材料力学实验报告报告
- 格式:docx
- 大小:31.79 KB
- 文档页数:4
材料基本力学性能试验—拉伸和弯曲一、实验原理拉伸实验原理拉伸试验是夹持均匀横截面样品两端,用拉伸力将试样沿轴向拉伸,一般拉至断裂为止,通过记录的力——位移曲线测定材料的基本拉伸力学性能。
对于均匀横截面样品的拉伸过程,如图1所示,图1金属试样拉伸示意图则样品中的应力为其中A为样品横截面的面积。
应变定义为其中△l是试样拉伸变形的长度。
典型的金属拉伸实验曲线见图2所示。
图3金属拉伸的四个阶段典型的金属拉伸曲线分为四个阶段,分别如图3(a)-(d)所示。
直线部分的斜率E就是杨氏模量、σs点是屈服点。
金属拉伸达到屈服点后,开始出现颈缩现象,接着产生强化后最终断裂。
弯曲实验原理可采用三点弯曲或四点弯曲方式对试样施加弯曲力,一般直至断裂,通过实验结果测定材料弯曲力学性能。
为方便分析,样品的横截面一般为圆形或矩形。
三点弯曲的示意图如图4所示。
图4三点弯曲试验示意图据材料力学,弹性范围内三点弯曲情况下C点的总挠度和力F之间的关系是其中I为试样截面的惯性矩,E为杨氏模量。
弯曲弹性模量的测定将一定形状和尺寸的试样放置于弯曲装置上,施加横向力对样品进行弯曲,对于矩形截面的试样,具体符号及弯曲示意如图5所示。
对试样施加相当于σpb0.01。
(或σrb0.01)的10%以下的预弯应力F。
并记录此力和跨中点处的挠度,然后对试样连续施加弯曲力,直至相应于σpb0.01(或σrb0.01)的50%。
记录弯曲力的增量DF和相应挠度的增量Df,则弯曲弹性模量为对于矩形横截面试样,横截面的惯性矩I为其中b、h分别是试样横截面的宽度和高度。
也可用自动方法连续记录弯曲力——挠度曲线至超过相应的σpb0.01(或σrb0.01)的弯曲力。
宜使曲线弹性直线段与力轴的夹角不小于40o,弹性直线段的高度应超过力轴量程的3/5。
在曲线图上确定最佳弹性直线段,读取该直线段的弯曲力增量和相应的挠度增量,见图6所示。
然后利用式(4)计算弯曲弹性模量。
二、试样要求1.拉伸实验对厚、薄板材,一般采用矩形试样,其宽度根据产品厚度(通常为0.10-25mm),采用10,12.5,15,20,25和30mm六种比例试样,尽可能采用lo =5.65(F)0.5的短比例试样。
拉伸实验一.实验目的:1.学习了解电子万能试验机的结构原理,并进行操作练习。
2.确定低碳钢试样的屈服极限、强度极限、伸长率、面积收缩率。
3.确定铸铁试样的强度极限。
4.观察不同材料的试样在拉伸过程中表现的各种现象。
二.实验设备及工具:电子万能试验机、游标卡尺、记号笔。
三.试验原理:塑性材料和脆性材料拉伸时的力学性能。
(在实验过程及数据处理时所支撑的理论依据。
参考材料力学、工程力学课本的介绍,以及相关的书籍介绍,自己编写。
)四.实验步骤1.低碳钢实验(1)量直径、画标记:用游标卡尺量取试样的直径。
在试样上选取3各位置,每个位置互相垂直地测量2次直径,取其平均值;然后从3个位置的平均值中取最小值作为试样的直径。
用记号笔在试样中部画一个或长的标距,作为原始标距。
(2)安装试样:启动电子万能试验机,手动立柱上的“上升”或“下降”键,调整活动横梁位置,使上、下夹头之间的位置能满足试样长度,把试样放在两夹头之间,沿箭头方向旋转手柄,夹紧试样。
(3)调整试验机并对试样施加载荷:调整负荷(试验力)、峰值、变形、位移、试验时间的零点;根据计算出加载速度,其中为试样中部平行段长度,当测定下屈服强度和抗拉强度时,并将计算结果归整后输入;按下显示屏中的“开始”键,给试样施加载荷;在加载过程中,注意观察屈服载荷的变化,记录下屈服载荷的大小,当载荷达到峰值时,注意观察试样发生的颈缩现象;直到试样断裂后按下“停止”键。
(4)试样断裂后,记录下最大载荷。
从夹头上取下试样,重新对好,量取断后标距和断口处最小直径。
2.铸铁实验(1)量直径:用游标卡尺量取试样的直径。
在试样上选取3各位置,每个位置互相垂直地测量2次直径,取其平均值;然后从3个位置的平均值中取最小值作为试样的直径。
(2)安装试样:启动电子万能试验机,手动立柱上的“上升”或“下降”键,调整活动横梁位置,使上、下夹头之间的位置能满足试样长度,把试样放在两夹头之间,沿箭头方向旋转手柄,加紧试样。
材料力学实验报告系别班级姓名学号青岛理工大学力学实验室目录实验一、拉伸实验报告实验二、压缩实验报告实验三、材料弹性模量E和泊松比µ的测定报告实验四、扭转实验报告实验五、剪切弹性模量实验报告实验六、纯弯曲梁的正应力实验报告实验七、等强度梁实验报告实验八、薄壁圆筒在弯扭组合变形下主应力测定报告实验九、压杆稳定实验报告实验十、偏心拉伸实验报告实验十一、静定桁架结构设计与应力分析实验报告实验十二、超静定桁架结构设计与应力分析实验报告实验十三、静定刚架与压杆组合结构设计与应力分析实验报告实验十四、双悬臂梁组合结构设计与应力分析实验实验十五、岩土工程材料的多轴应力特性实验报告实验一拉伸实验报告一、实验目的与要求: 二、实验仪器设备和工具: 三、实验记录:1、试件尺寸实验后:屈服极限载荷:P S = kN 强度极限载荷:P b = kN 四、计算屈服极限: ==A P ss σ MPa 强度极限: ==A P bb σ MPa 延伸率: =⨯-=%10000L L L δ 断面收缩率: =⨯-=%10000A AA ψ 五、绘制P -ΔL 示意图:实验二 压缩实验报告一、实验目的与要求: 二、实验仪器设备和工具: 三、试件测量:材 料标 距 L 0 (mm) 直径(mm )截面面积 A 0 (mm 2) 截面(1)截面(2)截面(3)(1) (2) 平均 (1) (2) 平均 (1) (2) 平均材 料 标距 L(mm)断裂处直径(mm )断裂处 截面面积 A(mm 2)(1)(2) 平均材 料直 径(mm )截面面积 A 0(mm 2)强度极限载荷:P b = kN 五、计算强度极限应力: ==A P bb σ MPa 六、绘制P -ΔL 示意图:实验三 材料弹性模量E 和泊松比µ的测定实验报告一、实验目的与要求: 二、实验仪器设备和工具: 试件基本尺寸厚度h (mm )宽度b (mm )5.030.0载荷 (N )P载荷增量 (N ) △P各测点电阻应变仪读数(µε)轴向应变横向应变通道号( )通道号( )通道号( )通道号( )ε1(测点1) ε1′(测点2) ε2(测点3)ε2′(测点4)读 数增 量 读 数 增 量 读 数 增 量 读 数 增 量 5001000 500 1500 500 2000 500 2500 500 