(经典)高中数学正弦定理的五种最全证明方法
- 格式:doc
- 大小:266.50 KB
- 文档页数:7
高中数学正弦定理的五种证明方法——王彦文 青铜峡一中1.利用三角形的高证明正弦定理 (1)当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。
由此,得sin sin abA B =,同理可得sin sin cbCB=,故有sin sin abAB=sin cC =.从而这个结论在锐角三角形中成立.(2)当∆ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。
由此,得=∠sin sin abAABC ,同理可得=∠sin sin cbCABC故有=∠sin sin abAABCsin cC =.由(1)(2)可知,在∆ABC 中,sin sin abAB=sin cC=成立.从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即sin sin abAB=sin cC =.2.利用三角形面积证明正弦定理已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为 D.则Rt△ADB中,ABAD B =sin ,∴AD=AB·sinB=csinB. ∴S △ABC =B ac AD a sin 2121=•.同理,可证 S △ABC =A bc C ab sin 21sin 21=.∴ S △ABC =B ac A bc C ab sin 21sin 21sin 21==.∴absinc=bcsinA=acsinB, 在等式两端同除以ABC,可得b B a A c C sin sin sin ==.即CcB b A a sin sin sin ==. 3.向量法证明正弦定理(1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与CB的夹角为90°-C .由向量的加法原则可得AB CB AC =+,ab DABCAB CDbaDC BA为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量j 的数量积运算,得到AB j CB AC j •=+•)( 由分配律可得AB j CB j AC •=•+.B∴|j |AC Co s90°+|j |CB Co s(90°-C )=|j |AB Co s(90°-A ). j∴asinC=csinA.∴Cc A a sin sin =. A 另外,过点C 作与CB 垂直的单位向量j ,则j 与AC 的夹角为90°+C ,j 与AB 的夹角为90°+B ,可得BbC c sin sin =. (此处应强调学生注意两向量夹角是以同起点为前提,防止误解为j 与AC 的夹角为90°-C ,j 与AB 的夹角为90°-B )∴CcB b A a sin sin sin ==.(2)△ABC 为钝角三角形,不妨设A >90°,过点A 作与AC 垂直的单位向量j ,则j 与AB 的夹角为A -90°,j 与CB 的夹角为90°-C .由ABCB AC =+,得j ·AC+j ·CB=j ·AB,j即a ·Cos(90°-C)=c ·Cos(A -90°),∴asinC=csinA.∴C cA a sin sin =另外,过点C 作与CB 垂直的单位向量j ,则j 与AC 的夹角为90°+C ,j 与AB夹角为90°+B .同理,可得CcB b sin sin =.∴CcB b simA a sin sin == 4.外接圆证明正弦定理在△ABC 中,已知BC=a,AC=b,AB=c,作△ABC 的外接圆,O 为圆心,连结BO 并延长交圆于B′,设BB′=2R.则根据直径所对的圆周角是直角以及同弧所对的圆周角相等可以得到 ∠BAB′=90°,∠C =∠B′,∴sin C =sin B′=R c B C 2sin sin ='=.∴R Cc2sin =. ACCBA同理,可得R B b R A a 2sin ,2sin ==.∴R CcB b A a 2sin sin sin ===. 这就是说,对于任意的三角形,我们得到等式C cB b A a sin sin sin ==. 法一(平面几何):在△ABC 中,已知,,AC b BC a C ==∠及,求c 。
高中数学必修五知识点汇总第一章 解三角形 一、知识点总结 正弦定理:1.正弦定理:2sin sin sin a b cR A B C=== (R 为三角形外接圆的半径).步骤1.证明:在锐角△ABC 中,设BC=a,AC=b,AB=c 。
作CH ⊥AB 垂足为点H CH=a ·sinB CH=b ·sinA ∴a ·sinB=b ·sinA得到b ba a sin sin =同理,在△ABC 中, bbc c sin sin =步骤2.证明:2sin sin sin a b cR A B C===如图,任意三角形ABC,作ABC 的外接圆O. 作直径BD 交⊙O 于D. 连接DA.因为直径所对的圆周角是直角,所以∠DAB=90°因为同弧所对的圆周角相等,所以∠D 等于∠C.所以C RcD sin 2sin ==故2sin sin sin a b c R A B C ===2.正弦定理的一些变式:()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a bii A B C R R==2c R =;()2sin ,2sin ,2sin iii a R A b R B b R C ===;(4)R CB A cb a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角.(2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 4.在ABC ∆中,已知a,b 及A 时,解得情况: 解法一:利用正弦定理计算解法二:分析三角形解的情况,可用余弦定理做,已知a,b 和角A ,则由余弦定理得 即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况 ①△=0,则三角形有一解 ②△>0则三角形有两解 ③△<0则三角形无解 余弦定理:1.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩2.推论: 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >.3.两类余弦定理解三角形的问题:(1)已知三边求三角.(2)已知两边和他们的夹角,求第三边和其他两角. 面积公式:已知三角形的三边为a,b,c,1.111sin ()222a S ah ab C r a b c ===++(其中r 为三角形内切圆半径)2.设)(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式)例:已知三角形的三边为,、、c b a 设)(21c b a p ++=,求证:(1)三角形的面积))()((c p b p a p p S ---=; (2)r 为三角形的内切圆半径,则pc p b p a p r ))()((---=(3)把边BC 、CA 、AB 上的高分别记为,、、c b h h a h 则))()((2c p b p a p p ah a ---=))()((2c p b p a p p b h b ---=))()((2c p b p a p p ch c ---=证明:(1)根据余弦定理的推论:222cos 2a b c C ab+-=由同角三角函数之间的关系,sin C ==代入1sin 2S ab C =,得12S ====记1()2p a b c =++,则可得到1()2b c a p a +-=-,1()2c a b p b +-=-,1()2a b c p c +-=-代入可证得公式(2)三角形的面积S 与三角形内切圆半径r 之间有关系式122S p r pr =⨯⨯=其中1()2p a b c =++,所以S r p == 注:连接圆心和三角形三个顶点,构成三个小三角形,则大三角形的面积就是三个小三角形面积的和 故得:pr cr br ar S =++=212121(3)根据三角形面积公式12a S a h =⨯⨯所以,2a S h a =a h =同理b h c h 【三角形中的常见结论】(1)π=++C B A (2) sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-2cos 2sinC B A =+,2sin 2cos CB A =+;A A A cos sin 22sin ⋅=, (3)若⇒>>C B A c b a >>⇒C B A sin sin sin >> 若C B A sin sin sin >>⇒c b a >>⇒C B A >> (大边对大角,小边对小角)(4)三角形中两边之和大于第三边,两边之差小于第三边 (5)三角形中最大角大于等于 60,最小角小于等于 60(6) 锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.钝角三角形⇔最大角是钝角⇔最大角的余弦值为负值 (7)ABC ∆中,A,B,C 成等差数列的充要条件是 60=B .(8) ABC ∆为正三角形的充要条件是A,B,C 成等差数列,且a,b,c 成等比数列. 二、题型汇总:题型1:判定三角形形状判断三角形的类型(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.(2)在ABC ∆中,由余弦定理可知:222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆(注意:是锐角A ⇔ABC 是锐角三角形∆) (3) 若B A 2sin 2sin =,则A=B 或2π=+B A .例1.在ABC ∆中,A b c cos 2=,且ab c b a c b a 3))((=-+++,试判断ABC ∆形状.题型2:解三角形及求面积一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.例2.在ABC ∆中,1=a ,3=b ,030=∠A ,求的值例3.在ABC ∆中,内角C B A ,,对边的边长分别是c b a ,,,已知2=c ,3π=C .(Ⅰ)若ABC ∆的面积等于3,求a ,b(Ⅱ)若A A B C 2sin 2)(sin sin =-+,求ABC ∆的面积.题型3:证明等式成立证明等式成立的方法:(1)左⇒右,(2)右⇒左,(3)左右互相推.例4.已知ABC ∆中,角C B A ,,的对边分别为c b a ,,,求证:B c C b a cos cos +=.题型4:解三角形在实际中的应用考察:(仰角、俯角、方向角、方位角、视角)例5.如图所示,货轮在海上以40km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时到达C 点观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?三、解三角形的应用 1.坡角和坡度:坡面与水平面的锐二面角叫做坡角,坡面的垂直高度h 和水平宽度l 的比叫做坡度,用i 表示,根据定义可知:坡度是坡角的正切,即tan i α=.lhα2.俯角和仰角:如图所示,在同一铅垂面内,在目标视线与水平线所成的夹角中,目标视线在水平视线的上方时叫做仰角,目标视线在水平视线的下方时叫做俯角.3. 方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为 .注:仰角、俯角、方位角的区别是:三者的参照不同。
