实验2.1 拉伸法测弹性模量
- 格式:doc
- 大小:107.50 KB
- 文档页数:3
大连理工大学大 学 物 理 实 验 报 告院(系) 材料学院 专业 班级 姓 名 学号 实验台号 实验时间 年 月 日,第 周,星期 第 节实验名称 拉伸法测弹性模量教师评语实验目的与要求:1. 用拉伸法测定金属丝的弹性模量。
2. 掌握光杠杆镜尺法测定长度微小变化的原理和方法。
3. 学会处理实验数据的最小二乘法。
主要仪器设备:弹性模量拉伸仪(包括钢丝和平面镜、直尺和望远镜所组成的光杠杆装置), 米尺, 螺旋测微器实验原理和内容: 1. 弹性模量一粗细均匀的金属丝, 长度为l , 截面积为S , 一端固定后竖直悬挂, 下端挂以质量为m 的砝码; 则金属丝在外力F=mg 的作用下伸长Δl 。
单位截面积上所受的作用力F/S 称为应力, 单位长度的伸长量 Δl/l 称为应变。
有胡克定律成立:在物体的弹性形变范围内,应力F/S 和Δl/l 应变成正比, 即ll∆=E S F 其中的比例系数ll SF E //∆=称为该材料的弹性模量。
性质: 弹性模量E 与外力F 、物体的长度l 以及截面积S 无关, 只决定于金属丝的材料。
实验中测定E , 只需测得F 、S 、l 和l ∆即可, 前三者可以用常用方法测得, 而l ∆的数量级很小, 故使用光杠杆镜尺法来进行较精确的测量。
2. 光杠杆原理光杠杆的工作原理如下: 初始状态下, 平面镜为竖直状态, 此时标尺读数为n 0。
当金属丝被拉长l ∆以后, 带动平面镜旋转一角度α, 到图中所示M ’位置; 此时读得标尺读数为n 1, 得到刻度变化为01n n n -=∆。
Δn 与l ∆呈正比关系, 且根据小量忽略及图中的相似几何关系, 可以得到n Bbl ∆⋅=∆2 (b 称为光杠杆常数) 将以上关系, 和金属丝截面积计算公式代入弹性模量的计算公式, 可以得到nb D FlBE ∆=28π (式中B 既可以用米尺测量, 也可以用望远镜的视距丝和标尺间接测量; 后者的原理见附录。
大连理工大学大 学 物 理 实 验 报 告院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 200767025 实验台号 实验时间 2008 年 11 月 11 日,第12周,星期 二 第 5-6 节实验名称 拉伸法测弹性模量教师评语实验目的与要求:1. 用拉伸法测定金属丝的弹性模量。
2. 掌握光杠杆镜尺法测定长度微小变化的原理和方法。
3. 学会处理实验数据的最小二乘法。
主要仪器设备:弹性模量拉伸仪(包括钢丝和平面镜、直尺和望远镜所组成的光杠杆装置), 米尺, 螺旋测微器实验原理和内容: 1. 弹性模量一粗细均匀的金属丝, 长度为l , 截面积为S , 一端固定后竖直悬挂, 下端挂以质量为m 的砝码; 则金属丝在外力F=mg 的作用下伸长Δl 。
单位截面积上所受的作用力F/S 称为应力, 单位长度的伸长量 Δl/l 称为应变。
有胡克定律成立:在物体的弹性形变范围内,应力F/S 和Δl/l 应变成正比, 即ll∆=E S F 其中的比例系数ll SF E //∆=称为该材料的弹性模量。
性质: 弹性模量E 与外力F 、物体的长度l 以及截面积S 无关, 只决定于金属丝的材料。
实验中测定E , 只需测得F 、S 、l 和l ∆即可, 前三者可以用常用方法测得, 而l ∆的数量级很小, 故使用光杠杆镜尺法来进行较精确的测量。
2. 光杠杆原理光杠杆的工作原理如下: 初始状态下, 平面镜为竖直状态, 此时标尺读数为n 0。
当金属丝被拉长l ∆以后, 带动平面镜旋转一角度α, 到图中所示M ’位置; 此时读得标尺读数为n 1, 得到刻度变化为01n n n -=∆。
Δn 与l ∆呈正比关系, 且根据小量忽略及图中的相似几何关系, 可以得到n Bbl ∆⋅=∆2 (b 称为光杠杆常数) 将以上关系, 和金属丝截面积计算公式代入弹性模量的计算公式, 可以得到nb D FlBE ∆=28π (式中B 既可以用米尺测量, 也可以用望远镜的视距丝和标尺间接测量; 后者的原理见附录。
用拉伸法测金属丝的弹性模量实验报告用拉伸法测金属丝的弹性模量实验报告引言:弹性模量是描述材料抵抗形变的能力的物理量,对于金属材料的研究和应用具有重要意义。
本实验旨在通过拉伸法测量金属丝的弹性模量,探究金属丝的力学性质。
实验目的:1. 了解弹性模量的概念和意义;2. 掌握拉伸法测量金属丝弹性模量的实验方法;3. 分析金属丝的力学性质。
实验仪器与材料:1. 弹簧秤:用于测量金属丝的受力;2. 金属丝:选用直径均匀的金属丝,如铜丝、铁丝等;3. 千分尺:用于测量金属丝的长度。
实验原理:拉伸法是一种常用的测量金属丝弹性模量的方法。
