现代设计方法-有限元法-2
- 格式:ppt
- 大小:428.50 KB
- 文档页数:33
目前常见的机械现代设计方法
机械现代设计方法是指利用计算机辅助设计软件、仿真分析软件等现代化工具,将传统机械设计方法与现代科技手段相结合,以提高机械产品设计质量和效率。
目前常见的机械现代设计方法包括以下几种:
1. 三维建模设计:利用3D建模软件,将机械产品的三维模型建立起来,可视化地展现设计效果,便于设计师进行直观的审查和修改。
2. 有限元分析:利用有限元分析软件对机械产品进行力学分析,包括应力分析、变形分析、疲劳分析等,以评估产品的工作性能和耐久性。
3. 数值优化设计:利用数值优化算法,对机械产品的形状、材料等参数进行优化,以达到最优的设计效果。
4. 虚拟试验:利用仿真分析软件对机械产品进行虚拟试验,模拟产品在各种工作条件下的工作状态,预测产品的工作性能和故障情况,为产品的试制和改进提供依据。
5. 快速原型技术:利用快速原型技术,通过快速制造出机械产品的实物样品,以验证设计效果和性能,缩短产品开发周期。
以上方法在机械产品设计中得到广泛应用,为设计师提供了更加科学、高效、精准的工具和方法。
- 1 -。
通俗地说,有限元法就是一种计算机模拟技术,使人们能够在计算机上用软件模拟一个工程问题的发生过程而无需把东西真的做出来。
这项技术带来的好处就是,在图纸设计阶段就能够让人们在计算机上观察到设计出的产品将来在使用中可能会出现什么问题,不用把样机做出来在实验中检验会出现什么问题,可以有效降低产品开发的成本,缩短产品设计的周期。
有限元法也叫有限单元法(finite element m ethod, FEM),是随着电子计算机的发展而迅速发展起来的一种弹性力学问题的数值求解方法。
五十年代初,它首先应用于连续体力学领域—飞机结构静、动态特性分析中,用以求得结构的变形、应力、固有频率以及振型。
由于这种方法的有效性,有限单元法的应用已从线性问题扩展到非线性问题,分析的对象从弹性材料扩展到塑性、粘弹性、粘塑性和复合材料,从连续体扩展到非连续体。
有限元法最初的思想是把一个大的结构划分为有限个称为单元的小区域,在每一个小区域里,假定结构的变形和应力都是简单的,小区域内的变形和应力都容易通过计算机求解出来,进而可以获得整个结构的变形和应力。
事实上,当划分的区域足够小,每个区域内的变形和应力总是趋于简单,计算的结果也就越接近真实情况。
理论上可以证明,当单元数目足够多时,有限单元解将收敛于问题的精确解,但是计算量相应增大。
为此,实际工作中总是要在计算量和计算精度之间找到一个平衡点。
有限元法中的相邻的小区域通过边界上的结点联接起来,可以用一个简单的插值函数描述每个小区域内的变形和应力,求解过程只需要计算出结点处的应力或者变形,非结点处的应力或者变形是通过函数插值获得的,换句话说,有限元法并不求解区域内任意一点的变形或者应力。
大多数有限元程序都是以结点位移作为基本变量,求出结点位移后再计算单元内的应力,这种方法称为位移法。
有限元法本质上是一种微分方程的数值求解方法,认识到这一点以后,从70年代开始,有限元法的应用领域逐渐从固体力学领域扩展到其它需要求解微分方程的领域,如流体力学、传热学、电磁学、声学等。
结构有限元分析1. 简介结构有限元分析是工程领域中一种常用的数值分析方法,用于解决结构载荷下的应力、变形和振动问题。
通过将复杂的结构分成有限个简单的单元,通过求解每个单元的应力和位移,再将它们组合得到整个结构的应力和位移场。
有限元方法广泛应用于各种工程领域,如土木工程、机械工程和航空航天工程等。
2. 有限元分析的基本原理有限元分析的基本原理是建立结构的有限元模型,然后通过求解有限元模型的力学方程,得到结构的应力和位移场。
有限元模型通常由节点和单元构成。
节点是结构中的关键点,单元是连接节点的构造单元,常用的单元包括三角形单元、四边形单元和六面体单元等。
通过对单元的弯曲、伸长等变形进行逼近,可以得到结构的位移场。
然后,根据位移场和材料的力学性质,可以计算结构的应力场。
3. 有限元分析的步骤有限元分析通常包括以下步骤:步骤1:离散化将结构分成有限个单元,并为每个单元选择合适的单元类型。
步骤2:建立单元刚度矩阵根据每个单元的几何形状、材料性质和节点位移,建立单元的刚度矩阵。
