无机非金属材料总结(完整版)
- 格式:docx
- 大小:698.73 KB
- 文档页数:25
无机非金属实习总结9篇第1篇示例:无机非金属实习总结无机非金属是无机化学的一部分,它主要研究不属于金属的化合物和元素。
在我进行的这次无机非金属实习中,我收获颇丰,通过这段时间的实习,我不仅了解了更多有关无机非金属的知识,还提高了自己的动手能力和实验技巧。
在这段实习中,我对一些无机非金属的性质和用途有了更深入的了解。
比如氧气和氮气是我们生活中常见的非金属元素,它们在生产和生活中有着广泛的应用。
氧气是维持生物生命正常活动所必需的气体,而氮气则在许多工业制造中得到广泛应用。
我还学会了如何通过实验来确定无机非金属的性质和结构,这为我今后的学习和工作打下了扎实的基础。
在实习过程中,我还学会了如何正确操作实验仪器和设备。
在实验室中,我们经常需要使用各种各样的仪器来进行化学反应或分析。
通过这次实习,我熟练掌握了一些常用的实验操作技巧,比如如何使用称量瓶、分液漏斗、热水浴等设备。
这不仅提高了我的实验操作能力,也加深了我对实验原理的理解。
在实习中,我还加深了对团队合作的认识。
在实验室中,我们经常需要和同事一起合作完成一些复杂的实验项目。
通过与同事的交流和合作,我学会了如何与他人有效地合作,如何分工合作,如何共同解决问题。
团队合作不仅提高了我们的工作效率,也为我们带来了更多的想法和启发。
在这次实习中,我也收获了一些思考和启示。
我意识到要成为一名优秀的实验者,除了要掌握扎实的专业知识和实验技能,更重要的是要有一颗敢于探索和创新的心。
科学研究永无止境,只有不断地学习和研究,我们才能不断进步,不断创新。
这次无机非金属实习对我来说是一次宝贵的经历,我在实践中学到了很多知识和技能,也得到了很多启发和感悟。
希望通过这次实习,我能够更好地运用所学知识,更好地发挥自己的能力,为未来的学习和工作打下更坚实的基础。
感谢实习单位给予我这次机会,也感谢老师和同事们的指导和帮助。
我会珍惜这次实习经历,不断学习和进步,为实现自己的人生目标而努力奋斗。
可编辑修改精选全文完整版第四章无机非金属材料第一节概述一、无机非金属材料的定义除金属和高分子材料以外的固体材料以金属元素或非金属元素的化合物或非金属元素单质为组元,原子与原子之间通过离子键和共价键而键合,主要组成成分大多为硅酸盐类,因此有时也称为硅酸盐材料。
二、化学键的特点☺化学健主要是离子键、共价健以及它们的混合键;☺硬而脆、韧性低、抗压不抗拉、对缺陷敏感;☺熔点高,具有优良的耐高温和化学稳定性;☺一般自由电子数目少、导热性和导电性较小;☺耐化学腐蚀性好;☺耐磨损。
四、无机非金属材料的分类传统无机非金属材料主要包括陶瓷、玻璃、水泥和耐火材料等。
无机非金属材料传统无机非金属材料——硅酸盐材料新型无机非金属材料——半导体材料、超硬耐高温材料、发光材料等1、玻璃态材料-熔融后,在低温下仍保持熔体结构的固态物质2、陶瓷材料-粉末状材料经过成型和烧结形成的多相固体材料3、水泥-能够在水或空气中硬化的水硬性粉体材料4、耐火材料-指能够耐高温(耐受1580度以上温度)的固体材料,包括耐火砖、耐火纤维和耐火水泥等五、无机非金属材料在自然界的分布分布广泛,存在形式多样,有晶体结构和非晶态结构,有人工产品也有天然产物六、无机非金属材料的加工工艺包括热加工工艺和冷加工工艺第二节陶瓷一、陶瓷材料的分类及性能1、普通陶瓷(传统陶瓷)指以天然硅酸盐为原料,经过粉碎、成型、烧结制成的固体材料和器皿。
包括日用陶瓷、建筑陶瓷、卫生陶瓷、绝缘陶瓷、化工陶瓷等。
2、现代陶瓷(特种陶瓷)一般指以高纯度化工原料或人工合成材料为原料烧结成的固体材料。
也称为新型陶瓷、精细陶瓷、高技术陶瓷、高性能陶瓷等。
根据功能分类有电子陶瓷、光学陶瓷、高硬度陶瓷等根据化学成分划分有氧化物陶瓷、非氧化物陶瓷等(碳化物、氮化物、硼化物、硅化物等)。
根据使用性质划分有结构陶瓷(工程陶瓷)和功能陶瓷。
3、陶瓷材料的相组成及结构:陶瓷的组成相主要有晶体相、玻璃相和气相结构。
无机非金属新材料介绍无机非金属新材料是指那些没有金属元素的无机材料,它们在各个领域中有着广泛的应用。
这些材料具有优异的物理、化学和机械性能,且具备很高的耐热、耐腐蚀、绝缘和耐磨损等特点。
