博弈论论文
- 格式:doc
- 大小:224.00 KB
- 文档页数:9
博弈论论文引言博弈论是数学中一个重要的分支,研究决策制定者之间的相互作用和冲突。
它的应用领域包括经济学、管理科学、政治学等。
在本论文中,我们将探讨博弈论的基本概念,讨论不完全信息情况下的博弈模型,并分析几种常见的博弈解决概念。
博弈论的基本概念博弈博弈是指一组参与者在给定的规则下进行决策,并从中获得一定的收益或效益。
参与者之间的决策互相影响,并且他们的决策往往是非合作的。
策略策略是指参与者选择的行动方案。
他们根据自己对其他参与者行为的预期和自身的目标选择策略。
支配策略对于一个参与者而言,支配策略是指无论其他参与者采取何种策略,该参与者的一个策略总是获得更高的收益。
在博弈论中,支配策略是非常重要的概念。
纯策略和混合策略纯策略是指参与者选择一个明确的行动方案,而混合策略是指参与者以一定的概率分布来选择行动方案。
不完全信息博弈模型基本的博弈模型假设参与者对其他参与者的策略和效用函数有完全的信息。
然而,在现实生活中,很多博弈情况下,参与者并不完全了解其他参与者的信息。
不完全信息博弈模型引入了信息不对称的概念。
信息不对称信息不对称指的是在博弈中,一个参与者对其他参与者的信息有限或不完全。
这会导致参与者的决策受到信息的限制,进而影响博弈的结果。
基本模型不完全信息博弈模型可以通过一个双人博弈的例子来说明。
假设有两个参与者A和B,他们面临的博弈情境是投资决策。
参与者A可以选择投资或者不投资,参与者B也可以选择投资或者不投资。
他们各自的收益函数与投资与否有关,但是参与者B的收益函数对于参与者A是不可见的。
不完全信息博弈的解不完全信息博弈的解决方法包括纳什均衡和贝叶斯博弈。
纳什均衡纳什均衡是博弈论中最重要的解概念之一。
在不完全信息博弈中,纳什均衡指的是一组策略,使得任何一个参与者在其他参与者选择策略的情况下都没有改变自己的策略的动机。
贝叶斯博弈贝叶斯博弈是指在不完全信息博弈中,参与者对其他参与者的信息有先验的概率分布,并且随着游戏的进行不断修正对其他参与者信息的估计。
《博弈论》学生结课论文班级:姓名:学号:完成时间:XX大学XX学院用博弈分析生活摘要:在生活中,博弈无处不在。
无论是日常游戏,还是体育竞技,亦或是厂商之间的价格战,国家的贸易战,军备竞赛等,都应用到了博弈论的思想。
例如京东与当当之间的图书价格战,中美贸易战,大学生活中的占座问题,学校是否补课问题,企业的效率工资制度等。
囚徒困境是博弈论中非零和博弈的典型模型,它反映了个人最佳选择并非是集体的最佳选择这一现象。
关键词:囚徒困境,纳什均衡,完全信息静态博弈,非零和博弈,生活应用。
一,理论基础现代博弈论发源于西方的17世纪,1928年,冯.诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生,到1944年,冯.诺依曼与摩根斯坦共著划时代巨著《博弈论与经济行为》的发表标志着现代博弈论的诞生。
其实在我国古代,“博弈”这个词就早早出现了,比如《史记》中记载的“田忌赛马”就是一个非常经典的博弈问题。
现代博弈论的主要应用领域是经济活动中的经营决策,市场竞争以及政治军事活动中的谈判,联合等。
博弈论所研究的博弈本质上就是(个人,小组,或其他组织的)决策行为,通过最优策略来达到博弈方的得益最优。
其实博弈现象不仅仅存在于经济活动中,在我们的日常生活中也是随处可见的,通过对博弈论的学习,我们能够将博弈思想与现实生活联系起来,从而获得最优策略。
下面我将从囚徒困境出发对生活中的博弈作出分析。
二,囚徒困境模型囚徒困境是博弈论中非零和博弈的典型模型,它反映了个人最佳选择并非是集体的最佳选择这一问题。
囚徒困境源自梅里尔•弗勒德和梅尔文•德雷希尔拟定出的相关困境理论,由艾伯特•塔克以囚徒方式阐述。
囚徒困境的原模型是警察抓住两名合伙犯罪的罪犯,为防止串供而将其分开审问,如果囚徒1和2都选择坦白,那么二者都将获刑5年,如果都不坦白,那么将获刑一年,如果囚徒1坦白,而囚徒2不坦白,那么囚徒1被立即释放,囚徒2获刑8年,如果囚徒1不坦白,囚徒2坦白,那么囚徒1获刑8年,囚徒2立即释放。
博弈论论⽂--⾮合作博弈论⾮合作博弈论博弈论也叫对策论,是现代微观经济学的基础领域之⼀,主要研究在彼此互动的情形下个⼈是如何做决策的。
近年来它已经被⼴泛地应⽤于商业、政治、社会学等其他社会科学的分析中。
博弈的分类根据不同的基准也有不同的分类。
⼀般认为,博弈主要可以分为合作博弈和⾮合作博弈。
合作博弈和⾮合作博弈的区别在于相互发⽣作⽤的当事⼈之间有没有⼀个具有约束⼒的协议,如果有,就是合作博弈,如果没有,就是⾮合作博弈。
1950年和1951年纳什的两篇关于⾮合作博弈论的重要论⽂,彻底改变了⼈们对竞争和市场的看法。
他证明了⾮合作博弈及其均衡解,并证明了均衡解的存在性,即著名的纳什均衡。
