今年2月~5月玉米、猪肉价格统计表月 份2 3 4 5 玉米价格(元/500克)0.7 0.8 0.9 1 猪肉价格(元/500克)7.5 m6.25 6 【问题解决】(1)若今年3月的猪肉价格比上月下降的百分数与5月的猪肉价格比上月下降的百分数相等,求3月的猪肉价格m ;(2)若今年6月及以后月份,玉米价格增长的规律不变,而每月的猪肉价格按照5月的猪肉价格比上月下降的百分数继续下降,请你预测7月时是否要采取措施防止“猪贱伤农”;(3)若今年6月及以后月份,每月玉米价格增长率是当月猪肉价格增长率的2倍,而每月的猪肉价格增长率都为a ,则到7月时只用5.5元就可以买到500克猪肉和500克玉米.请你预测8月时是否要采取措施防止“猪贱伤农”.解:(1)由题意, 7.56 6.257.5 6.25m --= ,解得: m =7.2.(2),.4千克”光明电厂生产中每发一度电需用标准煤0.36千克,现有煤矸石和大同煤两种可选为生产实际(2)根据环保要求,光明电厂在大同煤中掺混煤矸石形成含热量为5 000大卡/千克的混合煤来燃烧发电,若使用这种混合煤比全部使用大同煤每发1 000度电的生产成本增加了5.04元,求表中a 的值.(生产成本=购煤费用+其它费用)解:(1)光明电厂生产1度电所用的大同煤为m 千克,而标准煤用量为0.36千克,由题意,得0.36×7 000=m ×6 000,解得 m =0.42(所列方程正确,※未叙述仍评8分)化简并整理,得 0.1008 a —0.0168 a 2=0.(也可以直接写出方程:2210000.504100004280() 5.0410001000a a a ⨯⨯⋅⨯⨯⨯-=⎡⎤⨯⎣⎦%(600+)+20%(150+)600+ )解得 a 1=6, a 2=0,(不合题意,应舍去)所以表中a 的值为6.。
初中七年级数学应用题(附解析)一.解答题(共28小题)1.已知a,b,c在数轴上的位置如图所示,且|a|=|c|.(1)比较a,﹣a,b,﹣b,c,﹣c的大小关系.(2)化简|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|.2.若三个数在数轴上的位置如图,化简|c﹣b|﹣|b﹣a|+|c﹣a|+|b|﹣2|c|.3.已知实数a,b满足|a|=b,|ab|+ab=0,化简|a|+|﹣2b|﹣|3b﹣2a|.4.2005﹣2004+2003﹣2002+2001﹣2000+…+3﹣2+1﹣.5.计算:+++…+.6.计算:1+2﹣3﹣4+5+6﹣7﹣8+…+2009+2010﹣2011﹣2012.7.已知3m+7与﹣10互为相反数,求m的值.8.已知1<x<2,试确定的值.9.阅读下面的文字,完成解答过程.(1)=1﹣,=﹣,=﹣,则=﹣,并且用含有n的式子表示发现的规律.(2)根据上述方法计算:+++…+.(3)根据(1),(2)的计算,我们可以猜测下列结论:=(﹣)(其中n,k均为正整数),并计算+++…+.10.①399×(﹣6);②﹣99×3;③﹣60×(3﹣+﹣).11.若|a|=2,|b|=5且|a+b|=a+b,求a﹣b的值.12.已知|x﹣1|=3,求﹣3|1+x|﹣|x|+5的值.13.出租车司机小李某天下午的营运全是在东西方向的人民大道上进行的,如果规定向东为正,那么他这天下午行车的里程如下:(单位:km)+15,﹣2,+5,﹣1.5,+10,﹣3.5,﹣2.3,+12.7,+4,﹣5,+8.(1)将最后一名乘客送到目的地时,小李行车的里程一共是多少?(2)若汽车的耗油量为0.25L/km,则这天下午小李共耗油多少L?14.如图,数轴上的三点A,B,C分别表示有理数a,b,c,化简|a﹣b|﹣|a+c|+|b﹣c|.15.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是7,(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|.(3)如果|x﹣2|=5,则x=7或﹣3.(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是﹣3、﹣2、﹣1、0、1.(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.16.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油1.5升,那么这辆货车此次送货共耗油多少升?17.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是﹣4,点P表示的数是6﹣6t(用含t的代数式表示);(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发.求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?18.一名足球守门员练习折返跑,从球门的位置出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)守门员是否回到了原来的位置?(2)守门员离开球门的位置最远是多少?(3)守门员一共走了多少路程?19.阅读下列材料并解决有关问题:我们知道|x|=,所以当x>0时,==1;当x<0时,==﹣1.现在我们可以用这个结论来解决下面问题:(1)已知a,b是有理数,当ab≠0时,+=±2或0;(2)已知a,b,c是有理数,当abc≠0时,++=±1或±3;(3)已知a,b,c是有理数,a+b+c=0,abc<0,则++=﹣1.20.已知如图,在数轴上有A,B两点,所表示的数分别为﹣10,﹣4,点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,如果设运动时间为t秒,解答下列问题:(1)运动前线段AB的长为6;运动1秒后线段AB的长为4;(2)运动t秒后,点A,点B运动的距离分别为5t和3t;(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t的值;若不存在,请说明理由.21.如图,数轴上有点a,b,c三点(1)用“<”将a,b,c连接起来.(2)b﹣a<1(填“<”“>”,“=”)22.如下图,一个点从数轴上的原点开始,先向右移动了3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2.已知点A、B是数轴上的点,完成下列各题:(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是4,A、B两点间的距离是7.(2)如果点A表示数是3,将点A向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是1,A、B两点间的距离是2.(3)一般地,如果点A表示数为a,将点A向右移动b个单位长度,再向左移动c个单位长度,那么请你猜想终点B表示的数是a+b﹣c,A、B两点间的距离是|b﹣c|.23.已知有理数a,b,c满足,求的值.24.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是﹣4;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是0;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.24.若a,b互为相反数,c,d互为倒数,|m|=2,求+m2﹣3cd的值.26.淮海中学图书馆上周借书记录如下:(超过100册记为正,少于100册记为负).星期一星期二星期三星期四星期五+230﹣17+6﹣12(1)上星期五借出多少册书?(2)上星期四比上星期三多借出几册?(3)上周平均每天借出几册?应用题答案一.解答题(共28小题)1.已知a,b,c在数轴上的位置如图所示,且|a|=|c|.(1)比较a,﹣a,b,﹣b,c,﹣c的大小关系.(2)化简|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|.【答案】见试题解答内容【分析】根据互为相反数的两数的几何意义:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等.在数轴上找出﹣a,﹣b,﹣c的对应点,依据a,b,c,﹣a,﹣b,﹣c在数轴上的位置比较大小.在此基础上化简给出的式子.【解答】解:(1)解法一:根据表示互为相反数的两个点在数轴上的关系,分别找出﹣a,﹣b,﹣c对应的点如图所示,由图上的位置关系可知﹣b>a=﹣c>﹣a=c>b.解法二:由图知,a>0,b<0,c<0且|a|=|c|=|b|,∴﹣b>a=﹣c>﹣a=c>b.(2)∵a>0,b<0,c<0,且|a|=|c|<|b|,∴a+b<0,a﹣b>0,b﹣c<0,a+c=0,∴|a+b|﹣|a﹣b|+|b+(﹣c)|+|a+c|=﹣(a+b)﹣(a﹣b)﹣(b﹣c)+0=﹣a﹣b﹣a+b﹣b+c=﹣2a﹣b+c.【点评】以上分别用两种不同的方法即几何方法和代数方法进行求解.通过比较,可以发现借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小有直观、简捷,举重若轻的优势.2.若三个数在数轴上的位置如图,化简|c﹣b|﹣|b﹣a|+|c﹣a|+|b|﹣2|c|.【答案】见试题解答内容【分析】根据a,b,c在数轴上的位置可知b<a<0<c,因而c﹣b>0,b﹣a<0,c﹣a>0.根据绝对值的意义,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.就可去掉题目中的绝对值号,从而化简.【解答】解:由数轴得,b<a<0<c,因而c﹣b>0,b﹣a<0,c﹣a>0.化简得|c﹣b|﹣|b﹣a|+|c﹣a|+|b|﹣2|c|=c﹣b﹣(a﹣b)+c﹣a﹣b﹣2c=﹣2a﹣b.【点评】本题考查了利用数轴比较两数大小的方法,右边的数总是大于左边的数,以及绝对值的意义.3.已知实数a,b满足|a|=b,|ab|+ab=0,化简|a|+|﹣2b|﹣|3b﹣2a|.【答案】见试题解答内容【分析】分清a,﹣2b,3b﹣2a三个数的正负性是解决本题的关键.已知实数a,b满足|a|=b,|ab|+ab=0,可得出b≥0,|ab|=﹣ab,则a≤0,b=﹣a.所以﹣2b<0,3b﹣2a>0,从而得出|a|+|﹣2b|﹣|3b﹣2a|的值.【解答】解:∵|a|=b,|a|≥0,∴b≥0,又∵|ab|+ab=0,∴|ab|=﹣ab,∵|ab|≥0,∴﹣ab≥0,∴ab≤0,即a≤0,∴a与b互为相反数,即b=﹣a.∴﹣2b≤0,3b﹣2a≥0,∴|a|+|﹣2b|﹣|3b﹣2a|=﹣a+2b﹣(3b﹣2a)=a﹣b=﹣2b或2a.【点评】此题主要考查了绝对值的定义,即正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0.4.2005﹣2004+2003﹣2002+2001﹣2000+…+3﹣2+1﹣.【答案】见试题解答内容【分析】把带分数分解成整数和分数两部分,分别进行运算,再根据加法结合律,使运算更加简便.【解答】解:原式=(2005+)﹣(2004+)+(2003+)﹣(2002+)+…+(1+)﹣=[(2005﹣2004)+(2003﹣2002)+(2001﹣2000)+…+(3﹣2)+1]+(﹣)×=1×+×1003=.【点评】把带分数分解成整数和分数两部分是简便运算的最好办法.5.