本文将对无机非金属新材料的种类、特点、应用以及发展前景进行全面的探讨。
无机非金属新材料的种类1. 氧化物材料•二氧化硅(SiO2)•氧化铝(Al2O3)•氧化锆(ZrO2)•氧化钛(TiO2)2. 碳化物材料•碳化硅(SiC)•碳化硼(B4C)•碳化钨(WC)•碳化钛(TiC)3. 氮化物材料•氮化硅(Si3N4)•氮化铝(AlN)•氮化钛(TiN)•氮化硼(BN)4. 磷化物材料•磷化镓(GaP)•磷化铝(AlP)•磷化钛(TiP)•磷化硼(BP)无机非金属新材料的特点1.高温稳定性:无机非金属新材料具有出色的高温稳定性,能够在极端的高温环境下保持良好的性能。
2.耐腐蚀性:这些材料对酸、碱等腐蚀性物质具有很高的抵抗能力,能够在腐蚀性环境中长期使用。
3.绝缘性:无机非金属新材料通常具有良好的绝缘性能,可用于电子器件、绝缘材料等领域。
4.高硬度:这些材料具有较高的硬度,能够抵抗磨损和划伤,适用于制作耐磨材料。
5.轻质:许多无机非金属新材料具有较低的密度,可以用于制作轻型结构材料。
无机非金属新材料的应用1. 电子器件•氧化铝用于制作电容器、绝缘层等部件;•氮化硅用于制作高功率电子器件的散热材料;•碳化硅用于制作功率器件和高频器件。
2. 光电器件•氧化锌用于制作发光二极管(LED);•磷化镓用于制作激光二极管(LD);•碳化硅用于制作光电耦合器件。
3. 能源领域•氧化锂用于制作锂离子电池的正极材料;•硫化镉用于制作太阳能电池。
4. 机械工程•碳化硅用于制作机械密封件、轴承等耐磨材料;•氧化铝用于制作切削工具。
无机非金属新材料的发展前景无机非金属新材料具有广阔的应用前景。
随着科学技术的不断进步,对新材料的需求越来越高。
无机非金属新材料具有独特的特点和优势,能够满足现代社会对高性能材料的需求。
无机非金属材料知识点(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--无机非金属材料知识点一、重要概念1、无机非金属材料①以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。
②是除有机高分子材料和金属材料以外的所有材料的统称。
2、陶瓷①从制备上开看,陶瓷是由粉状原料成型后在高温作用下硬化而形成的制品。
②从组分上来看,陶瓷是多晶、多相(晶相、玻璃相和气相)的聚集体。
3、玻璃①狭义:熔融物在冷却过程中不发生结晶的无机物质②一般:若某种材料显示出典型的经典玻璃所具有的各种特征性质,则不管其组成如何都可称为玻璃(具有玻璃转变温度 Tg)。
玻璃转变温度:热膨胀系数和比热等物理性质的突变温度。
具有Tg的非晶态材料都是玻璃。
4、水泥凡细磨成粉末状,加入适量水后,可成为塑性浆体,既能在空气中硬化,又能在水中硬化,并能将砂、石、钢筋等材料牢固地胶结在一起的水硬性胶凝材料,通称为水泥。
5、耐火材料耐火度不低于1580℃的无机非金属材料6、复合材料复合材料是两种或两种以上物理、化学性质不同的物质组合而成的一种新的多相固体材料。
通过复合效应获得原组分所不具备的性能。
可以通过材料设计使各组分的性能互相补充并彼此关联,从而获得更优秀的性能。
二、陶瓷知识点1、陶瓷制备的工艺步骤原材料的制备→坯料的成型→坯料的干燥→制品的烧成或烧结2、陶瓷的天然原料①可塑性原料:黏土质陶瓷成瓷的基础(高岭石、伊利石、蒙脱石)②弱塑性原料:叶蜡石、滑石③非塑性原料:减塑剂:石英助熔剂:长石3、坯料的成型的目的将坯料加工成一定形状和尺寸的半成品,使坯料具有必要的机械强度和一定的致密度4、陶瓷的成型方法①可塑成型:在坯料中加入水或塑化剂,制成塑性泥料,然后通过手工、挤压或机加工成型;(传统陶瓷)②注浆成型:将浆料浇注到石膏模中成型③压制成型:在金属模具中加较高压力成型;(特种陶瓷)5、烧结将初步定型密集的粉块(生坯)高温烧成具有一定机械强度的致密体。
无机非金属材料(1)主讲:黄冈中学优秀化学教师汪响林一、传统硅酸盐材料1、传统硅酸盐材料简介(1)含义:在材料家族里,有一类非常重要的材料叫做无机非金属材料。
最初无机非金属材料主要是指硅酸盐材料,所以硅酸盐材料也称为传统无机非金属材料.像陶瓷、玻璃、水泥等材料及它们的制品在我们日常生活中随处可见.由于这些材料的化学组成多属硅酸盐类,所以一般称为硅酸盐材料。