从⽽揭⽰了博弈均衡与经济均衡的内在联系。
纳什的研究奠定了现代⾮合作博弈论的基⽯,后来的博弈论研究基本上都沿着这条主线展开的。
1944年冯·诺依曼与奥斯卡·摩根斯特恩合著的巨作《博弈论与经济⾏为》出版,标志着现代系统博弈理论的的初步形成。
尽管对具有博弈性质的问题的研究可以追溯到19世纪甚⾄更早。
例如,1838年古诺(Cournot)简单双寡头垄断博弈;1883年伯特兰和1925年艾奇沃奇思研究了两个寡头的产量与价格垄断;2000多年前中国著名军事家孙武的后代孙膑利⽤博弈论⽅法帮助⽥忌赛马取胜等等都属于早期博弈论的萌芽,其特点是零星的,⽚断的研究,带有很⼤的偶然性,很不系统。
冯·诺依曼和摩根斯特恩的《博弈论与经济⾏为》⼀书中提出的标准型、扩展型和合作型博弈模型解的概念和分析⽅法,奠定了这门学科的理论基础。
合作型博弈在20世纪50年代达到了巅峰期。
然⽽,诺依曼的博弈论的局限性也⽇益暴露出来,由于它过于抽象,使应⽤范围受到很⼤限制,在很长时间⾥,⼈们对博弈论的研究知之甚少,只是少数数学家的专利,所以,影响⼒很有限。
正是在这个时候,⾮合作博弈—“纳什均衡”应运⽽⽣了,它标志着博弈论的新时代的开始!纳什不是⼀个按部就班的学⽣,他经常旷课。
博弈论案例分析——“占座大战”博弈班级:姓名:学号:博弈论(Game Theory),亦名“对策论”、“游戏理论”,属应用数学的一个分支,博弈论已经成为经济学的标准分析工具之一。
目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。
博弈论主要研究公式化了的激励结构间的相互作用。
是研究具有斗争或竞争性质现象的数学理论和方法。
也是运筹学的一个重要学科。
博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。
生物学家使用博弈理论来理解和预测进化论的某些结果。
.博弈论是指某个个人或是组织,面对一定的环境条件,在一定的规则约束下,依靠所掌握的信息,从各自选择的行为或是策略进行选择并加以实施,并从各自取得相应结果或收益的过程,在经济学上博奕论是个非常重要的理论概念。
什么是博弈论?古语有云,世事如棋。
生活中每个人如同棋手,其每一个行为如同在一张看不见的棋盘上布一个子,精明慎重的棋手们相互揣摩、相互牵制,人人争赢,下出诸多精彩纷呈、变化多端的棋局。
博弈论是研究棋手们“出棋” 招数中理性化、逻辑化的部分,并将其系统化为一门科学。
换句话说,就是研究个体如何在错综复杂的相互影响中得出最合理的策略。
现在,我们就讨论一下生活中的博弈;大学生活中,生活也是比较的丰富,其中,吃饭也是很重要的部分,大家一般都是在学校食堂吃饭,由于大家吃饭的时间比较集中,所以吃饭的时候人数特别多,食堂座位有限,同学们也希望在食堂买完饭后不用再找座位,因此很多同学在买饭之前就用自己的私人物品占座位,为此,食堂也经常发生因为占座位而引起的纠纷。
在这里称为“占座大战”博弈,就这个博弈问题进行讨论;现在就这个问题来进行一个博弈论的分析,两个发生纠纷的人都有两个选择,分别是U(冲上去进行理论,争取座位),D(选择退让,找其他的座位),若两人都进行理论,争取座位的话,很有可能就是两败俱伤,两个人也可能因意见不合而进而出现打架的现象,而且在食堂这个公共场所,对大家的形象都有着很不好的影响;如果一方选择退让,而另外一方则选择理论,则结果可能就是一方另找座位,有些损失,一方占领了座位,取得了胜利;还有就是双方都选择了退让,将座位让给其他人;根据以上的分析,现在有如下的支付图:参与人2U DU -2,-2 1,-1参与人1D -1,1 0,0求解过程(箭头法):参与人2UU参与人1D现在求解这个博弈问题:由博弈问题的Nash均衡可以知道,在以上的博弈问题中存在着两个纯战略Nash均衡——(U,D)和(D,U),就是说,在整个的博弈中,两个人中有一个人退让,寻找其他的座位,另外一个人进行争论得到座位。
****2014~2015学年第二学期《博弈论》结课论文论文题目:博弈论与管理学任课教师:学院班级:学号:姓名:博弈论与管理学摘要现代管理的核心职能是激发人最大限度地发挥主观能动性,创造性地开展工作,这其中自然包含了管理者和被管理者之间的博弈。
本文从博弈论的基本概念出发,结合管理学基本理论,对博弈对管理学的作用做了简要阐述。
关键词博弈;管理;均衡;经济一、博弈论简介(一)博弈的起源和发展博弈论是二人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的目的博弈论思想古已有之,中国古代的《孙子兵法》等著作就不仅是一部军事著作,而且算是最早的一部博弈论著作。
博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展。
博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。