步骤3:建立全局刚度矩阵将所有单元的刚度矩阵组装成全局刚度矩阵。
步骤4:应用边界条件根据结构的边界条件,将边界节点的位移固定或施加给定的载荷。
步骤5:求解线性方程组根据边界条件将全局刚度矩阵和载荷向量进行约束,然后通过求解线性方程组得到结构的位移。
步骤6:计算应力和应变根据得到的位移场和材料的力学性质,计算结构的应力和应变场。
4. 有限元分析的应用领域有限元分析是一种非常灵活和广泛应用的方法,可以用于解决各种结构工程中的力学问题,包括:•结构静力学分析:用于计算结构的应力和变形。
•结构动力学分析:用于计算结构的振动频率和模态形状。
•结构优化设计:通过调整结构的几何形状、材料和边界条件,实现结构的最佳设计。
•结构疲劳分析:用于评估结构在长期应力加载下的疲劳寿命。
有限元分析在工程实践中得到了广泛应用,可以帮助工程师在设计和优化结构时做出准确的决策。
有限元法在机械设计中的应用有限元法是一种基于数学原理的现代计算技术,它被广泛应用于机械设计、结构分析、流体力学、电磁场等领域。
在机械设计中,有限元法可以帮助工程师们更准确地预测和分析结构性能,优化设计,提高产品质量和节约成本。
以下是有限元法在机械设计中的应用。
1. 结构分析有限元法最常用的应用是结构分析。
在机械设计中,结构分析可以帮助工程师们分析机械零部件的应力、变形、位移、刚度等特征。
通过有限元法,可以将结构分为许多小的单元,计算每个单元的应力和位移,并将它们整合成整体结构的应力和位移。
这样一来,工程师们可以更好地理解结构的性能,选择更合适的设计方案。
2. 材料选择在机械设计中,材料的选择是非常重要的。
有限元法可以对不同材料的性能进行计算,帮助工程师们选择最优的材料。
通过计算应力和位移,可以确定材料的强度、刚度、韧性等特性。
这样一来,工程师们就可以根据不同的需求选择适合的材料。
3. 疲劳分析疲劳分析是机械设计中的一个重要方面。
有限元法可以在设计过程中对零部件进行疲劳分析,计算它们的疲劳寿命。
通过预测零部件的疲劳寿命,工程师们可以选择更可靠的设计方案,避免机械失效和安全事故。
4. 模拟分析在机械设计的早期阶段,有限元法可以在计算机上进行模拟分析,帮助工程师们进行设计可行性分析。
通过模拟分析,工程师们可以验证设计是否合理,优化设计,提高机械性能。
5. 优化设计有限元法还可以用于优化机械设计。
通过计算不同设计方案的性能,工程师们可以通过优化设计来改进机械性能。
这种优化设计方法可以在早期阶段对机械进行改进,避免在后期阶段出现缺陷和工作效率低下。
现代设计方法设计是人类改造自然的一种重要的创新活动。
可以说,人类在改造自然的历史长河中一直从事着设计活动,一直生活在大自然和自身“设计”的世界中。
机械设计,建筑设计、服装设计等设计活动都有着十分悠久的历史,人类通过通过这些设计活动创造了丰富而伟大的物质文明。
从某种意义上来讲,人类文明的历史,就是不断进行设计活动的历史。
人类自觉的设计活动开始于15世纪,欧洲文艺复兴时期,但直到20世纪中期,设计仍被限定在狭窄的专业范围内。
随着科学技术和生产力的不断发展,设计和设计科学也在不断地想更深、更广的层次发展,其内容、要求、理论和手段等都在不断更新,设计的内涵和外延也都在扩大。
设计不再仅仅是考虑构成产品的物质条件和能够满足的功能需求,而是综合了经济、社会、环境、人机工程学、人的心理、文化层次等多种因素的系统设计。
从设计内容上来看,设计贯穿了产品从孕育到消亡的真个生命周期,含钙量需求获取、概念设计、技术设计、技术设计、详细设计、工艺设计、营销设计及回收设计等设计活动,并把实验、研究、设计、制造、安装、使用、维修、作为一个整体来进行规划。
现代设计方法是随着当代科学技术的飞速发展和计算机技术的广泛应用而在设计领域发展起来的一门新兴多元交叉学科,是一设计产品为目标的一个只是群体的统称。
他是为了适应剧烈的师承竞争的需要,提高设计质量和缩短设计周期,以及推动计算机在设计中的广泛应用,于20世纪60年代在设计领域诞生与发展起来的一些列的新兴学科的集成。
随着网络时代的到来,全球化的经济进程的家属,迫使企业面对全球化的大市场,参与国际市场的竞争,企业间的合作越来越广泛,为了真和资源,需要形成超越空间约束的分散网络的设计开发系统,以进行动态联盟组织的设计及制造活动,支持企业实施异地协同设计,形成跨地区的联合设计。