3000500平均应变(µε)i ε∆1、弹性模量计算 10PE A ε∆==∆⨯2、泊松比计算 21εμε∆==∆ 实验四 扭转实验报告一、实验目的与要求: 二、实验仪器设备和工具:三、试件尺寸:1、低碳钢:d=10mm2、铸铁: d=10mm 四、实验记录:1、低碳钢: 屈服载荷:M s = N ·m强度载荷:M b = N ·m2、铸铁: 强度载荷:M b = N ·m 五、计算:1、低碳钢: 316t d W π== mm 3屈服应力: 34ss tM W τ== MPa 极限应力: 34bb tM W τ== MPa 2、铸铁: 316t d W π== mm 3极限应力: bb tM W τ== MPa 实验五 剪切弹性模量实验报告一、实验目的与要求: 二、实验仪器设备和工具: 三、试件尺寸:直径d=10mm L=150mm b=100mm ΔT=5×200 N ·mm 载荷(N )百分表指示格数格数增量0 5 10 15 20 25增量平均值 ΔN= 格==324d I P π mm 4=∆=100Nδ mm ==∆bδϕ rad=∆∆=ϕP I TLG Gpa 实验六 纯弯曲梁的正应力实验报告一、 实验目的与要求:二、 实验仪器设备与工具:三、 实验装置简图及应变片布置图:载荷 (N )载荷 增量 (N ) 各测点电阻应变仪读数(µε) 通道号( ) 通道号( ) 通道号( ) 通道号( ) 通道号( ) ε1(测点1) ε2(测点2) ε3(测点3) ε4(测点4) ε5(测点5) 读 数增 量 读 数 增 量 读 数 增 量 读 数 增 量 读 数 增 量 5001000 500 1500 500 2000500各测点应变片至中性层距离(mm ) 梁的尺寸和有关参数Y 1(测点1) -20 宽度 b=20mm 高度h=40mm跨度 L=600mm 载荷距离 a=125mm 弹性模量 E=210GPa 惯性矩I z =bh 3/12 1µε=10-6ε 1MPa=1N/mm 2 1GPa=103MPaY 2(测点2) -10 Y 3(测点3) 0 Y 4(测点4) 10 Y 5(测点5)202500 500 3000500平均应变(µε)i ε∆测点应力(MPa )610i i E σε-=⨯∆⨯测 点理论值σi (MPa ) 实测值σi (MPa )相对误差12 3 4 5七、 实验七 等强度梁实验一、实验目的与要求:二、实验仪器设备与工具: 三、试件参数: 梁的尺寸和有关参数载荷作用点到测试点距离 x 1 = mm x 2 = mm 距载荷点x 处梁的宽度 b 1 = mmb 2 = mm梁的厚度 h= mm 弹性模量E=210GPa载荷 (N )载荷 增量 (N ) 各测点电阻应变仪读数(µε) 通道号( )通道号( )通道号( )通道号( )ε1(测点1) ε2(测点2)ε3(测点3)ε4(测点4)读 数增 量 读 数 增 量 读 数 增 量 读 数 增 量平均应变(µε)i ε∆测点应力(MPa )610i i E σε-=⨯∆⨯测1、理论计算: 26x pxb h σ=2、实验值计算 610i i E σε-=⨯∆⨯ 3、理论值与实验值比较 100σσδσ=⨯理测理-% 测 点理论值σi (MPa ) 实测值σi (MPa )相对误差12 3 4实验八 薄壁圆筒在弯扭组合变形下主应力测定报告一、实验目的与要求: 二、实验仪器设备和工具: 三、试件参数: 四、实验记录:载荷(N )载荷 增量 (N )各测点电阻应变仪读数(µε)通道号( )通道号( )通道号( )045ε(测点1)00ε(测点2)45ε-(测点3)读 数增 量 读 数 增 量 读 数 增 量圆筒的尺寸和有关参数计算长度 L=240mm弹性模量 E=210GPa 外 径 D=40mm 泊 松 比 μ=0.30 内 径 d=35mm 扇臂长度 a=250mm平均应变(µε)i ε∆测点应力(MPa )610i i E σε-=⨯∆⨯测1、主应力及方向m 点实测值主应力及方向计算:()0000002245451,3450450()2()()2(1)21E Eεεσεεεεμμ--+=±-+--+=454500454522tg εεαεεε---==--0α=m 点理论值主应力及方向计算:圆筒抗弯截面模量:34(1)32Z D W πα=-= mm 3圆筒抗扭截面模量:34(1)16t D W πα=-= mm 3221,3()22σσστ=+022tg τασ-==0α=2、实验值与理论值比较比较内容实验值 理论值 相对误差/% 1/MPa σ3/MPa σ 0α/(°)3、误差分析实验九 压杆稳定实验报告一、实验目的与要求:二、实验仪器设备与工具: 试件参数及有关资料厚度h (mm ) 宽度b (mm )长度L (mm ) 220318最小惯性矩 I min =bh 3/12弹性模量E=210GPa载荷P/N应变仪读数(µε)121、绘出P -1和P -2曲线,以确定实测临界力cr P 实P122、理论临界力cr P 理计算 3min 12bh =理论临界力 min2cr EI P L理 3实验值cr P 实 理论值cr P 理 误差百分率 (%)|cr P 理-cr P 实|/ cr P 理六、误差分析实验十 偏心拉伸实验报告一、实验目的与要求: 二、实验仪器设备与工具: 试件 厚度h (mm )宽度b (mm )530弹性模量 E=210GPa 偏心距 e=10mm载荷 (N )载荷 增量各测点电阻应变仪读数(µε)通道号( )通道号( )(N )1ε(测点1)2ε(测点2)读 数增 量 读 数增 量 10002000 1000 3000 1000 4000 1000 50001000平均应变(µε)i ε∆1、求弹性模量E 12()2P εεε+== 0ppE A ε∆== 2、求偏心距e12()2m εεε-==26m Ehb e pε==∆ 3、应力计算理论值 206p MA bh σ=±= 实验值 max ()p m E σεε=+=min ()p m E σεε=-=六、误差分析:实验十一 静定桁架结构设计与应力分析实验报告一、实验目的与要求: 二、实验仪器设备与工具: 三、实验搭接的结构图: 杆件编号 应变片编号 应变值 计算应力值 理论应力值误差实验十二超静定桁架结构设计与应力分析实验报告一、实验目的与要求:二、实验仪器设备与工具:三、实验搭接的结构图:杆件编号应变片编号应变值计算应力值理论应力值误差实验十三静定刚架与压杆组合结构设计与应力分析实验报告一、实验目的与要求:二、实验仪器设备与工具:三、实验搭接的结构图:杆件编号应变片编号应变值计算应力值理论应力值误差实验十四双悬臂梁组合结构设计与应力分析实验一、实验目的与要求:二、实验仪器设备与工具:三、实验搭接的结构图:杆件编号应变片编号应变值计算应力值理论应力值误差实验十五岩土工程材料的多轴应力特性实验报告一、实验目的与要求:二、实验仪器设备与工具:三、实验结果记录试件高度h(mm)直径d(mm)横截面面积A0=bh(mm2)截面Ⅰ截面Ⅱ截面Ⅲ平均1、求弹性模量E弹性段的应力与应变的比值。