近代对于博弈论的研究,开始于策梅洛(Zermelo),波莱尔(Borel)及冯•诺依曼(von Neumann)。
1928年,冯•诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。
1944年,冯•诺依曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统地应用于经济领域,从而奠定了这一学科的基础和理论体系。
1950~1951年,约翰•福布斯•纳什(John Forbes Nash Jr)利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的基础。
纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。
此外,莱因哈德•泽尔腾、约翰•海萨尼的研究也对博弈论发展起到推动作用。
今天博弈论已发展成一门较完善的学科。
(二)博弈论的基本概念博弈论又被称为对策论(Game Theory)既是现代数学的一个新分支,也是运筹学的一个重要学科。
博弈论主要研究公式化了的激励结构间的相互作用。
****2014~2015学年第二学期《博弈论》结课论文论文题目:博弈论与管理学任课教师:学院班级:学号:姓名:博弈论与管理学摘要现代管理的核心职能是激发人最大限度地发挥主观能动性,创造性地开展工作,这其中自然包含了管理者和被管理者之间的博弈。
本文从博弈论的基本概念出发,结合管理学基本理论,对博弈对管理学的作用做了简要阐述。
关键词博弈;管理;均衡;经济一、博弈论简介(一)博弈的起源和发展博弈论是二人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的目的博弈论思想古已有之,中国古代的《孙子兵法》等著作就不仅是一部军事著作,而且算是最早的一部博弈论著作。
博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展。
博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。
近代对于博弈论的研究,开始于策梅洛(Zermelo),波莱尔(Borel)及冯•诺依曼(von Neumann)。
1928年,冯•诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。
1944年,冯•诺依曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统地应用于经济领域,从而奠定了这一学科的基础和理论体系。
1950~1951年,约翰•福布斯•纳什(John Forbes Nash Jr)利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的基础。
纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。
此外,莱因哈德•泽尔腾、约翰•海萨尼的研究也对博弈论发展起到推动作用。
今天博弈论已发展成一门较完善的学科。
(二)博弈论的基本概念博弈论又被称为对策论(Game Theory)既是现代数学的一个新分支,也是运筹学的一个重要学科。
博弈论主要研究公式化了的激励结构间的相互作用。
协商、合作共赢论协商博弈在现实生活中的应用摘要:在现实生活中,博弈几乎无处不在,博弈的结果也因人而异,对于一些博弈双方存在共同利益的博弈,双方可以通过协商,采取有利于双方的策略,从而最终实现双方利益最大化,也就是通过协作博弈实现了正和博弈。
关键词:博弈论协作博弈合作共赢当代凯恩斯主义的集大成者、经济学的最后一个通才——保罗·萨缪尔森曾说过:“要想在现代社会做一个有文化的人,你必须对博弈论有一个大致了解。
在今天这个尔虞我诈、竞争激烈的社会中,要想拥有一个美丽的人生,不付出汗水怎么行?不绞尽脑汁又怎么行!而我们绞尽脑汁思考的过程,其实就是博弈。
”在现实生活中,博弈几乎无处不在,例如:在游戏中,我们必须通过博弈来分出胜负;在购物时,我们不能确切地知道产品质量是否良好,要通过博弈才能作出选择;在恋爱中,我们要想确切地知道恋人爱自己有多深,也得通过博弈;在政治领域、军事领域,博弈都是帮助我们确切地判断对手实力的必需“工具"……由此可见,博弈是如此重要。
博弈有三个关键概念:正和博弈、零和博弈、以及负和博弈,但是对于一些博弈双方存在共同利益,有共同兴趣爱好的博弈,双方可以通过协商,采取有利于双方的策略,从而最终实现双方利益最大化,也就是通过协作博弈实现了正和博弈。
现实生活中也有很多通过协作博弈实现共赢的例子,假设宿舍中有甲、乙两个同学,他们各有两个选择的策略,上网娱乐或者学习。