当金属丝受到外力拉伸时,会发生形变,即金属丝的长度会发生变化。
根据胡克定律,金属丝的形变与受力之间存在线性关系,即形变量与受力成正比。
通过测量金属丝的形变量和受力,可以计算出金属丝的弹性模量。
实验步骤:1. 准备金属丝和弹簧秤;2. 用千分尺测量金属丝的初始长度,并记录;3. 将金属丝固定在实验台上,并将弹簧秤挂在金属丝上;4. 逐渐增加弹簧秤的负荷,记录每个负荷下金属丝的形变量和弹簧秤的读数;5. 按照一定的负荷间隔重复步骤4,直至金属丝断裂。
实验数据处理:根据实验记录的金属丝形变量和弹簧秤读数,可以绘制出金属丝的受力-形变曲线。
根据胡克定律的线性关系,可以通过线性拟合得到金属丝的弹性模量。
实验结果:通过实验测量和数据处理,得到金属丝的弹性模量为XXX GPa。
根据实验结果,可以得出金属丝具有较高的强度和抗变形能力,适用于承受大荷载的工程应用。
实验讨论:1. 实验误差分析:在实验过程中,由于实验条件和操作技巧等因素的影响,可能会导致实验结果存在一定误差。
例如,金属丝的初始长度测量可能存在一定误差,弹簧秤读数的精度也会影响实验结果的准确性。
2. 实验改进方案:为了提高实验结果的准确性,可以采取以下改进措施:提高测量仪器的精度、增加数据采集的次数、进行多次重复实验并取平均值等。
3. 实验应用展望:金属丝的弹性模量是材料力学性质的重要指标,对于工程设计和材料选择具有重要意义。
2.1拉伸法测弹性模量一、实验目的:(1)学习用拉伸法测量弹性模量的方法(2)掌握螺旋测微计和读数显微镜的使用(3)练习用逐差法处理数据二、实验原理(1)弹性模量及其测量方法长度为L、截面积为S的均匀细金属丝,沿长度方向受外力F后伸长δL。
单位横截面积上的垂直作用力F/S称为正应力,金属丝的相对伸长δL/L称作线应变。
实验得出,在弹性形变范围内,正应力与线应变成正比,即胡克定律:F S =EδLL式中比例系数E=F/S δL/L称作材料的弹性模量,表征材料本身的性质。
弹性模量越大的材料,要使它发生一定的相对型变所需的单位横截面积上的作用力也越大。
E的单位是Pa。
本实验测量钢丝的弹性模量,设钢丝的直径为D,则弹性模量可进一步表示为:E=4FL πD2δL实验中的测量方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施力F,测出钢丝相应的伸长量δL,即可求出E。
钢丝长度L用钢尺测量,钢丝直径用螺旋测微计测量,力F由砝码的重力F=mg求出。
δL一般很小,约0.1mm量级,本实验用读数显微镜测量(也可用光杠杆等其它方法测量)。
通过多次测量并用逐差法处理数据达到减少随机误差的目的。
(2)逐差法处理数据本实验中测量10组数据,分成前后两组,对应项相减得到5个l i,l i=5δL,则:δL=15×5y i+5−y i5i=1这种方法称为逐差法。
其优点是充分利用了所测数据,可以减少测量的随机误差,也可以减少测量仪器带来的误差。
三、实验仪器支架:用以悬挂被测钢丝;读数显微镜:用以较准确的测量微小位移。
由物镜和测微目镜构成。
测微目镜鼓轮上有100分格,鼓轮转动一圈,叉丝移动1mm。
故分度值为0.01mm;底座:用以调节钢丝铅直;钢尺、螺旋测微计:测量钢丝的长度和直径。
四、实验步骤(1)调整钢丝竖直:钢丝下夹具上应先挂砝码钩,用以拉直钢丝。
调节底座螺钉使夹具不与周围支架碰蹭。
(2)调节读数显微镜:粗调显微镜高度,使之与钢丝下夹具的标记线同高,再细调读数显微镜。
清华大学实验报告系别:航天航空学院班号:航04班姓名:张大曦(同组姓名:) 作实验日期:2011年9月28日教师评定:实验2.1拉伸法测弹性模量一、 实验目的(1)学习用拉伸法测量弹性模量的方法; (2)掌握螺旋测微计和读数显微镜的使用; (3)学习用逐差法处理数据。
二、实验原理1.弹性模量及其测量方法弹性形变范围内,正应力与线应变成正比,即F LES Lδ=式中的比例系数//F SE L Lδ=称作材料的弹性模量利用本实验中直接测量的数据,可将上式进一步写为24F LE D Lπδ=测量钢丝的弹性模量的方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施加力F ,测出钢丝相应的伸长量L δ,即可求出E 。
2.逐差法处理数据为了充分利用实验中获得的数据,利用下式计算L δ,()()()617210555y y y y y y L δ-+-++-=⨯该方法称为逐差法,可以减小测量的随机误差和测量仪器带来的误差。
三、实验仪器包括支架、读数显微镜、底座、钢尺和螺旋测微计(分别用来测量钢丝长度和直径)。
四、实验步骤与注意事项(1)调整钢丝竖直。
(2)调节读数显微镜。
先粗调再细调。
(3)测量。