(2)原料:传统硅酸盐材料一般是以黏土(主要成分为)、石英(主要成分为SiO2)、钾长石(主要成分为)和钠长石(主要成分为)等为原料生产的。
(3)结构和性质特点:这些原料中一般都含有硅氧四面体——结构单元。
由于硅氧四面体结构的特殊性,决定了挂酸盐材料大多具有稳定性强、硬度高、熔点高、难溶于水、绝缘、耐腐蚀等特点。
2、陶瓷(1)原料:黏土(2)设备:窑炉(3)工序:混合→成型→干燥→烧结→冷却→陶瓷器(4)原理:高温下,复杂的物理化学变化。
(5)种类:土器、瓷器、炻器等.(6)彩釉:烧制前,在陶瓷制品胚体表面涂一些含金属及其化合物的釉料,在烧结过程中因窑内空气含量的变化而发生不同的氧化还原反应,即产生表面光滑、不渗水且色彩丰富的一层彩釉。
彩釉中的金属元素烧制时空气用量与彩釉颜色空气过量空气不足黄、红、褐、黑蓝、绿黄绿红紫、褐褐、黑褐黄、绿、褐蓝绿蓝、淡蓝蓝(7)特性:抗氧化、抗酸碱腐蚀、耐高温、绝缘、易成型等许多优点。
3、玻璃(1)原料:纯碱、石灰石、石英砂(2)设备:玻璃熔炉(3)工序:原料粉碎→加热熔融→澄清→成型→缓冷→玻璃(4)原理:高温下,复杂的物理化学变化。
主要反应:(5)种类及特性:种类特性用途普通玻璃在较高温度下易软化窗玻璃、玻璃器皿等石英玻璃膨胀系数小、耐酸碱、强度大、滤光化学仪器、高压水银灯、紫外灯罩等光学玻璃透光性好、有折光性和色散性眼镜、照相机、显微镜和望远用透镜等玻璃纤维耐腐蚀、耐高温、不导电、隔热、防虫蛀玻璃钢、宇航服、光导、通信材料钢化玻璃耐高温、耐腐蚀、高强度、抗震裂运动器材、汽车、火车用窗玻璃等有色玻璃蓝色(含)、红色(含)、紫色(含)、绿色(含)、普通玻璃的淡绿色(含二价铁)4、水泥(1)原料:黏土、石灰石、辅助原料(2)设备:水泥回转窑(3)工序:原料研磨得生料→生料煅烧得熟料→再配以适量辅料(石膏、高炉矿渣、粉煤灰等)→研磨成细粉→水泥(4)原理:复杂的物理化学变化。
传统无机非金属材料传统无机非金属材料是指那些不含金属元素的材料,通常是由非金属元素或化合物组成的材料。
这些材料在工业生产和日常生活中起着重要的作用,广泛应用于建筑、电子、化工、医药等领域。
本文将对传统无机非金属材料的种类、特性和应用进行介绍。
一、种类。
1. 陶瓷材料,陶瓷是一类重要的无机非金属材料,具有优良的耐高温、耐腐蚀、绝缘等特性。
陶瓷材料可分为结构陶瓷和功能陶瓷两大类,结构陶瓷主要用于制造陶瓷器皿、建筑材料等,功能陶瓷则主要用于制造电子元器件、陶瓷刀具等。
2. 玻璃材料,玻璃是一种非晶态固体材料,具有透明、硬度高、化学稳定性好等特点。
玻璃材料广泛应用于建筑、家具、器皿、光学仪器等领域。
3. 氧化物材料,氧化物材料是一类以氧化物为主要成分的无机非金属材料,如氧化铝、氧化硅等。
这些材料具有优良的绝缘性能、耐高温性能和化学稳定性,被广泛应用于电子、建筑、化工等领域。
二、特性。
1. 高温性能,传统无机非金属材料通常具有优良的耐高温性能,能够在高温环境下保持稳定的物理和化学性能,因此被广泛应用于高温工艺和高温设备的制造。
2. 绝缘性能,许多传统无机非金属材料具有良好的绝缘性能,能够有效阻止电流的传导,因此被广泛应用于电子、电气设备的制造和绝缘材料的生产。
3. 化学稳定性,大部分传统无机非金属材料具有良好的化学稳定性,能够在酸碱等恶劣环境下保持稳定的性能,因此被广泛应用于化工、医药等领域。
三、应用。
1. 建筑材料,陶瓷、玻璃等传统无机非金属材料被广泛应用于建筑材料的制造,如砖瓦、玻璃幕墙、陶瓷地砖等。
2. 电子领域,氧化物材料、陶瓷材料等被广泛应用于电子元器件的制造,如电容器、电阻器、陶瓷电路等。
3. 化工领域,传统无机非金属材料在化工领域具有重要应用,如氧化铝、氧化硅等被用于制造化工设备、耐腐蚀材料等。
总结。
传统无机非金属材料在工业生产和日常生活中具有重要作用,其种类繁多,特性优良,应用广泛。
随着科技的发展和工艺的进步,传统无机非金属材料的应用领域将不断扩大,为人类社会的发展做出更大的贡献。
⽆机⾮⾦属材料总结(完整版)第⼀章1. 粘⼟的定义:是⼀种颜⾊多样,细分散的多种含⽔铝硅酸盐矿物的混合体。