计算:+++…+.【答案】见试题解答内容【分析】首先把每一个分数变形:,,…,然后可以前后抵消即可求出结果.【解答】解:原式=1﹣++…+=1﹣=.【点评】在做类似这类分数的加减运算时:注意利用分解分数来达到抵消的目的,从而简化计算.6.计算:1+2﹣3﹣4+5+6﹣7﹣8+…+2009+2010﹣2011﹣2012.【答案】见试题解答内容【分析】原式除去第一项与最后三项,四项四项结合,计算即可得到结果.【解答】解:原式=1+(2﹣3﹣4+5)+(6﹣7﹣8+9)+…+(2006﹣2007﹣2008+2009)+(2010﹣2011﹣2012)=1﹣2013=﹣2012.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.7.已知3m+7与﹣10互为相反数,求m的值.【答案】见试题解答内容【分析】根据互为相反数的和为零,可得关于m的方程,根据解方程,可得答案.【解答】解:由3m+7与﹣10互为相反数,得3m+7+(﹣10)=0.解得m=1,m的值为1.【点评】本题考查了相反数,利用互为相反数的和为零得出关于m的方程是解题关键.8.已知1<x<2,试确定的值.【答案】见试题解答内容【分析】根据x的取值范围,分别确定|x﹣2|,|x﹣1|,|x|的值,从而不难求解.【解答】解:∵1<x<2∴|x﹣2|=2﹣x,|x﹣1|=x﹣1,|x|=x∴=﹣+=﹣1﹣1+1=﹣1【点评】此题主要考查绝对值的性质,关键是确定|x﹣2|,|x﹣1|,|x|的值.9.阅读下面的文字,完成解答过程.(1)=1﹣,=﹣,=﹣,则=﹣,并且用含有n的式子表示发现的规律.(2)根据上述方法计算:+++…+.(3)根据(1),(2)的计算,我们可以猜测下列结论:=(﹣)(其中n,k均为正整数),并计算+++…+.【答案】见试题解答内容【分析】发现规律:(1)等式左边等于其分母上两因数的倒数之差;(2)首先计算每个分数的分母上两因数的倒数之差,再看其与该分数在数值上的区别,思考如何计算才能使二者相等;(3)受(2)的启发,完成猜测的结论.【解答】解:(1)﹣==﹣;(2)原式=(1﹣)+(﹣)+(﹣)+…+(﹣)=;(3)=(﹣).原式=×(1﹣)+×(﹣)+…+×(﹣)=.【点评】寻找与发现规律是解答本题的关键.10.①399×(﹣6);②﹣99×3;③﹣60×(3﹣+﹣).【答案】见试题解答内容【分析】①原式变形后,利用乘法分配律计算即可得到结果;②原式变形后,利用乘法分配律计算即可得到结果;③原式利用乘法分配律计算即可得到结果.【解答】解:①原式=(400+)×(﹣6)=﹣2400﹣=﹣2401;②原式=(﹣100+)×3=﹣300+=﹣299;③原式=﹣185+15﹣20+28=﹣162.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.11.若|a|=2,|b|=5且|a+b|=a+b,求a﹣b的值.【答案】见试题解答内容【分析】根据绝对值的意义,可求得a,b的值.同时又由|a+b|=a+b,可知a+b≥0.因此此题有两种情况.【解答】解:∵|a|=2,∴a=±2,∵|b|=5,∴b=±5,∵|a+b|=a+b∴a+b≥0,∴a=2,b=5或a=﹣2,b=5,∴a﹣b=﹣3或a﹣b=﹣7.【点评】既要理解绝对值的意义,又要会根据有理数的加减法法则由一个代数式的符号来判断字母的值.12.已知|x﹣1|=3,求﹣3|1+x|﹣|x|+5的值.【答案】见试题解答内容【分析】先利用绝对值的定义求出x的值,再代入求值即可.【解答】解:∵|x﹣1|=3,∴x=4或﹣2,①当x=4时,﹣3|1+x|﹣|x|+5=﹣15﹣4+5=﹣14,②当x=﹣2时,﹣3|1+x|﹣|x|+5=﹣3﹣2+5=0.【点评】本题主要考查了绝对值的定义,解题的关键是求出x的值.13.出租车司机小李某天下午的营运全是在东西方向的人民大道上进行的,如果规定向东为正,那么他这天下午行车的里程如下:(单位:km)+15,﹣2,+5,﹣1.5,+10,﹣3.5,﹣2.3,+12.7,+4,﹣5,+8.(1)将最后一名乘客送到目的地时,小李行车的里程一共是多少?(2)若汽车的耗油量为0.25L/km,则这天下午小李共耗油多少L?【答案】见试题解答内容【分析】(1)根据有理数的加法,可得答案;(2)根据单位耗油量乘以行驶路程,可得答案.【解答】解:(1)+15+|﹣2|+5+|﹣1.5|+10+|﹣3.5|+|﹣2.3|+12.7+4+|﹣5|+8=69(km),答:小李行车的里程一共是69千米;(2)69×0.25=17.25(L),答:这天下午小李共耗油17.25L.【点评】本题考查了正数和负数,利用有理数的加法是解题关键.14.如图,数轴上的三点A,B,C分别表示有理数a,b,c,化简|a﹣b|﹣|a+c|+|b﹣c|.【答案】见试题解答内容【分析】由数轴可知:c>0,a<b<0,所以可知:a﹣b<0,a+c<0,b﹣c<0.根据负数的绝对值是它的相反数可求值.【解答】解:由数轴得,c>0,a<b<0,因而a﹣b<0,a+c<0,b﹣c<0.∴原式=b﹣a+a+c+c﹣b=2c.【点评】此题主要是考查学生对数轴和绝对值的理解,学生要对这些概念性的东西牢固掌握.15.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是7,(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|.(3)如果|x﹣2|=5,则x=7或﹣3.(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是﹣3、﹣2、﹣1、0、1.(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【答案】见试题解答内容【分析】(1)根据距离公式即可解答;(2)利用距离公式求解即可;(3)利用绝对值求解即可;(4)利用绝对值及数轴求解即可;(5)根据绝对值的几何意义,即可解答.【解答】解:(1)数轴上表示5与﹣2两点之间的距离是|5﹣(﹣2)|=|5+2|=7,故答案为:7;(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|,故答案为:|x﹣2|;(3)∵|x﹣2|=5,∴x﹣2=5或x﹣2=﹣5,解得:x=7或x=﹣3,故答案为:7或﹣3;(4)∵|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,|x+3|+|x﹣1|=4,∴这样的整数有﹣3、﹣2、﹣1、0、1,故答案为:﹣3、﹣2、﹣1、0、1;(5)根据绝对值的几何意义可知当3≤x≤6时,有最小值是3.【点评】本题是一道去绝对值和数轴相联系的综合试题,考查了取绝对值的方法,取绝对值在数轴上的运用.难度较大.去绝对的关键是确定绝对值里面的数的正负性.16.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油1.5升,那么这辆货车此次送货共耗油多少升?【答案】见试题解答内容【分析】(1)根据已知,以百货大楼为原点,以向东为正方向,用1个单位长度表示1千米一辆货车从百货大楼出发,向东走了4千米,到达小明家,继续向东走了1.5千米到达小红家,然后西走了8.5千米,到达小刚家,最后返回百货大楼,则小明家、小红家和小刚家在数轴上的位置可知.(2)用小明家的坐标减去与小刚家的坐标即可.(3)这辆货车一共行走的路程,实际上就是4+1.5+8.5+3=17(千米),货车从出发到结束行程共耗油量=货车行驶每千米耗油量×货车行驶所走的总路程.【解答】解:(1)如图所示:(2)小明家与小刚家相距:4﹣(﹣3)=7(千米);(3)这辆货车此次送货共耗油:(4+1.5+8.5+3)×1.5=25.5(升).答:小明家与小刚家相距7千米,这辆货车此次送货共耗油25.5升.【点评】本题是一道典型的有理数混合运算的应用题,同学们一定要掌握能够将应用问题转化为有理数的混合运算的能力,数轴正是表示这一问题的最好工具.如工程问题、行程问题等都是这类.17.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是﹣4,点P表示的数是6﹣6t(用含t的代数式表示);(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发.求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?【答案】见试题解答内容【分析】(1)由已知得OA=6,则OB=AB﹣OA=4,因为点B在原点左边,从而写出数轴上点B所表示的数;动点P从点A出发,运动时间为t(t>0)秒,所以运动的单位长度为6t,因为沿数轴向左匀速运动,所以点P所表示的数是6﹣6t;(2)①点P运动t秒时追上点Q,由于点P要多运动10个单位才能追上点Q,则6t=10+4t,然后解方程得到t=5;②分两种情况:当点P运动a秒时,不超过Q,则10+4a﹣6a=8;超过Q,则10+4a+8=6a;由此求得答案解即可.【解答】解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为6t,∵动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣6t;(2)①点P运动t秒时追上点R,根据题意得6t=10+4t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+4a﹣6a=8,解得a=1;当P超过Q,则10+4a+8=6a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【点评】此题考查的知识点是两点间的距离及数轴,根据已知得出各线段之间的关系等量关系是解题关键.18.一名足球守门员练习折返跑,从球门的位置出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)守门员是否回到了原来的位置?(2)守门员离开球门的位置最远是多少?(3)守门员一共走了多少路程?【答案】见试题解答内容【分析】理解向前记作正数,返回记作负数,根据题目意思列出式子计算即可.【解答】解:根据题意得(1)5﹣3+10﹣8﹣6+12﹣10=0,故回到了原来的位置;(2)离开球门的位置分别是5米,2米,12米,4米,2米,10米,0米,∴离开球门的位置最远是12米;(3)总路程=|5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|=54米.【点评】本题考查的是有理数的加减混合运算,注意相反意义的量的理解.19.阅读下列材料并解决有关问题:我们知道|x|=,所以当x>0时,==1;当x<0时,==﹣1.现在我们可以用这个结论来解决下面问题:(1)已知a,b是有理数,当ab≠0时,+=±2或0;(2)已知a,b,c是有理数,当abc≠0时,++=±1或±3;(3)已知a,b,c是有理数,a+b+c=0,abc<0,则++=﹣1.【答案】见试题解答内容【分析】(1)分3种情况讨论即可求解;(2)分4种情况讨论即可求解;(3)根据已知得到b+c=﹣a,a+c=﹣b,a+b=﹣c,a、b、c两正一负,进一步计算即可求解.【解答】解:(1)已知a,b是有理数,当ab≠0时,①a<0,b<0,+=﹣1﹣1=﹣2;②a>0,b>0,+=1+1=2;③a、b异号,+=0.