第七节 正弦定理和余弦定理一、基础知识 1.正弦定理a sin A =b sin B =c sin C=2R (R 为△ABC 外接圆的半径).正弦定理的常见变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ; (2)sin A =a 2R ,sin B =b 2R ,sin C =c 2R; (3)a ∶b ∶c =sin A ∶sin B ∶sin C ; (4)a +b +c sin A +sin B +sin C =a sin A. 2.余弦定理a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C . 3.三角形的面积公式(1)S △ABC =12ah a (h a 为边a 上的高);(2)S △ABC =12ab sin C =12bc sin A =12ac sin B ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).二、常用结论汇总——规律多一点 1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C2.3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 4.用余弦定理判断三角形的形状在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,当b 2+c 2-a 2>0时,可知A 为锐角;当b 2+c 2-a 2=0时,可知A 为直角;当b 2+c 2-a 2<0时,可知A 为钝角.第一课时 正弦定理和余弦定理(一) 考点一 利用正、余弦定理解三角形考法(一) 正弦定理解三角形[典例] (1)(2019·江西重点中学联考)在△ABC 中,a =3,b =2,A =30°,则cos B =________.(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.[解析] (1)由正弦定理可得sin B =b sin A a =2×sin 30°3=13,∵a =3>b =2,∴B <A ,即B为锐角,∴cos B =1-sin 2B =223. (2)∵sin B =12且B ∈(0,π),∴B =π6或B =5π6,又∵C =π6,∴B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =bsin B ,即3sin 2π3=b sinπ6,解得b =1. [答案] (1)223 (2)1考法(二) 余弦定理解三角形[典例] (1)(2019·山西五校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b cos A +a cos B =c 2,a =b =2,则△ABC 的周长为( )A .7.5B .7C .6D .5(2)(2018·泰安二模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c -b2c -a=sin Asin B +sin C,则角B =________.[解析](1)∵b cos A +a cos B =c 2,∴由余弦定理可得b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac=c 2,整理可得2c 2=2c 3,解得c =1,则△ABC 的周长为a +b +c =2+2+1=5.(2)由正弦定理可得c -b 2c -a =sin A sin B +sin C =ab +c, ∴c 2-b 2=2ac -a 2,∴c 2+a 2-b 2=2ac ,∴cos B =a 2+c 2-b 22ac =22,∵0<B <π,∴B =π4.[答案] (1)D (2)π4[题组训练]1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( ) A.24B .-24C.34D .-34解析:选B 由题意得,b 2=ac =2a 2,即b =2a ,∴cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12 B.π6C.π4D.π3解析:选B 因为sin B +sin A (sin C -cos C )=0, 所以sin(A +C )+sin A sin C -sin A cos C =0,所以sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,整理得sin C (sin A +cos A )=0.因为sin C ≠0,所以sin A +cos A =0,所以t a n A =-1, 因为A ∈(0,π),所以A =3π4,由正弦定理得sin C =c ·sin Aa =2×222=12, 又0<C <π4,所以C =π6.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值.解:(1)由正弦定理可得b 2+c 2=a 2+bc ,由余弦定理得cos A =b 2+c 2-a 22bc =12,因为A ∈(0,π),所以A =π3.(2)由(1)可知sin A =32, 因为cos B =13,B 为△ABC 的内角,所以sin B =223,故sin C =sin(A +B )=sin A cos B +cos A sin B =32×13+12×223=3+226. 由正弦定理a sin A =c sin C 得c =a sin C sin A=3×3+2232×6=1+263.考点二 判定三角形的形状[典例] (1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形[解析] (1)法一:因为b cos C +c cos B =a sin A , 由正弦定理知sin B cos C +sin C cos B =sin A sin A , 得sin(B +C )=sin A sin A .又sin(B +C )=sin A ,得sin A =1, 即A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a ,即sin A =1,故A =π2,因此△ABC 是直角三角形.(2)因为sin A sin B =a c ,所以a b =ac,所以b =c .又(b +c +a )(b +c -a )=3bc ,所以b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形.[答案] (1)B (2)C[变透练清] 1.变条件若本例(1)条件改为“a sin A +b sin B <c sin C ”,那么△ABC 的形状为________.解析:根据正弦定理可得a 2+b 2<c 2,由余弦定理得cos C =a 2+b 2-c 22ab <0,故C 是钝角,所以△ABC 是钝角三角形. 答案:钝角三角形 2.变条件若本例(1)条件改为“c -a cos B =(2a -b )cos A ”,那么△ABC 的形状为________.解析:因为c -a cos B =(2a -b )cos A , C =π-(A +B ),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B ·cos A , 所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A , 所以cos A (sin B -sin A )=0, 所以cos A =0或sin B =sin A , 所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰或直角三角形. 答案:等腰或直角三角形 3.变条件若本例(2)条件改为“cos A cos B =ba=2”,那么△ABC 的形状为________.解析:因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin 2A =sin 2B .由ba =2,可知a ≠b ,所以A ≠B .又因为A ,B ∈(0,π),所以2A =π-2B ,即A +B =π2,所以C =π2,于是△ABC是直角三角形.答案:直角三角形[课时跟踪检测]A 级1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若sin A a =cos Bb ,则B 的大小为( )A .30°B .45°C .60°D .90°解析:选B 由正弦定理知,sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°.2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定解析:选C 由正弦定理得b sin B =c sin C, ∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.3.(2018·重庆六校联考)在△ABC 中,cos B =ac (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形解析:选A 因为cos B =ac ,由余弦定理得a 2+c 2-b 22ac =a c ,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形.4.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3, cos B =23,则b =( )A .14B .6 C.14D.6解析:选D ∵b sin A =3c sin B ⇒ab =3bc ⇒a =3c ⇒c =1,∴b 2=a 2+c 2-2ac cos B =9+1-2×3×1×23=6,∴b = 6.5.(2019·莆田调研)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C+c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π6解析:选A ∵a sin B cos C +c sin B cos A =12b ,∴根据正弦定理可得sin A sin B cos C +sin C sin B cos A =12sin B ,即sin B (sin A cos C +sin C cos A )=12sin B .∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6. 6.(2019·山西大同联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( )A.5 B .3 C.10D .4解析:选B 由正弦定理可得2(sin B cos A +sin A cos B )=c sin C , ∵2(sin B cos A +sin A cos B )=2sin(A +B )=2sin C ,∴2sin C =c sin C ,∵sin C >0,∴c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =32+22-2×3×2×13=9,∴a =3.7.在△ABC 中,AB =6,A =75°,B =45°,则AC =________. 解析:C =180°-75°-45°=60°, 由正弦定理得AB sin C =ACsin B ,即6sin 60°=AC sin 45°,解得AC =2. 答案:28.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sinB ,则c =________.解析:∵3sin A =2sin B ,∴3a =2b . 又∵a =2,∴b =3.由余弦定理可知c 2=a 2+b 2-2ab cos C , ∴c 2=22+32-2×2×3×⎝⎛⎭⎫-14=16,∴c =4. 答案:49.(2018·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sinB =________,c =________.解析:由正弦定理a sin A =bsin B ,得sin B =b a ·sin A =27×32=217.由余弦定理a 2=b 2+c 2-2bc cos A , 得7=4+c 2-4c ×cos 60°,即c 2-2c -3=0,解得c =3或c =-1(舍去). 答案:2173 10.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,sin A ,sin B ,sin C 成等差数列,且a =2c ,则cos A =________.解析:因为sin A ,sin B ,sin C 成等差数列,所以2sin B =sin A +sin C .由正弦定理得a +c =2b ,又因为a =2c ,可得b =32c ,所以cos A =b 2+c 2-a 22bc=94c 2+c 2-4c 22×32c 2=-14.答案:-1411.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A =2B . (1)求证:a =2b cos B ; (2)若b =2,c =4,求B 的值.