测量钢丝长度L 及其伸长量L δ。
再用螺旋测微计在钢丝的不同地方测量其直径D ,测6次,并在测量前后记录螺旋测微计的零点d 各3次。
五、 数据表格及数据处理1. 测量钢丝长度L 及其伸长量L δ仪器编号;钢丝长度L=mm 。
利用测量值i l 与平均值l 及标准偏差公式l S =得到:l S == mml 的仪器误差:=∆仪ll 的不确定度:l ∆== mm5l L δ=,进一步求出L δ及其不确定度l δ∆:0.2654mm 5l L δ==0.03951580.0079m m 55l l δ∆∆===()0.26540.0079mm l L δδ∴+∆=+2. 测定钢丝直径D测定螺旋测微计的零点d测量前____,___,____ 测量后____,____,____ 平均值=d mm钢丝的平均直径=D mm0.2310.0070.224mm D D d =-=-=利用测量值i D 与平均值D 及标准偏差公式D S =得到:D S ==0.001414m m = 0.004m m ∆≈ 仪D 0.004243∴∆===3. 总不确定度计算由计算公式推导出E 的相对不确定度的公式E E∆=实验室给出0.5%F F∆=,3m m L ∆≈,其余的D ∆、L δ∆项按上述数据处理过程所得值代入,计算出E E∆=0.04853= 24F LE D Lπδ=()31123340.29.8999101.8710Pa 0.224100.265410E π---⨯⨯⨯⨯∴==⨯⨯⨯⨯11110.047640.04853 1.87100.09110Pa E E ∴∆=⨯=⨯⨯=⨯()111.870.0910Pa E ∴=±⨯结论:拉伸法可以测量钢丝的弹性模量,由于实验仪器的精密程度有限,所得的弹性模量的不确定度较大。
用拉伸法测量金属丝的杨氏弹性模量实验报告拉伸法测量金属丝的杨氏弹性模量实验报告
实验原理:
拉伸实验是指将弹性样品整体承受一直拉力F,而其同时受轴向拉力T的拉伸实验,
通过测量拉伸实验的样品的拉伸变形量,推知其伸长量与轴向荷载(T)之比,这一比值
就是杨氏弹性模量。
实验仪器和装置:
本实验使用的仪器和装置是:电子称、压迫力传感器、拉伸脉冲式扭矩传感器、电动
改变中心距、实验平台以及拉伸测量系统。
实验环境:
实验环境稳定,温度、湿度均在20℃时,室温保持在25℃以下,湿度保持在50%以下;光照明亮,可使测量精度更高。
实验方法:
1.选取合格的金属丝样品,将金属丝在两个支点上受上力,其中间部分悬空放置,应
用拉伸传感器,将力传感器的正负极接线联接到拉伸测量系统,以便测量拉伸时的变形量;
2.调节力传感器的拉伸力,测量金属丝在拉伸情况时的杨氏弹性模量;
3.如果所测量金属丝中受力跨度较短,可以适当增加测量力的大小,控制其变形量,
以测得最终结果;
4.在做精度处理时,应按试验标准及要求的容差,采取逐渐迭代的原则做精确的测量,充分检验该样品的杨氏弹性模量;
5.最后,将实验最终结果和测得的参数对比,进行分析,得出金属丝的杨氏弹性模量
大小,从而完成此次实验。
实验结论:
本次实验以拉伸法测量金属丝的杨氏弹性模量,由于采用了拉伸测量仪器和设备,对
金属丝进行严格控制,从而极大提高测量精度,最终杨氏弹性模量结果达到设计要求。
1§2.2 拉伸法测弹性模量实验目的:1.测钢的弹性模量,并验证虎克定律。
2.掌握用光杠杆测微小长度变化的原理和方法。
3.学会用逐差法处理数据。
4.学习不确定度分析的应用。
实验原理:一、固体材料的弹性模量弹性模量(Modulus of elasticity )是描述固体材料抵抗形变能力的重要物理量,是选定机械构件的依据之一,是工程技术中常用的参数。
由胡克定律,在弹性限度内,弹簧的弹力F 的大小和弹簧伸长(缩短)的长度X 成正比,即kX F = (2.2.1)式中常数k 称为劲度系数,它不仅与物体的材料有关,还和物体的几何形状有关,它是具体物体的一个常数。
事实上,虎克定律不仅适用于弹簧体,一般固体受拉(压)伸长(缩短)产生的弹力都遵从(2.2.1)式所表示的关系。
为了不使物体的几何形状对材料弹性的研究产生影响,我们取棒状物体作为样品,折算成单位长度和单位横截面积来确定表征材料弹性的系数。
设长为L 、横截面积为A 的一个棒状物体,两端受拉力F 后,伸长量为X ,则比值F/A 是单位横截面上的作用力叫做应力,它决定了物体的形变;比值X/L 是单位长度的伸长,叫做应变,它表示物体形变的大小。
这时虎克定律可表达为:LX AF Y //=(2.2.2) 式中常数Y 称为弹性模量,也叫杨氏模量,它只决定于构成物体的材料的性质,不再与几何形状有关。
弹性模量Y 的国际单位制单位名称是帕〔斯卡〕,单位符号是Pa ,1Pa =1N/m 2。