故+=±2或0;(2)已知a,b,c是有理数,当abc≠0时,①a<0,b<0,c<0,++=﹣1﹣1﹣1=﹣3;②a>0,b>0,c>0,++=1+1+1=3;③a、b、c两负一正,++=﹣1﹣1+1=﹣1;④a、b、c两正一负,++=﹣1+1+1=1.故++=±1或±3;(3)已知a,b,c是有理数,a+b+c=0,abc<0,则b+c=﹣a,a+c=﹣b,a+b=﹣c,a、b、c两正一负,则++═﹣﹣﹣=1﹣1﹣1=﹣1.故答案为:±2或0;±1或±3;﹣1.【点评】此题考查了有理数的除法,以及绝对值,熟练掌握运算法则是解本题的关键.20.已知如图,在数轴上有A,B两点,所表示的数分别为﹣10,﹣4,点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,如果设运动时间为t秒,解答下列问题:(1)运动前线段AB的长为6;运动1秒后线段AB的长为4;(2)运动t秒后,点A,点B运动的距离分别为5t和3t;(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t的值;若不存在,请说明理由.【答案】见试题解答内容【分析】(1)根据两点间距离公式计算即可;(2)根据路程=速度×时间,计算即可;(3)构建方程即可解决问题;(4)分两种情形构建方程解决问题;【解答】解:(1)AB=﹣4﹣(﹣10)=6,运动1秒后,A表示﹣5,B表示﹣1,∴AB=﹣1+5=4.故答案为6,4.(2)运动t秒后,点A,点B运动的距离分别为5t,3t,故答案为5t,3t.(3)由题意:(5﹣3)t=6,∴t=3.(4)由题意:6+3t﹣5t=5或5t﹣(6+3t)=5,解得t=或,∴t的值为或秒时,线段AB的长为5.【点评】本题考查数轴,一元一次方程等知识,解题的关键是熟练掌握基本知识,学会构建方程解决问题,属于中考常考题型.21.如图,数轴上有点a,b,c三点(1)用“<”将a,b,c连接起来.(2)b﹣a<1(填“<”“>”,“=”)(3)化简|c﹣b|﹣|c﹣a+1|+|a﹣1|【答案】见试题解答内容【分析】(1)比较有理数的大小可以利用数轴,它们从左到右的顺序,即从小到大的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);(2)先求出b﹣a的范围,再比较大小即可求解;(3)先计算绝对值,再合并同类项即可求解;(4)根据绝对值的性质以及题意即可求出答案.【解答】解:(1)根据数轴上的点得:c<a<b;(2)由题意得:b﹣a<1;(3)|c﹣b|﹣|c﹣a+1|+|a﹣1|=b﹣c﹣(a﹣c﹣1)+a﹣1=b﹣c﹣a+c+1+a﹣1=b;【点评】考查了数轴,通过比较,可以发现借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小有直观、简捷,举重若轻的优势.22.如下图,一个点从数轴上的原点开始,先向右移动了3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2.已知点A、B是数轴上的点,完成下列各题:(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是4,A、B两点间的距离是7.(2)如果点A表示数是3,将点A向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是1,A、B两点间的距离是2.(3)一般地,如果点A表示数为a,将点A向右移动b个单位长度,再向左移动c个单位长度,那么请你猜想终点B表示的数是a+b﹣c,A、B两点间的距离是|b﹣c|.【答案】见试题解答内容【分析】(1)(2)根据图形可直接的得出结论;(3)先求出B点表示的数,然后由数轴上两点间的距离公式:两点间的距离是两点所表示的数差的绝对值,计算即可.【解答】解:(1)由图可知,点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是4,A、B两点间的距离是|﹣3﹣4|=7;故答案为:4,7;(2)如果点A表示数3,将点A向左移动7个单位长度,则点A表示3﹣7=﹣4,再向右移动5个单位长度,那么终点B表示的数是﹣4+5=1,A、B两点间的距离是|3﹣1|=2;故答案为:1,2;(3)点A表示数为a,将点A向右移动b个单位长度,则点A表示a+b,再向左移动c个单位长度,那么终点B表示的数是a+b ﹣c,A、B两点间的距离是|a+b﹣c﹣a|=|b﹣c|.故答案为:a+b﹣c,|b﹣c|.【点评】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.23.已知有理数a,b,c满足,求的值.【答案】见试题解答内容【分析】根据可以看出,a,b,c中必有两正一负,从而可得出求的值.【解答】解:∵,∴a,b,c中必有两正一负,即abc之积为负,∴=﹣1.【点评】本题考查了有理数的乘法,注意从所给条件中获得有用信息,即a,b,c中必有两正一负.24.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是﹣4;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是0;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.【答案】见试题解答内容【分析】(1)根据数轴即可求解;(2)根据﹣4+点B运动的速度×t=经过t秒后点B表示的数,即可得出结论;(3)找出t秒后点A、B表示的数,分①点O为线段AB的中点,②当点B是线段OA的中点,③点A是线段OB的中点,根据中点坐标公式即可求出此时的t值.综上即可得出结论.【解答】解:(1)点B表示的数是﹣4;(2)2秒后点B表示的数是﹣4+2×2=0;(3)①当点O是线段AB的中点时,OB=OA,4﹣3t=2+t,解得t=0.5;②当点B是线段OA的中点时,OA=2OB,2+t=2(3t﹣4),解得t=2;③当点A是线段OB的中点时,OB=2 OA,3t﹣4=2(2+t),解得t=8.综上所述,符合条件的t的值是0.5,2或8.故答案为:﹣4;0.【点评】本题考查了一元一次方程的应用、数轴以及列代数式,解题的关键是:(2)根据路程=速度×时间结合点B初始位置找出经过t秒后点B表示的数;(3)分三种情况考虑.25.若a,b互为相反数,c,d互为倒数,|m|=2,求+m2﹣3cd的值.【答案】见试题解答内容【分析】根据互为相反数的两数之和为0,互为倒数的两数之积为1可得a+b=0,cd=1,代入可得出答案.【解答】解:由题意得:a+b=0,cd=1,m2=4,原式=m2﹣3=4﹣3=1.【点评】本题考查了倒数和相反数的知识,难度不大,注意细心运算.26.淮海中学图书馆上周借书记录如下:(超过100册记为正,少于100册记为负).星期一星期二星期三星期四星期五+230﹣17+6﹣12(1)上星期五借出多少册书?(2)上星期四比上星期三多借出几册?(3)上周平均每天借出几册?【答案】见试题解答内容【分析】(1)根据题意得出算式100+(﹣12),求出即可;(2)求出(+6)﹣(﹣17)的值即可;(3)求出+23、0、﹣17、+6、﹣12的平均数,再加上100即可.【解答】解:(1)100+(﹣12)=88(册),答:上星期五借出88册书;(2)[100+(+6)]﹣[100+(﹣17)]=23(册),答:上星期四比上星期三多借出23册;(3)100+[(+23)+0+(﹣17)+(+6)+(﹣12)]÷5=100(册),答:上周平均每天借出100册.【点评】本题考查了有理数的混合运算和正数、负数等知识点,解此题的关键是根据题意列出算式,题目比较典型.。
武汉中考数学22题专题-二次函数应用1.(2014?武汉四月调考)某工厂生产一种矩形材料板,其长宽之比为3:2.每张材料板的成本c(单位:元)与它的面积(单位:cm2)成正比例,每张材料板的销售价格y(单位:元)与其宽x之间满足我们学习过的三种函数(即一次函数、反比例函数和二次函数)关系中的一种.下表记录了该工厂生产、销售该材料板一些数据.材料板的宽x(单位:cm)24 30 42 54成本c(单位:元)96 150 294 486销售价格y(单位:元)780 900 1140 1380(1)求一张材料板的销售价格y与其宽x之间的函数关系式,不要求写出自变量的取值范围;(2)若一张材料板的利润w为销售价格y与成本c的差.①请直接写出一张材料板的利润w与其宽x之间的函数关系,不要求写出自变量的取值范围;②当材料板的宽为多少时,一张材料板的利润最大?最大利润是多少.2.(2001?安徽)某工厂生产的A种产品,它的成本是2元,售价是3元,年销量为100万件,为了获得更好的效益,厂家准备拿出一定的资金做广告;根据统计,每年投入的广告费是x(十万元),产品的年销量将是原销售量的y倍,且y是x的二次函数,它们的关系如表:x(十万元)0 1 2y 1 1.5 1.8(1)求y与x的函数关系式;(2)如果把利润看成销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x(十万元的函数关系式);(3)如果投入的年广告费为10万元~30万元,问广告费在什么范围内,工厂获得的利润最大?最大利润是多少?3.(2014?合肥模拟)某工厂共有10台机器,生产一种仪器元件,由于受生产能力和技术水平等因素限制,会产生一定数量的次品.每台机器产生的次品数p(千件)与每台机器的日产量x(千件)(生产条件要求4≤x≤12)之间变化关系如表:日产量x(千件/台)… 5 6 7 8 9 …次品数p(千件/台)…0.7 0.6 0.7 1 1.5 …已知每生产1千件合格的元件可以盈利 1.6千元,但没生产1千件次品将亏损0.4千元.(利润=盈利﹣亏损)(1)观察并分析表中p与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识求出p(千件)与x(千件)的函数解析式;(2)设该工厂每天生产这种元件所获得的利润为y(千元),试将y表示x的函数;并求当每台机器的日产量x(千件)为多少时所获得的利润最大,最大利润为多少?4.(2013?乌鲁木齐)某公司销售一种进价为20元/个的计算机,其销售量y(万个)与销售价格x(元/个)的变化如下表:价格x(元/个)…30 40 50 60 …销售量y(万个)… 5 4 3 2 …同时,销售过程中的其他开支(不含造价)总计40万元.(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.(2)求出该公司销售这种计算器的净得利润z(万个)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?5.(2013?沙市区三模)某公司准备购进一批产品进行销售,该产品的进货单价为6元/个.根据市场调查,得到了四组关于日销售量y(个)与销售单价x(元/个)的数据,如表x 10 12 14 16y 300 240 180 120(1)如果在一次函数、二次函数和反比例函数这三个函数模型中,选择一个来描述日销售量与销售单价之间的关系,你觉得哪个合适?并写出y与x之间的函数关系式(不要求写出自变量的取值范围)(2)按照(1)中的销售规律,请你推断,当销售单价定为17.5元/个时,日销售量为多少?此时,获得日销售利润是多少?(3)为了防范风险,该公司将日进货成本控制在900元(含900元)以内,按照(1)中的销售规律,要想获得的日销售利润最大,那么销售单价应定为多少?并求出此时的最大利润.6.