解:(1)证明:因为A =2B ,所以由正弦定理a sin A =b sin B ,得a sin 2B =bsin B ,所以a =2b cos B .(2)由余弦定理,a 2=b 2+c 2-2bc cos A , 因为b =2,c =4,A =2B ,所以16c os 2B =4+16-16cos 2B ,所以c os 2B =34,因为A +B =2B +B <π,所以B <π3,所以cos B =32,所以B =π6.12.(2019·绵阳模拟)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,结合正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc . 又由余弦定理,得a 2=b 2+c 2-2bc cos A , 所以bc =-2bc cos A ,即cos A =-12.由于A 为△ABC 的内角,所以A =2π3.(2)由已知2a sin A =(2b +c )sin B +(2c +b )sin C ,结合正弦定理,得2sin 2A =(2sin B +sin C )sin B +(2sin C +sin B )sin C , 即sin 2A =sin 2B +sin 2C +sin B sin C =sin 22π3=34.又由sin B +sin C =1,得sin 2B +sin 2C +2sin B sin C =1,所以sin B sin C =14,结合sin B +sin C =1,解得sin B =sin C =12.因为B +C =π-A =π3,所以B =C =π6,所以△ABC 是等腰三角形.B 级1.(2019·郑州质量预测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2c os 2A +B2-cos 2C =1,4sin B =3sin A ,a -b =1,则c 的值为( )A.13B.7C.37D .6解析:选A 由2c os 2A +B2-cos 2C =1,得1+c os(A +B )-(2c os 2C -1)=2-2c os 2C -cos C =1,即2c os 2C +cos C -1=0,解得cos C =12或cos C =-1(舍去).由4sin B =3sin A及正弦定理,得4b =3a ,结合a -b =1,得a =4,b =3.由余弦定理,知c 2=a 2+b 2-2ab cos C =42+32-2×4×3×12=13,所以c =13.2.(2019·长春模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =3,2sin A a =t a n Cc,若sin(A -B )+sin C =2sin 2B ,则a +b =________. 解析:∵2sin A a =t a n C c =sin C c cos C ,且由正弦定理可得a =2R sin A ,c =2R sin C (R 为△ABC的外接圆的半径),∴cos C =12.∵C ∈(0,π),∴C =π3.∵sin(A -B )+sin C =2sin 2B ,sin C =sin(A +B ),∴2sin A cos B =4sin B cos B .当cos B =0时,B =π2,则A =π6,∵c =3, ∴a =1,b =2,则a +b =3.当cos B ≠0时,sin A =2sin B ,即a =2b .∵cos C =a 2+b 2-c 22ab =12,∴b 2=1,即b =1,∴a =2,则a +b =3.综上,a +b =3.答案:33.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b . (1)求角A 的大小;(2)若c =2,角B 的平分线BD =3,求a .解:(1)2a cos C -c =2b ⇒2sin A cos C -sin C =2sin B ⇒2sin A cos C -sin C =2sin(A +C )=2sin A cos C +2cos A sin C ,∴-sin C =2cos A sin C , ∵sin C ≠0,∴cos A =-12,又A ∈(0,π),∴A =2π3.(2)在△ABD 中,由正弦定理得,AB sin ∠ADB =BDsin A ,∴sin ∠ADB =AB sin A BD =22.又∠ADB ∈(0,π),A =2π3,∴∠ADB =π4,∴∠ABC =π6,∠ACB =π6,b =c =2,由余弦定理,得a 2=c 2+b 2-2c ·b ·cos A =(2)2+(2)2-2×2×2c os 2π3=6,∴a = 6.第二课时 正弦定理和余弦定理(二) 考点一 有关三角形面积的计算[典例] (1)(2019·广州调研)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b =7,c =4,cos B =34,则△ABC 的面积等于( )A .37 B.372C .9D.92(2)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若△ABC 的面积为34(a 2+c 2-b 2),则B =________.[解析] (1)法一:由余弦定理b 2=a 2+c 2-2ac cos B ,代入数据,得a =3,又cos B =34,B ∈(0,π),所以sin B =74,所以S △ABC =12ac sin B =372. 法二:由cos B =34,B ∈(0,π),得sin B =74,由正弦定理b sin B =csin C 及b =7,c =4,可得sin C =1,所以C =π2,所以sin A =cos B =34,所以S △ABC =12bc sin A =372.(2)由余弦定理得cos B =a 2+c 2-b 22ac ,∴a 2+c 2-b 2=2ac cos B . 又∵S =34(a 2+c 2-b 2),∴12ac sin B =34×2ac cos B , ∴t a n B =3,∵B ∈()0,π,∴B =π3.[答案] (1)B (2)π3[变透练清] 1.变条件本例(1)的条件变为:若c =4,sin C =2sin A ,sin B =154,则S △ABC =________. 解析:因为sin C =2sin A ,所以c =2a ,所以a =2,所以S △ABC =12ac sin B =12×2×4×154=15.答案:15 2.变结论本例(2)的条件不变,则C 为钝角时,ca的取值范围是________.解析:∵B =π3且C 为钝角,∴C =2π3-A >π2,∴0<A <π6 .由正弦定理得ca =sin ⎝⎛⎭⎫2π3-A sin A=32cos A +12sin A sin A =12+32·1t a n A.∵0<t a n A <33,∴1t a n A>3, ∴c a >12+32×3=2,即ca >2. 答案:(2,+∞)3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,(2b -a )cos C =c cos A . (1)求角C 的大小;(2)若c =3,△ABC 的面积S =433,求△ABC 的周长.解:(1)由已知及正弦定理得(2sin B -sin A )cos C =sin C cos A , 即2sin B cos C =sin A cos C +sin C cos A =sin(A +C )=sin B , ∵B ∈(0,π),∴sin B >0,∴cos C =12,∵C ∈(0,π),∴C =π3.(2)由(1)知,C =π3,故S =12ab sin C =12ab sin π3=433,解得ab =163.由余弦定理可得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab , 又c =3,∴(a +b )2=c 2+3ab =32+3×163=25,得a +b =5.∴△ABC 的周长为a +b +c =5+3=8.[解题技法]1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键.2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. 考点二 平面图形中的计算问题[典例] (2018·广东佛山质检)如图,在平面四边形ABCD 中,∠ABC =3π4,AB ⊥AD ,AB =1. (1)若AC =5,求△ABC 的面积; (2)若∠ADC =π6,CD =4,求sin ∠CAD .[解] (1)在△ABC 中,由余弦定理得,AC 2=AB 2+BC 2-2AB ·BC ·c os ∠ABC , 即5=1+BC 2+2BC ,解得BC =2,所以△ABC 的面积S △ABC =12AB ·BC ·sin ∠ABC =12×1×2×22=12.(2)设∠CAD =θ,在△ACD 中,由正弦定理得AC sin ∠ADC =CDsin ∠CAD ,即AC sin π6=4sin θ, ① 在△ABC 中,∠BAC =π2-θ,∠BCA =π-3π4-⎝⎛⎭⎫π2-θ=θ-π4, 由正弦定理得AC sin ∠ABC =ABsin ∠BCA ,即AC sin 3π4=1sin ⎝⎛⎭⎫θ-π4,② ①②两式相除,得sin 3π4sin π6=4sin ⎝⎛⎭⎫θ-π4sin θ,即4⎝⎛⎭⎫22sin θ-22cos θ=2sin θ,整理得sin θ=2cos θ. 又因为sin 2θ+c os 2θ=1,所以sin θ=255,即sin ∠CAD =255.[解题技法]与平面图形有关的解三角形问题的关键及思路求解平面图形中的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到三角形中,利用正弦定理或余弦定理建立已知和所求的关系.具体解题思路如下:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.[提醒] 做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.[题组训练]1.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为________.解析:设AB =a ,∵AB =AD,2AB =3BD ,BC =2BD ,∴AD =a ,BD =2a 3,BC =4a 3. 在△ABD 中,c os ∠ADB =a 2+4a 23-a22a ×2a 3=33,∴sin ∠ADB =63,∴sin ∠BDC =63. 在△BDC 中,BD sin C =BCsin ∠BDC, ∴sin C =BD ·sin ∠BDC BC =66.答案:662.如图,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,且∠CBE ,∠BEC ,∠BCE 成等差数列.(1)求sin ∠CED ; (2)求BE 的长. 解:设∠CED =α.因为∠CBE ,∠BEC ,∠BCE 成等差数列, 所以2∠BEC =∠CBE +∠BCE ,又∠CBE +∠BEC +∠BCE =π,所以∠BEC =π3.(1)在△CDE 中,由余弦定理得EC 2=CD 2+DE 2-2CD ·DE ·c os ∠EDC , 即7=CD 2+1+CD ,即CD 2+CD -6=0, 解得CD =2(CD =-3舍去). 在△CDE 中,由正弦定理得EC sin ∠EDC =CDsin α,于是sin α=CD ·sin 2π3EC =2×327=217,即sin ∠CED =217.(2)由题设知0<α<π3,由(1)知cos α=1-sin 2α=1-2149=277,又∠AEB =π-∠BEC -α=2π3-α,所以c os ∠AEB =c os ⎝⎛⎭⎫2π3-α=c os 2π3cos α+sin 2π3sin α=-12×277+32×217=714. 在Rt △EAB 中,c os ∠AEB =EA BE =2BE =714,所以BE =47.考点三 三角形中的最值、范围问题[典例] (1)在△ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,A ≠π2,sin C +sin(B -A )=2sin 2A ,则角A 的取值范围为( )A.⎝⎛⎦⎤0,π6 B.⎝⎛⎦⎤0,π4 C.⎣⎡⎦⎤π6,π4D.⎣⎡⎦⎤π6,π3(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos 2A +cos 2B =2cos 2C ,则cos C 的最小值为( )A.32B.22C.12D .