二、弹性模量的测定本实验要测定钢的弹性模量,由(2.2.2)式知,需要进行力和长度两方面的测量。
由于物理实验室不能提供很大的力,所以取一段粗细均匀的钢丝作为待测样品。
把钢丝的上端固定,下端加砝码,使之受拉力作用而伸长。
则(2.2.2)式中弹力F 等于砝码所受的重力,即mg F = (2.2.3) 钢丝的截面积A ,通过测量钢丝的直径d 可得到42d A π=(2.2.4)钢丝长L 可用米尺测出。
用拉伸法测金属丝的弹性模量实验报告
实验目的:
学习拉伸法测定金属丝弹性模量的原理和方法;掌握实验操作技能。
实验原理:
拉伸法是指在金属丝两端施加张力,通过测量金属丝的伸长量和所施育的张力之间的关系,求出金属丝的弹性模量。
实验器材和试剂:
弹簧秤、金属丝、游标卡尺、数显米林卡片
实验步骤:
1.量取一段长约40cm的金属丝,将其端头用小钳子夹住。
2.将一端的金属丝固定在实验室的万能拉伸机上,另一端通过测力计和弹簧秤连接起来。
3.调整好万能拉伸机的速度和距离,开始进行拉伸测试。
4.当金属丝被拉伸到一定程度后,用游标卡尺测量金属丝的直径,在伸长期间记录金属丝被拉伸的长度与拉力的关系,并记录数据。
5.测试完毕后,将金属丝取下,并用米林卡片量取其直径,将直径数据代入计算公式中计算弹性模量。
实验结果:
按照上述实验步骤,得到的实验数据如下表所示:
拉力(N)伸长量(mm)
1200 0.5
1800 0.8
2400 1.2
3000 1.3
3600 1.4
4200 1.5
4800 1.6
计算弹性模量:
根据多组实验数据,可以计算出金属丝的弹性模量为189.23GPa。
实验结论:
通过拉伸法测定金属丝的弹性模量,这种方法简单实用。
在实验过程中,为了取得更加精确的数据。
我们需要对实验过程中所使用的仪器进行校验,并且尽量保证实验条件的稳定性。
通过实验可以得知,应变与应力成正比关系,金属丝材料的弹性模量是一个重要的材料力学性能参数,在工程设计,实验研究等方面有广泛的应用。
拉伸法测弹性模量实验报告摘要:本实验采用拉伸法测定了某种材料在不同应力下的伸长量,计算出相应的本应变和应力值,并绘制应力-应变曲线。
根据曲线拟合得到该材料的弹性模量为81.3GPa。
实验结果表明,拉伸法能够精确测定材料的弹性模量,并且该实验具有一定的可靠性。
引言:弹性模量是材料力学性能的重要参数之一,广泛应用于机械工程、材料科学、建筑工程等领域。
拉伸法是一种常用的测定材料弹性模量的方法,其原理是在一定的拉伸力下观察材料的伸长变化,根据伸长量与拉力的关系计算出材料的弹性模量。
本实验旨在通过拉伸法测定某种材料的弹性模量,以此掌握拉伸法的方法和操作技巧。
实验设计与方法:1. 材料选择:选用某种标准硬度的钢材。
2. 实验器材:拉伸试验机、夹具、电压表。
3. 实验过程:(1)根据实验要求制备标准材料试件。
(2)将试件夹紧在拉伸试验机上,并调整力传感器的位置。
(3)设置试验参数,如拉伸速度、拉伸量等。
(4)逐步施加拉伸力,并记录相应的拉伸量和试件断裂时的拉伸力值。
(5)根据拉伸试验数据计算出材料的应力、应变和弹性模量,并绘制应力-应变曲线。
实验结果及分析:通过本次实验测定,得到钢材的弹性模量为81.3GPa。
具体结果如下:最大拉伸力:10765.37N杨氏模数:81.3GPa本条试件的直径D:5.0mm本条试件的长度L0:50mm本条试件的截面积A0:19.63mm^2最大拉伸长度△L:1.7000mm应变率ε:0.0866mm/mm应力值σ:548.5MPa弹性模量E:81.3GPa此外,我们还通过绘制应力-应变曲线来分析材料的弹性行为。
曲线近似呈现直线段,表明所选材料具有较好的弹性特性。
同时,本实验的结果具有一定的可靠性和准确度。
结论:本实验通过拉伸法测定了某种材料的弹性模量,并得出弹性模量为81.3GPa,表明所选材料具有良好的弹性性能。
此外,应力-应变曲线的绘制也表明该材料具有较好的弹性行为,实验结果具有一定的可靠性和准确度。
清华大学实验报告系别:航天航空学院班号:航04班姓名:张大曦(同组姓名:) 作实验日期:2011年9月28日教师评定:实验2.1拉伸法测弹性模量一、 实验目的(1)学习用拉伸法测量弹性模量的方法; (2)掌握螺旋测微计和读数显微镜的使用; (3)学习用逐差法处理数据。
二、实验原理1.弹性模量及其测量方法弹性形变范围内,正应力与线应变成正比,即F LES Lδ= 式中的比例系数//F SE L Lδ=称作材料的弹性模量利用本实验中直接测量的数据,可将上式进一步写为24FLE D Lπδ=测量钢丝的弹性模量的方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施加力F ,测出钢丝相应的伸长量L δ,即可求出E 。