实验一拉伸实验一、实验目的1.测定低碳钢(Q235)的屈服点σ,强度极限bσ,延伸率δ,断面收缩率ψ。
s2.测定铸铁的强度极限σ。
b3.观察低碳钢拉伸过程中的各种现象(如屈服、强化、颈缩等),并绘制拉伸曲线。
4.熟悉试验机和其它有关仪器的使用。
二、实验设备1.液压式万能实验机;2.游标卡尺;3.试样刻线机。
三、万能试验机简介具有拉伸、压缩、弯曲及其剪切等各种静力实验功能的试验机称为万能材料试验机,万能材料试验机一般都由两个基本部分组成;1)加载部分,利用一定的动力和传动装置强迫试件发生变形,从而使试件受到力的作用,即对试件加载。
2)测控部分,指示试件所受载荷大小及变形情况。
四、试验方法1.低碳钢拉伸实验(1)用画线器在低碳钢试件上画标距及10等分刻线,量试件直径,低碳钢试件标距。
(2)调整试验机,使下夹头处于适当的位置,把试件夹好。
(3)运行试验程序,加载,实时显示外力和变形的关系曲线。
观察屈服现象。
(4)打印外力和变形的关系曲线,记录屈服载荷F s=22.5kN,最大载荷F b =35kN。
(5)取下试件,观察试件断口: 凸凹状,即韧性杯状断口。
测量拉断后的标距长L1,颈缩处最小直径d1 Array低碳钢的拉伸图如图所示2.铸铁的拉伸其方法步骤完全与低碳钢相同。
因为材料是脆性材料,观察不到屈服现象。
在很小的变形下试件就突然断裂(图1-5),只需记录下最大载荷F b =10.8kN 即可。
b σ的计算与低碳钢的计算方法相同。
六、试验结果及数据处理表1-2 试验前试样尺寸表1-3 试验后试样尺寸和形状根据试验记录,计算应力值。
低碳钢屈服极限 MPa 48.28654.78105.223=⨯==A F s s σ低碳钢强度极限 MPa 63.44554.7810353=⨯==A F b b σ低碳钢断面收缩率 %6454.7827.2854.78%100010=-=⨯-=A A A ψ低碳钢延伸率 %25100100125%10001=-=⨯-=L L L δ铸铁强度极限 MPa 53.13754.78108.103=⨯==A F b b σ七、思考题1.根据实验画出低碳钢和铸铁的拉伸曲线。
大学材料力学实验报告大学材料力学实验报告引言材料力学实验是大学材料科学与工程专业中的一门重要课程。
通过实验,我们可以深入了解材料的力学性质和行为,为材料设计和应用提供基础数据和理论依据。
本次实验旨在通过拉伸试验和硬度测试,探究不同材料的力学性能和硬度特点。
实验一:拉伸试验拉伸试验是一种常用的力学实验方法,用于评估材料的强度、延展性和塑性等性能。
在实验中,我们选择了三种常见的材料进行拉伸试验:钢材、铝材和塑料。
1. 实验步骤首先,我们准备了三个不同材料的试样,分别是圆柱形的钢材、铝材和塑料样品。
然后,将试样固定在拉伸试验机上,并施加逐渐增大的拉力,直到试样断裂为止。
在拉伸过程中,我们记录下拉力和试样的伸长量,以绘制应力-应变曲线。
2. 实验结果通过拉伸试验得到的应力-应变曲线可以反映材料的力学性能。
钢材的应力-应变曲线呈现出明显的弹性区和塑性区,具有较高的屈服强度和延展性。
铝材的应力-应变曲线也呈现出弹性和塑性的特点,但相对于钢材来说,其屈服强度和延展性较低。
而塑料的应力-应变曲线则主要表现为塑性变形,没有明显的弹性区。
实验二:硬度测试硬度是材料力学性能的重要指标之一,用于评估材料的抗压能力和耐磨性。
在实验中,我们选择了三种不同硬度的材料进行硬度测试:钢材、铝材和陶瓷。
1. 实验步骤我们使用了维氏硬度计和洛氏硬度计对试样进行硬度测试。
首先,将试样固定在硬度计上,然后施加一定的压力,观察压头对试样的印痕情况。
根据印痕的大小和形状,我们可以得出试样的硬度数值。
2. 实验结果通过硬度测试,我们发现钢材具有较高的硬度数值,表明其具有较高的抗压能力和耐磨性。
铝材的硬度数值相对较低,说明其相对较软。
而陶瓷的硬度数值最高,表明其具有极高的抗压能力和耐磨性。
结论通过本次实验,我们深入了解了材料的力学性能和硬度特点。
拉伸试验结果表明,钢材具有较高的屈服强度和延展性,铝材次之,而塑料则主要表现为塑性变形。
硬度测试结果显示,钢材具有较高的硬度数值,铝材较低,而陶瓷的硬度最高。
目录实验一金属材料的拉伸与压缩实验 (1)实验二金属材料的扭转实验…………………………………实验三金属材料的弹性模量E和波桑系数 测定…………………实验四桥路变换……………………………………………………实验五纯弯梁的正应力测定………………………………………实验六空心簿壁圆桶的主应力测定………………………………实验七偏心拉伸……………………………………………………实验一金属材料的拉伸与压缩试验一、一、实验目的1. 1.了解液压式材料试验机的工作原理,初步掌握试验机的操作规程。
2. 2.测定低碳钢的屈服(流动)极限σS,强度极限σb,延伸率δ和截面收缩率Ψ。
观察试件在拉伸过程中的各种现象(弹性、屈服、强化、颈缩)。
3. 3.测定铸铁材料的拉伸和压缩强度极限σb。
4. 4.比较低碳钢和铸铁的机械性质及破坏时的断口形式。
二、二、实验原理及计算测定金属材料的机械性质需要将试件制成符合国家标准的形状和尺寸。
一般规定,圆形截面的拉伸试件其标距L0与直径D0的关系为L0=10D0;压缩试件的高度H0与直径D0的关系为。
见图1.图1-1图1-2 为低碳钢和铸铁试件的P―ΔL图。
图1-2低碳钢试件在拉伸过程中,可分为四个阶段:1. 1.弹性阶段:载荷与变形成正比,P―ΔL图中表现为OA直线段。
屈服阶段:2. 2.P―ΔL图中的BC段,为一水平锯齿形曲线,此时材料暂时失去了抵抗变形的能力,表现为载荷在很小的范围内波动,而变形量则比较明显。
此时可观察到试验机测力盘上的主动针在某一刻度值范围内波动,取主动针回摆的最小读数值,即BC段中的下极限作为屈服载荷PS并记录下来,屈服极限σS可按下式计算:MN/m23. 3.强化阶段。
P―ΔL图中的CE阶段,在此阶段材料又恢复了抵抗变形的能力,要使它继续变形则必须增加载荷。