(2012?新区二模)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:x(万元) 1 2 2.5 3 5y A(万元)0.4 0.8 1 1.2 2信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B= ax2+bx,且投资2万元时获利润 2.4万元,当投资4万元时,可获利润 3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?7.“哪里的民营经济发展得好,哪里的经济就越发达.”恒强科技公司在重庆市委市政府这一执政理念的鼓舞下,在已有高科技产品A产生利润的情况下,决定制定一个开发利用高科技产品B的10年发展规划,该规翘晦年的专项投资资金是50万元,在前五年,每年从专项资金中最多拿出25万元投入到产品A使它产生利润,剩下的资金全部用于产品B的研发.经测算,每年投入到产品A中x万元时产生的利润y1(万元)满足下表的关系x(万元)10 20 30 40y1(万元) 2 8 10 8从第六年年初开始,产品B已研发成功,在产品A继续产生利润的同时产品B也产生利润,每年投入到产品B 中x万元时产生的利润y2(万元)满足.(1)请观察题目中的表格,用所学过的一次函数、二次函数或反比例函数的相关知识,求出y1与x的函数关系式?(2)按照此发展规划,求前5年产品A产生的最大利润之和是多少万元?(3)后5年,专项资金全部投入到产品A、产品B使它们产生利润,求后5年产品A、产品B产生的最大利润之和是多少万元?8.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.而且物价部门规定这种产品的销售价不得高于28元/千克,通过市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)的变化如下表:销售价x(元/千克)21 23 25 27销售量w(千克)38 34 30 26设这种产品每天的销售利润为y(元).(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出w与x所满足的函数关系式,并求出y与x所满足的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)该农户想要每天获得150元的销售利润,销售价应定为多少元?9.某商品每件成本60元,试销阶段每件商品的销售价x(元)与商品的日销售量y(件)之间的关系如下表,其中日销售量y是销售价x的函数.x(元)50 60 65 70 …y (件)100 80 70 60 …(1)请判断这种函数是一次函数、反比例函数,还是二次函数?并求出函数解析式;(2)要使每日的销售利润最大,每件商品的销售价应定为多少元?此时每日销售利润是多少?(3)要使这种商品每日的销售利润不低于600元,且每件商品的利润率不得高于40%,那么该商品的销售价x应定为多少?请直接写出结果.10.某厂设计了一款成本为20元∕件的公益用品投放市场进行试销.经过调查,得到如下数据:销售单价x(元∕件)…30 40 50 60 …每天销售量y(件)…500 400 300 200 …(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的y与x的函数关系,并求出函数关系式.(2)当销售单价定为多少时,该厂试销该公益品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)当地民政部门规定,若该厂销售此公益品单价不低于成本价且不超过46元/件时,该厂每销售一件此公益品,国家就补贴该厂a元利润(a>4),公司通过销售记录发现,日销售利润随销售单价的增大而增大,求a的取值范围.11.(2011?南昌模拟)阅读下列文字2010年广州亚运会前夕某公司生产一种时令商品每件成本为20元,经市场发现该商品在未来40天内的日销售量为a件,与时间t天的关系如下表:时间t(天) 1 3 6 10 36 …日销售量a(件)94 90 84 76 24 …未来40天内,前20天每天的价格b(元/件)与时间t的关系为b=t+25(1≤t≤20),后20天每天价格为c(元/件)与时间t的关系式为c=﹣t+40(21≤t≤40)解得下列问题(1)分析表中的数据,用所学过的一次函数,二次函数,反比例函数知识确定一个满足这些数据的a与t的函数关系式;(2)请预测未来40天中哪一天日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中该公司决定销售一件就捐赠n元(n<4)利润给亚运会组委会,通过销售记录发现前20天中,每天扣除捐赠后利润随时间t的增大而增大,求n的取值范围.12.2009年11月4日,上海市人民政府新闻办宣布上海迪斯尼项目报告已获国家有关部门核准.相应的周边城市效应也随即带动,某周边城市计划开通至上海的磁悬浮列车,列车走完全程包含启动加速、均匀运行、制动减速三个阶段,已知磁悬浮列车从启动加速到稳定匀速运行共需200秒,在这段时间内的相关数据如表所示:时间 t(秒)0 50 100 150 200速度V(米/秒)0 30 60 90 120路程s(米)0 750 3000 6750 12000(1)请你在一次函数、二次函数和反比例函数中选择合适的函数来分别表示在加速阶段(0≤t≤200)速度v与时间t的函数关系,路程s与时间t的函数关系.(2)最新研究表明,此种列车的稳定运行速度可达180米/秒,为了检测稳定运行时各项指标,在列车达到这一速度后至少要运行100秒,才能收集全相关数据.若在加速过程中,路程、速度随时间的变化关系任然满足(1)中的函数关系式,并且制动减速所需路程与启动加速的路程相同,根据以上要求,至少要建多长的轨道才能满足实验检测要求?13.(2013?蕲春县模拟)今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如表:周数x 1 2 3 4价格y(元/千克) 2 2.2 2.4 2.6(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y与x的函数关系式;(2)进入5月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y(元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y与周数x的变化情况满足二次函数y=﹣x2+bx+c,请求出5月份y与x的函数关系式;(3)若4月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=x+1.2,5月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=x+2.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?14.(2014?宜兴市模拟)在气候对人类生存压力日趋加大的今天,发展低碳经济,全面实现低碳生活逐渐成为人们的共识,某企业采用技术革新,节能减排,今年前5个月二氧化碳排放量y(吨)与月份x(月)之间的关系如下表:月份x(月) 1 2 3 4 5 …二氧化碳排放量y(吨)48 46 44 42 40 …(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数关系能表示y和x的变化规律,请写出y与x的函数关系式;(2)随着二氧化碳排放量的减少,每排放一吨二氧化碳,企业相应获得的利润也有所提高,且相应获得的利润p(万元)与月份x(月)的函数关系如图所示,那么今年哪月份,该企业获得的月利润最大?最大月利润是多少万元?(3)受国家政策的鼓励,该企业决定从今年6月份起,每月二氧化碳排放量在上一个月的基础上都下降a%,与此同时,每排放一吨二氧化碳,企业相应获得的利润在上一个月的基础上都增加50%,要使今年6、7月份月利润的总和是今年5月份月利润的3倍,求a的值(精确到个位)(参考数据:,,,)15.(2010?安庆一模)某公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来4 0天内的日销售量m(件)与时间t(天)的关系如图.未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为(1≤t≤20,且t为整数),后20天每天的价格30元/件(21≤t≤40,且t为整数).下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程.公司通过销售记录发现,前20天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围.16.中央综治委在对全国各省市自治区2010年社会治安综合治理考评中,重庆市以93.48分居全国第一,成为全国最安全、最稳定的城市之一.市政府非常重视交巡警平台的建设,据统计,某行政区在去年前7个月内,交巡警平台的数量与月份之间的关系如下表:月份x(月) 1 2 3 4 5 6 7交巡警平台数量y1(个)32 34 36 38 40 42 44而由于部分地区陆续被划分到其它行政区,该行政区8至12月份交巡警平台数量y2(个)与月份x(月)之间存在如图所示的变化趋势:(1)请观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)2012年一月份,政府计划该区的交巡警平台数量比去年12份减少a%,在去年12月份的基础上每一个交巡警平台所需的资金量将增加0.1a%,某民营企业为表示对“平安重庆”的鼎力支持,决定在1月份对每个交巡警平台分别赞助30000元.若政府计划一月份用于交巡警平台的资金总额为126万元,请参考以下数据,估计a的整数值.(参考数据:872=7569,882=7744,892=7921)17.(2012?重庆模拟)樱桃含铁量位于各种水果之首,常食樱桃可促进血红蛋白再生,既可防治缺铁性贫血,又可增强体质,健脑益智.樱桃营养丰富,具有调中益气,健脾和胃,祛风湿,“令人好颜色,美志性”之功效,对食欲不振,消化不良,风湿身痛等症状均有益处,今年4月份,某樱桃种植基地种植的樱桃喜获丰收,4月1日至10日,销售价格y(元/千克)与天数x(天)(1≤x≤10且x为整数)的函数关系如下表:天数x 1 2 3 4 5 6 7 8 9 10市场价格y 19.5 19 18.5 18 17.5 17 16.5 16 15.5 15销售量z(千克)与天数x(天)(1≤x≤10且x为整数)之间存在如图所示的变化趋势;(1)请观察题中的表格,用所学过的一次函数,反比例函数或二次函数的有关知识,直接写出y与x之间的函数关系式,根据如图所示的变化趋势,直接写出z与x之间满足的一次函数关系式;(2)若采摘樱桃的人员费用m(元)与销售量z(千克)之间的函数关系式为:m=0.1z+100.则4月份前10天,哪天销售樱桃的利润最大,求出这个最大利润;(3)在(1)问的基础上,4月11日至4月12日,该樱桃种植基地调整了销售价格,每天都比前一天增加a%(0<a<20),在此影响下,销售量每天都比前一天减少100千克,若这两天销售樱桃的利润为80330元,请你参考以下数据,通过计算估算出整数值.(参考数据:742=5476,74.52=5550.25,752=5625)18.该厂生产了一种成本为20元∕个的小镜子投放市场进行试销.