-12[解析] (1)在△ABC 中,C =π-(A +B ),所以sin(A +B )+sin(B -A )=2sin 2A ,即2sin B cos A =22sin A cos A ,因为A ≠π2,所以cos A ≠0,所以sin B =2sin A ,由正弦定理得,b=2a ,所以A 为锐角.又因为sin B =2sin A ∈(0,1],所以sin A ∈⎝⎛⎦⎤0,22,所以A ∈⎝⎛⎦⎤0,π4. (2)因为cos 2A +cos 2B =2cos 2C ,所以1-2sin 2A +1-2sin 2B =2-4sin 2C ,得a 2+b 2=2c 2,cos C =a 2+b 2-c 22ab =a 2+b 24ab ≥2ab 4ab =12,当且仅当a =b 时等号成立,故选C. [答案] (1)B (2)C[解题技法]1.三角形中的最值、范围问题的解题策略解与三角形中边角有关的量的取值范围时,主要是利用已知条件和有关定理,将所求的量用三角形的某个内角或某条边表示出来,结合三角形边角取值范围等求解即可.2.求解三角形中的最值、范围问题的注意点(1)涉及求范围的问题,一定要搞清已知变量的范围,利用已知的范围进行求解, 已知边的范围求角的范围时可以利用余弦定理进行转化.(2)注意题目中的隐含条件,如A +B +C =π,0<A <π,b -c <a <b +c ,三角形中大边对大角等.[题组训练]1.在钝角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,B 为钝角,若a cos A = b sin A ,则sin A +sin C 的最大值为( )A.2B.98C .1D.78解析:选B ∵a cos A =b sin A ,由正弦定理可得,sin A cos A =sin B sin A ,∵sin A ≠0,∴cos A =sin B ,又B 为钝角,∴B =A +π2,sin A +sin C =sin A +sin(A +B )=sin A +cos 2A =sin A +1-2sin 2A =-2⎝⎛⎭⎫sin A -142+98,∴sin A +sin C 的最大值为98. 2.(2018·哈尔滨三中二模)在△ABC 中,已知c =2,若sin 2A +sin 2B -sin A sin B =sin 2C ,则a +b 的取值范围为________.解析:∵sin 2A +sin 2B -sin A sin B =sin 2C ,∴a 2+b 2-ab =c 2,∴cos C =a 2+b 2-c 22ab =12,又∵C ∈(0,π),∴C =π3.由正弦定理可得a sin A =b sin B =2sin π3=433,∴a =433sin A ,b =433sin B .又∵B =2π3-A ,∴a +b =433sin A +433sin B =433sin A +433sin ⎝⎛⎭⎫2π3-A =4sin ⎝⎛⎭⎫A +π6.又∵A ∈⎝⎛⎭⎫0,2π3,∴A +π6∈⎝⎛⎭⎫π6,5π6,∴sin ⎝⎛⎭⎫A +π6∈⎝⎛⎦⎤12,1,∴a +b ∈(2,4]. 答案:(2,4]3.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos B b +cos C c =sin A 3sin C .(1)求b 的值;(2)若cos B +3sin B =2,求△ABC 面积的最大值.解:(1)由题意及正、余弦定理得a 2+c 2-b 22abc +a 2+b 2-c 22abc =3a 3c ,整理得2a 22abc =3a3c ,所以b = 3.(2)由题意得cos B +3sin B =2sin ⎝⎛⎭⎫B +π6=2, 所以sin ⎝⎛⎭⎫B +π6=1, 因为B ∈(0,π),所以B +π6=π2,所以B =π3.由余弦定理得b 2=a 2+c 2-2ac cos B , 所以3=a 2+c 2-ac ≥2ac -ac =ac , 即ac ≤3,当且仅当a =c =3时等号成立. 所以△ABC 的面积S △ABC =12ac sin B =34ac ≤334,当且仅当a =c =3时等号成立.故△ABC 面积的最大值为334.考点四 解三角形与三角函数的综合应用考法(一) 正、余弦定理与三角恒等变换[典例] (2018·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知 b sin A =ac os ⎝⎛⎭⎫B -π6. (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值. [解] (1)在△ABC 中,由正弦定理a sin A =b sin B ,可得b sin A =a sin B .又因为b sin A =ac os ⎝⎛⎭⎫B -π6, 所以a sin B =ac os ⎝⎛⎭⎫B -π6, 即sin B =32cos B +12sin B , 所以t a n B = 3.因为B ∈(0,π),所以B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,得b 2=a 2+c 2-2ac cos B =7,故b =7. 由b sin A =ac os ⎝⎛⎭⎫B -π6,可得sin A =37. 因为a <c ,所以cos A =27. 所以sin 2A =2sin A cos A =437,cos 2A =2c os 2A -1=17.所以sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314. 考法(二) 正、余弦定理与三角函数的性质[典例] (2018·辽宁五校联考)已知函数f (x )=c os 2x +3sin(π-x )c os(π+x )-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=-1,a =2,b sin C =a sin A ,求△ABC 的面积.[解] (1)f (x )=c os 2x -3sin x cos x -12=1+cos 2x 2-32sin 2x -12=-sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z ,又∵x ∈[0,π],∴函数f (x )在[0,π]上的单调递减区间为⎣⎡⎦⎤0,π3和⎣⎡⎦⎤5π6,π. (2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π6, ∴f (A )=-sin ⎝⎛⎭⎫2A -π6=-1, ∵△ABC 为锐角三角形,∴0<A <π2,∴-π6<2A -π6<5π6,∴2A -π6=π2,即A =π3.又∵b sin C =a sin A ,∴bc =a 2=4, ∴S △ABC =12bc sin A = 3.[对点训练]在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,(2a -c )cos B -b cos C =0. (1)求角B 的大小;(2)设函数f (x )=2sin x cos x cos B -32cos 2x ,求函数f (x )的最大值及当f (x )取得最大值时x 的值.解:(1)因为(2a -c )cos B -b cos C =0, 所以2a cos B -c cos B -b cos C =0, 由正弦定理得2sin A cos B -sin C cos B -cos C sin B =0, 即2sin A cos B -sin(C +B )=0,又因为C +B =π-A ,所以sin(C +B )=sin A . 所以sin A (2cos B -1)=0.在△ABC 中,sin A ≠0,所以cos B =12,又因为B ∈(0,π),所以B =π3.(2)因为B =π3,所以f (x )=12sin 2x -32cos 2x =sin ⎝⎛⎭⎫2x -π3, 令2x -π3=2k π+π2(k ∈Z),得x =k π+5π12(k ∈Z),即当x =k π+5π12(k ∈Z)时,f (x )取得最大值1.[课时跟踪检测]A 级1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 2A =sin A ,bc =2,则 △ABC 的面积为( )A.12 B.14C .1D .2解析:选A 由cos 2A =sin A ,得1-2sin 2A =sin A ,解得sin A =12(负值舍去),由bc =2,可得△ABC 的面积S =12bc sin A =12×2×12=12.2.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若(2a +c )cos B +b cos C =0,则角B 的大小为( )A.π6 B.π3C.2π3D.5π6解析:选C 由已知条件和正弦定理,得(2sin A +sin C )cos B +sin B cos C =0.化简,得2sin A cos B +sin A =0.因为角A 为三角形的内角,所以sin A ≠0,所以cos B =-12,所以B =2π3. 3.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =3,S △ABC =22,则b 的值为( )A .6B .3C .2D .2或3解析:选D 因为S △ABC =12bc sin A =22,所以bc =6,又因为sin A =223,A ∈⎝⎛⎭⎫0,π2, 所以cos A =13,因为a =3,所以由余弦定理得9=b 2+c 2-2bc cos A =b 2+c 2-4,b 2+c 2=13,可得b =2或b =3. 4.(2018·昆明检测)在△ABC 中,已知AB =2,AC =5,t a n ∠BAC =-3,则BC 边上的高等于( )A .1 B.2 C.3D .2解析:选A 法一:因为t a n ∠BAC =-3,所以sin ∠BAC =310,c os ∠BAC =-110.由余弦定理,得BC 2=AC 2+AB 2-2AC ·ABc os ∠BAC =5+2-2×5×2×⎝⎛⎭⎫-110=9,所以BC =3,所以S △ABC =12AB ·AC sin ∠BAC =12×2×5×310=32,所以BC 边上的高h =2S △ABCBC =2×323=1.法二:在△ABC 中,因为t a n ∠BAC =-3<0,所以∠BAC 为钝角,因此BC 边上的高小于2,结合选项可知选A.5.(2018·重庆九校联考)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,且a sin B =3b cos A ,当b +c =4时,△ABC 面积的最大值为( )A.33B.32C.3D .23解析:选C 由a sin B =3b cos A ,得sin A sin B =3sin B cos A ,∴t a n A =3,∵0<A <π,∴A =π3,故S △ABC =12bc sin A =34bc ≤34⎝⎛⎭⎫b +c 22=3(当且仅当b =c =2时取等号),故选C.6.(2019·安徽名校联盟联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若bc =1,b +2c cos A =0,则当角B 取得最大值时,△ABC 的周长为( )A .2+3B .2+2C .3D .3+2解析:选A 由b +2c cos A =0,得b +2c ·b 2+c 2-a 22bc =0,整理得2b 2=a 2-c 2.由余弦定理,得cos B =a 2+c 2-b 22ac =a 2+3c 24ac ≥23ac 4ac =32,当且仅当a =3c 时等号成立,此时角B 取得最大值,将a =3c 代入2b 2=a 2-c 2可得b =c .又因为bc =1,所以b =c =1,a =3,故△ABC 的周长为2+ 3.7.在△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 解析:由余弦定理知72=52+BC 2-2×5×BC ×cos 120°, 即49=25+BC 2+5BC ,解得BC =3(负值舍去). 故S △ABC =12AB ·BC sin B =12×5×3×32=1534.答案:15348.