现代设计方法的分类及主要现代设计方法简介在产品设计领域,机械产品的设计最有代表性和典型性,这里主要以机械产品的现代设计方法为主进行介绍。
有限元法基本原理及应用教学设计一、引言有限元法作为结构力学、流体力学、热力学等学科中最常用的数值分析方法之一,已经广泛地用于工程领域。
本文将介绍有限元法的基本原理,并结合教学实践,提出一些应用场景下的教学方法。
二、有限元法基本原理有限元法是一种通过将连续体分割成一系列互相联系的单元,再在每个单元内进行局部近似的方法。
其基本步骤如下:1.确定问题的几何形状,将其离散化为有限数量的单元。
2.寻找适当的函数形式,用于单元内的场函数近似。
3.根据边界条件、本构关系等确定模型中所需的参数。
4.利用有限元法求解离散模型中的场函数,获得结果。
其中,第一步和第二步是离散化的过程,第三步是确定问题的物理参数,第四步是利用有限元方法来求解局部近似的结果。
三、教学设计3.1 教学目标通过本教学,学生应该能够:1.理解有限元法的基本原理。
2.能够根据问题特点选择有限元法模型,熟练掌握其求解方法。
3.能够独立地完成一定的有限元法计算,掌握基本的讨论和分析技巧。
3.2 教学内容教学内容的设计应该以让学生掌握有限元法的基本原理和中小型有限元法计算实验为主。
具体包括:1.有限元法基本概念和基本原理。
2.有限元法求解流程。
3.有限元法中力学问题的处理方法。
4.有限元法计算程序的操作实践及其调试过程。
3.3 教学方法教学方法应该根据教学目标和教学内容来选择。
具体而言,可以采用以下教学方法:1.讲授法:介绍有限元法的基本理论、公式、步骤等。
2.组织实践:每个学生都可以应用所学的有限元法计算流程,通过校内实践检验所得结果,加深学习效果。
3.讨论演示法:引导学生根据教材内容和实践结果展开讨论,举一反三,形成总结性的详细讨论分享现象,并进行比较,以及某些特殊情况的讨论。
4.自学法:学生在自习时间用充足的学习资料在当地的工程和计算机实验室研读,掌握有限元法的道理和方法。
3.4 教学评估教学评估应包括考试成绩和实际计算结果。
在学年末进行考试,考试的内容应该包括基本理论和实践的实际应用以及进行有限元法计算产生结果的分析。
有限元法的基本原理和应用前言有限元法(Finite Element Method,简称FEM)是一种常用的数值分析方法,用于求解工程和物理问题。
它能够将一个复杂的问题分解为许多小的、简单的部分,通过数学方法将这些部分逼近为连续函数,并进行求解。
本文将介绍有限元法的基本原理和应用。
基本原理1.离散化:有限元法将连续域分解为多个离散的小单元,这些小单元称为有限元。
离散化可以将复杂问题简化为易于处理的小部分。
每个有限元由节点和单元组成,节点是问题解的近似点,单元是在节点周围定义的几何形状。
2.变量表示:在有限元法中,通过数学函数对变量进行近似表示。
常用的近似函数有线性、二次、三次等。
通过选择合适的形状函数,可以有效地近似解决问题。
3.形成方程:根据物理方程,将离散域中每个有限元的贡献进行求和,形成一个整体方程。
这个整体方程可以是线性方程、非线性方程、常微分方程等。
通过求解这个整体方程,可以得到问题的解。
应用领域有限元法广泛应用于各个领域,包括但不限于: - 结构分析:有限元法可以用来模拟和分析工程结构的强度、刚度和振动等特性。
通过对结构进行有限元分析,可以预测和优化结构的性能。
- 热传导:有限元法可以用来模拟物体内部的温度分布和热传导过程。
通过对热传导问题进行有限元分析,可以优化物体的热设计和散热能力。
- 流体力学:有限元法可以用来模拟和分析流体的流动和压力分布。
通过对流体力学问题进行有限元分析,可以优化管道、风扇等设备的设计。
- 电磁场:有限元法可以用来模拟和分析电磁场的分布和电磁设备的性能。
通过对电磁场问题进行有限元分析,可以优化电磁设备的设计和电磁干扰问题。
有限元法的优点和局限性•优点:有限元法适用于复杂的几何形状和边界条件,并可以考虑多物理场耦合。
它具有较高的灵活性,可以适应各种问题的求解。
•局限性:有限元法的计算精度和效率受到离散化精度和网格剖分的影响。
对于高度非线性和大变形问题,有限元法可能需要更多的时间和计算资源。