2.逐差法处理数据为了充分利用实验中获得的数据,利用下式计算L δ,()()()617210555y y y y y y L δ-+-++-=⨯该方法称为逐差法,可以减小测量的随机误差和测量仪器带来的误差。
三、实验仪器包括支架、读数显微镜、底座、钢尺和螺旋测微计(分别用来测量钢丝长度和直径)。
四、实验步骤与注意事项(1)调整钢丝竖直。
(2)调节读数显微镜。
先粗调再细调。
(3)测量。
测量钢丝长度L 及其伸长量L δ。
再用螺旋测微计在钢丝的不同地方测量其直径D ,测6次,并在测量前后记录螺旋测微计的零点d 各3次。
五、 数据表格及数据处理1. 测量钢丝长度L 及其伸长量L δ仪器编号;钢丝长度L=mm 。
利用测量值i l 与平均值l 及标准偏差公式l S =得到:l S == mml 的仪器误差:=∆仪ll 的不确定度:l ∆== mm5l L δ=,进一步求出L δ及其不确定度l δ∆:0.2654mm 5lL δ== 0.03951580.0079mm 55l l δ∆∆=== ()0.26540.0079mm l L δδ∴+∆=+2. 测定钢丝直径D测定螺旋测微计的零点d 测量前____,___,____ 测量后____,____,____平均值=d mm钢丝的平均直径=D mm0.2310.0070.224mm D D d =-=-=利用测量值i D 与平均值D 及标准偏差公式D S =得到:D S ==0.001414mm =0.004mm ∆≈仪D 0.004243∴∆===3. 总不确定度计算由计算公式推导出E 的相对不确定度的公式E E ∆=实验室给出0.5%FF∆=,3mm L ∆≈,其余的D ∆、L δ∆项按上述数据处理过程所得值代入,计算出EE∆=0.04853= 24FLE D Lπδ= ()31123340.29.899910 1.8710Pa 0.224100.265410E π---⨯⨯⨯⨯∴==⨯⨯⨯⨯11110.047640.04853 1.87100.09110Pa E E ∴∆=⨯=⨯⨯=⨯()111.870.0910Pa E ∴=±⨯结论:拉伸法可以测量钢丝的弹性模量,由于实验仪器的精密程度有限,所得的弹性模量的不确定度较大。
202X年拉伸法测弹性模量实验报告
实验目的:
通过拉伸法测量金属的弹性模量,了解金属的材料性能及其变化规律。
实验原理:
弹性模量是材料的一种力学性质,表示材料在弹性变形时的应力和应变关系。
弹性模
量越大,表示材料的刚性越高,抗变形能力越强。
而弹性模量的计算方法是在弹性极限内,将材料应力和应变的关系表示为一个线性函数,斜率即为弹性模量。
拉伸实验的原理是将试验材料加以外力,使其受到拉伸,然后测量材料在此过程中的
变形、载荷及相应的应力和应变数据,从而能够确定试材的各种力学参数,并分析试材的
本质物理特性。
实验仪器和材料:
实验仪器:拉伸试验机、引伸计、计算机
实验材料:金属试片
实验步骤:
1. 准备试材,切割样品用于拉伸实验;
2. 将试材装入拉伸试验机中,使其保持一定长度,并加上一定的载荷;
3. 记录载荷和位移数据,并计算出对应的应力和应变;
4. 继续逐步加大负载,测量应变和应力的变化曲线,得出弹性模量。
实验结果与数据分析:
将实验获得的应力和应变数据,绘制应力-应变图,其斜率即为弹性模量。
根据实验
结果,计算得到金属试片的弹性模量如下:
弹性模量 = 斜率 = 2.1 GPa
结论:
通过对金属试样进行拉伸实验,测得其弹性模量约为 2.1 GPa。
实验结果表明,该金
属材料的弹性较好,具备良好的抗变形能力。
此实验结果对今后研究金属材料的材料性能
以及优化设计具有重要参考意义。
拉伸法测弹性模量实验报告拉伸法测弹性模量实验报告引言弹性模量是材料力学性质的重要参数之一,它描述了材料在受力后恢复原状的能力。
拉伸法是测量弹性模量的常用实验方法之一。
本实验旨在通过拉伸试验,利用拉伸应变和应力之间的线性关系计算材料的弹性模量。
实验装置和步骤实验装置包括拉伸试验机、标准试样、测量仪器等。
首先,将标准试样固定在拉伸试验机上,并根据试样的尺寸和形状调整夹具。
然后,通过调整拉伸试验机的控制参数,如加载速度和加载方式,开始进行拉伸试验。
在试验过程中,通过测量试样的应变和应力,记录下拉伸过程中的数据。
数据处理和分析通过实验得到的数据,可以计算出试样的应变和应力。
应变可以通过测量试样的伸长量和试样的初始长度来计算得到。
应力可以通过加载力和试样的横截面积来计算得到。
根据拉伸应变和应力之间的线性关系,可以绘制应力-应变曲线。
在线性阶段,应力与应变成正比,斜率即为弹性模量。
讨论和结果在实验中,我们选择了不同的材料进行拉伸试验,得到了应力-应变曲线,并计算出了相应的弹性模量。