粘⼟是⾃然界中硅酸盐岩⽯(主要是长⽯)经过长期风化作⽤⽽形成的⼀种疏松的或呈胶状致密的⼟状或致密块状矿物,是多种微细矿物和杂质的混合体。
2. 粘⼟的成因:各种富含硅酸盐矿物的岩⽯经风化,⽔解,热液蚀变等作⽤可变为粘⼟。
⼀次粘⼟(原⽣粘⼟)风化残积型:母岩风化后残留在原地所形成的粘⼟。
(深层的岩浆岩(花岗岩、伟晶岩、长⽯岩)在原产地风化后即残留在原地,多成为优质⾼岭⼟的矿床,⼀般称为⼀次粘⼟)。
⼆次粘⼟(次⽣粘⼟)沉积型:风化了的粘⼟矿物借⾬⽔或风⼒的迁移作⽤搬离母岩后,在低洼地⽅沉积⽽成的矿床,成为⼆次粘⼟。
⼀次粘⼟与⼆次粘⼟的区别:分类化学组成耐⽕度成型性⼀次粘⼟较纯较⾼塑性低⼆次粘⼟杂质含量⾼较低塑性⾼3. ⾼岭⼟、蒙脱⼟的结构特点:⾼岭⼟晶体结构式:Al4[Si4O10](OH)8,1:1型层状结构硅酸盐,Si-O四⾯体层和Al-(O,OH)⼋⾯体层通过共⽤氧原⼦联系成双层结构,构成结构单元层。
层间以氢键相连,结合⼒较⼩,所以晶体解理完全并缺乏膨胀性。
蒙脱⼟(叶蜡⽯)是2:1型层状结构,两端[SiO4]四⾯体,中间夹⼀个[AlO6]⼋⾯体,构成单元层。
单元层间靠氧相连,结合⼒较⼩,⽔分⼦及其它极性分⼦易进⼊晶层中间形成层间⽔,层间⽔的数量是可变的。
4. 粘⼟的⼯艺特性:可塑性、结合性、离⼦交换性、触变性、收缩、烧结性。
1)可塑性:粘⼟—⽔系统形成泥团,在外⼒作⽤下泥团发⽣变形,形变过程中坯泥不开裂,外⼒解除后,能维持形变,不因⾃重和振动再发⽣形变,这种现象称为可塑性。
表⽰⽅法:可塑性指数、可塑性指标可塑性指数(w):W=W2-W1W降低——泥浆触变厚化度⼤,渗⽔性强,便于压滤榨泥。
W1塑限:粘⼟或(坯料)由粉末状态进⼊塑性状态时的含⽔量。
W2液限:粘⼟或(坯料)由粉末状态进⼊流动状态时的含⽔量。
第1节硅无机非金属材料一、单质硅与半导体材料1、硅⑴硅在自然界的存在;硅在地壳中的含量仅次氧,储量丰富,现已成为应用广泛的半导体材料。
⑵硅的物理性质:硅有晶体硅和无定形硅两种。
晶体硅是灰黑色、有金属光泽、硬而脆的固体。
晶体硅的结构类似于金刚石,熔点和沸点都很高,硬度大。
导电性介于导体和绝缘体之间。
⑶硅的化学性质:常温下不活泼,除氟气、氢氟酸和强碱外,一般不与其他物质反应。
加热条件下,可与氧气反应:Si + O2加热===== SiO2Si + 2F2=== SiF4Si + 4HF === SiF4↑+ 2H2↑Si+2NaOH+H2O=Na2SiO3+2H2↑⑷硅的工业制法:工业上,用焦炭在电炉中还原SiO2得到含有少量杂质的粗硅后再提纯。
SiO2 + 2C 高温=====Si + 2CO↑制高纯硅:Si+2Cl2高温===== SiCl4SiCl4+2H2高温=====Si+4HCl⑸硅的主要用途:作半导体材料;制造太阳能电池;制造硅合金等。
硅不但用于制造晶体管、集成电路,还用于制造硅整流器和太阳能电池等。
此外,硅合金的用途也很广。
如含硅4%的钢具有良好的导磁性,可用于制造变压器铁芯;含硅15%左右的钢具有良好的耐酸性,可用于制造耐酸设备。
2、半导体材料半导体材料是指导电能力介于于导体和绝缘体之间的一类材料。
二、二氧化硅与光导纤维1、二氧化硅①二氧化硅的存在及其物理性质:二氧化硅广泛存在于自然界中,沙子、石英的主要成分就是二氧化硅SiO2的物理性质:沸点高、硬度大、不溶于水、不导电的晶体.二氧化硅晶体是由由氧原子和硅原子构成的②化学性质:SiO2是熔点最高的非金属氧化物,具有弱氧化性和酸性氧化物的通性1、与氢氟酸反应:SiO2+4HF=SiF4↑+2H2O(氢氟酸腐蚀玻璃)(二氧化硅的特性)2、高温与碳反应:SiO2+2C高温===== Si+2CO↑、SiO2+3C 高温=====SiC+2CO↑(二氧化硅的弱氧化性)3、高温和碳酸盐反应:SiO2+Na2CO3 高温=====Na2SiO3+CO2↑、SiO2+CaCO3高温=====CaSiO3+CO2↑(工业制玻璃)4、SiO2+CaO 高温=====CaSiO3(炼铁中除炉渣)5、SiO2+2NaOH===Na2SiO3+H2O(盛碱性溶液的试剂瓶不能用玻璃塞)[思考]1、实验室为什么不用玻璃瓶盛装氢氟酸(HF)?2、实验室盛放NaOH溶液的试剂瓶用橡皮塞而不用玻璃塞,你知道是为什么吗?③二氧化硅的用途:(1)水晶用于制造电子仪器的重要部件、光学仪器、工艺品(2)光导纤维原料(3)制玻璃2、光导纤维三、硅酸盐与无机非金属材料无机非金属材料一般耐高温、温度高、抗腐蚀,有些材料还有独特的光电特性。