经过调查,得到如下数据:销售单价x(元∕个)…30 40 50 60 …每天销售量y(个)…500 400 300 200 …(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的y(个)与x(元∕个)之间的关系式;(2)当销售单价定为多少时,该厂试销这种镜子每天获得的总利润最大?最大利润是多少?(总利润=每个镜子的利润×销售量)参考答案与试题解析一.解答题(共18小题)1.(2014?武汉四月调考)某工厂生产一种矩形材料板,其长宽之比为3:2.每张材料板的成本c(单位:元)与它的面积(单位:cm2)成正比例,每张材料板的销售价格y(单位:元)与其宽x之间满足我们学习过的三种函数(即一次函数、反比例函数和二次函数)关系中的一种.下表记录了该工厂生产、销售该材料板一些数据.材料板的宽x(单位:cm)24 30 42 54成本c(单位:元)96 150 294 486销售价格y(单位:元)780 900 1140 1380(1)求一张材料板的销售价格y与其宽x之间的函数关系式,不要求写出自变量的取值范围;(2)若一张材料板的利润w为销售价格y与成本c的差.①请直接写出一张材料板的利润w与其宽x之间的函数关系,不要求写出自变量的取值范围;②当材料板的宽为多少时,一张材料板的利润最大?最大利润是多少.考点:二次函数的应用.分析:(1)根据图表可知所有点在一条直线上,故是一次函数;(2)①因为长宽之比为3:2,当宽为x时,则长为 1.5x,根据矩形的面积公式可得x和y的关系进而得到c和x的关系,所以一张材料板的利润w与其宽x之间的函数关系可求出;②利用①中的函数性质即可求出当材料板的宽为多少时,一张材料板的利润最大,以及最大利润是多少.解答:解:(1)根据表中的数据判断,销售价格y于宽x之间的函数关系不是反比例函数关系,假设是一次函数,设其解析式为y=kx+b,则24k+b=780,30k+b=900,解得:k=20,b=300,将x=42,y=1140和x=54,y=1380代入检验,满足条件所以其解析式为y=20x+300;(2)①∵矩形材料板,其长宽之比为3:2,∴当宽为x时,则长为 1.5x,∴w=yx?1.5x﹣x?1.5x=(20x+300)x?1.5x﹣x?1.5x,=﹣x2+20x+300;②由①可知:w=﹣x2+20x+300,=﹣(x﹣60)2+900,∴当材料板的宽为60cm时,一张材料板的利润最大,最大利润是900元.点评:本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=时取得.2.(2001?安徽)某工厂生产的A种产品,它的成本是2元,售价是3元,年销量为100万件,为了获得更好的效益,厂家准备拿出一定的资金做广告;根据统计,每年投入的广告费是x(十万元),产品的年销量将是原销售量的y倍,且y是x的二次函数,它们的关系如表:x(十万元)0 1 2y 1 1.5 1.8(1)求y与x的函数关系式;(2)如果把利润看成销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x(十万元的函数关系式);(3)如果投入的年广告费为10万元~30万元,问广告费在什么范围内,工厂获得的利润最大?最大利润是多少?考点:二次函数的应用.专题:压轴题.分析:(1)根据题意可求出y与x的二次函数关系式.(2)根据题意可知S=(3﹣2)×100y÷10﹣x=﹣x2+5x+10;(3)根据解析式求最值即可.解答:解:(1)设y与x的函数关系式为y=ax2+bx+c,由题意得:,解得:,∴y 与x 的函数关系式为:y=﹣0.1x 2+0.6x+1;(2)∵利润=销售总额减去成本费和广告费,∴S=(3﹣2)×100y ÷10﹣x=﹣x 2+5x+10;(3)S=﹣x 2+5x+10=﹣(x ﹣2.5)2+16.25,当x=2.5时,函数有最大值.所以x <2.5是函数的递增区间,由于1≤x ≤3,所以1≤x ≤2.5时,S 随x 的增大而增大.∴x=2.5时利润最大,最大利润为16.25(十万元).点评:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.要学会用二次函数解决实际问题.3.(2014?合肥模拟)某工厂共有10台机器,生产一种仪器元件,由于受生产能力和技术水平等因素限制,会产生一定数量的次品.每台机器产生的次品数p (千件)与每台机器的日产量x (千件)(生产条件要求4≤x ≤12)之间变化关系如表:日产量x (千件/台)… 5 6 7 8 9 …次品数p (千件/台)…0.7 0.6 0.7 1 1.5 …已知每生产1千件合格的元件可以盈利 1.6千元,但没生产1千件次品将亏损0.4千元.(利润=盈利﹣亏损)(1)观察并分析表中p 与x 之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识求出p(千件)与x (千件)的函数解析式;(2)设该工厂每天生产这种元件所获得的利润为y (千元),试将y 表示x 的函数;并求当每台机器的日产量x (千件)为多少时所获得的利润最大,最大利润为多少?考点:二次函数的应用.分析:(1)由表格中的数据可以看出p 与x 是二次函数关系,根据对称点找出顶点坐标(6,0.6),设出顶点式代入点求得函数即可;(2)根据实际利润=合格产品的盈利﹣生产次品的亏损将生产这种元件所获得的实际利润y (万元)表示为日产量x (万件)的函数;再进一步求得最值即可.解答:解:(1)根据表格中的数据可以得出:p 与x 是二次函数关系,且图象经过的顶点坐标为(6,0.6),设函数解析式为p=a (x ﹣6)2+0.6,把(8,1)代入,的4a+0.6=1解得a=0.1,所以函数解析式为p=0.1(x ﹣6)2+0.6=0.1x 2﹣1.2x+4.2;(2)y=10[1.6(x ﹣p )﹣0.4p]=16x ﹣20p =16x ﹣20(0.1x 2﹣1.2x+4.2)=﹣2x 2+40x ﹣84(4≤x ≤12)y=﹣2x 2+40x ﹣84 =﹣2(x ﹣10)2+116,∵4≤x ≤12∴当x=10时,y 取得最大值,最大利润为116千元答:当每台机器的日产量为10千件时,所获得的利润最大,最大利润为116千元.点评:此题考查的知识点是根据实际问题选择函数类型,熟练掌握二次函数的图象和性质是解答的关键.4.(2013?乌鲁木齐)某公司销售一种进价为20元/个的计算机,其销售量y (万个)与销售价格x (元/个)的变化如下表:价格x (元/个)…30 40 50 60 …销售量y (万个)… 5 4 3 2 …同时,销售过程中的其他开支(不含造价)总计40万元.(1)观察并分析表中的y 与x 之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y (万个)与x (元/个)的函数解析式.(2)求出该公司销售这种计算器的净得利润z (万个)与销售价格x (元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x (元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?考点:二次函数的应用.专题:压轴题.分析:(1)根据数据得出y与x是一次函数关系,进而利用待定系数法求一次函数解析式;(2)根据z=(x﹣20)y﹣40得出z与x的函数关系式,求出即可;(3)首先求出40=﹣(x﹣50)2+50时x的值,进而得出x(元/个)的取值范围.解答:解:(1)根据表格中数据可得出:y与x是一次函数关系,设解析式为:y=ax+b,则,解得:,故函数解析式为:y=﹣x+8;(2)根据题意得出:z=(x﹣20)y﹣40=(x﹣20)(﹣x+8)﹣40=﹣x2+10x﹣200,=﹣(x2﹣100x)﹣200=﹣[(x﹣50)2﹣2500]﹣200=﹣(x﹣50)2+50,故销售价格定为50元/个时净得利润最大,最大值是50万元.(3)当公司要求净得利润为40万元时,即﹣(x﹣50)2+50=40,解得:x1=40,x2=60.如上图,通过观察函数y=﹣(x﹣50)2+50的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:40≤x≤60.而y与x的函数关系式为:y=﹣x+8,y随x的增大而减少,因此,若还需考虑销售量尽可能大,销售价格应定为40元/个.点评:此题主要考查了二次函数的应用以及待定系数法求一次函数解析式、二次函数最值问题等知识,根据已知得出y与x的函数关系是解题关键.5.(2013?沙市区三模)某公司准备购进一批产品进行销售,该产品的进货单价为6元/个.根据市场调查,得到了四组关于日销售量y(个)与销售单价x(元/个)的数据,如表。
初中三角函数应用题10道(1)求步道AC 的长度(结果保留根号);(2)游客中心Q 在点A 的正东方向,步道AC 与步道BQ 交于点P 小明和爸爸分别从B 处和A 处同时出发去游客中心,小明跑步的速度是每分钟请计算说明爸爸的速度要达到每分钟多少米,他俩可同时到达游客中心.0.1)(参考数据:2 1.414≈,3 1.732≈,6 2.449≈)2.(2023春·重庆沙坪坝·九年级重庆八中校考阶段练习)下图是儿童游乐场里的一个娱乐项目转飞椅的简图,该设施上面有一个大圆盘(圆盘的半径是 3.5OA =米),圆盘离地面的高度1 6.5OO =米,且1OO ⊥地面l ,圆盘的圆周上等间距固定了一些长度相等的绳子,绳子的另一端系着椅子(将椅子看作一个点,比如图中的点B 和1B ),当旋转飞椅静止时绳子是竖直向下的,如图中的线段AB ,绳长为4.8米固定不变.当旋转飞椅启动时,圆盘开始旋转从而带动绳子和飞椅一起旋转,旋转速度越大,飞椅转得越高,当圆盘旋转速度达到最大时,飞椅也旋转到最高点,此时绳子与竖直方向所成的夹角为57α=︒.(参考数据:sin 570.84︒≈,cos570.55︒≈,tan 57 1.54︒≈)(1)求飞椅离地面的最大距离(结果保留一位小数);(2)根据有关部门要求,必须在娱乐设施周围安装安全围栏,而且任何时候围栏和飞椅的水平距离必须超过2米.已知该旋转飞椅左侧安装有围栏EF ,且EF l ⊥,19.8O E =米,请问圆盘最大旋转速度的设置是否合规?并说明理由.3.(2023春·重庆渝北·九年级校联考阶段练习)如图,某大楼的顶部竖有一块宣传牌AB ,小明在斜坡的坡脚D 处测得宣传牌底部B 的仰角为45︒,沿斜坡DE 向上走到E 处测得宣传牌顶部A 的仰角为31︒,已知斜坡DE 的坡度3:4,10DE =米,22DC =米,求宣传牌AB 的高度.(测角器的高度忽略不计,参考数据:sin 310.52︒≈,cos310.86︒≈,tan 310.6)︒≈。
初中七年级数学不等式应用题专项练习(含答案解析)1.两名教师和若干名学生要选择旅游公司。
甲公司的优惠条件是1名教师全额收费,其余7.5折收费;乙公司的优惠条件是全部师生8折收费。
要求求出学生人数超过多少人时,甲公司比乙公司更优惠。
2.老师说班级一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在学外语,还有不足6位学生在玩足球。
求班级学生总数。
3.某工程队要招聘甲、乙两种工人150人。
甲、乙两种工种的月工资分别为600元和1000元。
现要求乙种工种的人数不少于甲种工种人数的2倍。
问甲、乙两种工种各招聘多少人时,可使得每月所付工资最少?4.某商店以每辆300元的进价购入200辆自行车,并以每辆400元的价格销售。
两个月后自行车的销售款已超过这批自行车的进货款。