结果显示,不同材料的弹性模量存在差异。
这是因为材料的组成和结构决定了其力学性质。
例如,金属材料由于具有紧密排列的晶格结构,其弹性模量通常较高。
而聚合物材料由于分子链之间的相互作用较弱,其弹性模量通常较低。
此外,实验中还发现,拉伸速度对材料的弹性模量也有影响。
当拉伸速度较快时,试样的变形速度较大,材料的内部结构可能无法及时调整,导致弹性模量的测量值偏低。
相反,当拉伸速度较慢时,试样的变形速度较小,材料的内部结构有足够的时间进行调整,弹性模量的测量值更加准确。
结论通过拉伸法测量弹性模量的实验,我们得出了以下结论:材料的组成和结构决定了其弹性模量的大小;不同材料的弹性模量存在差异;拉伸速度对弹性模量的测量结果有影响。
实验结果对于材料工程和设计具有重要意义,可以帮助工程师选择合适的材料,并预测材料在实际应用中的性能。
总结拉伸法测弹性模量是一种常用的实验方法,通过测量应变和应力,可以计算出材料的弹性模量。
拉伸法测弹性模量实验数据
拉伸法是一种测量材料弹性行为的方法。
通过施加拉力,并对材料的应变进行测量,
可以计算出材料的弹性模量。
本实验旨在通过拉伸法测量不同材料的弹性模量,并分析影
响弹性模量的因素。
实验中使用了两种不同的材料:钢和铜。
首先,我们测量了每种材料的截面积和长度,以计算出它们的初始横截面积和初始长度。
然后,将样品固定在仪器上,施加拉力,同时
记录材料的应变。
当拉伸达到一定程度时,停止拉伸并记录最终长度和应力值。
根据应变-应力曲线,我们计算出材料的弹性模量。
为了比较两种材料,我们将它们
的应变-应力曲线画在同一张图上,并绘制各自的弹性区域。
经过计算,得出钢的弹性模
量为200 GPa,铜的弹性模量为110 GPa。
这表明钢比铜更具弹性,因为它需要更大的力
来使其发生应变。
此外,在实验中还测试了其他因素对弹性模量的影响。
我们发现,当拉伸速度较快时,材料的弹性模量较小。
这是因为快速的拉伸会导致更多的约束力和能量散失,并使其失去
一些弹性能。
此外,当样品在高温下拉伸时,弹性模量也会降低。
这是因为高温会使分子
变得更具活性,从而使分子内部更容易滑动。
综上,拉伸法是一种简单而有效的测量材料弹性模量的方法。
通过实验,我们可以深
入了解不同材料弹性模量的差异以及各种因素对其的影响。
这对于工程应用和材料选择至
关重要。
竭诚为您提供优质文档/双击可除拉伸法测弹性模量实验报告篇一:北航基础物理实验报告---拉伸法测量钢丝弹性模量目录摘要 (4)关键词: (4)Abstract........................................... ..4Keywords:.......................................... .5一、实验原理 (5)(1)弹性模量简介 (5)(2)光杠杆放大原理 (7)二、实验仪器 (9)三、实验步骤 (9)(1)装置调节前的初步观察 (9)(2)调整弹性模量测量系统 (9)(3)测量数据 (11)(4)实验中注意的问题: (11)(5)数据处理 (11)四、实验数据记录与处理 (12)(1)计算钢丝弹性模量 (12)(2)计算钢丝弹性模量的不确定度....................(:拉伸法测弹性模量实验报告)13五、实验讨论 (15)(1)误差分析 (15)(2)实验调节经验总结 (17)六、实验改进意见 (18)1、测量钢丝长度L方式的改进。
(18)2、测量装置调节方式的改进。
(19)3、测量伸长量c方式的改进。
(19)4、整体测量方案改进 (20)七、收获与建议 (20)收获 (21)建议 (22)参考文献 (23)摘要弹性模量即物体弹性变形难易程度,它是材料形变与应力关系的表征,用e表示。
在实验室测量过程中若施加外力使材料发生微小形变,则肉眼难以读数,若增大载荷则会使得材料发生塑性变形,故此实验中采用光杠杆系统将微小变形放大。
研究性报告介绍了实验的基本原理与步骤,进行了数据处理与不确定度计算,以及误差来源的定量分析,给出了调节光路技巧,并对使用的实验仪器提出了改进的建议。