《浙江大学优秀实习总结汇编》无机非金属材料工程岗位工作实习期总结转眼之间,两个月的实习期即将结束,回顾这两个月的实习工作,感触很深,收获颇丰。
这两个月,在领导和同事们的悉心关怀和指导下,通过我自身的不懈努力,我学到了人生难得的工作经验和社会见识。
我将从以下几个方面总结无机非金属材料工程岗位工作实习这段时间自己体会和心得:一、努力学习,理论结合实践,不断提高自身工作能力。
在无机非金属材料工程岗位工作的实习过程中,我始终把学习作为获得新知识、掌握方法、提高能力、解决问题的一条重要途径和方法,切实做到用理论武装头脑、指导实践、推动工作。
思想上积极进取,积极的把自己现有的知识用于社会实践中,在实践中也才能检验知识的有用性。
在这两个月的实习工作中给我最大的感触就是:我们在学校学到了很多的理论知识,但很少用于社会实践中,这样理论和实践就大大的脱节了,以至于在以后的学习和生活中找不到方向,无法学以致用。
同时,在工作中不断的学习也是弥补自己的不足的有效方式。
信息时代,瞬息万变,社会在变化,人也在变化,所以你一天不学习,你就会落伍。
通过这两个月的实习,并结合无机非金属材料工程岗位工作的实际情况,认真学习的无机非金属材料工程岗位工作各项政策制度、管理制度和工作条例,使工作中的困难有了最有力地解决武器。
通过这些工作条例的学习使我进一步加深了对各项工作的理解,可以求真务实的开展各项工作。
二、围绕工作,突出重点,尽心尽力履行职责。
在无机非金属材料工程岗位工作中我都本着认真负责的态度去对待每项工作。
虽然开始由于经验不足和认识不够,觉得在无机非金属材料工程岗位工作中找不到事情做,不能得到锻炼的目的,但我迅速从自身出发寻找原因,和同事交流,认识到自己的不足,以至于迅速的转变自己的角色和工作定位。
为使自己尽快熟悉工作,进入角色,我一方面抓紧时间查看相关资料,熟悉自己的工作职责,另一方面我虚心向领导、同事请教使自己对无机非金属材料工程岗位工作的情况有了一个比较系统、全面的认知和了解。
无机非金属材料概论无机非金属材料(inorganic nonmetallic materials)是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。
是除有机高分子材料和金属材料以外的所有材料的统称.无机非金属材料的提法是20世纪40年代以后,随着现代科学技术的发展从传统的硅酸盐材料演变而来的。
无机非金属材料是与有机高分子材料和金属材料并列的三大材料之一。
常见种类二氧化硅气凝胶、水泥、玻璃、陶瓷。
成分结构在晶体结构上,无机非金属的晶体结构远比金属复杂,并且没有自由的电子.具有比金属键和纯共价键更强的离子键和混合键。
这种化学键所特有的高键能、高键强赋予这一大类材料以高熔点、高硬度、耐腐蚀、耐磨损、高强度和良好的抗氧化性等基本属性,以及宽广的导电性、隔热性、透光性及良好的铁电性、铁磁性和压电性.硅酸盐材料是无机非金属材料的主要分支之一,硅酸盐材料是陶瓷的主要组成物质.应用领域无机非金属材料品种和名目极其繁多,用途各异,因此,还没有一个统一而完善的分类方法.通常把它们分为普通的(传统的)和先进的(新型的)无机非金属材料两大类。
传统的无机非金属材料是工业和基本建设所必需的基础材料。
如水泥是一种重要的建筑材料;耐火材料与高温技术,尤其与钢铁工业的发展关系密切;各种规格的平板玻璃、仪器玻璃和普通的光学玻璃以及日用陶瓷、卫生陶瓷、建筑陶瓷、化工陶瓷和电瓷等与人们的生产、生活休戚相关。
它们产量大,用途广。
其他产品,如搪瓷、磨料(碳化硅、氧化铝)、铸石(辉绿岩、玄武岩等)、碳素材料、非金属矿(石棉、云母、大理石等)也都属于传统的无机非金属材料.新型无机非金属材料是20世纪中期以后发展起来的,具有特殊性能和用途的材料。
它们是现代新技术、新产业、传统工业技术改造、现代国防和生物医学所不可缺少的物质基础。