(2019·长春质量检测)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若 12b cos A =sin B ,且a =23,b +c =6,则△ABC 的面积为________.解析:由题意可知cos A 2=sin B b =sin Aa ,因为a =23,所以t a n A =3,因为0<A <π,所以A =π3,由余弦定理得12=b 2+c 2-bc =(b +c )2-3bc ,又因为b +c =6,所以bc =8,从而△ABC 的面积为12bc sin A =12×8×sin π3=2 3.答案:239.已知在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠BAC =π2,点D 在边BC上,AD =1,且BD =2DC ,∠BAD =2∠DAC ,则sin Bsin C=________.解析:由∠BAC =π2及∠BAD =2∠DAC ,可得∠BAD =π3,∠DAC =π6.由BD =2DC ,令DC =x ,则BD =2x .因为AD =1,在△ADC 中,由正弦定理得1sin C =x sin π6,所以sin C =12x,在△ABD 中,sin B =sin π32x =34x ,所以sin B sin C =34x 12x=32.答案:3210.(2018·河南新乡二模)如图所示,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足,若DE =22,则cos A =________.解析:∵AD =DB ,∴∠A =∠ABD ,∠BDC =2∠A .设AD =DB =x , ∴在△BCD 中,BC sin ∠BDC =DB sin C,可得4sin 2A =xsin π3. ①在△AED 中,DE sin A =AD sin ∠AED ,可得22sin A =x1. ② 联立①②可得42sin A cos A =22sin A 32,解得cos A =64.答案:6411.(2019·南宁摸底联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知 c (1+cos B )=b (2-cos C ).(1)求证:2b =a +c ;(2)若B =π3,△ABC 的面积为43,求b .解:(1)证明:∵c (1+cos B )=b (2-cos C ),∴由正弦定理可得sin C +sin C cos B =2sin B -sin B cos C , 即sin C cos B +sin B cos C +sin C =sin(B +C )+sin C =2sin B , ∴sin A +sin C =2sin B ,∴a +c =2b .(2)∵B =π3,∴△ABC 的面积S =12ac sin B =34ac =43,∴ac =16.由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac =(a +c )2-3ac . ∵a +c =2b ,∴b 2=4b 2-3×16,解得b =4. 12.在△ABC 中,AC =6,cos B =45,C =π4.(1)求AB 的长; (2)求c os ⎝⎛⎭⎫A -π6的值. 解:(1)因为cos B =45,0<B <π,所以sin B =35.由正弦定理得AC sin B =AB sin C ,所以AB =AC ·sin Csin B =6×2235=5 2.(2)在△ABC 中,因为A +B +C =π,所以A =π-(B +C ), 又因为cos B =45,sin B =35,所以cos A =-c os(B +C )=-c os ⎝⎛⎭⎫B +π4=-cos Bc os π4+sin B sin π4=-45×22+35×22=-210.因为0<A <π,所以sin A =1-c os 2A =7210. 因此,c os ⎝⎛⎭⎫A -π6=cos Ac os π6+sin A sin π6=-210×32+7210×12=72-620. B 级1.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若B =2A ,则2ba的取值范围是( )A .(2,2)B .(2,6)C .(2,3)D .(6,4)解析:选B ∵B =2A ,∴sin B =sin 2A =2sin A cos A ,∴ba =2cos A .又C =π-3A ,C为锐角,∴0<π-3A <π2⇒π6<A <π3,又B =2A ,B 为锐角,∴0<2A <π2⇒0<A <π4,∴π6<A <π4,22<cosA <32,∴2<b a <3,∴2<2ba< 6. 2.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +bc os 2A =2a ,则角A 的取值范围是________.解析:由已知及正弦定理得sin 2A sin B +sin Bc os 2A =2sin A ,即sin B (sin 2A +c os 2A )=2sin A ,∴sin B =2sin A ,∴b =2a ,由余弦定理得cos A =b 2+c 2-a 22bc =4a 2+c 2-a 24ac =3a 2+c 24ac ≥23ac 4ac =32,当且仅当c =3a 时取等号.∵A 为三角形的内角,且y =cos x 在(0,π)上是减函数,∴0<A ≤π6,则角A 的取值范围是⎝⎛⎦⎤0,π6. 答案:⎝⎛⎦⎤0,π6 3.(2018·昆明质检)如图,在平面四边形ABCD 中,AB ⊥BC ,AB =2,BD =5,∠BCD =2∠ABD ,△ABD 的面积为2.(1)求AD 的长; (2)求△CBD 的面积.解:(1)由已知S △ABD =12AB ·BD ·sin ∠ABD =12×2×5×sin ∠ABD =2,可得sin ∠ABD =255,又∠BCD =2∠ABD ,所以∠ABD ∈⎝⎛⎭⎫0,π2,所以c os ∠ABD =55. 在△ABD 中,由余弦定理AD 2=AB 2+BD 2-2·AB ·BD ·c os ∠ABD ,可得AD 2=5,所以AD = 5.(2)由AB ⊥BC ,得∠ABD +∠CBD =π2,所以sin ∠CBD =c os ∠ABD =55. 又∠BCD =2∠ABD ,所以sin ∠BCD =2sin ∠ABD ·c os ∠ABD =45,∠BDC =π-∠CBD -∠BCD =π-⎝⎛⎭⎫π2-∠ABD -2∠ABD =π2-∠ABD =∠CBD , 所以△CBD 为等腰三角形,即CB =CD .在△CBD 中,由正弦定理BD sin ∠BCD =CDsin ∠CBD ,得CD =BD ·sin ∠CBDsin ∠BCD=5×5545=54, 所以S △CBD =12CB ·CD ·sin ∠BCD =12×54×54×45=58.。
正弦定理、余弦定理知识点总结及证明方法1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.主要考查有关定理的应用、三角包等变换的能力、运算能力及转化的数学思想.解三角形常常作为解题工具用丁立体几何中的计算或证明,或与三角函数联系在一起求距离、高度以及角度等问题,且多以应用题的形式出现.1.正弦定理(1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即.其中R是三角形外接圆的半径.(2)正弦定理的其他形式:① a = 2RsinA , b =, csinO;③ a : b : c= _______________________________2.余弦定理(1)余弦定理:三角形中任何一边的平■方等——王彦文宵铜峡一中丁其他两边的平■方的和减去这两边与它们的火角的余弦的积的两倍.即a2=, b2=,c?=.若令C= 90°, WJ c2=,即为勾股定理.(2)余弦定理的变形:cosA =, cosB=, cosC^.若C为锐角,则cosC>0,即a2 + b2 ; 若C为钝角,贝U cosC<0,即a2+ b2.故由a2+ b2与c2值的大小比较,可以判断C为锐角、钝角或直角.(3)正、余弦定理的一个重要作用是实现边角,余弦定理亦可以写成sin2A= sin2B+ sin2C—2sinBsinCcosA,类似地,sin2B= ________________ ; sin2C= _________ _S 意式中隐含条件A+ B+ C= TT .3.解斜三角形的类型(1)已知三角形的任意两个角与一边,用理.只有一解.(2)已知三角形的任意两边与其中一边的对角,用定理,可能有L如在△ ABC中,已知a, b和A时,解的情况如表:②sin A=2R' sinB=A为锐角A为钝角或直角图形关系式a= bsinA bsinA<a< b a为a>b解的个数①②③④(3)已知三边,用理.有解时,只有一解.(4)已知两边及火角,用理, 必有一解.4.三角形中的常用公式或变式⑴三角形面积公式& =:其中R, r分别为三角形外接圆、内切圆半径.(2)A+ B+ C=兀,WJ A=,A5 = , 从而sinA = tanAtanBtanC (3)a+ c sinA+ sinCcosA = , tanA =<(3)互化sin2C+ sin2A—2sinCsinAcosB sin2A+sin2B— 2sinAsinBcosC3. (1)正弦(2)正弦一解、两解或无解①一解②二解③一解④一解⑶余弦⑷余弦1 1 1 abc 14. (1)2absinC 2bcsinA 2acsinB 4R 2 (a+ b+ c)r在△ ABC中,A>B 是sinA>sinB 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:因为在同一三角形中,角大则边大,边大则正弦大,反之也成立,故是充要条件.故选C.兀B+ C (2)代(B+ Q 2— Fsin(B+ C) — cos(B+ C)2 (1)b* 1 2+ c2— 2bccosA c2 + a2— 2cacosB a2 + b2—2abcosC a2 + b2b2+ c2—a2c2+ a2—b2a2+ b2—c2(2)2bc2ca2ab—tan(B+ C) co岩si号«C tan 2在△ ABC中,已知b= 6, c= 10, B= 30°,则解此三角形的结果有()A.无解B. 一解C.两解D. 一解或两解解:由正弦定理知sinC=半=5, 乂由b 6c>b>csinB知,C有两解.也可依已知条件,画出△ ABC,由图知有两解.故选 C.(2012陕西)在^ABC中,角A, B, C所对的边…一…Tt i—一,分力U为a, b, c.右a= 2, B= c= 2寸3,贝U b =.解:由余弦定理知b2= a2 + c2—2accoSB=22 + (2^3)2— 2X 2X^/3X c%= 4, b= 2.故填2.(2013陕西)®AABC的内角A, B, C所对的边分别为a, b, c,若bcosC+ ccosB= asinA,则^ABC 的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定解:由已知和正弦定理可得sinBcosC+ sinCcosB= sinA sinA,即sin(B+ Q= sinAsinA, 亦即sinA= sinAsinA.因为0<A<TT,所以sinA= 1, 所以A=2.所以三角形为直角三角形.故选B.在^ABC中,角A, B, C所对的边分别为a, b, c,若 a =寸2, b=2, sinB+ cosB=寸2,则角 A解:sinB+ cosB= ^2,,•寸2sin B+4 =寸2,即sin B+4 = 1._____ __ _兀兀_兀乂.. B€ (0,冗)... B+; = ;, B=~.4 2 4a b asinBsinA= b根据正弦正理、皿=sinB,可侍12'. a<b, . . Av B... A=g.故填&类型一正弦定理的应用△ ABC的内角A, B, C的对边分别为a, b, c,已知A— C= 90 , a+ c=寸2b,求C.解:由a+ c=寸2b及正弦定理可得sinA+sinO 2sinB乂由丁A— C= 90 , B= 180 — (A+C),故cosC + sinC = sinA + sinC=戒sin(A + Q =戒sin(90 + 2Q =匝sin2(45 + Q.,•哀sin(45 + C) = 2 戒sin(45 + C)cos(45 + C),* 一1即cos(45 + C) = 2.乂 .。