问这时至少已售出多少辆自行车?5.某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们。
如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本。
设该校买了m本课外读物,有x名学生获奖。
解答下列问题:(1)用含x的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数。
6.某果品公司要请汽车运输公司或火车货运站将60t水果从A地运到B地。
已知汽车和火车从A地到B地的运输路程都是Skm,两家运输单位除都要收取运输途中每吨每小时5元的冷藏费用外,其他收取的费用和有关运输资料由表列出。
求:(1)分别写出这两家运输单位运送这批水果所要收取的总费用y1元和y2元(用含S的式子表示);(2)为减少费用,当s=100km时,你认为果品公司应该选择哪一家运输单位更为合算?7.用甲、乙两种原料配制成某种果汁。
已知这两种原料的维生素C的含量及购买这两种原料的价格如表。
现制作这种果汁200kg,要求至少含有52,000单位的维生素C。
试写出所需甲种原料的质量x(kg)应满足的不等式。
2.如果要求购买甲、乙两种原料的费用不超过1800元,那么需要满足以下不等式。
初中数学竞赛:列方程解应用题在小学数学中介绍了应用题的算术解法及常见的典型应用题。
然而算术解法往往局限于从已知条件出发推出结论,不允许未知数参加计算,这样,对于较复杂的应用题,使用算术方法常常比较困难。
而用列方程的方法,未知数与已知数同样都是运算的对象,通过找出“未知”与“已知”之间的相等关系,即列出方程(或方程组),使问题得以解决。
所以对于应用题,列方程的方法往往比算术解法易于思考,易于求解。
列方程解应用题的一般步骤是:审题,设未知数,找出相等关系,列方程,解方程,检验作答。
其中列方程是关键的一步,其实质是将同一个量或等量用两种方式表达出来,而要建立这种相等关系必须对题目作细致分析,有些相等关系比较隐蔽,必要时要应用图表或图形进行直观分析。
一、列简易方程解应用题分析:欲求这个六位数,只要求出五位数x abcde =就可以了。
按题意,这个六位数的3倍等于1abcde 。
解:设五位数x abcde =,则六位数abcde 1x +=510,六位数1101+=x abcde , 从而有3(105+x )=10x+1,x =42857。
答:这个六位数为142857。
说明:这一解法的关键有两点: ⑴抓住相等关系:六位数abcde 1的3倍等于六位数1abcde ;⑵设未知数x :将六位数abcde 1与六位数1abcde 用含x 的数学式子表示出来,这里根据题目的特点,采用“整体”设元的方法很有特色。
(1)是善于分析问题中的已知数与未知数之间的数量关系;(2)是一般语言与数学的形式语言之间的相互关系转化。
因此,要提高列方程解应用题的能力,就应在这两方面下功夫。
例2有一队伍以1.4米/秒的速度行军,末尾有一通讯员因事要通知排头,于是以2.6米/秒的速度从末尾赶到排头并立即返回排尾,共用了10分50秒。
问:队伍有多长?分析:这是一道“追及又相遇”的问题,通讯员从末尾到排头是追及问题,他与排头所行路程差为队伍长;通讯员从排头返回排尾是相遇问题,他与排尾所行路程和为队伍长。
初中数学应用题及答案【篇一:初中数学练习题】题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.3的相反数是() a.?3b.3c.1 3d.?1 32.右图是由四个小正方体叠成的一个立体图形,那么它的俯视图是()a. b. c. d.3.据统计,2008年第一季度台州市国民生产总值约为41300000000元.数据41300000000用科学记数法可表示为()a.0.413?1011b.4.13?1011c.4.13?1010d.413?1084.一组数据9.5,9,8.5,8,7.5的极差是() a.0.5 b.8.5 c.2.5 d.2 5.不等式组??x?4?3?x≤1的解集在数轴上可表示为()a. b.c. d.6.如图,在菱形abcd中,对角线ac,bd相交于点o,e为ab的中点,(第6题)且oe?a,则菱形abcd的周长为()a.16a b.12a c.8a d.4a7.四川5?12大地震后,灾区急需帐篷.某企业急灾区所急,准备捐助甲、乙两种型号的帐篷共2000顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置9000人,设该企业捐助甲种帐篷x 顶、乙种帐篷y顶,那么下面列出的方程组中正确的是() a.? ?x?4y?20004x?y?9000?b.??x?4y?20006x?y?9000??x?y?2000?6x?4y?9000c.??x?y?2000?4x?6y?9000d.?8.下列命题中,正确的是()①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③90的圆周角所对的弦是直径;④不在同一条直线上的三个点确定一个圆;⑤同弧所对的圆周角相等 a.①②③ b.③④⑤c.①②⑤ d.②④⑤ 9.课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在()a.第3天 b.第4天(第9题)c.第5天 d.第6天10.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如......图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应......三角形(如图2)的对应点所具有的性质是() a.对应点连线与对称轴垂直b.对应点连线被对称轴平分 c.对应点连线被对称轴垂直平分d.对应点连线互相平行二、填空题(本题有6小题,每小题5分,共30分)??cb?c?图1(第10题)图2111.化简:(2x?4y)?2y?2212.因式分解:x?4?13.台州市某中学随机调查了部分九年级学生的年龄,并画出了这些学生的年龄分布统计图(如图),那么,从该校九年级中任抽一名学生,抽到学生的年龄是16岁的概(第13题)率是.14.如图,从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t(单位:秒)的函数关系式是h?9.8t?4.9t,那么小球运动中的最大高度2h最大?15.如图,四边形abcd,efgh,nhmc都是正方形,g 边长分别为a,b,c;a,b,n,e,f五点在同一直线上,a b 则c? (用含有a,b的代数式表示). a b n e f16.善于归纳和总结的小明发现,“数形结合”是初中数学的(第15题)基本思想方法,被广泛地应用在数学学习和解决问题中.用数量关系描述图形性质和用图形描述数量关系,往往会有新的发现.小明在研究垂直于直径的ex?弦的性质过程中(如图,直径ab?弦cd于e),设abe?y,,他用含x,y的式子表示图中的弦cd的长度,通过比较运动的弦cd 和与之垂直的直径ab的大小关系,发现了一个关于正数x,y的不等(第16题)式,你也能发现这个不等式吗?写出你发现的不等式.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分) 17.(1)计算:?2?23?tan45?(2)解方程:x1??2 x?22?x18.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△abo的三个顶点a,b,o都在格点上.(1)画出△abo绕点o逆时针旋转90后得到的三角形;(2)求△abo在上述旋转过程中所扫过的面积.19.如图,一次函数y?kx?b的图象与反比例函数y?点,直线ab 分别交x轴、y轴于d,c两点.(1)求上述反比例函数和一次函数的解析式;?(第18题)m,,b(2,n)两的图象交于a(?31)xad(2)求的值.cd20.在数学学习中,及时对知识进行归纳和整理是改善学习的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:一次函数与方程的关系1 (第20题)一次函数与不等式的关系(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:①;②;③;④;,3),那么不等式kx?b≥k1x?b1的解集是.(2)如果点c的坐标为(121.如图是某宾馆大厅到二楼的楼梯设计图,已知bc?6米,ab?9米,中间平台宽度de为2米,dm,en为平台的两根支柱,dm,en垂直于ab,垂足分别为m,n,?eab?30?,?cdf?45?.求dm和bc的水平距离bm.(精确到0.1?1.41?1.73)ced an m (第21题)b22.八年级(1)班开展了为期一周的“孝敬父母,帮做家务”社会活动,并根据学生帮家长做家务的时间来评价学生在活动中的表现,把结果划分成a,b,c,d,e五个等级.老师通过家长调查了全班50名学生在这次活动中帮父母做家务的时间,制作成如下的频数分布表和扇形统计图.学生帮父母做家务活动时间频数分布表帮助父母做家务时间频数等级学生帮父母做家务活动评价(小时)等级分布扇形统计图a 2.5≤t?3 2b c d e2≤t?2.5 1.5≤t?2 1≤t?1.5 0.5≤t?110db c ab 3(第22题)(1)求a,b的值;(2)根据频数分布表估计该班学生在这次社会活动中帮父母做家务的平均时间;(3)该班的小明同学这一周帮父母做家务2小时,他认为自己帮父母做家务的时间比班级里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计量说明理由.23.cd经过?bca顶点c的一条直线,ca?cb.e,f分别是直线cd 上两点,且?bec??cfa???.(1)若直线cd经过?bca的内部,且e,f在射线cd上,请解决下面两个问题:①如图1,若?bca?90,???90,则be cf;efe?a(填“?”,“?”或“?”);②如图2,若0??bca?180,请添加一个关于??与?bca关系的条件,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线cd经过?bca的外部,????bca,请提出ef,be,af三条线段数量关系的合理猜想(不要求证明).b bfda (图1)a(图2)(第3题)da????(图3)【篇二:初中数学经典试题及答案(初三复习资料)】、选择题:1、图(二)中有四条互相不平行的直线l1、l2、l3、l4所截出的七个角。
初一数学一元一次不等式应用题列方程组解应用题常用的问题:①行程问题:行程=速度×时间②工程问题:工作量=工作效率×工作时间③浓度问题:溶质的溶量=溶液的质量×浓度浓度溶液的质量④存款问题:本息和=本金+利息利息=本金×利率×期数⑤调配问题⑥方案设计及最佳方案选择问题等⑦利润问题:利润=售价-进价【典型例题】(一)题中含一个未知量,结果求一个未知量例1:某数的2倍加上5不大于这个数的3倍减去4,那么该数的范围是?分析:此题中只有一个未知量既某数,可设此未知量根据题意列不等式。
解:设这个数为x 2x+5<=3x-4解得:x>=9 所以此数小于9。
例2:一个长方形足球场的长为X米,宽为70米,如果它的周长大于350米,面积小于7560平方米,求X的取值范围,并判断这个球场是否可以作为国际足球比赛(注:用于国际比赛的足球场的长在100至110米之间,宽在64至75米之间。