若两人都学习,甲乙各有7各单位的收益若两人都选择上网娱乐,则甲乙各得到5各单位的收益若其中一人选择上网,另一人选择学习。
则因为相互干扰,学习的获得2各单位的效益,而上网的获得三个单位的效益如图所示:上网学习上网通过划线求解法可以得出,在甲乙两人上网与学习的博弈中没有优势策略,但是存在着最优反应,图表中得出共有四个最有反应。
针对这种没有优势策略的博弈而言,最好的解决方法就是通过协商解决,因为进行博弈的双方之间有共同的兴趣偏好,存在着共同利益,因此通过甲、乙双方的协商,建立一种合作关系,可以使学习和娱乐的效率大大提高,从而实现双方利益的最大化,即通过协商实现了双方的共赢。
博弈论论文博弈论是一门研究决策制定和行为选择的学科,主要研究在多方参与的决策过程中各方之间的相互影响与竞争。
博弈论的应用领域非常广泛,包括经济学、社会学、政治学、管理学等。
博弈论可以分为非合作博弈和合作博弈两大类。
非合作博弈是指在决策过程中各方之间缺乏有效的沟通和合作,每个参与者根据自身利益来做出决策。
合作博弈则是指各方之间可以进行有效的沟通和合作,通过达成共识来制定决策。
在非合作博弈中,博弈方通过评估自身的收益和损失来制定最优的策略。
博弈论中的核心概念包括博弈参与者、策略集、支付函数和均衡点等。
通过分析不同博弈的策略和结果,可以帮助决策者制定最优的决策,并预测其他参与者的行为。
合作博弈更加侧重于协作和合作的过程。
在合作博弈中,各方之间可以进行有效的沟通和协商,通过合作达成共同的利益最大化的目标。
博弈论中的合作博弈模型包括核心、稳定集和Shapley值等。
这些模型可以帮助分析博弈参与者之间的合作关系和利益分配。
博弈论的应用非常广泛。
在经济学中,博弈论可以用于分析市场竞争、价格决策和产业组织等问题。
在社会学中,博弈论可以用于研究社会冲突、合作行为和群体决策等。
在政治学和管理学中,博弈论可以用于分析政治竞选、战略决策和组织协调等。
博弈论的研究还面临许多挑战和问题。
例如,博弈论中的均衡概念往往基于完全理性的假设,实际中的决策者可能存在有限理性和行为偏差。
另外,博弈论的分析也需要依赖大量的信息和数据,而现实中的信息不对称和不完全可能导致分析结果的不准确性。
总之,博弈论是一门重要的学科,它提供了分析决策和行为选择的有效工具。
通过深入研究博弈论的理论和方法,可以帮助我们更好地理解人类社会的运作机制,并为决策制定提供科学依据。
博弈论论文以下是一些博弈论的经典论文:1. "A Theory of Games and Economic Behavior" by John von Neumann and Oskar Morgenstern: 这本由冯·诺依曼和奥斯卡·摩根斯特恩合著的经典著作于1944年出版。
它是博弈论领域的创始性作品,介绍了静态和动态博弈理论以及相关的经济应用。
2. "The Bargaining Problem" by John Nash: 这篇1950年的论文是约翰·纳什的博士论文,他在其中提出了现在被称为纳什均衡的概念。
这个概念对于理解博弈论的核心思想和分析博弈策略至关重要。
3. "Equilibrium Points in n-Person Games" by John Nash: 这篇1950年的论文是纳什的另一篇重要作品,其中他推广了他的均衡概念,并证明了每个有限博弈都至少存在一个纳什均衡点。
4. "The Evolutionary Stable Strategy" by John Maynard Smith and George Price: 这篇1973年的论文提出了进化稳定策略的概念,它在生物学中的博弈论应用中引起了广泛的兴趣。
5. "A Beautiful Mind" by Sylvia Nasar: 这本1998年的传记讲述了约翰·纳什的生活和他在博弈论领域的贡献。
它后来被改编为同名电影,使得博弈论在大众中的知名度大大提高。
这只是一小部分相关的论文和文献,博弈论领域有着广泛且深入的研究。
如果你对具体的子领域或者更具体的研究兴趣有问题,可以进一步说明,以便得到更具针对性的建议。
三、研究设计/理论分析和模型研究3.1房地产开发商与政府之间的博弈3.1.1 房地产开发商与政府在一级房地产市场中的博弈房地产一级市场又称土地一级市场,是土地使用权出让的市场,即国家通过其指定的政府部门将城镇国有土地或将农村集体土地征用为国有土地后出让给使用者的市场。
土地是开发商在进行房地产商品开发时必须的首要资源,可以说,土地的产权交易市场是房地产市场的源头市场。
由于信息的不对称、制度的缺陷和市场主体行为的不规范,我国当前的土地市场仍然存在权力“寻租”、土地使用效率低等问题。
土地交易市场秩序是土地市场参与者之间博弈的结果,它主要涉及到国家、地方政府、房地产开发商三方的利益,在市场的交易过程中,既存在交易双方(政府与开发商)之间的利益博弈,又有买方(开发商)之间的博弈,各参与者都想在约束条件下以利益最大化进行博弈。