在此阶段(例如D点)卸载,则按图1-2所示的DD’斜直线回到D'短时间內若再加载,则P—∆L图大致仍按D'D斜直回到D点,然后又回沿DE曲线变化。
材料力学创新实验报告——加强筋对钢板强度的作用分析一、实验背景生活中, 很多都多构件都是用钢制的薄板做成的。
如宿舍中放物品的架子、图书馆中的书架、柜子的门等等。
通过观察, 我们发现: 这些钢板的背面都焊有一块长条状的加强筋。
而这些钢板又普遍要承受较大的载荷, 我们就考虑到: 这些加强筋对钢板强度的提高是否有帮助呢?同时我们有考虑到, 长条状的加强筋并没有覆盖到钢板的各个位置, 因此我想到: 对于有加强筋的钢板, 平面上不同位置的应变是否存在不同?二、实验目的1.通过将有加强筋的钢板与没有加强筋的钢板同时加载, 观察加强筋对钢板各点应力大小的影响。
2、通过粘贴应变花, 判断钢板受载荷时是否承受扭转应力。
三、实验方案选取两块材料、尺寸相同钢板, 其中一块背面焊有加强筋、另一块没有加强筋。
进行对照试验。
分别在两块钢板上相同的位置粘贴应变片。
并分别在相同位置加载, 测量各点应变, 进行对比。
分析加强筋对钢板强度的影响。
四、实验过程1.前期准备我们在实验室的柜子里找到了一块带有加强筋的钢板。
为了进行对比研究, 我们找到了一位铁匠师傅, 帮我们做了一块尺寸一样, 但是没有加强筋的钢板。
2.贴片方案本次实验, 我们在两块钢板上共贴了24个应变片。
如图2-1, 在没有加强筋的钢板上, 我们分别在正反面A.B.C.D四点各贴一片, 共计8片。
如图2-2, 在有加强筋的钢板上, 除了上述8片之外, 还在C、D点±45°方向的贴了片, 以研究钢板是否受扭。
图2-1图2-23.加载方案现实中承重钢板均可近似看成是承受的均布载荷, 对于本实验来讲, 采用均布加载似乎更合理些。
但由于应变片就在钢板的表面, 考虑到采用均布加载会触碰到应变片。
因此我们采用集中加载。
通过分析我们发现钢板应力最大的点为加载点。
因此我们在粘贴应变片的位置(即上图的A.B.C.D四点)分别加载。
每个点分别放置0.5kg 、1kg、2kg砝码, 进行三次加载。
材料力学扭转实验报告1. 实验目的。
本实验旨在通过材料力学扭转实验,探究材料在受力情况下的扭转性能,了解材料的力学特性和扭转变形规律,为工程应用提供理论依据。
2. 实验原理。
材料在受到扭转力矩作用下,会产生扭转变形。
根据弹性力学理论,扭转角度与扭转力矩成正比,而与材料长度和材料性质有关。
材料的扭转刚度可用扭转角度与扭转力矩的比值来表示,即扭转角度和扭转力矩的比值为材料的剪切模量G。
3. 实验装置。
本实验采用材料力学扭转实验机进行测试,实验机由电机、扭转传感器、数据采集系统等部分组成。
在实验中,通过控制电机输出的扭转力矩和测量相应的扭转角度,可以得到材料的扭转刚度和剪切模量等参数。
4. 实验步骤。
(1)将待测试的材料样品装入扭转实验机夹具中,保证样品的两端固定。
(2)设置实验机的扭转力矩和扭转角度采集参数。
(3)启动实验机,施加不同的扭转力矩,记录相应的扭转角度。
(4)根据实验数据计算材料的扭转刚度和剪切模量。
5. 实验结果与分析。
通过实验数据处理和分析,得到了材料在不同扭转力矩下的扭转角度数据。
根据实验结果,可以绘制出材料的扭转曲线,进一步分析材料的扭转特性和力学性能。
6. 结论。
通过本次材料力学扭转实验,得到了材料的扭转刚度和剪切模量等重要参数,为了解材料的力学性能提供了重要参考。
同时,实验结果也为工程应用提供了理论基础,具有一定的实用价值。
7. 实验心得。
本次实验通过操作实验装置、处理实验数据等环节,对材料力学扭转实验有了更加深入的认识,增强了对材料力学知识的理解和应用能力。
综上所述,本次材料力学扭转实验取得了一定的成果,为深入研究材料的力学性能和工程应用提供了重要参考,具有一定的理论和实用价值。
材料力学实验报告院系班级学号姓名实验一金属材料拉伸实验实验日期:同组成员:一.实验目的1.测定低碳钢的屈服极限,强度极限,延伸率和断面收缩率。
2.测定铸铁的强度极限。
二.实验设备1.万能材料试验机2.游标卡尺三.实验步骤1.用游标卡尺在试件标距长度内取三处,测每一处截面两个相互垂直方向的直径,取其平均值。
最后以三处平均值中最小值作为试件的直径。
2.选择试验机的量程根据试件的强度极限和截面积,估算试件的最大载荷,选择合适的量程。
3.打开电源开关,打开油泵开关,关上回油阀,打开送油阀,将工作台抬高1-2厘米,消除自重,关上送油阀。
4.装夹试件,调读盘零点。
5.打开送油阀,缓慢加载,测试并观察,记录相关数据。
6.试件拉断后,关上送油阀,将试件取出,记录相关数据,测试件断后标距及断后直径。
7.实验整理四、实验记录及实验结果:1、试件尺寸记录- 1 -2、载荷及计算结果3、绘出低碳钢和铸铁的P-ΔL图五、实验结论与分析:1、分析比较两种典型金属材料的抗拉机械性能。
2、国家标准《金属拉伸实验方法》(GB228-87)中规定拉伸试样分为短试样和长试样,对同一材质、同一直径的圆形试样,短试样和长试样的断后延伸率是否相同?若不一样哪个大?- 2 -实验二铸铁材料压缩实验实验日期:同组成员:一.实验目的1.测定铸铁抗压强度极限σb。
2.观察铸铁在压缩时的变形和破坏现象。
二.实验设备1.万能材料试验机2.游标卡尺三.实验步骤1.测量试件直径用游标卡尺在试件相互垂直方向的直径各测一次,取其平均值。
2.选择试验机的量程根据试件的强度极限和截面积,估算试件的最大载荷,选择合适的量程。
3.打开电源开关,打开油泵开关,关上回油阀,打开送油阀,将工作台抬高1-2厘米,消除自重,关上送油阀。
4.安装试件,注意载荷对中。
调读盘零点。
5.打开送油阀,缓慢加载,测试并观察,试件压断后,关上送油阀,将试件取出,记录相关数据。
四、实验记录及实验结果:1、试件几何尺寸记录2、实验数据记录及处理五. 实验结论与分析:1、铸铁的破坏形式说明什么问题?2、铸铁压缩与拉伸破坏端面形状有什么不同?- 3 -- 4 - 实验三 弹性模量E 的测定实验日期:同组成员: 一.实验目的1.测定低碳钢的弹性模量E 。
材料力学扭转实验报告一、实验目的。
本实验旨在通过材料力学扭转实验,探究材料在扭转加载下的力学性能,了解材料在扭转过程中的变形规律,为工程应用提供参考依据。
二、实验原理。
材料在扭转加载下的应力和应变关系可由以下公式描述:\[ τ = \frac{T \cdot r}{J} \]\[ γ = \frac{θ \cdot r}{L} \]式中,τ为剪应力,T为扭矩,r为半径,J为极化面积惯性矩,γ为剪应变,θ为扭转角度,L为长度。