)解:2(70+x)>350 70x<7560 解得:105<x<108所以x范围是105到108,可做国际比赛的足球场(二)题中含多个未知量,求一个或多个未知量例3:一次考试共有25道选择题,做对一题得4分,做错一题或不做减2分,若小明想确保考试成绩在60分以上,那么,他至少做对X题,应满足的不等式是什么?分析:此题有两个未知量,既做对的题和不做做错的题,可设其中一个量,用这个量表示另一个量;解:设作对x到题,则做错或不做(25-x)到题所以可列不等式为: 4x-2(25-x)>=60 解得:x>=55/3所以x至少为19例4:有三个连续自然数,它们的和小于15,问这样的自然数有几组它们分别是多少?分析;三个自然数都是未知量,但它们之间有联系,可设其中一个,用它们之间联系表示另两个;解:设最小的一个为x,则另两个为(x+1),(x+2) x+(x+1)+(x+2)<15x<4 x可为0,1,2,3所以这样的自然数有4组,它们分别是012,123,234,3451、某宾馆一楼房间比二楼房间少5间,一旅游团有48人,若全部安排在1楼,每间住4人,房间不够,每间住5人,有房间没住满,若全部安排在二楼,每间住3人,房间不够,每间住4人,则房间没住满,问宾馆一楼有多少房间?解:设宾馆一楼有X个房间,则二楼房间为X+5间旅游团有48人,若全部安排在1楼,每间住4人,房间不够,每间住5人,有房间没住满,所以48/5<X<48/4 9.6<X<12全部安排在二楼,每间住3人,房间不够,每间住4人,则房间没住满所以48/4<X+5<48/3 12<X+5<16 7<X<11 所以X=10宾馆一楼有10个房间2、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
初二数学应用题及答案【篇一:八年级数学试题及答案】txt>一. 选择题(每小题有四个选项,其中只有一个是正确的,请把正确选项的序号填在下表中的相应位置,每小题2分,共20分)1.下列式子不属于分式方程的是 a.12xx1x?12x?115??2 b.? c.?1?d.?x? x?1x?1x?1232x2x2y22.化简-的结果是a.-x-y b. y-xc.x-yd. x+y y?xy?x3.已知反比例函数的图象经过点p(-2,1),则这个函数的图象位于a.第一、三象限b.第二、三象限c.第二、四象限d.第三、四象限4.一组数28,29.4,31.9,27,28.8,34.1,29.4的中位数,众数,极差分别是a.29.4,29.4,2.5b.29.4,29.4,7.1c.27,29,4.7d.28.8,28,2.55.直角三角形的斜边长为10,一直角边长是另一直角边长的3倍,则直角三角形的面积为a.12b.13c.14d.15 6.如图,已知四边形abcd是平行四边形,下列结论中不正确的是a.当ab=bc时,它是菱形b.当ac⊥bd时,它是菱形8.在四边形abcd中,o是对角线的交点,能判定这个四边形是正方形的条件是a.ac=bd,ad//cd;b.ad∥bc,∠a=∠c;c.ao=bo=oc=do; d.ao=co=bo=do,ab=bc9.已知函数y=kx中,y随x的增大而增大,那么函数y=d k的图像大致是 x10.为响应承办“绿色奥运”的号召,八年级(1)班全体师生义务植树300棵.原计划每小时植树x棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是a.30020300?? x601.2x b.30030030030020??20 c.??x1.2xxx?1.2x60d.30030020?? x1.2x60二、填空题(每小题3分,共24分)5x?3有意义; 4x?52212.已知x?12??y?13?与z?10z?25互为相反数,则以x、y、z 为边的三角形是(填“直角”、11.x_______时,分式“等腰”、“任意”)13.对甲、乙两台机床生产的零件进行抽样测量,其平均数、方差计算结果如下:22机床甲:甲=10,s甲=0.02;机床乙:乙=10,s乙=0.06,由此可知:_______(填甲或乙)机床性能好.k与直线y=-kx的交点的个数是 xxx?1?2与15.当x? 时,互为相反数. x?5x14.当k0时,双曲线y? 16.如图,e、f是对角线bd上的两点,请你添加一个适当的条件:______?使四边形aecf是平行四边形.17.如图,正方形abcd中,ab=1,点p是对角线ac上的一点,分别以ap、pc?为对角线作正方形,则两个小正方形的周长的和是________.18.某人要登上6m高的建筑物,为确保安全,梯子底端要离开建筑物2.5m,且顶端不低于建筑物顶部,则梯子长应不少于m。
列方程解应用题百题-学生练习一、多位数的表示1、有一个三位数,百位上的数字是1,若把1放在最后一位上,而另两个数字的顺序不变,则所得的新数比原数大234,求原三位数。
解:(多位数表示) 设后两位数(即十位与个数)为x ,100+x+234=10x+12、一个三位数,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字的3倍少2.若将三个数字顺序倒过来,所得的三位数与原三位数的和是1171,求这个三位数。
解:(多位数表示)设十位数字为x,则百位数字为x+1,个位数字为3x-2100(x+1)+10x+3x-2+100(3x-2)+10(x+1)+x=11713、有大小两个两位数,在大数的右边写上一个0后写上小的数,得到一个五位数,又在小数的右边写上大数,然后再写上一个零,也得到一个五位数,第一个五位数除第二个五位数得到的商为2,余数为599,此外,大数的2倍与小数3倍的和为72,求这两个两位数。
解:(多位数表示)设大的两位数为x ,小的两位数为y大○小y x +⇒1000, 小大○x y 101000+⇒∴⎩⎨⎧=+++=+7232599)101000(21000y x x y y x 4、有一个三位数,各数位上的数字的和是15,个位数字与百位数字的差是5,如果颠倒各数位的数字顺序,则所用到的新数比原数的3倍少39,求这个三位数。
解:(多位数表示) 百 十 个X+5 10-2x x原数=100(x+5)+10(10-2x)+x , 新数=100x+10(10-2x)+x+5∴3[100(x+5)+10(10-2x)+x]-39=100x+10(10-2x)+x+55、两个三位数,它们的和加1得1000,如果把较大的数放在小数的左边,点一个小数点在两数之间所成的数,正好等于把小数放在大数的左边,中间点一个小数点所成的数的6倍,求两个三位数。
解:(多位数表示+已知和)设大三位数=x ,小三位数为999- x.9991000x x -•=+大小 999-1000x x •=+小大 9996(999)10001000x x x x -∴+=-+ 6、一个两位数,个位上的数字比十位上的数字大5,且个位上的数字与十位上的数字的和比这个两位数的大6,求这个两位数。
初中数学易错应用题
以下是一些初中数学中常见的易错应用题:
1. 小明用每小时8千米的速度行走,他走了3小时后,速度提升到每小时10千米,再走3小时,速度又提升到每小时12千米。
问他总共走了多少千米?
2. 一辆汽车从A城开往B城,全程需要行驶10小时。
在行驶了3小时后发现速度比原来慢了20公里/小时,结果多用了1小时才到达目的地。
问原来设定的速度是多少?
3. 一列火车通过一座长2700米的桥需要35秒,用同样的速度通过一条长3500米的隧道要45秒,求这列火车的速度和车长?
4. 一本书的页码是连续的自然数:1,2,3,4,\ldots,当将这些页码加起来的时候,某个页码加了两次,得到不正确的结果2009,则正确的结果应该是多少?
5. 一辆汽车从甲地开往乙地,如果把车速提高20%,则可提前到达;如果以原速行驶100千米后,再将速度提高30%,恰巧也可以提前同样的时间到达。
甲、乙两地相距多少千米?
希望同学们在解决这类问题时能更加细心、深入理解问题本质,以避免不必要的错误。
初中数学应用题较难题及答案问题1:某车间原计划每周装配36 台机床,预计若干周完成任务。
在装配了三分之一以后,改进操作技术,工效提高了一倍,结果提前一周半完成了任务. 求这次任务需要装配机床总台数.问题2:《个人所得税法》规定,公民每月工资不超过1600 元,不需要交税,超过1600 元的部分为全月应纳税所得额,但根据超过部分的多少按不同的税率交税,税表如下:全月应纳税所得额税率不超过500 元部分5% 500 元至2000 元部分10% 2000 元至5000 元部分15% 某人 3 月份应纳税款为117.10 元,求他当月的工资是多少?答案:问题1:162 台问题2:3021 元数字问题:1、一个两位数,十位上的数比个位上的数小1。
十位上的数与个位上的数的和是这个两位数的,求这个两位数。
2、一个两位数,个位上的数与十位上的数的和为7,如果把十位与个位的数对调。
那么所得的两位数比原两位数大9。
求原来的两位数。
3、一个两位数的十位上的数比个位上的数小1,如十位上的数扩大4 倍,个位上的数减2,那么所得的两位数比原数大58,求原来的两位数,4、一个五位数,如果将第一位上的数移动到最后一位得到一个新的五位数(例如:此变换可以由4321 得到3214),新的五位数比原来的数小11106,求原来的五位数。
5、某考生的准考证号码是一个四位数,它的千位数是一;如果把1 移到个位上去,那么所得的新数比原数的 5 倍少49,这个考生的准考证号码是多少?年龄问题:1、姐姐 4 年前的年龄是妹妹的 2 倍,今年年龄是妹妹的 1.5 倍,求姐姐今年的年龄。
2、1992 年,妈妈52 岁,儿子25 岁,哪一年妈妈的年龄是儿子的4 倍.3、爸爸和女儿两人岁数加起来是91 岁,当爸爸岁数是女儿现在岁数两倍的时候,女儿岁数是爸爸现在岁数的,那么爸爸现在的年龄是多少岁,女儿现在年龄是多少岁.4、甲、乙两人共63 岁,当甲是乙现在年龄一半时,乙当时的年龄是甲现在的岁数,那么甲多少岁,乙多少岁.5、父亲与儿子的年龄和是66 岁,父亲的年龄比儿子的年龄的3 倍少10 岁,那么多少年前父亲的年龄是儿子的 5 倍.等积问题1、现有一条直径为12 厘米的圆柱形铅柱,若要铸造12 只直径为12 厘米的铅球,应截取多长的铅柱(损耗不计)?(球的体积公式R2,R 为球半径)2、直径为30 厘米,高为50 厘米的圆柱形瓶里存满了饮料,现把饮料倒入底面直径为10 厘米的圆柱形小杯中,刚好倒满20 杯,求小杯子的高。
初一数学一元一次方程练习题及答案,非常难精品文档初一数学一元一次方程练习题及答案,非常难A卷一、填空题1、若2a与1?a互为相反数,则a等于2、y?1是方程2?3?m?y??2y的解,则m?3、方程2?4、如果3x2x?4,则x??4?0是关于x的一元一次方程,那么a?h中,已知S?800, a=30, h?20,则b?22a?25、在等式S?6、甲、乙两人在相距10千米的A、B两地相向而行,甲每小时走x千米,乙每小时走2x千米,两人同时出发1.5小时后相遇,列方程可得7、将1000元人民币存入银行2年,年利息为5,,到期后,扣除20,的利息税,可得取回本息和为9、某品牌的电视机降价10,后每台售价为2430元,则这种彩电的原价为每台元。
10、有两桶水,甲桶有水180升,乙桶有水150升,要使甲桶水的体积是乙桶水的体积的两倍,则应由乙桶向甲桶倒升水。