例1:假设土地市场的逆需求函数为)(p bQ a P -=( p 是价格, )(p Q 是原需求函数),土地具有相同的不变单位成本1C 。
假设市场上一个竞拍企业时,该企业将所得土地全部用于房地产开发,商品房的单位建筑成本为2C 。
政府和企业在同一个市场中,因此他们有相同的逆需求函数)(p bQ a P -=。
分析政府土地供给量与企业土地需求量及土地价格之间的关系:①政府的收益函数为:Q C Q bQ a Q C pQ 11)(--=-=π 最优化的一阶化条件为:021=--=C bQ a dQd π 解得:bC a Q g 21-=(g Q 表示政府的最佳土地供给量) ②企业的收益函数为:Q C Q C Q bQ a Q C Q C pQ 2121c )(---=--=π 最优化的一阶化条件为:0221=---=C C bQ a dQd c π 解得:bC C a Q c 221--=(c Q 表示企业的最佳土地需求量) 比较g Q 、c Q ,可知g Q >c Q 。
因此,在只有一个企业的情况下,土地供给总是大于需求,价格必然下降。
代兴胜 1006040257 工商管理1002 序号 69较量的博弈——《博弈论基础》期末论文指导老师:陈梅一.博弈论简介(一)博弈论概念博弈论(Game theory),也称为对策论或赛局理论,研究多个个体或团队之间在特定条件制约下的对局中利用相关方的策略,如何实施对应策略。
它研究具有斗争或竞争性质现象的理论和方法,是运筹学的一个重要学科。
(二)博弈论概述1.博弈论考虑游戏中的个体的预测行为和实际行为,并研究他们的优化策略。
表面上不同的相互作用可能表现出相似的激励结构。
其中一个著名的例子是囚徒困境悖论2.在具有竞争或对抗性质的行为中,参加斗争或竞争的各方有不同的目标和利益。
为了达到各自的目标,各方必须考虑对手的各种可能的行动方案,并力图选取对自己最为有利或最为合理的方案。
博弈论的目标即研究博弈行为中斗争各方是否存在最合理的行为方案,以及如何找到这个合理的行为方案的数学理论和方法。
3.博弈论也应用与数学的其它分支,如概率论、线性规划、统计等。
二.博弈论的发展(一)中国古代思想中国古代的《孙子兵法》是最早的一部博弈论专著。
博弈论最初主要研究棋牌赌博中的胜负问题,只停留在经验上,没有向理论化发展。
(二)博弈论的系统提出1.对于博弈论的研究开始于Zermelo, Borel, von Neumann,后有vonNeumann 和 Morgenstern 首次对其系统化和形式化。
2.John Forbes Nash Jr. 利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的基础。
(三)现代博弈论1.现代经济博弈论在20世纪50年代由经济学家Oscar Morgenstern 引入经济学,目前已是经济分析的主要工具之一,对产业组织理论、委托代理理论、信息经济学的发展起到重要作用。
2.由于博弈论重视经济主体之间的相互联系及辩证关系,大大拓宽了传统经济学的分析思路,使其更加接近现实市场竞争,从而成为现代微观经济学的重要奠基石。
博弈论论文第一篇:博弈论论文简评罗伯特•奥曼生平及其理论一人物生平美国诺贝尔经济学奖第一人保罗·萨缪尔森曾经说过:“要想在现代社会做个有文化的人,你必须对博弈论有大致的了解。
”从1994年至今,诺贝尔经济学奖先后6次授予博弈论领域的15位学者。
博弈论在经济学上的重要地位可见一斑。
作为“博弈论四君子”之一,罗伯特·奥曼是博弈论发展史上的一个核心人物。
与另外三位博弈论大师相比,奥曼的研究更“博”——从基本概念的确立到理论工具和研究方法的创新,从理论体系的形成到博弈论在不同领域的应用,奥曼都有重要贡献。
1930年6月,罗伯特•奥曼出生于德国的法兰克福,孩童时期的他一直过着幸福快乐的生活。
直至1938年的一夜,纳粹借口一位17岁的犹太难民在法国巴黎枪杀了德国大使馆的三等秘书,在全德国开始了对犹太人的疯狂迫害。
在这场迫害的导火索被引燃之前,一对犹太夫妇,带着自己的两个儿子幸运地逃离了德国…而这对犹太人夫妇和他们的孩子就是奥曼一家。
奥曼一家逃到了美国,高中时代的罗伯特•奥曼遇上了一位非常好的数学老师,于是,他选择了数学作为专业。
1952年和1955年,奥曼在麻省理工学院分别获得数学硕士学位和博士学位,在这里,他遇到了数学家约翰纳什。
当奥曼在研究生院学习理论数学,并且在写关于“纽结理论”的博士论文的时候,“纽结理论”也是理论数学的一个分支,遇到了约翰·纳什,了解了关于博弈论的一些东西。
但此时的奥曼还没有对博弈论产生兴趣。
50年代初博弈论正处于发展阶段。
而罗伯特•奥曼对此并不感兴趣,他毕业后去了一家运筹咨询机构,研究的任务之一是如何保护城市免遭空中梯队飞机的袭击,这时,著名的贝尔实验室找到了他。
那个时候贝尔实验室正在做一种放在导弹上的导航系统,当时美国正在完善这种导弹。