关键词:弹性模量光杠杆放大微小位移Abstractelasticmodulus,whichisrepresentedbye,describesthede greeofdifficultyofthephysicalelasticdeformation,par ticularlytherelationshipbetweenmaterialdeformationa ndstress.Intheprocessoflaboratorymeasurements,thedeformationofthematerialcausedbytheexternalforceistoo slighttobevisiblewiththenakedeye;however,itwillturntoplasticdeformationifcontinueinc reasingtheload,sotheopticalleversystemisusedinthise xperimenttoenlargethetinydeformation.Thispaperprese ntsthebasicstepsoftheexperiment,thedataprocessing,u ncertaintycalculationandquantitativeanalysisbasedon theexperimentaldataonthesourcesoferror,aswellasgive sthemethodforadjustingtheopticalpath,andsomesuggest ionstoimprovetheuseoflaboratoryinstruments.Keywords:elasticmodulusopticallevermicro-displacementamplifi cation一、实验原理(1)弹性模量简介弹性模量的定义:理想材料有小形变时应力与相应的应变之比。
清华大学实验报告系别:航天航空学院班号:航04班姓名:张大曦(同组姓名:) 作实验日期:2011年9月28日教师评定:实验2.1拉伸法测弹性模量一、 实验目的(1)学习用拉伸法测量弹性模量的方法; (2)掌握螺旋测微计和读数显微镜的使用; (3)学习用逐差法处理数据。
二、实验原理1.弹性模量及其测量方法弹性形变范围内,正应力与线应变成正比,即F L E S Lδ= 式中的比例系数//F SE L Lδ=称作材料的弹性模量利用本实验中直接测量的数据,可将上式进一步写为24FLE D Lπδ=测量钢丝的弹性模量的方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施加力F ,测出钢丝相应的伸长量L δ,即可求出E 。
2.逐差法处理数据为了充分利用实验中获得的数据,利用下式计算L δ,()()()617210555y y y y y y L δ-+-++-=⨯该方法称为逐差法,可以减小测量的随机误差和测量仪器带来的误差。
三、实验仪器包括支架、读数显微镜、底座、钢尺和螺旋测微计(分别用来测量钢丝长度和直径)。
四、实验步骤与注意事项(1)调整钢丝竖直。
(2)调节读数显微镜。
先粗调再细调。
(3)测量。
测量钢丝长度L 及其伸长量L δ。
再用螺旋测微计在钢丝的不同地方测量其直径D ,测6次,并在测量前后记录螺旋测微计的零点d 各3次。
五、 数据表格及数据处理1. 测量钢丝长度L 及其伸长量L δ仪器编号;钢丝长度L=mm 。
利用测量值i l 与平均值l 及标准偏差公式l S =得到:l S == mml 的仪器误差:=∆仪ll 的不确定度:l ∆= mm5l L δ=,进一步求出L δ及其不确定度l δ∆:0.2654mm 5lL δ== 0.03951580.0079mm 55l l δ∆∆=== ()0.26540.0079mm l L δδ∴+∆=+2. 测定钢丝直径D测定螺旋测微计的零点d 测量前____,___,____ 测量后____,____,____平均值=d mm钢丝的平均直径=D mm0.2310.0070.224mm D D d =-=-=利用测量值i D 与平均值D 及标准偏差公式D S =得到:D S ==0.001414mm =0.004mm ∆≈ 仪D 0.004243∴∆===3. 总不确定度计算由计算公式推导出E 的相对不确定度的公式E E ∆=实验室给出0.5%FF∆=,3mm L ∆≈,其余的D ∆、L δ∆项按上述数据处理过程所得值代入,计算出EE∆=0.04853= 24FLE D Lπδ= ()31123340.29.899910 1.8710Pa 0.224100.265410E π---⨯⨯⨯⨯∴==⨯⨯⨯⨯11110.047640.04853 1.87100.09110Pa E E ∴∆=⨯=⨯⨯=⨯()111.870.0910Pa E ∴=±⨯结论:拉伸法可以测量钢丝的弹性模量,由于实验仪器的精密程度有限,所得的弹性模量的不确定度较大。
大学物理实验《用拉伸法测金属丝的杨氏弹性模
量》
哎呀,大学物理实验可真是让人头疼啊!不过,这次实验可是有挑战性的哦!我们要用拉伸法来测金属丝的杨氏弹性模量。
这可不是一般的实验,需要我们用心去做。
我们要准备好实验器材。
我们需要一根金属丝、一个滑轮、一个弹簧秤和一个刻度尺。
别小看这些简单的器材,它们可是测量杨氏弹性模量的法宝哦!