三、实验装置。
本实验采用扭转试验机进行扭转实验,实验装置包括扭转试验机、扭转夹具、力传感器、位移传感器等。
四、实验步骤。
1. 将试样装入扭转夹具中,并固定好。
2. 调整扭转试验机,使其处于工作状态。
3. 开始施加扭转力,记录下扭转角度和扭矩的变化。
4. 持续施加扭转力,直至试样发生破坏或达到设定的扭转角度。
五、实验数据处理。
1. 根据实验记录的扭转角度和扭矩数据,绘制扭转曲线。
2. 通过扭转曲线,计算出试样的剪应力-剪应变曲线。
3. 分析试样在扭转加载下的力学性能,如极限剪应力、屈服剪应力等。
六、实验结果与分析。
通过对实验数据的处理和分析,得到了试样在扭转加载下的力学性能参数。
根据实验结果,可以得出试样的扭转强度、剪切模量等力学性能指标,为材料的工程应用提供了重要参考。
七、实验结论。
本实验通过材料力学扭转实验,深入了解了材料在扭转加载下的力学性能,得到了试样的力学性能参数,为工程设计和材料选用提供了重要参考。
八、实验总结。
本实验通过扭转实验,深化了对材料力学的理解,掌握了材料在扭转加载下的力学性能特点,为工程实践提供了重要的理论支持。
通过本次实验,我深刻认识到了材料力学扭转实验在工程领域的重要性,也加深了对材料力学理论的理解和应用。
希望今后能够继续深入学习和探索材料力学领域,为工程实践和科学研究做出更多贡献。
扭转实验一、实验目的1.学习扭转实验机的构造原理,并进行操作练习。
2.测定低碳钢的剪切屈服极限、剪切强度极限和铸铁的剪切强度极限。
3.观察低碳钢和铸铁在扭转过程中的变形和破坏情况。
二、实验仪器扭转实验机、游标卡尺 三.实验原理 1、低碳钢扭转【抗扭屈服强度】(剪切屈服极限):W Tss 43=τ (Mpa )[ 式中: T s – 屈服阶段最小扭矩值(N · mm ); W – 抗扭截面模量(mm 3);316d W π=(mm 3); d -- 试样横截面直径(mm )。
]【抗扭强度】(剪切强度极限):W T bb 43=τ (Mpa )[ 式中: Tb – 破坏前最大扭矩值(N · mm )] 在上述两式中都存在 3/4 的系数,来源见图一。
(a )初态 (b )中间态 (c )填满态 图 一 扭转等直圆轴进入屈服状态切应力变化图当扭转等直圆轴到达初态时,T —φ试验曲线上的扭矩T 并没有进入屈服阶段,但此时截面边缘上的切应力已经达到τs ,进入实际屈服阶段,有D ·τρ= 2ρ·τs 。
此时的扭矩:3322)2(42D d D d dA T s D s D Aπτρρτπρπρρτρτρρ====⎰⎰⎰初中间变化过程是塑性变形环逐渐变大直到填满整个截面的过程。
达到填满态时的扭矩:3222)2(3Dd d dA T s D s D s As πτρρτπρπρρτρτ====⎰⎰⎰满结果:初T =43满T 。
[满T 对应T —φ试验曲线上的扭矩s T]抗扭强度式中系数也可如此推理。
图 二 低碳钢扭转试样对低碳钢等直圆轴扭转在比例变形范围内符合剪切胡克定律,截面Ⅱ相对截面Ⅰ转角:πϕ180p GI TL =( ° ) (见图二)[ 式中:φ– 截面Ⅱ相对截面Ⅰ的转角(°); T – 截面扭矩值(N · mm ); L – 试样试验段长度(mm ); G --切变模量 (Mpa ;即N / mm 2);Ip – 对截面中心的极惯性矩(mm 4); Ip =W d2=432d π (mm 4) ]【切变模量G 】:πϕ180p I TL G ⋅=(Mpa ) ;πϕϕ180)()(1212--=T T I L G p (Mpa )[(见图三)T 2、T 1 --- 扭转弹性变形阶段选定两点对应的扭矩值(N · mm )。
. . . .青岛黄海学院实验指导书课程名称:材料力学课程编码:04115003主撰人:吕婧. . . .青岛黄海学院. . . .目录实验一拉、压实验 (1)实验二扭转实验 (5)实验三材料弹性模量E和泊松比µ的测定 (7)实验四纯弯曲梁的正应力实验 (11)实验一低碳钢拉伸实验一、实验目的要求:(一)目的1.测定低碳钢的屈服极限σS,强度极限σ、延伸率δ,截面收缩率ψ。
b2.测定铸铁的强度极限σ,观察上述两种材料的拉伸和破坏现象,绘制拉伸时b的P-l∆曲线。
(二)要求1.复习讲课中有关材料拉伸时力学性能的内容;阅读本次实验内容和实设备中介绍万能试验机的构造原理、操作方法、注意事项,以及有关千分表和卡尺的使用方法。
2.预习时思考下列问题:本次实验的内容和目的是什么?低碳钢在拉伸过程中可分哪几个阶段,各阶段有何特征?试验前、试验中、试验后需要测量和记录哪些数据?使用液压式万能试验机有哪些注意事项?二、实验设备和工具1.万能实验2.千分尺和游标卡尺。
3.低碳钢和铸铁圆形截面试件。
三、实验性质:验证性实验四、实验步骤和内容:(一)步骤1.取表距 L =100mm.画线2.取上,中,下三点,沿垂直方向测量直径.取平均值 3.实验机指针调零.4.缓慢加载,读出 s P .b P .观察屈服及颈缩现象,观察是否出现滑移线. 5.测量低碳钢断裂后标距长度1l ,颈缩处最小直径1d (二)实验内容: 1.低碳钢试件 (1)试件(2)计算结果屈服荷载 s P =22.1KN 极限荷载 b P =33.2KN屈服极限 s =s P /0A =273.8MPa强度极限 b σ=b P /0A =411.3MPa 延伸率 δ=(1l -0l )/0l *100%=33.24% 截面收缩率ψ=(0A -1A )/0A *100%=68.40% (3)绘制低碳钢P~ l ∆ 曲线2.铸铁的实验记录. 实验前 实验后直径 0d (mm) 10.16 断裂后直径 1d (mm)10.15最大荷载 b P =14.4KN强度极限 b σ=b P /0A =177.7MPa实验二铸铁压缩实验一、实验目的要求:(一)目的1.测定铸铁的强度极限σb。
材料力学实验报告班级:姓名:学号:福建工程学院土木工程系目录实验一钢材拉伸和紧缩实验实验二弹性模量E和泊松比 测定实验实验三材料扭转实验实验四纯弯曲正应力实验实验五弯扭组合变形实验实验六压杆稳固实验实验一拉伸和紧缩实验报告班级:姓名:一、实验目的二、实验设备三、试件形状简图四、试件原始尺寸二、紧缩试件一、拉伸实验八、问题讨论依照实验结果、判定选择以下括号中的正确词:铸铁拉伸受(拉、剪)应力破坏;铸铁紧缩受(剪、压)应力破坏;铸铁抗拉能力(大于、小于、等于)抗压能力;低碳钢抗剪能力(大于、小于、等于)抗拉能力;低碳钢的塑性(大于、小于、等于)铸铁的塑性;假设制造机床的床身,应该选择(铸铁、钢)为材料;假设制造内燃机汽缸活塞杆,应该选择(铸铁、钢)为材料。