主要有先进陶瓷(advanced ceramics)、非晶态材料(noncrystal material>、人工晶体<artificial crys-tal〉、无机涂层(inorganic coating)、无机纤维(inorganic fibre〉等。
无机非金属材料知识点总结无机非金属材料是指除了金属和有机材料之外的一类材料,它们主要由无机化合物组成。
无机非金属材料具有很多特殊的性质和应用,以下是对无机非金属材料的一些重要知识点的总结。
一、无机非金属材料的分类无机非金属材料可以分为陶瓷材料、玻璃材料和复合材料三大类。
1. 陶瓷材料:陶瓷材料是由氧化物、硫化物、氮化物、碳化物等无机化合物构成的。
陶瓷材料具有高硬度、高抗磨损性、高耐高温性等特点,广泛应用于制陶、建筑、电子、化工等领域。
2. 玻璃材料:玻璃材料是由二氧化硅、碳酸盐等无机化合物构成的非晶态材料。
玻璃材料具有透明、硬度高、耐腐蚀等特点,广泛应用于建筑、光学、电子等领域。
3. 复合材料:复合材料是由两种或两种以上不同性质的无机非金属材料组成的。
复合材料具有优异的力学性能、热性能和化学性能,广泛应用于航空航天、汽车、电子等领域。
二、无机非金属材料的性质和应用无机非金属材料具有多种特殊的性质和应用,下面列举其中几个重要的方面。
1. 物理性质:无机非金属材料具有高熔点、高硬度、低导电性、低热膨胀系数等特点。
这些性质使得无机非金属材料在高温环境下具有优异的性能,适用于高温设备、耐磨材料等领域。
2. 化学性质:无机非金属材料具有良好的化学稳定性和耐腐蚀性。
例如,陶瓷材料可以在强酸、强碱等腐蚀性介质中长期稳定使用,玻璃材料也具有较好的耐酸碱性能。
3. 光学性质:无机非金属材料具有良好的光学性能。
玻璃材料具有优异的透明性,可以用于制造光学仪器、光纤等产品。
此外,无机非金属材料还具有较好的折射率、反射率等光学性质,广泛应用于光学镜片、光学纤维等领域。
4. 热性质:无机非金属材料具有较好的耐热性能。
陶瓷材料能够在高温下保持稳定性能,广泛应用于高温炉窑、耐火材料等领域。
5. 电性质:无机非金属材料具有较好的绝缘性能。
陶瓷材料、玻璃材料等在电子器件中被广泛应用,可以用作绝缘基材、电介质等。
三、无机非金属材料的制备方法无机非金属材料的制备方法多种多样,下面介绍几种常见的制备方法。
第一章1. 粘土的定义:是一种颜色多样,细分散的多种含水铝硅酸盐矿物的混合体。
粘土是自然界中硅酸盐岩石(主要是长石)经过长期风化作用而形成的一种疏松的或呈胶状致密的土状或致密块状矿物,是多种微细矿物和杂质的混合体。
2. 粘土的成因:各种富含硅酸盐矿物的岩石经风化,水解,热液蚀变等作用可变为粘土。
一次粘土(原生粘土)风化残积型:母岩风化后残留在原地所形成的粘土。
(深层的岩浆岩(花岗岩、伟晶岩、长石岩)在原产地风化后即残留在原地,多成为优质高岭土的矿床,一般称为一次粘土)。
二次粘土(次生粘土)沉积型:风化了的粘土矿物借雨水或风力的迁移作用搬离母岩后,在低洼地方沉积而成的矿床,成为二次粘土。
一次粘土与二次粘土的区别:分类化学组成耐火度成型性一次粘土较纯较高塑性低二次粘土杂质含量高较低塑性高3. 高岭土、蒙脱土的结构特点:高岭土晶体结构式:Al4[Si4O10](OH)8,1:1型层状结构硅酸盐,Si-O四面体层和Al-(O,OH)八面体层通过共用氧原子联系成双层结构,构成结构单元层。
层间以氢键相连,结合力较小,所以晶体解理完全并缺乏膨胀性。
蒙脱土(叶蜡石)是2:1型层状结构,两端[SiO4]四面体,中间夹一个[AlO6]八面体,构成单元层。
单元层间靠氧相连,结合力较小,水分子及其它极性分子易进入晶层中间形成层间水,层间水的数量是可变的。
4. 粘土的工艺特性:可塑性、结合性、离子交换性、触变性、收缩、烧结性。
1)可塑性:粘土—水系统形成泥团,在外力作用下泥团发生变形,形变过程中坯泥不开裂,外力解除后,能维持形变,不因自重和振动再发生形变,这种现象称为可塑性。
表示方法:可塑性指数、可塑性指标可塑性指数(w):W=W2-W1W降低——泥浆触变厚化度大,渗水性强,便于压滤榨泥。
W1塑限:粘土或(坯料)由粉末状态进入塑性状态时的含水量。
W2液限:粘土或(坯料)由粉末状态进入流动状态时的含水量。