对于这样一种导航系统,他们要求实验室分析这样一个问题:当一个城市在受到空中飞行梯队攻击的情况下,(梯队中)有一部分飞机是用作诱饵的假目标,而有一部分确实携带核武器。
博弈论结课论文——大学生活中的博弈学院:班级:姓名:学号:邮箱:指导老师:一、引言博弈论(Game Theory)是指研究多个个体或团队之间在特定条件制约下的对局中利用相关方的策略,而实施对应策略的学科。
有时也称为对策论,或者赛局理论,是研究具有斗争或竞争性质现象的理论和方法,它是应用数学的一个分支,既是现代数学的一个新分支,也是运筹学的一个重要学科。
目前在生物学、经济学、国际关系学、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。
主要研究公式化了的激励结构(游戏或者博弈)间的相互作用,是研究具有斗争或竞争性质现象的数学理论和方法,也是运筹学的一个重要学科。
博弈论思想古已有之,我国古代的《孙子兵法》就不仅是一部军事著作,而且算是最早的一部博弈论专著。
但人们对博弈局势的把握只停留在经验上,没有向理论化发展,正式发展成一门学科则是在20世纪初。
对于博弈论的研究,开始于策墨洛(Zermelo,1913)、波雷尔(Borel,1921)及冯·诺伊曼(von Neumann, 1928),后来由冯·诺伊曼和奥斯卡·摩根斯坦(von Neumann and Morgenstern,1944,1947)首次对其系统化和形式化(参照Myerson, 1991)。
随后约翰·福布斯·纳什(John Forbes Nash Jr., 1950, 1951)利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的基础。
此外,塞尔顿、哈桑尼的研究也对博弈论发展起到推动作用。
今天博弈论已发展成一门较完善的的学科。
博弈论与我们每个人生活息息相关,我们买东西与商家的讨价还价,在工作中的利益得失,与同学之间的相处等等都涉及到博弈论的知识。
本文对博弈论在大学生活中的应用进行了举例分析,同时表明博弈论与我们生活的紧密联系。
二、摘要博弈与我们的生活息息相关,生活中的很多事都可以用博弈论的知识去分析和解决。
博弈论论文博弈论是一个研究决策的数学分支,其理论通常应用于经济学、政治学、社会学等领域。
本文将介绍博弈论的基础概念和一些重要应用。
第一篇:博弈论的基础概念博弈论是对决策制定过程中相互关联行动的数学建模和分析。
它研究的是个体或群体在决策环境中的最优策略选择问题。
博弈论的基本元素包括玩家、策略和支付函数。
在博弈论中,玩家是决策的主体,可以是个体或群体。
策略是玩家在不同情境下可选择的行动方式。
而支付函数则表示当玩家采取某个策略时,所获得的利益或得失。
博弈论的基本概念还包括纳什均衡和博弈矩阵。
纳什均衡是指在一个博弈中,每个参与者选择的策略互相决定,不存在更合适的策略选择。
博弈矩阵是用于描述两个玩家在一个博弈中的策略选择和相应的支付。
博弈矩阵可以用于计算纳什均衡和评估不同策略选择的结果。
博弈论的应用非常广泛。
在经济学领域,博弈论可以用于分析市场竞争、拍卖、合作与冲突等问题。
政治学中,博弈论可以解释政治决策和选举过程中的行为策略。
社会学中,博弈论可以用于研究群体中的合作和社会规范形成等问题。
综上所述,博弈论是一门研究决策的数学分支,通过建立数学模型来分析不同决策情境下的最优策略选择问题。
其基本概念包括玩家、策略和支付函数。
博弈论在经济学、政治学和社会学等领域有着广泛的应用。
第二篇:博弈论的应用案例博弈论作为一种数学工具,可以应用于各种实际问题的分析和决策制定。
本文将介绍几个典型的博弈论应用案例。
首先,我们来看市场竞争问题。
在一个市场上,多家公司同时提供相似的产品或服务。
每个公司的策略选择会影响到其他公司的利益。
通过博弈论分析,可以找到在特定情况下的最优策略选择。
例如,当市场上存在两家公司时,他们可能会借助定价策略来获取更多市场份额。
其次,博弈论可以应用于拍卖。
在一个拍卖过程中,卖家和买家之间存在策略选择和支付函数。
通过分析博弈矩阵,可以确定在不同情境下的纳什均衡,从而确定最佳出价或接受价格。
再次,博弈论可以用于研究合作与冲突问题。
本科毕业论文(设计)论文(设计)题目:用博弈论思想分析经济学现象,分析生活中一个经济现象学院:计算机技术与科学学院专业:软件工程年级:软件123学号: 1208060324学生姓名:廖杰指导教师:刘涛2014年 5月 23日目录摘要 (2)ABSTRACT (3)正文 (4)一、完全信息讨价还价 (4)二、不完全信息下的讨价还价 (6)三、总结 (7)参考文献 (7)附录一 (8)从讨价还价看经济、市场摘要本文阐述了博弈论在讨价还价方面的应用理论。
主要在完全信息与不完全信息下,进一步针对不同的情况,综合地介绍讨价还价理论模型以及应用。