实验二弹性模量E和泊松比υ测定实验报告班级:姓名:一、实验目的二、实验设备实验三材料扭转实验报告班级:姓名:一、实验目的二、实验设备实验四纯弯曲正应力实验报告班级:姓名:一、实验目的二、实验设备三、记录1、试件梁的数据及测点位置二、应变实测记录最大荷载:P max = N最大弯矩:M max = P max ·a = N ·mm四、实验结果的处置 一、刻画应变散布图依照应变实测记录表中第Ⅰ次实验的记录数据,将1000N 、2000N 和3000N 荷载下测得的各点应变值别离绘于图3-1方格纸上。
用“最小二乘法”求最正确似合直线,设拟合各实测点的直线方程为ky =ε式中ε—— 各测点的应变值;y —— 各测点的坐标(离中性轴的距离);k —— 梁弯曲变形的曲率(待定系数)。
那么i i i ky -=∆ε()∑∑==-=∆=712712i i i i iky Q ε 0=∂∂k Q,()()021=--∑=ni i i i y ky ε071271=-∑∑==i i ii iyk y ε,∑∑===71271i iii iyyk ε由此求出在荷载1000N 、2000N 和3000N 下的三个直线方程为 1000N 2000N 3000N同时作直线于图3-1中。
实验报告(一)院系:机械与材料工程学院课程名称:材料力学性能日期:实验报告(一)院系:机械与材料工程学院课程名称:材料力学性能日期:企业安全生产费用提取和使用管理办法(全文)关于印发《企业安全生产费用提取和使用管理办法》的通知财企〔2012〕16号各省、自治区、直辖市、计划单列市财政厅(局)、安全生产监督管理局,新疆生产建设兵团财务局、安全生产监督管理局,有关中央管理企业:为了建立企业安全生产投入长效机制,加强安全生产费用管理,保障企业安全生产资金投入,维护企业、职工以及社会公共利益,根据《中华人民共和国安全生产法》等有关法律法规和国务院有关决定,财政部、国家安全生产监督管理总局联合制定了《企业安全生产费用提取和使用管理办法》。
现印发给你们,请遵照执行。
附件:企业安全生产费用提取和使用管理办法财政部安全监管总局二○一二年二月十四日附件:企业安全生产费用提取和使用管理办法第一章总则第一条为了建立企业安全生产投入长效机制,加强安全生产费用管理,保障企业安全生产资金投入,维护企业、职工以及社会公共利益,依据《中华人民共和国安全生产法》等有关法律法规和《国务院关于加强安全生产工作的决定》(国发〔2004〕2号)和《国务院关于进一步加强企业安全生产工作的通知》(国发〔2010〕23号),制定本办法。
第二条在中华人民共和国境内直接从事煤炭生产、非煤矿山开采、建设工程施工、危险品生产与储存、交通运输、烟花爆竹生产、冶金、机械制造、武器装备研制生产与试验(含民用航空及核燃料)的企业以及其他经济组织(以下简称企业)适用本办法。
第三条本办法所称安全生产费用(以下简称安全费用)是指企业按照规定标准提取在成本中列支,专门用于完善和改进企业或者项目安全生产条件的资金。
安全费用按照“企业提取、政府监管、确保需要、规范使用”的原则进行管理。
第四条本办法下列用语的含义是:煤炭生产是指煤炭资源开采作业有关活动。
非煤矿山开采是指石油和天然气、煤层气(地面开采)、金属矿、非金属矿及其他矿产资源的勘探作业和生产、选矿、闭坑及尾矿库运行、闭库等有关活动。
材料力学实验报告(精选合集)第一篇:材料力学实验报告材料力学实验报告实验名称:班级:姓名:学号:同组人:实验日期:一、实验目的二、实验主要设备及试件三、实验原理四、实验步骤五、实验数据记录及结果六、实验总结第二篇:岩石力学-实验报告岩石力学与工程实验报告一、实验目的1、熟悉运用岩石力学的phase软件;2、运用岩石力学的基本理论,来计算某地的地应力值。
二、实验软件1、岩石力学phase软件;2、auto CAD 2006;3、matlab 6.5软件;4、microsoft office 2003软件。
三、实验方法与步骤1、选取九龙河溪古水电站地质构造带作为实验基础,并用运用auto CAD软件绘制将该地区的断层、节理等地质构造单元;2、在phase软件中导入已绘制各种边界(断裂边界、材料边界、boundry);3、进行网格划分;4、定义材料,并将所计算的模型设置正确的材料颜色;5、运用matlab软件进行数据处理和计算;5.1、已知理塘、雅江、呷巴、长河坝、乾宁的最大主应力及最小主应力,利用工程力学的力学计算方法,将已知应力点的σ1、σ3、最大主应力方向转换成σx、σy、τxy、τyx.可得出如表1所示的的实验数据:地名理塘雅江呷巴长河坝乾宁σx 7.402573 5.352823 4.553373 3.119851 2.883026σy 5.89742731 5.967177408 5.146626914 6.09014932 3.22697392τxy 1.96052 0.76029 0.04486 0.42586 0.56961x坐标-16.2352-8.7352 1.7393 7.3222-0.3815y坐标 14.604 14.604 14.0014 13.0728 20.9622表格1:将σ1、σ3 转化为σx、σy的数据表5.2、运用matlab软件编程,求出各个地区的ν、λ、α值令E=E;v=ν;l=λ;a=α; Yanshi1的源程序:E=input('请输入E的值:');v=input('请输入v的值:');G=E/[2*(1+v)] l=E*v/[(1+v)*(1-2*v)] a=l+2*G 对于⑤古生代到三叠纪的变质分布有:E=12500MPa,0.22 运行matlab程序:yanshi1 请输入E的值:12500 请输入v的值:0.22 G =5.1230e+003 l =4.0252e+003 a =1.4271e+004 即求得理塘G =370.3704;l =864.1975;a =1.6049e+0035.3、在利用auto CAD 的测量距离方法,得出理塘、雅江、呷巴、长河坝、乾宁的坐标,求得的数据如表2:地名E(MPa)μ λ G α x坐标理塘12500 0.22 4025.1756 5122.95082 14271.08-121764 雅江12500 0.22 4025.1756 5122.95082 14271.08-65514 呷巴12500 0.22 4025.1756 5122.95082 14271.08 13044.75 长河坝12500 0.22 4025.1756 5122.95082 14271.08 