1.1.1 正弦定理一 知识梳理1.我们已学习过任意三角形的哪些边角关系?(内角和、大边对大角) 是否可以和直角三角形一样把边、角关系准确量化,达到解三角形的目的?2.叙述正弦定理3.如何证明正弦定理?(请阅读下面的证法) 证明一:(等积法)在任意斜△ABC 当中 S △ABC =111sin sin sin 222ab C ac B bc A ==. 两边同除以12abc 即得:sin a A==sin c C. 证明二:(外接圆法)如图所示,∠A =∠D ,∴2sin sin a aCD R A D===, 同理 sin b B =2R ,sin cC=2R .4.什么是解三角形?5.用正弦定理可以解决哪两类有关三角形问题?二 问题探究例1.在△ABC 中 ,已知c =3,A =45°,B =60°,求b ; (结果保留两个有效数字)。
思考 :已知两角一边,能用正弦定理解三角形吗?例2 (1)在C B b c A a ABC ,,1,60,30和求中,===∆思考 :已知两边和其中一边的对角,能用正弦定理解三角形吗?如果能,在解三角形的过程中要注意什么?三 体验展示1.已知ABC ∆中,C B A ∠∠∠,,的对边分别为,,a b c 若a c ==75A ∠=o,求b2.在锐角ABC ∆中,1,2,BC B A ==则cos ACA的值等于 , 3已知在B b a C A c ABC 和求中,,,30,45,1000===∆四 总结归纳1.正弦定理的探索过程;2.正弦定理的两类应用;3.已知两边及一边对角的讨论;4.本节课的学习中有哪些数学思想方法? 五 检测评价1.已知∆ABC 中,∠A =60°,a =,求sin sin sin a b cA B C ++++.2.已知 在ΔABC 中, c =, A=45o ,B=60o ,求b ;3.在Δ ABC 中,已知(1)A=45º,a=50,b=256 ; 求B,1.1.2 余弦定理一知识梳理1.我们已经研究过哪两类解三角形的问题了?2.我们知道在直角三角形中,根据两直角边及直角可表示斜边,即勾股定理,那么对于任意三角形,能否根据已知两边及夹角来表示第三边呢? 你能用初中所学的平面几何的有关知识来解决这一问题吗?如图在△ABC中,设BC=a,,AC=b,AB=c,,试根据b、c、A来表示a。
正弦定理的公式是什么正弦定理的公式是什么sin^2(α/2)=(1-cosα)/2。
在直角三角形中,∠A(非直角)的对边与斜边的比叫做∠A的正弦,故记作sinA,即sinA=∠A的对边/∠A的斜边古代说法,正弦是股与弦的比例。
古代说的“勾三股,四弦五”中的“弦”,就是直角三角形中的斜边。
股就是人的大腿,长长的,古人称直角三角形中长的那个直角边为“股”;正方的直角三角形,应是大腿站直。
正弦是∠α(非直角)的对边与斜边的比值,余弦是∠A(非直角)的邻边与斜边的比值。
勾股弦放到圆里。
弦是圆周上两点连线。
最大的弦是直径。
把直角三角形的弦放在直径上,股就是长的弦,即正弦,而勾就是短的弦,即余弦。
按现代说法,正弦是直角三角形某个角(非直角)的对边与斜边之比,即:对边/斜边。
余弦定理是什么余弦定理是描述三角形中三边长度与一个角的余弦值关系的数学定理,是勾股定理在一般三角形情形下的推广,勾股定理是余弦定理的特例。
余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求三角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。
高中数学正弦定理公式数学正弦定理公式:a/sinA=b/sinB=c/sinC=2R;余弦定理公式:cosA=(b?+c?-a?)/2bc。
正余弦定理指正弦定理和余弦定理,是揭示三角形边角关系的重要定理,直接运用它可解决三角形的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。
一、正弦定理推论公式1、a=2RsinA;b=2RsinB;c=2RsinC。
2、a:b=sinA:sinB;a:c=sinA:sinC;b:c=sinB:sinC;a:b:c=sinA:sinB:sinC。
二、余弦定理推论公式1、cosA=(b^2+c^2-a^2)/2bc;2、cosB=(a^2+c^2-b^2)/2ac;3、cosC=(a^2+b^2-c^2)/2ab。
高中数学必修五公式方法总结第一章 解三角形一、正弦定理:2(sin sin sin a b cR R A B C===为三角形外接圆半径)变形:2sin (sin )22sin (sin )22sin (sin )2a a R A A R b b R B B R c c R C C R ⎧==⎪⎪⎪==⎨⎪⎪==⎪⎩推论:::sin :sin :sin a b c A B C = 二、余弦定理:变形:三、三角形面积公式:111sin sin sin .222===ABC S bc A ac B ab C △ 第二章 数列一、等差数列: 1.定义:a n+1-a n =d (常数)2.通项公式:()n1n 1d a a =+-或()nmn m d a a =+-3.求和公式:()()1n n 1n n n 1n d22a a S a +-==+4.重要性质(1)a a a a qpnmq p n m +=+⇒+=+(2) m,2m,32m m m S S S S S --仍成等差数列二、等比数列:1.定义:)0(1≠=+q q a a nn 2.通项公式:q a a n n11-∙=或q a a mn mn-∙=3.求和公式:1n n 11n na ,q 1S a (1q )a a q ,q 11q 1q =⎧⎪=--⎨=≠⎪--⎩2222222222cos 2cos 2cos a b c bc Ab ac ac B c a b ab C =+-=+-=+-222222222cos 2cos 2cos 2b c a A bc a c b B aca b c C ab +-=+-=+-=4.重要性质(1)a a a a q p n m q p n m =⇒+=+(2)m,2m,32--m m m S S S S S 仍成等比数列三、数列求和方法总结:1.等差等比数列求和可采用求和公式(公式法).2.非等差等比数列可考虑分组求和法、错位相减法等转化为等差或等比数列再求和, 常见的拆项公式: 111(1)n(n 1)n n 1=-++第三章:不等式一、解一元二次不等式三步骤: 222(1)ax bx c 0ax bx c 0(a 0).(2)ax bx c 0.(3).⎧++>++<>⎪++=⎨⎪⎩化不等式为标准式或计算的值,确定方程的根根据图象写出不等式的解集∆ 特别地:若二次项系数a 为正且有两根时写解集用口诀:不等号大于0取两边,小于0取中间二、分式不等式的求解通法:(1)标准化:①右边化零,②系数化正.(2)转 换:化为一元二次不等式(依据:两数的商与积同号)三、二元一次不等式Ax+By+C >0(A ,B 不同时为0),确定其所表示的平面区域用口诀:同上异下(A与不等式的符号)(注意:包含边界直线用实线,否则用虚线)四、线性规划问题求解步骤:画(可行域),移(平行线),求(交点坐标,最优解,最值),答. 五、基本不等式:0,0)2a ba b +≥≥≥(当且仅当a=b 时,等号成立).1111(2)()n(n k)k nn k=-++1111(3)()(2n 1)(2n 1)22n 12n 1=--+-+1111(4[]n(n 1)(n 2)2n(n 1)(n 1)(n 2)=-+++++)=()10()()0()()(2)0()()0()0()()()30()()>⇔>≥⇔≥≠≥⇔-≥f x f x g x g x f x f x g x g x g x f x f x a a g x g x 常用的解分式不等式的同解变形法则为()且(),再通分2a b (1)a b (2)ab ().2++≥≤变形;变形(和定积最大) 利用基本不等式求最值应用条件:一正数 ; 二定值 ; 三相等。
高中数学重要公式定理证明方法高中数学定理证明应该怎么写呢?你认真写过高中数学定理证明吗?现在就跟着店铺一起来了解一下高中数学定理证明汇总吧。
高中数学定理证明模板一证明,已知a/sinA = b/sinB = c/sinC = 2R(1)a=2RsinA, b=2RsinB,c=2RsinC(a+b+c)/(sinA+sinB+sinC)=2R(sinA+sinB+sinC)/(sinA+sinB +sinC)=2R(2)(a-b-c)/(sinA-sinB-sinC)=2R(sinA-sinB-sinC)/(sinA-sinB-sinC)=2R(3)前2个代入后提取2R就出来了,后面3个是正弦定理已知的所以由(1)(2)(3)得到(a+b+c)/(sinA+sinB+sinC)=(a-b-c)/(sinA-sinB-sinC)=a/sinA = b/sinB = c/sinC = 2R高中数学定理证明模板二定理相交两圆的连心线垂直平分两圆的公共弦定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆正n边形的每个内角都等于(n-2)×180°/n定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形正n边形的面积sn=pnrn/2p表示正n边形的周长正三角形面积√3a/4a表示边长如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4弧长计算公式:l=nπr/180扇形面积公式:s扇形=nπr2/360=lr/2内公切线长=d-(r-r)外公切线长=d-(r+r)等腰三角形的两个底脚相等等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合如果一个三角形的两个角相等,那么这两个角所对的边也相等三条边都相等的三角形叫做等边三角形高中数学定理证明模板三数学公式抛物线:y = ax *+ bx + c就是y等于ax 的平方加上 bx再加上 ca > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = a(x+h)* + k就是y等于a乘以(x+h)的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py圆:体积=4/3(pi)(r^3)面积=(pi)(r^2)周长=2(pi)r圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0(一)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
§1.1 正弦定理和余弦定理1.1.1 正弦定理学习目标 1.掌握正弦定理的内容及其证明方法.2.能运用正弦定理与三角形内角和定理解决简单的解三角形问题.知识点一 正弦定理思考1 如图,在Rt △ABC 中,a sin A ,b sin B ,csin C分别等于什么?答案a sin A =b sin B =c sin C=c . 思考2 在一般的△ABC 中,a sin A =b sin B =csin C 还成立吗?答案 在一般的△ABC 中,a sin A =b sin B =csin C 仍然成立.梳理 在任意△ABC 中,都有a sin A =b sin B =c sin C,这就是正弦定理. 特别提醒:正弦定理的特点(1)适用范围:正弦定理对任意的三角形都成立.(2)结构形式:分子为三角形的边长,分母为相应边所对角的正弦的连等式.(3)刻画规律:正弦定理刻画了三角形中边与角的一种数量关系,可以实现三角形中边角关系的互化.知识点二 解三角形一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.1.对任意△ABC ,都有a sin A =b sin B =csin C.(√)2.任意给出三角形的三个元素,都能求出其余元素.(×) 3.在△ABC 中,已知a ,b ,A ,则三角形有唯一解.(×)类型一 正弦定理的证明例1 在钝角△ABC 中,证明正弦定理. 考点 正弦定理及其变形应用 题点 正弦定理的理解证明 如图,过C 作CD ⊥AB ,垂足为D ,D 是BA 延长线上一点,根据正弦函数的定义知,CD b =sin ∠CAD =sin(180°-A )=sin A ,CD a =sin B . ∴CD =b sin A =a sin B . ∴a sin A =bsin B. 同理,b sin B =csin C .故a sin A =b sin B =c sin C. 反思与感悟 (1)用正弦函数定义沟通边与角内在联系,充分挖掘这些联系可以使你理解更深刻,记忆更牢固.(2)要证a sin A =bsin B ,只需证a sin B =b sin A ,而a sin B ,b sin A 都对应CD .