塑限反映粘土被水润湿后,形成水化膜,使粘土颗粒能相对滑动而出现可塑性的含水量。
塑限高,表明粘土颗粒的水化膜厚,工作水分高,但干燥收缩也大。
液限反映粘土颗粒与水分子亲和力的大小。
W2上升表明颗粒很细,在水中分散度大,不易干燥,湿坯强度低。
可塑性指标:在工作水分下,粘土(或坯料)受外力作用最初出现裂纹时应力与应变的乘积,也可以以这时的相应含水率表示。
反应粘土的成型性能:应力大,应变小——挤坯成型;应力小,应变大——旋坯成型根据粘土可塑指数或可塑指标分类:i.强塑性粘土:指数>15或指标>3.6ii.中塑性粘土:指数7~15,指标2.5~3.6iii.弱塑性粘土:指数l~7,指标<2.5iv.非塑性粘土:指数<1。
2)结合性:粘土的结合性是指粘土能够结合非塑性原料而形成良好的可塑泥团,并且有一定干燥强度的能力。
粘土的结合性由其结合瘠性料的结合力的大小来衡量,可塑性强的粘土其结合力也大。
实验室中粘土的结合力通常以能够形成可塑泥团时所加入标准石英砂的数量及干后抗折强度来反映。
3)离子交换性:粘土颗粒带电荷,能吸附其他异号离子,在水溶液中这种离子又可被其他相同电荷的离子置换。
交换发生在粘土粒子表面,不影响硅铝酸盐晶体结构。
原因:粘土颗粒带电荷,来源于Si4+被Al3+,Fe2+等置换以及边缘断键,而出现负电荷。
表示方法:离子交换能力用交换容量来表示,100g粘土所吸附能够交换的阳离子或阴离子的量,单位:mol×10/g。
交换容量排序:H+>Al3+>Ba2+>Sr2+>Ca2+>Mg2+>NH4+>K+>Na+>Li+阴离子的取代能力:OH->CO32->P2O74->CNS->I->Br->Cl->NO3->F->SO42-交换能力的影响因素:离子性质;粘土矿物的种类和有序度及分散度,有序度高则交换能力差;有机物质的含量和粘土矿物结晶程度,一些活性基因-OH,-COOH具有吸附阳离子的能力,结晶程度差,交换能力强。
*pH对离子交换的影响:4)触变性:粘土泥浆或可塑泥团受到振动或搅拌时,粘度会降低而流动性增加静置后能恢复原来状态。
反之,相同泥浆放置一段时间后,在维持原有水分的情况下会增加粘度,出现变稠和固化现象,上述现象可重复无数次,统称为触变性。
产生原因:由于粘土片状颗粒的活性边面上尚残留少量电荷未被完全中和,以致形成局部边-边或边-面结合,使粘土颗粒之间常组成封闭的网络状结构。
这时,泥料中的大量的自由水被分隔和封闭在网络的空隙中,使整个粘土-水系统好像水分减少,粘度增加,变稠及固化现象,但这样的网络状结构是疏松和不稳定的,当稍有剪切力的作用或振动时,网络即被破坏,又呈流动状态。
泥浆的厚化系数:触变厚化现象可以用泥浆粘度变化之比或剪切应力变化的百分数来表示。
例:厚化系数=τ30min/τ30sτ30min——100ml泥浆静置30分钟后由恩式粘度计中流出的时间τ30s——100ml泥浆静置30秒钟后由恩式粘度计中流出的时间可塑泥团的厚化系数:静置一段时间后,球体或锥体压入泥团达一定深度时剪切强度增加的百分数。
例:厚化系数=(P n -P0)/P0×100%P0——泥团开始承受的负荷gP n——泥团静置一定时间后,球体或圆锥体压力相同深度时,泥团承受的负荷g泥料触变性随时间变化不均匀,开始粘度增加快,以后慢慢减小。
5)收缩:干燥收缩:粘土泥料在干燥时颗粒间的水分排出,颗粒互相靠拢,引起体积收缩。
烧成收缩:当粘土泥料煅烧时,由于发生一系列物理化学变化,粘土泥料再度收缩。
总收缩:成型试样经干燥、煅烧后的尺寸总变化。
体收缩近似等于线收缩的三倍(误差6%~9%)。
一道计算题:已知某瓷料的干燥收缩为2%,烧成收缩为15%,假设其径向和轴向收缩一致,则烧制直径为12,厚度为5的圆柱型瓷柱,模腔尺寸为多少?控制厚度为多高?答:注意:此处没有标记单位,即默认为mm,计算题注意有效数字的保留首先干燥收缩为粘土泥料在干燥时颗粒间的水分排出,颗粒互相靠拢,引起体积收缩,分为线收缩和体收缩。
烧成收缩在干燥收缩之后,是当粘土泥料煅烧时,由于发生一系列物理化学变化,粘土泥料再度收缩,同样分为体收缩和线收缩。
这里我们要计算线收缩。
S干为干燥线收缩,S烧为烧成线收缩,式中L为试样原始长度;L干为试样干后长度;L干为试样干后长度;L烧为试样烧后长度。