54916.5 乾宁12500 0.22 4025.1756 5122.95082 14271.08-2861.25表格2:各个地区的x,y坐标5.4、建立matlab的矩阵模型,求出系数A1,A2,A3,A4,A5,B1,B2,B3,B4,B5Matlab的矩阵模型如下:A=[ α 0 2*α*X 0 a*Y 0 λ 0 2*λ*Y λ*X λ 0 2*λ*X 0 λ*Y 0 α 0 2*α*Y α*X 0 1 0 2*Y X 1 0 2*X 0 Y ];b=[σx;σy;τxy/G];y坐标 109530 109530 105011 98046 157217 A*x=b;即可得如下的系数矩阵:A=[14271, 0,-3475388088, 0, 1563111392, 0, 4025.2, 0, 881760312,-49012445314271, 0,-1869900588, 0, 1563111392, 0, 4025.2, 0, 881760312,-26370695314271, 0, 372324682 , 0, 1498604846, 0, 4025.2, 0, 845376529.2,5250792914271, 0, 1567426743, 0, 1399214466, 0, 4025.2, 0, 789309518.4, 22104989614271, 0,-81667225 , 0, 2243636672, 0, 4025.2, 0, 1265655712,-115173054025.2, 0,-980248906, 0, 440880156, 0, 14271, 0, 3126205260,-17376940444025.2, 0,-527413906, 0, 440880156, 0, 14271, 0, 3126205260,-9349502944025.2, 0, 105015858,0, 422688265, 0, 14271, 0, 2997209691, 1861623414025.2, 0, 442099792,0, 394654759, 0, 14271, 0, 2798625024, 7837133724025.2, 0,-23034610,0, 632827856, 0, 14271, 0, 4487273343,-408336120,1,0, 219060,-121764, 1,0,-243528,0,1095300,1,0, 219060,-65514,1,0,-131028,0,1095300,1,0, 210021, 13044.8, 1,0, 26089.6,0,105010.50,1,0, 196092, 54916.5, 1,0, 109833,0,980460,1,0, 314433,-2861.3, 1,0,-5722.6,0,157216.5];b=[-5.89743;-5.96718;-5.14663;-6.09015;-3.22697;-7.4026;-5.3528;-4.5534;-3.1199;-2.883;0.000382689;0.000148407;0.000008756;0.000083127;0.00 0111185];5.5、利用以上模型来求解,从中任意选取10组可求A1,A2,A3,A4,A5和B1,B2,B3,B4,B5的值分别如下:A1=-0.0007, A2=0, A3=-1E-10, A4=-1E-09, A5=3E-09, B1=0.00013, B2=-0.0003, B3=-2E-09, B4=6.5E-10, B5=1.7E-09 5.6、根据以上的系数A1,A2,A3,A4,A5,B1,B2,B3,B4,B5可将研究区域的不同坐标值找出,利用以下式子求出σx,σy,τxy值:α*A1+2αX*A3+αY*A5+λ*B2+2λY*B4+λX*B5=σxλ*A1+2λX*A3+λY*A5+α*B2+2αY*B4+αX*B5=σyB1+2X*B3+Y*B5+A2+2Y*A4+X*A5=τxy/G 求得的实验数据见表3:X σy Y σx τxy-270030.1-300000 26.10190827 23.443972-3.3845051-248837-300000 26.01878553 22.919628-3.1933399-236123.4-300000 25.96892114 22.60508-3.0786621-196566.8-300000 25.81377387 21.6264-2.7218553-184185.2-300000 25.76521133 21.320064-2.6101715-153965.8-300000 25.64668607 20.572399-2.3375878-123746.4-300000 25.52816081 19.824733-2.0650041-93526.95-300000 25.40963555 19.077067-1.7924204-60145.15-300000 25.2787069 18.25116-1.4913115-26763.34-300000 25.14777826 17.425253-1.1902025 6618.4692-300000 25.01684961 16.599346-0.8890936 45416.512-300000 24.86467765 15.639435-0.5391294 73948.703-300000 24.75276995 14.933514-0.2817648 104011.98-300000 24.6348571 14.189711-0.0105895 134075.26-300000 24.51694425 13.4459090.26058577 164138.53-300000 24.3990314 12.702106 0.53176105 175764.95-300000 24.35343079 12.4144540.63663307 217176.63-300000 24.19100772 11.3898781.01017268 258588.32-300000 24.02858465 10.365302 1.38371229-300000 267798.0381-0.913855697 6.8671631-3.0855215-300000 235596.0762 0.624976383 7.8493492-3.1178096-300000 203394.11432.163808463 