初看是神来之笔,仔细体会还是有迹可循的,通过体会思维的轨迹,可以提高我们的分析解题能力.跟踪训练1 如图,锐角△ABC 的外接圆O 半径为R ,角A ,B ,C 对应的边分别为a ,b ,c ,证明:asin A=2R .考点 正弦定理及其变形应用 题点 正弦定理的理解证明 连接BO 并延长,交外接圆于点A ′,连接A ′C , 则圆周角A ′=A .∵A ′B 为直径,长度为2R , ∴∠A ′CB =90°, ∴sin A ′=BC A ′B =a 2R ,∴sin A =a 2R ,即asin A =2R .类型二 已知两角及一边解三角形例2 在△ABC 中,已知A =30°,B =60°,a =10,解三角形. 考点 用正弦定理解三角形 题点 已知两角及一边解三角形 解 根据正弦定理,得b =a sin B sin A =10sin 60°sin 30°=10 3. 又C =180°-(30°+60°)=90°. ∴c =a sin C sin A =10sin 90°sin 30°=20.反思与感悟 (1)正弦定理实际上是三个等式:a sin A =b sin B ,b sin B =c sin C ,a sin A =csin C ,每个等式涉及四个元素,所以只要知道其中的三个就可以求另外一个.(2)因为三角形内角和为180°,所以已知两角一定可以求出第三个角. 跟踪训练2 在△ABC 中,已知a =18,B =60°,C =75°,求b 的值. 考点 用正弦定理解三角形 题点 已知两角及一边解三角形 解 根据三角形内角和定理,得A =180°-(B +C )=180°-(60°+75°)=45°. 根据正弦定理,得b =a sin B sin A =18sin 60°sin 45°=9 6.类型三 已知两边及其中一边的对角解三角形例3 在△ABC 中,已知c =6,A =45°,a =2,解三角形. 考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形解 ∵a sin A =c sin C ,∴sin C =c sin A a =6sin 45°2=32,∵C ∈(0°,180°),∴C =60°或C =120°. 当C =60°时,B =75°,b =c sin B sin C =6sin 75°sin 60°=3+1; 当C =120°时,B =15°,b =c sin B sin C =6sin 15°sin 120°=3-1. ∴b =3+1,B =75°,C =60°或b =3-1,B =15°,C =120°. 引申探究若把本例中的条件“A =45°”改为“C =45°”,则角A 有几个值? 解 ∵a sin A =c sin C ,∴sin A =a sin C c =2·226=33.∵c =6>2=a ,∴C >A .∴A 为小于45°的锐角,且正弦值为33,这样的角A 只有一个. 反思与感悟 已知三角形两边和其中一边的对角解三角形的方法:首先用正弦定理求出另一边所对的角的正弦值,若这个角不是直角,当已知的角为大边所对的角时,则能判断另一边所对的角为锐角,当已知的角为小边所对的角时,则不能判断,此时就有两组解,再分别求解即可;然后由三角形内角和定理求出第三个角;最后根据正弦定理求出第三条边. 跟踪训练3 在△ABC 中,若a =2,b =2,A =30°,则C =________. 考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形 答案 105°或15°解析 由正弦定理a sin A =b sin B ,得sin B =b sin A a =2sin 30°2=22.∵B ∈(0°,180°),∴B =45°或135°,∴C =180°-45°-30°=105°或C =180°-135°-30°=15°.1. 在△ABC 中,一定成立的等式是( ) A .a sin A =b sin B B .a cos A =b cos B C .a sin B =b sin AD .a cos B =b cos A考点 正弦定理及其变形应用 题点 正弦定理的变形应用 答案 C解析 由正弦定理a sin A =bsin B ,得a sin B =b sin A ,故选C.2.在△ABC 中,sin A =sin C ,则△ABC 是( ) A .直角三角形 B .等腰三角形 C .锐角三角形D .钝角三角形 考点 用正弦定理解三角形题点 利用正弦定理进行边角互化解三角形 答案 B解析 由sin A =sin C 及正弦定理,知a =c , ∴△ABC 为等腰三角形.3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6D .4考点 用正弦定理解三角形 题点 已知两角及一边解三角形 答案 C解析 易知A =45°,由a sin A =b sin B 得b =a sin B sin A=8×3222=4 6. 4.在△ABC 中,a =3,b =2,B =π4,则A =________.考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形 答案 π3或2π3解析 由正弦定理,得sin A =a sin Bb=3×222=32, 又A ∈(0,π),a >b ,∴A >B ,∴A =π3或2π3.5.在△ABC 中,已知a =5,sin C =2sin A ,则c =________. 考点 正弦定理及其变形应用 题点 正弦定理的变形应用 答案 2 5解析 由正弦定理,得c =a sin Csin A=2a =2 5.1. 正弦定理的表示形式:a sin A =b sin B =csin C =2R ,或a =k sin A ,b =k sin B ,c =k sin C (k >0). 2. 正弦定理的应用范围(1)已知两角和任一边,求其他两边和其余一角. (2)已知两边和其中一边的对角,求另一边和其余两角.3. 已知三角形两边和其中一边的对角解三角形的方法 (1)首先由正弦定理求出另一边对角的正弦值.(2)如果已知的角为大边所对的角,由三角形中大边对大角、大角对大边的法则能判断另一边所对的角为锐角,由正弦值可求唯一锐角.(3)如果已知的角为小边所对的角,则不能判断另一边所对的角为锐角,这时由正弦值可求得两个角,要分类讨论.一、选择题1.在△ABC 中,a =5,b =3,则sin A ∶sin B 的值是( ) A.53 B.35 C.37 D.57 考点 用正弦定理解三角形题点 利用正弦定理进行边角互化解三角形 答案 A解析 根据正弦定理,得sin A sin B =a b =53.2.在△ABC 中,a =b sin A ,则△ABC 一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .等腰三角形考点 正弦定理及其变形应用 题点 正弦定理的变形应用 答案 B解析 由题意有a sin A =b =bsin B,则sin B =1,又B ∈(0,π),故角B 为直角,故△ABC 是直角三角形. 3.在△ABC 中,若sin A a =cos Cc ,则C 的值为( )A .30°B .45°C .60°D .90° 考点 正弦定理及其变形应用 题点 正弦定理的变形应用 答案 B解析 由正弦定理知sin A a =sin Cc ,∴sin C c =cos Cc,∴cos C =sin C ,∴tan C =1, 又∵C ∈(0°,180°),∴C =45°,故选B.4.在△ABC 中,若A =105°,B =45°,b =22,则c 等于( ) A .1 B .2 C. 2 D. 3 考点 用正弦定理解三角形 题点 已知两角及一边解三角形 答案 B解析 ∵A =105°,B =45°,∴C =30°. 由正弦定理,得c =b sin C sin B =22sin 30°sin 45°=2.5.在△ABC 中,a =15,b =10,A =60°,则cos B 等于( ) A .-223 B.223 C .-63 D.63考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形 答案 D解析 由正弦定理,得15sin 60°=10sin B ,∴sin B =10sin 60°15=10×3215=33. ∵a >b ,∴A >B ,又∵A =60°,∴B 为锐角. ∴cos B =1-sin 2B =1-⎝⎛⎭⎫332=63. 6.在△ABC 中,已知A =π3,a =3,b =1,则c 的值为( )A .1B .2 C.3-1 D. 3 考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形 答案 B解析 由正弦定理a sin A =bsin B,可得3sinπ3=1sin B ,∴sin B =12,由a >b ,得A >B ,∴B ∈⎝⎛⎭⎫0,π3,∴B =π6. 故C =π2,由勾股定理得c =2.7.在△ABC 中,B =π4,BC 边上的高等于13BC ,则sin A 等于( )A.310B.1010C.55D.31010 考点 用正弦定理解三角形 题点 正弦定理解三角形综合 答案 D解析 如图,设BC 边上的高为AD ,不妨令AD =1.由B =π4,知BD =1.又AD =13BC =BD ,∴DC =2,AC =12+22= 5.由正弦定理知,sin ∠BAC =sin B ·BC AC =225·3=31010.8.在△ABC 中,若A =60°,B =45°,BC =32,则AC 等于( ) A .4 3 B .2 3 C. 3 D.32考点 用正弦定理解三角形 题点 已知两角及一边解三角形 答案 B解析 由正弦定理得,BC sin A =AC sin B ,即32sin 60°=AC sin 45°,所以AC =3232×22=23,故选B.二、填空题9.在△ABC 中,若C =2B ,则cb的取值范围为________.考点 用正弦定理解三角形题点 利用正弦定理、三角变换解三角形 答案 (1,2)解析 因为A +B +C =π,C =2B ,所以A =π-3B >0,所以0<B <π3,所以12<cos B <1.因为c b =sin C sin B =sin 2Bsin B =2cos B ,所以1<2cos B <2,故1<cb<2.10.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =_____.考点 用正弦定理解三角形 题点 已知两角及一边解三角形 答案2113解析 在△ABC 中,由cos A =45,cos C =513,可得sin A =35,sin C =1213,sin B =sin(A +C )=sin A cos C +cos A ·sin C =6365,又a =1,由正弦定理得b =a sin B sin A =2113.11.锐角三角形的内角分别是A ,B ,C ,并且A >B .则下列三个不等式中成立的是______. ①sin A >sin B ; ②cos A <cos B ;③sin A +sin B >cos A +cos B . 考点 用正弦定理解三角形题点 利用正弦定理、三角变换解三角形 答案 ①②③解析 A >B ⇔a >b ⇔sin A >sin B ,故①成立. 函数y =cos x 在区间[0,π]上是减函数, ∵A >B ,∴cos A <cos B ,故②成立. 在锐角三角形中,∵A +B >π2,∴0<π2-B <A <π2,函数y =sin x 在区间⎣⎡⎦⎤0,π2上是增函数, 则有sin A >sin ⎝⎛⎭⎫π2-B ,即sin A >cos B , 同理sin B >cos A ,故③成立.三、解答题12.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,c =10,A =45°,C =30°,求a ,b 和B .考点 用正弦定理解三角形题点 已知两角及一边解三角形解 ∵a sin A =c sin C, ∴a =c sin A sin C =10sin 45°sin 30°=10 2. B =180°-(A +C )=180°-(45°+30°)=105°.又∵b sin B =c sin C, ∴b =c sin B sin C =10sin 105°sin 30°=20sin 75° =20×6+24=5(6+2). 13.在△ABC 中,A =60°,a =43,b =42,求B .考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形解 由正弦定理a sin A =b sin B ,得sin B =22, ∵a >b ,∴A >B .∴B 只有一解,∴B =45°.四、探究与拓展14.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,a =x ,b =2,B =45°.若△ABC 有两解,则x 的取值范围是( )A .(2,+∞)B .(0,2)C .(2,22)D .(2,2)考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形答案 C解析 因为△ABC 有两解,所以a sin B <b <a ,即x sin 45°<2<x ,所以2<x <22,故选C.15.已知下列各三角形中的两边及其中一边的对角,判断三角形是否有解,有解的作出解答.(1)a =10,b =20,A =80°;(2)a =23,b =6,A =30°.考点 用正弦定理解三角形题点 已知两边及其中一边对角解三角形解 (1)a =10,b =20,a <b ,A =80°<90°,讨论如下:∵b sin A =20sin 80°>20sin 60°=103,∴a <b sin A ,∴本题无解.(2)a =23,b =6,a <b ,A =30°<90°,∵b sin A =6sin 30°=3,a >b sin A ,∴b sin A <a <b ,∴本题有两解.由正弦定理得sin B =b sin A a =6sin 30°23=32, 又∵B ∈(0°,180°),∴B =60°或B =120°.当B =60°时,C =90°,c =a sin C sin A =23sin 90°sin 30°=43; 当B =120°时,C =30°,c =a sin C sin A =23sin 30°sin 30°=2 3. ∴当B =60°时,C =90°,c =43;当B =120°时,C =30°,c =2 3.。