题中给出的是体收缩,我们要转化为线收缩,然后再依次计算。
除此之外,还有公式:体积收缩率:S V=(V0-V1)/V0×100%V0——试样成型后的原始体积V1——试样干燥后或烧成后的体积干燥线收缩与烧成线收缩之间的关系:6)烧结性:烧结状态:体积密度最高、气孔率最低的状态烧成状态:材料达到预期理化性能的状态T1:开始烧结温度。
开始出现液相,气孔率明显下降,收缩急剧增加。
T2:烧结温度,液相达到一定的数量,收缩达最大,气孔率降到最低。
T3:软化温度,随温度升高,液相继续增加,开始变形,气孔率、收缩率反常。
T2-T3为烧结范围耐火度:表征粘土原料抵抗高温作用不致融化的性能指标。
表示方法:三角锥法——将一定细度的粘土原料(< 0.2mm)制成一个等边截头三角锥(上底2mm,下底8mm,高30mm,截面正三角形)干燥后,在一定升温制度下,测出三角锥的顶端软化下弯至锥底平面时的温度)。
%干烧干-烧100⨯=LLLS5. 石英的多晶转变及特点:常压下有七种结晶态和一种玻璃态,在一定条件下相互转化多晶转变的特点:高温型的迟缓转化(横向转化或一级转化):由表面向内部逐步进行,结构变化。
因为形成新的稳定晶型,所以需较高的活化能;转变速度慢;体积变化较大,所以需较高温度及较长时间。
低温型的迅速转变(纵向转变或二级转变):由表及里瞬间同时转化,体积变化小,结构不特殊变化,位移型转变(键之间的角度稍做变动为位移型转变),易进行,且转化可逆。
体积效应:一级转变的体积变化大,但由于其转化速度慢,体积效应小,且在高温下有液相存在,对坯体影响不大。
二级转变的体积变化小,但转化速度快,瞬间完成,体积效应大,无液相,对坯体影响大,必须严格控制。
陶瓷生产实际转化情况:升温快(快速烧成),无论是否有矿化剂,都经过半安定方石英这一过渡状态。
(有矿化剂存在时,最终有鳞石英形成;无矿化剂时,最终形成方石英。
矿化剂:RO,R2O;矿化剂来源:熔剂性原料。
在普通陶瓷生产过程中,石英的转化主要是二级转化,而不是一级转化。
实际生产中,由于烧成温度的限制(一般在1300 ℃),最终石英以半安定方石英存在,即所说的方石英。
)自然界中石英大部分以b—石英存在,很少以鳞石英或方石英的介稳状态存在。
α-方石英中两个硅氧四面体之间有一对称中心;α -鳞石英中两个硅氧四面体之间有一对称面,两者之间的硅氧键夹角180o;β-石英的键角是150o,键拉直时,与α-方石英结构相同。
6. 长石的混熔特性:几种基本类型的长石,由于其结构关系,彼此可混合形成共熔体。
1)钾长石和钠长石常以固熔体存在。
钾长石和钠长石高温互溶,低温分离;据含量不同,晶体折射不同;钾钠长石的固熔体,钠长石含量少时形成晶斑;含量多时,形成条纹。
2)钠长石和钙长石高温下任意比互溶,低温下也不分离。
3)钾长石和钙长石的固溶性差,小于10%,在任何温度下几乎不互溶。
调整配方时,钾长石中加入少量钙长石,利于降低烧成温度。
4)钾长石和钡长石可形成不同比例的固溶体。
7. 粘土、长石和石英在陶瓷生产中的作用:一句话总结:粘土起可塑调节的作用;长石在烧成中起助熔作用;石英构成坯体骨架。
具体:粘土:赋予泥坯的可塑性;使注浆料与釉料具有悬浮性和稳定性;在坯料中结合其它瘠性原料,使具有一定干坯强度及最大堆积密度;是瓷坯中Al2O3的主要来源,也是烧成时生成莫来石晶体的主要来源。
石英:烧成前,石英为瘠性料,可调节泥料的可塑性,是生坯水分排出的通道,降低坯体的干燥收缩,增加生坯的渗水性,缩短干燥时间,防止坯体变形;利于施釉。
烧成时,石英的加热膨胀可部分抵消坯体的收缩;高温时石英部分溶解于液相,增加熔体的粘度,未溶解的石英颗粒构成坯体的骨架,防止坯体软化变形。
可提高坯体的机械强度,透光度,白度。
釉料中,SiO2是玻璃质的主要成分,提高釉料的机械强度,硬度,耐磨性,耐化学侵蚀性;提高釉料的熔融温度与粘度。
长石:在高温下熔融,形成粘稠的玻璃体,是坯料中碱金属氧化物的主要来源,能降低陶瓷坯体组分的熔化温度,利于成瓷和降低烧成温度。
熔融后的长石熔体能溶解部分高岭土分解产物和石英颗粒;液相中Al2O3和SiO2互相作用,促进莫来石的形成和长大,提高瓷体的机械强度和化学稳定性。