8.8315352-3.1500977-300000 158059.48854.330209902 10.214278-3.1955536-300000 124366.99785.940269739 11.241926-3.2293362-300000 90674.50712 7.550329576 12.269575-3.2631188-300000 56982.01644 9.160389413 13.297223-3.2969014-300000 42538.32465 9.850608735 13.737767-3.3113838-300000 10072.42382 11.40205364 14.728004-3.3439365-300000-22393.477 12.95349854 15.71824-3.3764892-300000-49054.7592 14.22755869 16.531431-3.4032218-300000-75716.0413 *** 17.344622-3.4299544-300000-113096.701 17.28792486 18.484762-3.4674351-300000-150477.361 19.07423088 19.624903-3.5049157-300000-187858.021 20.8605369 20.765043-3.5423964-300000-225238.68 22.64684292 21.905184-3.579877-300000-262619.34 24.43314895 23.045324-3.6173577-300000-300000 26.21945497 24.185465-3.6548383表格3:不同坐标的应力值 5.7、在Phase中设定边界应力值导入所求的模型,即可得到所需的实验模型。
一、实验目的1. 掌握材料力学压缩实验的基本原理和方法。
2. 熟悉电子万能试验机的操作方法。
3. 通过实验,了解不同材料在压缩过程中的力学特性,包括弹性模量、屈服极限和抗压强度等。
4. 比较低碳钢和铸铁在压缩过程中的性能差异。
二、实验原理压缩实验是材料力学实验中的一种基本实验,主要用于测定材料的弹性模量、屈服极限和抗压强度等力学性能。
在压缩实验中,试样受到轴向压缩力作用,其应力-应变关系可以通过实验数据进行研究。
实验过程中,根据胡克定律,当材料处于弹性阶段时,应力与应变呈线性关系,即σ = Eε,其中σ为应力,E为弹性模量,ε为应变。
当材料进入屈服阶段后,应力与应变不再呈线性关系,此时材料失去抵抗变形的能力。
屈服极限是材料在压缩过程中,应力达到最大值时的应变值。
抗压强度是材料在压缩过程中,应力达到破坏时的应变值。
三、实验设备及工具1. 电子万能试验机2. 游标卡尺3. 低碳钢试样4. 铸铁试样四、实验步骤1. 测量试样尺寸:使用游标卡尺测量低碳钢和铸铁试样的直径,分别记为d1和d2。
在试样中部位置互相垂直地测量2次直径,取其平均值。
2. 安装试样:将低碳钢和铸铁试样分别放置在电子万能试验机的上下压板之间,确保试样中心与压板中心对齐。
3. 调整试验机:启动电子万能试验机,调整试验机参数,包括加载速度、峰值、变形、位移和试验时间等。
4. 施加载荷:按下开始按钮,给试样施加轴向压缩力,观察试样的变形和破坏现象。
5. 记录数据:在实验过程中,记录试样的屈服极限、抗压强度、弹性模量等力学性能参数。
6. 实验结束后,关闭试验机,清理实验场地。
五、实验结果与分析1. 低碳钢试样根据实验数据,低碳钢试样的弹性模量为E1,屈服极限为σs1,抗压强度为σb1。
2. 铸铁试样根据实验数据,铸铁试样的弹性模量为E2,屈服极限为σs2,抗压强度为σb2。
对比两种材料在压缩过程中的性能差异,可以发现:(1)低碳钢的弹性模量E1大于铸铁的弹性模量E2,说明低碳钢的刚度较大。
实验一引伸法测定材料的弹性模量E 一、实验目的:二、实验设备和仪器:三、实验记录和处理结果:四、实验原理和方法:五、实验步骤及实验结果处理:六、讨论:测E实验台说明书一、用途该实验台配上引伸仪,作为材料力学实验教学中测定材料弹性模量E实验用。
二、主要技术指标1. 试样:Q235钢,直径d =10mm,标距l=100mm。
2. 载荷增量△F=1000N①砝码四级加载,每个砝码重25N;②初载砝码一个,重16N;③采用1:40杠杆比放大。
3. 精度:一般误差小于5%。
三、操作步骤及注意事项1. 调节吊杆螺母,使杠杆尾端上翘一些,使之与满载时关于水平位置大致对称。
注意:调节前,必须使两垫刀刃对正V型槽沟底,否则垫刀将由于受力不均而被压裂。
2. 把引伸仪装夹到试样上,必须使引伸仪不打滑。
①对于容易打滑的引伸仪,要在试样被夹处用粗纱布沿圆周方向打磨一下。
②引伸仪为精密仪器,装夹时要特别小心,以免使其受损。
③采用球铰式引伸仪时,引伸仪的架体平面与实验台的架体平面需成45º左右的角度。
3. 挂上砝码托。
4. 加上初载砝码,记下引伸仪的读数。
5. 分四次加等重砝码,每加一次记一次引伸仪的读数。
注意:加砝码时要缓慢放手,以使之为静载,并注意防止失落而砸伤人、物。
6. 实验完毕,先卸下砝码,再卸下引伸仪。
7. 加载过程中,要注意检查传力机构的零件是否受到干扰,若受干扰,需卸载调整。
四、计算 试样横截面积42d A π=应力增量 AF∆=∆σ 引伸仪放大倍数K=2000 引伸仪读数 )4,3,2,1,0(=i N i引伸仪读数差 )4,3,2,1(1=-=∆-j N N N i i j 引伸仪读数差的平均值 ∑=∆=∆4141j j N N 平均试样在标距l 段各级变形增量的平均值 KN l 平均∆=∆应变增量 ll ∆=∆ε 材料的弹性模量 εσ∆∆=E实验二拉伸与压缩试验一.目的:二.设备及仪器:三.数据记录和处理:1.拉伸试验表2 试验前试样尺寸铸铁试样的测试载荷及强度极限:最大载荷P b= (),强度极限σb= ()2.压缩试验低碳钢压缩屈服应力公式σS=铸铁压缩强度极限公式σb=实验三矩形截面梁弯曲正应力电测实验一.实验目的:二.实验装置图及仪器名称:三.实验原理:四.实验步骤:五.数据记录及处理δ=100⨯-理理实σσσ%六.应力分布图:七.讨论:实验四薄壁圆管在弯曲和扭转组合作用下的主应力测定一.实验目的:二.实验装置图及仪器名称:三.实验原理:四.实验步骤:试样材料:,铝管直径为d= (),铝管壁厚为t= ()测试点到铝管自由端距离为L1= (),六.应力状态单元图(标出主应力单元)七.讨论(注:素材和资料部分来自网络,供参考。