二、选择题1、下列方程中,是一元一次方程的是1 / 24精品文档2A、x?x?3?x?x?2? B、x??4?x??0 C、x?y?1 D、1?x?0 y2、与方程x?1?2x的解相同的方程是A、x?2?1?2xB、x?2x?1C、x?2x?1D、x?3、若关于x的方程mxm?2x?1?m?3?0是一元一次方程,则这个方程的解是A、x?0B、x?C、x??D、x?24、一队师生共328人,乘车外出旅行,已有校车可乘64人,如果租用客车,每辆可乘44人,那么还要租用多少辆客车,在这个问题中,如果还要租x辆客车,可列方程为A、44x?328?B、44x?64?32C、328?44x?D、328?64?44x5、小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:2y?115?y,怎么呢,小明想了一想,便翻看书后答案,此方程的解是y??,很快补好了这个223常数,并迅速地完成了作业,同学们,你们能补出这个常数吗,它应是A、1B、C、3D、47、把方程xx?1??1去分母后,正确的是。
初中数学应用题较难题及答案问题 1:某车间原计划每周装配 36 台机床,预计若干周完成任务。
在装配了三分之一以后,改进操作技术,工效提高了一倍,结果提前一周半完成了任务. 求这次任务需要装配机床总台数.问题 2:《个人所得税法》规定,公民每月工资不超过 1600 元,不需要交税,超过 1600 元的部分为全月应纳税所得额,但根据超过部分的多少按不同的税率交税,税表如下:全月应纳税所得额税率不超过 500 元部分 5% 500 元至 2000 元部分 10% 2000 元至 5000 元部分 15% 某人 3 月份应纳税款为 117.10 元,求他当月的工资是多少?答案:问题 1:162 台问题 2:3021 元数字问题: 1、一个两位数,十位上的数比个位上的数小 1。
十位上的数与个位上的数的和是这个两位数的,求这个两位数。
2、一个两位数,个位上的数与十位上的数的和为 7,如果把十位与个位的数对调。
那么所得的两位数比原两位数大 9。
求原来的两位数。
3、一个两位数的十位上的数比个位上的数小 1,如十位上的数扩大 4 倍,个位上的数减 2,那么所得的两位数比原数大 58,求原来的两位数,4、一个五位数,如果将第一位上的数移动到最后一位得到一个新的五位数(例如:此变换可以由 4321 得到 3214),新的五位数比原来的数小 11106,求原来的五位数。
5、某考生的是一个四位数,它的千位数是一;如果把 1 移到个位上去,那么所得的新数比原数的 5 倍少 49,这个考生的是多少?年龄问题: 1、姐姐 4 年前的年龄是妹妹的 2 倍,今年年龄是妹妹的 1.5 倍,求姐姐今年的年龄。
2、1992 年,妈妈 52 岁,儿子 25 岁,哪一年妈妈的年龄是儿子的 4 倍.3、爸爸和女儿两人岁数加起来是 91 岁,当爸爸岁数是女儿现在岁数两倍的时候,女儿岁数是爸爸现在岁数的 ,那么爸爸现在的年龄是多少岁,女儿现在年龄是多少岁.4、甲、乙两人共 63 岁,当甲是乙现在年龄一半时,乙当时的年龄是甲现在的岁数,那么甲多少岁,乙多少岁.5、父亲与儿子的年龄和是 66 岁,父亲的年龄比儿子的年龄的 3 倍少 10 岁,那么多少年前父亲的年龄是儿子的 5 倍.等积问题 1、现有一条直径为 12 厘米的圆柱形铅柱,若要铸造 12 只直径为 12 厘米的铅球,应截取多长的铅柱(损耗不计)?(球的体积公式 R2,R 为球半径)2、直径为 30 厘米,高为 50 厘米的圆柱形瓶里存满了饮料,现把饮料倒入底面直径为 10 厘米的圆柱形小杯中,刚好倒满 20 杯,求小杯子的高。
3、用 60 米长的篱笆,围成一个长方形的花圃,若长比宽的 2 倍少 3 米,则长方形的面积是多少?4、将一个长、宽、高分别为 15 厘米、12 厘米和 8 厘米的长方体钢块,锻造成一个底面边长为 12 厘米的正方形的长方体零件钢坯。
试问是锻造前长方体钢块的表面积大,还是锻造后的长方体零件钢坯的表面积大?请计算回答。
行程问题:(1)相遇问题: 1、甲、乙两站间的路程为 360 千米,一列慢车从甲站开出,每小时行 48 千米,一列快车从乙站开出,每小时行 72 千米,已知快车先开 25 分钟,两车相向而行,慢车行驶多少时间两车相遇?2、 A、B 两地相距 150 千米。
一辆汽车以每小时 50 千米的速度从 A 地出发,另一辆汽车以每小时 40 千米的速度从 B 地出发,两车同时出发,相向而行,问经过几小时,两车相距 30 千米?(2)追及问题: 1、甲从 A 地以 6 千米/小时的速度向 B 地行走,40 分钟后,乙从 A 地以 8 千米/小时的速度追甲,结果在甲离 B 地还有 5 千米的地方追上了甲,求 A、B 两地的距离。
2、甲、乙两车都从 A 地开往 B 地,甲车每小时行 40 千米,乙车每小时行 50 千米,甲车出发半小时后,乙车出发,问乙车几小时可追上甲车?(3)航行问题: 1、一轮船从甲码头顺流而下到达乙码头需要 8 小时,逆流返回需要 12 小时,已知水流速度是 3 千米/小时,求甲、乙两码头的距离。
2、甲乙两港相距 120 千米,A、B 两船从甲乙两港相向而行 6 小时相遇。
A 船顺水,B 船逆水。
相遇时 A 船比 B 船多行走 49 千米,水流速度是每小时 1??.5 千米,求 A、B 两船的静水速度。
(4)过桥问题: 1、一列火车以每分钟 1 千米的速度通过一座长 400 米的桥,用了半分钟,则火车本身的长度为多少米?(5)隧道问题: 1、火车用 26 秒的时间通过一个长 256 米的隧道(即从车头进入入口到车尾离开出口),这列火车又以 16 秒的时间通过了长 96 米的隧道,求列车的长度。
(6)环行问题: 1、甲、乙两人在环形跑道上竞走,跑道一圈长 400 米,甲每分钟走 100 米,乙每分钟走 80 米,他们从相距 40 米的 A、B 两地同时出发,问出发几分钟后两人首次相遇?2、甲、乙两人环湖竞走训练,环湖一周长 400 米,乙每分钟走 80 米,甲的速度是乙的速度的 1/4,现他们相距 100 米,问几分钟后两人首次相遇?方案问题: 1、某中学要添置某种教学仪器,方案 1:到商店购买,每件需要 8 元;方案 2:• 学校自己制作,每件 4 元,另外需要制作工具的租用费120 元,设需要仪器 x 件.(1)分别求出方案 1 和方案 2 的总费用;(2)当购制仪器多少件时,两种方案的费用相同;(3)若学校需要仪器 50 件,问采用哪种方案便宜?请说明理由.2、小颖的爸爸为了准备小颖 3 年后读高中的费用,准备用 1 万元参加教育储蓄,• 已知教育储蓄一年期的利率为 2.25%,三年期的利率为 2.70%,现在有两种存法:①先存一年,下一年连本带息再存一年,到期后连本带息再存一年.②直接存一个三年期.请你帮着计算一下,小颖的爸爸应选择哪一种储蓄方式?3、老师带领该校七年级“三好学生”去开展夏令营活动,甲旅行社说:“如果老师买全票一,则学生可享受半价优惠。
”乙旅行社说:“包括老师在按全票价的 6 折优惠。
”若全票价为 240 元,当学生从数为多少人时,两家旅行社的收费一样多?4、校七年级组织学生秋游,如果租用若干辆 45 座的客车,则有 15 人无座位;如果租用 60 座的客车,则可比 45 座的客车少租 2 辆,且保证人人有座而无空位。
求:(1)七年级共有多少名学生?(2)若 45 座客车的租金为每辆 420 元,60 座客车的租金为每辆 600 元,那么应如何安排客车的型号和数量,使得租金最少?是多少元?5、某运输公司计划用 20 辆汽车装运甲、乙、丙三种水果共 36 吨到外地销售,规定每辆车必须满载,每车只能装同一种水果,每种水果至少有一车。
下表所示为汽车的载重量及利润:甲乙丙每辆车载物重量(吨) 2 1 1.5 每吨水国可获利润(百元) 5 7 4 问:(1)有几种运输方案?分别如何安排?(2)哪一种方案利润最大?最大利润为多少?工程问题: 1、有一个水池,用两个水管注水。
如果单开甲管,2 小时 30 分注满水池,如果单开乙管, 5 小时注满水池. (1)如果甲、乙两管先同时注水 20 分钟,然后由乙单独注水。
问还需要多少时间才能把水池注满?(2)假设在水池下面安装了排水管丙管,单开丙管 3 小时可以把一满池水放完。
如果三管同时开放,多少小时才能把一空池注满水?2、一件工作,甲单独做 24 小时完成,乙单独做 16 小时完成。
现在先由甲单独做 4 小时,剩下的部分由甲、乙合做。
剩下的部分需要几小时完成?3、一项工程,甲单独完成需要 9 天,乙单独完成需要 12 天,丙单独完成需要 15 天。
若甲、丙先做 3 天后,甲因故离开,由乙接替甲工作,问还需多少天能完成这项工程的?银行利率问题: 1、小明的爸爸三年前为小明存了一份 3000 元的教育储蓄.今年到期时取出,得本利和为 3243 元.请你帮小明算一算这种储蓄的年利率.商品利润问题: 1、某种商品因换季准备打折出售,如果按定价的七五折出售将赔 25 元;而按定价的九折出售将赚 20 元。
问这种商品的定价是多少?2、某商店为了促销 G 牌空调机,2000 年元旦那天购买该机分两期付款,在购买时先付一笔款,余下部分及它的利息(年利率为 5.6%)在 2001 年元旦付清.该空调机售价每台 8224 元,若两次付款数相同,问每次应付款多少元?3、某工厂去年的总产值比总支出多 600 万元,预计今年的总产值比去年增加 30%,总支出比去年减少 20%,因此今年总产值比总支出多 1000 万元,问去年的总产值和总支出各是多少万元?4、某商场以每件 a 元购进一种服装,如果规定以每件 b 元卖出,平均每天卖出 15 件,30 天共获利润 22500 元.为了尽快回收资金,商场决定将每件降价 20%卖出.结果平均每天比降价前多卖出 10 件,这样 30 天仍然可获利润22500 元,试求 ab 的值(每件服装的利润=每件服装的卖出价-每件服装的进价).浓度问题: 1、在含盐 20﹪的盐水中加入 10 千克水,变成含盐 16﹪的盐水,原来的盐水是多少千克?其他问题: 1、某班学生共 50 人,会游泳的有 27 人,会体操的有 18 人,游泳、体操都不会的有 15 人,那么既会游泳又会体操的有多少人?2、一台挖土机和 200 名工人在水利工地挖土和运土,已知挖土机每天能挖土 800 立方米, • 使挖出的土能每名工人每天能挖土 3 立方米或运土 5 立方米,如何分配挖土和运土人数,及时运走?3、国家规定个人发表文章、出版图书获得稿费的纳税计算办法是:⑴稿费高于800 元的不纳税;⑵稿费高于 800 元,又不高于 4000 元,应纳超过 800 元的那一部分稿费 14%的税;⑶稿费高于 4000 元,应缴纳全部稿费的 11%的税。
某老师获得了 2000 元稿费,他应纳税元。
4、在日历上任意圈出一竖列上的 4 个数,如果这 4 个数的和是 54,那么这 4 个数是多少呢?如果这 4 数的和是 70,那么这 4 个数是多少呢?你能否找到一种最快的方法,马上说出这 4 个数是多少?问题 1:小明到食堂买饭,看到 A,B 两窗口前面排队的人一样多,就站在A 窗口队伍的里面,过了 2 分钟,他发现 A 窗口每分钟有 4 人买了饭离开队伍,B 窗口每分钟有 6 人买了饭离开队伍,且 B 窗口队伍后面每分钟增加 5 人,此时,若小迅速从 A 窗口转移到 B 窗口后面重新排队,将比继续在 A 窗口排队提前 30 秒买到饭,问开始时,有多少人排队?问题 2:某学校修建了一撞 4 层的教学大楼,每层楼有 6 间教室,进出这幢大楼共有 3 道门(两道大小相同的正门和一道侧门)安全检查中,对这 3 道门进行了测试:当同时开启一道正门和一道侧门时,2 分钟可以通过 400 名学生,若一道正门平均每分钟比一道侧门可多通过 40 名学生(1)问平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低 20%。