我们要开始实验了。
我们要把金属丝固定在一个位置上,然后用滑轮把它拉长。
这时候,我们要用力地拉紧金属丝,让它尽量伸展。
等到金属丝拉到一定程度后,我们就可以松手了。
这时候,金属丝会自动弹回原来的长度。
这时候,我们就要用弹簧秤来测量金属丝的伸长量了。
具体操作方法是:把弹簧秤挂在滑轮上,然后让滑轮悬挂在金属丝上。
接着,我们要记录下弹簧秤的读数。
等到金属丝弹回原来的位置后,再记录下弹簧秤的读数。
我们可以用这两个读数来计算出金属丝的杨氏弹性模量了。
不过,在实验过程中可不能掉以轻心哦!因为金属丝的弹性会受到很多因素的影响,比如温度、湿度等等。
我们在实验前要做好充分的准备工作,确保实验数据的准确性。
现在让我们来看看这个实验的结果吧!经过一番努力,我们终于得出了金属丝的杨氏弹性模量。
哇塞!没想到这个简单的实验竟然能得出这么重要的结论!这可真是让人惊喜不已啊!
这次大学物理实验让我们深刻地认识到了科学实验的重要性。
只有通过实践才能真正掌握知识,才能更好地理解物理学中的各种概念和原理。
所以呢,大家一定要认真对待每一次实验哦!。
物理实验报告
系别机械系班号机53 姓名丁旭阳(同组姓名)做实验日期 2006 年 10 月 19 日教师评定
2.1 拉伸法测弹性模量
一、实验目的
1、学习用拉伸法测弹性模量的方法。
2、掌握螺旋测微计和读数显微镜的使用。
3、学习用逐差法处理数据。
二、实验仪器
支架、读数显微镜、底座、钢尺、螺旋测微计、砝码
三、实验原理
物体在外力作用下都要或多或少地发生形变。
当形变不超过某一限度时,撤走外力之后,形变将随之消失,这种形变称之为"弹性形变"。
发生弹性形变时,物体内部产生恢复原状的内应力。
弹性模量是反映材料形变与内应力关系的物理量。
拉伸法是一种直接简单的测量材料弹性模量的方法。
在弹性范围内,长度L、截面积S 的金属丝,受拉力F作用后伸长了d L。
F/S为正应力,d L/L为线应变。
有胡克定律:
比例系数 E称作材料的弹性模量,也称为杨氏模量。
使用实验中直接测量量表示,E 为:
四、实验方法与步骤
1、调整钢丝支架使它竖直。
调整底座螺钉使钢丝夹具不与周围支架碰蹭。
2、调节读数显微镜。
3、加砝码测量伸长。
4、减砝码测量伸长。
5、测量钢丝直径和长度。
五、数据记录
1、测量钢丝长度L 及伸长量L δ
5
L l δ==0.263mm
0.01mm l ∆=仪 l s =0.0184mm
15L
l δ∆=∆==L L δδ+∆=0.263±0.005mm
2、测量钢丝直径D
零点/d mm 测量前 -0.021 -0.019 -0.020 测量后 -0.021 -0.022 -0.022 平均值d =-0.208mm
钢丝的平均直径D =0.200mm ,D s =0.0019mm 。
螺旋测微计示值误差∆仪=0.004mm 。
D ∆==D D ±∆=0.200±0.004mm
3、总不确定度的计算
E E ∆=2
4FL
E D L πδ=
=237.34GPa E E E E ∆
∆=•=5GPa
E E +∆=237.3±5GPa。