讨价还价作为市场经济中最常见、普通的事情,也是博弈论中最经典的动态博弈问题。
现实经济中充满了“讨价还价”的情形,大到国与国之间的贸易协定,小到个体消费者与零售商的价格商定,还有厂商与工会之间的工资协议、房产商与买者之间关于房价的确定、各种类型的谈判等等。
这实际上是两个行为主体之间的博弈问题,也可以把讨价还价看作为一个策略选择问题,即如何分配两个对弈者之间的相互关联的收益问题。
关键词:博弈论,讨价还价,博弈树Viewing from the bargaining, market economyAbstractThis paper expounds the bargaining game theory in the application of theory. Main under complete information and incomplete information, further according to different situation, comprehensive introduction to bargaining model in theory and application. Bargaining as the most common, ordinary things in market economy, as well as the most classical game theory of dynamic game problems. Is full of "bargain" in real economic situations, big to trade agreements between countries and agreed on the price of small to individual consumers and retailers, and manufacturers and the unions wage agreement between, between property developers and buyers about the determination of prices, various types of negotiation, and so on. This is actually a game between two agents, can also read the bargain as a strategy choice problem, namely how to divide the two players of the correlation between income problem.Key words:Game theory Argy-bargy, Game tree正文一、完全信息讨价还价(一)纳什讨价还价假设讨价还价主体为两个人:甲和乙,二人共同努力完成了一个项目并获得收益10000元,现在二人将针对每个人将获得多少而展开讨价还价博弈。
为解决此类问题,纳什则做出了一系列研究并得出纳什讨价还价解。
当达不成协议时,参与双方可以有不同的效用水平,而且效用函数可以是分配比例的非线性函数。
(二)博弈树:(三)有限期轮流出价1、无贴现假设条件:回合T为奇数(设T=3),乙先出价。
由于回合数为奇数,对于甲来说,接受或拒绝没有差异,因此所有的均衡都是弱的。
这些均衡结果只决定于甲最后决定接受的时间。
因为在奇数回合中,乙享有最后一期的出价权利,当他要求得到全部收益时,即使甲拒绝,甲仍然一无所获,乙则获得全部收益。
若此博弈只有一轮,那么甲根本没有机会提出反驳意见。
现在假设乙仍然先出价,但是回合数为偶数时,博弈的结果就是甲将得到全部收益。
在此例中,很明显看到一个最终行动者优势的存在,这就是后动的博弈优势。
2、有贴现,且贴现对等有贴现的情况就是讨价还价每多进行一个回合,由于谈判费用和利息损失等,双方的利益都要打一个折扣。
假设条件双方折扣率均为σ(0<σ<1),回合数T =3。
对于此种三回合情况可用下面方式加以描述:第一回合:乙的方案是自己得X1,甲得10000-X1。
甲若接受,二人收益分别为X1和10000- X1,谈判结束。
如果甲拒绝,则开始第二回合谈判。
第二回合:甲的方案是乙得X2,自己得10000-X2。
乙若接受,二人收益分别为σX2和σ(10000-X2),谈判结束。
如果拒绝,则开始第三回合谈判:乙自己得X,甲得10000-X,此时乙必须接受,最后二人的实际收益分别为σ2X和σ2(10000-X)。
这三回合中双方所提出的X1 、X2 和X 都是0到10000之间的任意金额,因此可以认为由于X1 、X2 和X都有无限多种,所以这个讨价还价博弈是一个无限策略的动态博弈。
3、有贴现,但不等假设乙的折扣率为σ1,甲的折扣率为σ2,0<σ2,σ1<1并且两人知道对方的折扣率,回合数T=3。