向量法证明正弦定理向量法证明正弦定理三级记向量i,使i垂直于a于,△ab三边ab,b,接着得到正弦定理其他步骤在锐角△ab中,证明asina=bsinb=sin=2r:任意三角形ab,4过三角形ab的顶点a作b边上的高,垂足为d.当d落在边b上时,向量ab与向量ad的夹角为90°-b,向量a与向量ad的夹角为90°-,由于向量ab、向量a在向量ad方向上的射影相等,有数量积的几何意义可知向量ab*向量ad=向量a*向量ad即向量ab的绝对值*向量ad的绝对值*os=向量的a绝对值*向量ad的绝对值*os所以sinb=bsin即bsinb=sin当d落在b的延长线上时,同样可以证得第五篇:用正弦定理证明三重向量积用正弦定理证明三重向量积作者:光信1002班李立内容:通过对问题的讨论和转化,最后用正弦定理来证明三重向量积的公式——?a?b。
首先,根据叉乘的定义,a、b、a?b可以构成一个右手系,而且对公式的观察与分析我们发现,在公式中,a与b是等价的,所以我们不妨把a、b、a?b放在一个空间直角坐标系中,让a与b处于ox面上,a?b与z轴同向。
如草图所示:其中,向量可以沿着z轴方向与平行于ox平面的方向分解,即:?z?x将式子带入三重向量积的公式中,发现,化简得:(a?b)?xab这两个式子等价现在我们考虑?刚好被a与b反向夹住的情况,其他的角度情况以此类推。
由图易得,?与a、b共面,a与b不共线,不妨设??xa?b,a,x?,b,x?,所以:在三角形中使用正弦定理,得a?b)?sin?sin??b,x?又因为a?b)??absina,b所以,解得k=ab,于是解得:x= bxosb,xaxosa,x?b?x a?x由图示和假定的条件,?在a和b方向上的投影皆为负值,所以x,都取负值,所以,(a?b)?xab其他的相对角度关系,以此类推,也能得到相同的答案,所以:?a?b,命题得证。
(经典)高中数学正弦定理的五种最全证明方法高中数学正弦定理的五种证明方法——王彦文 青铜峡一中1.利用三角形的高证明正弦定理 (1)当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。
由此,得sin sin abA B =,同理可得sin sin cbCB=,故有sin sin abAB=sin cC =.从而这个结论在锐角三角形中成立.(2)当∆ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。
由此,得=∠sin sin abAABC ,同理可得=∠sin sin cbCABC故有=∠sin sin abAABCsin cC =.由(1)(2)可知,在∆ABC 中,sin sin abAB=sin cC=成立.从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即sin sin abAB=sin cC =.2.利用三角形面积证明正弦定理已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为 D.则Rt△ADB中,AB ADB =sin ,∴AD=AB·sinB=csinB.∴S △ABC =B ac AD a sin 2121=•.同理,可证 S △ABC =A bc C ab sin 21sin 21=.∴ S △ABC =B ac A bc C ab sin 21sin 21sin 21==.∴absinc=bcsinA=acsinB,在等式两端同除以ABC,可得b B a A c C sin sin sin ==.即CcB b A a sin sin sin ==. 3.向量法证明正弦定理(1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与CB的夹角为90°-C .由向量的加法原则可得AB CB AC =+,ab DABCB C Db aDCB A为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量j 的数量积运算,得到AB j CB AC j •=+•)( 由分配律可得AB j CB j AC •=•+.B∴|j|AC Co s90°+|j|CB Co s(90°-C )=|j|AB Co s(90°-A ). j∴asinC=csinA.∴CcA a sin sin =. A另外,过点C 作与CB 垂直的单位向量j,则j 与AC 的夹角为90°+C ,j 与AB 的夹角为90°+B ,可得BbC c sin sin =.(此处应强调学生注意两向量夹角是以同起点为前提,防止误解为j 与AC 的夹角为90°-C ,j 与AB 的夹角为90°-B )∴CcB b A a sin sin sin ==.(2)△ABC 为钝角三角形,不妨设A >90°,过点A 作与AC 垂直的单位向量j,则j 与AB 的夹角为A -90°,j 与CB 的夹角为90°-C .由ABCB AC =+,得j ·AC+j ·CB=j ·AB,j即a ·Cos(90°-C)=c ·Cos(A -90°),∴asinC=csinA.∴C cA a sin sin =另外,过点C 作与CB 垂直的单位向量j,则j 与AC 的夹角为90°+C ,j 与AB夹角为90°+B .同理,可得CcB b sin sin =.∴CcB b simA a sin sin == 4.外接圆证明正弦定理在△ABC 中,已知BC=a,AC=b,AB=c,作△ABC 的外接圆,O 为圆心,连结BO 并延长交圆于B′,设BB′=2R.则根据直径所对的圆周角是直角以及同弧所对的圆周角相等可以得到 ∠BAB′=90°,∠C =∠B′,∴sin C =sin B′=Rc B C 2sin sin ='=.∴R C c2sin =. ACCBA同理,可得R B b R A a 2sin ,2sin ==.∴R CcB b A a 2sin sin sin ===.这就是说,对于任意的三角形,我们得到等式 C cB b A a sin sin sin ==. 法一(平面几何):在△ABC 中,已知,,AC b BC a C ==∠及,求c 。
过A 作sin sin AD BC D AD AC C BC C ⊥=于,是=,cos cos ,CD AC b c ==在Rt ABD ∆中,2222222(sin )(cos )2cos AB AD BD b c a b c a b ab c =+=+-=+-, 法二(平面向量): 222()()22||||AB AB AC BC AC BC AC AC BC BC AC AC BC ⋅=+⋅+=⋅⋅+=+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r222cos(180)2cos B BC b ab B a -+=-+ou u u r ,即:2222cos c a b ab c =+-法三(解析几何):把顶点C 置于原点,CA 落在x 轴的正半轴上,由于△ABC 的AC=b ,CB=a ,AB=c ,则A ,B ,C 点的坐标分别为A(b ,0),B(acosC ,asinC),C(0,0).|AB|2=(acosC -b)2+(asinC -0)2=a 2cos2C -2abcosC+b 2+a 2sin2C =a 2+b 2-2abcosC , 即c 2=a 2+b 2-2abcosC . .法五(用相交弦定理证明余弦定理):如图,在三角形ABC 中,∠A=α,AB=a ,BC=b ,AC=c 。
现在以B 为圆心,以长边AB 为半径做圆,这里要用长边的道理在于,这样能保证C 点在圆内。
BC 的延长线交圆B 于点D 和E这样以来,DC=a-b ,CE=a+b ,AC=c 。
因为AG=2acosα,所以CG=2acosα-c 。
根据相交弦定理有: DC×CE=AC×CG,带入以后就是 (a-b)(a+b)=c(2acosα-c)化简以后就得b 2=a 2+c 2+2accosα。
也就是我们的余弦定理。
如图,在△ABC 中,AB =4 cm ,AC =3 cm ,角平分线AD =2 cm ,求此三角ACB形面积.分析:由于题设条件中已知两边长,故而联想面积公式S△ABC=1 2AB·AC·sin A,需求出sin A,而△ABC面积可以转化为S△ADC +S△ADB,而S△ADC=12AC·AD sin A2,S△ADB=12AB·AD·sinA2,因此通过S△ABC=S△ADC+S△ADB建立关于含有sin A,sin A2的方程,而sin A=2sinA2cosA2,sin2A2+cos2A2=1,故sin A可求,从而三角形面积可求.解:在△ABC中,S△ABC=S△ADB+S△ADC,∴12AB·AC sin A=12·AC·AD·sinA2+12·AB·AD sinA2∴12·4·3sin A=12·3·2sinA2,∴6sin A=7sinA2∴12sin A2 cosA2=7sinA2∵sin A2≠0,∴cosA2=712,又0<A<π,∴0<A2<π2∴sin A2=1-cos2A2=9512,∴sin A=2sin A2cosA2=79572,∴S△ABC=12·4·3sin A=79512(cm2).在△ABC中,AB=5,AC=3,D为BC中点,且AD=4,求BC边长.解:设BC边为x,则由D为BC中点,可得BD=DC=x2,在△ADB中,cos ADB=AD2+BD2-AB22AD·BD=42+(x2)2-522×4×x2在△ADC中,cos ADC=AD2+DC2-AC22AD·DC=42+(x2)2-322×4×x2又∠ADB+∠ADC=180°∴cos ADB=cos(180°-∠ADC)=-cos ADC.∴42+(x2)2-522×4×x2=-42+(x2)2-322×4×x2解得,x=2所以,BC边长为2.2.在△ABC中,已知角B=45°,D是BC边上一点,AD=5,AC=7,DC=3,求AB.解:在△ADC中,cos C=AC2+DC2-AD22AC·DC=72+32-522×7×3=1114,又0<C<180°,∴sin C=53 14在△ABC中,ACsin B=ABsin C∴AB=sin Csin BAC=5314· 2 ·7=562.3.在△ABC中,已知cos A=35,sin B=513,求cos C的值.解:∵cos A=35<22=cos45°,0<A<π∴45°<A<90°,∴sin A=45∵sin B=513<12=sin30°,0<B<π∴0°<B<30°或150°<B<180°若B>150°,则B+A>180°与题意不符.∴0°<B<30° cos B=12 13∴cos(A+B)=cos A·cos B-sin A·sin B=35·1213-45·513=1665又C=180°-(A+B).∴cos C=cos[180°-(A+B)]=-cos(A+B)=-1665.。