此类博弈和贴现相等情况是很类似,用逆推归纳法来分析这个博弈。
第三回合:知道双方的收益分别为σ12X和σ22(10000-X)。
第二回合:甲在第二回合会出能让乙接受的,也是可能使自己得益最大的X2,应满足使乙得益σ12X =σ1X2,即X2 =σ1X,则甲得益就是σ2 (10000-X2)= σ2 (10000-σ1X),由于0<σ2,σ1<1,所以σ2 (10000-σ1X)>σ22(10000-X)。
第一回合:乙只要令10000- X1=σ2 (10000-σ1X),即X1=10000-σ2 (10000-σ1X)即可。
这样第一回合与第二回合甲的得益相同,而乙的得益X1=10000-σ2 (10000-σ1X),比第二、三回合得益更大。
因此这个博弈,乙会在第一回合出价X1=10000-σ2 (10000-σ1X),甲会接受,最终二人得益分别为X1=10000-σ2 (10000-σ1X)和σ2(10000-σ1X),这个就是这种有限奇数次讨价还价有贴现情况的均衡解。
(三)无限期轮流出价无限期讨价还价博弈由于时间会持续很久,所以折扣是肯定会存在的,所以直接讨论有贴现情况。
1、对等贴现此情况逆推法无法应用。
解决方法如下:先假设整个博弈有一个逆推归纳解,乙和甲分别得益X和10000-X,即乙在第一回合出价X,甲接受。
夏克德和萨顿曾提出无限期讨价还价中,从第三回合开始还是从第一回合开始结果都是一样的,本文直接引用这一结论来解决问题。
所以根据这个理论,上述逆推归纳的解也应该是从第三回合开始的博弈的结果。
即第三回合也是乙出价X,甲接受,而且这个结果也是最终的结果。
2、不等贴现假设乙的折扣率为σ1,甲的折扣率为σ2,0<σ1,σ2<1。
乙想分得X1份额,并想使X1最大化,但他得考虑到甲,若X1过多而遭拒绝,则他的愿望就成为泡影。
所以乙揣测将出价给甲X2。
在第一回合讨价还价中,乙要保证给甲的10000-X1不小于他还价后的10000-X2贴现到现在的价值,这时乙可根据甲的X2和观察可解出X2,故先要价X1。
之后第二轮讨价还价开始,甲出价为X2,而且也考虑到乙会还价,所以他也要保证乙将再出价贴现为现值不小于甲的还价,又要尽量使自己的收益最大化,这时他可根据推测的X3求出X2,所以出价X2。
乙第三回合再出价时,就会重复开始的过程,所以由此可知甲获得的收益与自己的折扣率呈增函数关系,而与对方的折扣率呈减函数关系。
这就是Rubinstein针对此问题曾提出的解。
3、无贴现、有成本现假设乙或甲每个回合出价时贴现变为了成本,设为C1和C2,且C1=C2=C。
(1)C1这种情况下回合期限越长,甲的损失就会越大,但是除了会降低二人总体收益之外,并不会改变二者的博弈地位。
此时,博弈可以看作是静态的。
因为不论经过多少回合,在二人看来,博弈与初期相同。
仍然用逆推归纳法,在第T回合若是甲出价分给乙X,则在第T-1回合,乙就会出价分给甲10000-X-C2,而自己保留X+C2;在T-2回合,甲则会分给乙X+C2-C1,自己保留10000 –X-C2+C1。
依次类推,不断前推结果是:乙可以得到比甲高任意γ(C2-C1)倍收益。
因此博弈一开始,甲就会放弃讨价还价接受0分配。
(3)C1>C2乙作为先行动者,他的份额受限于成本C2,因为他明确知道甲会在第二回合出价为自己保留10000,所以他会在第一期提出自己分配C2,甲得益为10000-C2,这样甲就会接受,而不会进入到第二个回合了。
二、不完全信息下的讨价还价Fudenberg和Tirole二人则对这类问题作了研究。
现假设有一个买方和一个卖方,买方类型有两种:B100和B150,其中买方为B100的概率为γ,为B150的概率为(1-γ) 。
博弈的过程是,卖方先出价P1,买方接受则博弈结束,买方拒绝则卖方再出价P2,买方再决定是否接受。
(一)低效用买方很多的情况先假设γ=0.5,即买方是低效用者的可能性很高;σ=0.9。
第一回合,B100类的买者在P1≤P(B100)1=100时,就接受这个价格;B150类的买者在P1≤P(B150)1=105时接受。
第二回合,B100类的买者在P2≤P(B100)2=100时,就接受这个价格;B150类的买者在P2≤P(B150)2=150时接受。
卖方在非均衡路径的信念是:如果买方拒绝P1,则他是B100类买者的可能性为γ。
均衡的结果是,买方出价P1,并且买方接受。
这个均衡就是完美贝叶斯均衡。
卖方知道,即使105,他仍然可以将货物卖给B150类型买者。
但是如果他这么做,就有可能在第一回合卖不出去,他将延期得到收入。
因为100>105(1-γ)+100σγ=97.5,即卖方更愿意拿到稳定的现期收入100,而不愿意在现期收入105和将来的100之间碰运气。
(二)低效用买方很少的情况1、均衡(混合策略下的分离均衡)假设γ=0.05,即买方是低效用者的可能性不高;σ=0.9。