中考数学公式大全
- 格式:doc
- 大小:1.14 MB
- 文档页数:14
1、乘法与因式分解
2、幂的运算性质
3、二次根式
4、三角不等式
5、某些数列前n项之和
6、一元二次方根
7、一次函数
8、反比例函数
9、二次函数
10、统计初步
11、频率与概率
12、锐角三角形
13、正(余)弦定理
14、三角函数公式
15、平面直角坐标系
16、多边形内角和公式
内角
正n边形的内角和度数为:(n-2)×180度;
正n边形的一个内角是(n-2)×180°÷n.
外角
正n边形外角和等于n·180°-(n-2)·180°=360°
所以正n边形的一个外角为:360÷n.
所以正n边形的一个内角也可以用这个公式:180°-360÷n.
中心角
任何一个正多边形,都可作一个外接圆,多边形的中心就是所作外接圆的圆心,所以每条边的中心角,实际上就是这条边所对的弧的圆心角,因此这个角就是360度÷边数。
正多边形中心角:360÷n
对角线
在一个正多边形中,所有的顶点可以与除了他相邻的两个顶点的其他顶点连线,就成了顶点数减2(2是那两个相邻的点)个三角形。而正多边形的顶点数与边数相同,所以用边数减2个三角形。三角形内角和:180度,所以把边数减2乘上180度,就是这个正多边形的内角和对角线
对角线数量的计算公式:n(n-3)÷2。
面积
设正n边形的半径为R,边长为an,中心角为αn,边心距为r n,则αn=360°÷n,an=2Rsin(180°÷n),r n=Rcos(180°÷n),R^2=r n^2+(an÷2)^2,周长pn=n×an,面积Sn=pn×rn÷2。
对称轴
正多边形的对称轴——
奇数边:连接一个顶点和顶点所对的边的中点,即为对称轴;
偶数边:连接相对的两个边的中点,或者连接相对称的两个顶点,都是对称轴。
正N边形边数为N。
正N边形角数为N。
正N边形对称轴数都为N条(如三角形有奇数条边,N=3,有三条对称轴;正方形有偶数条边,N=4,有四条对称轴)
17、平行线段成比例定理
18、直角三角形中的射影定理
19、圆的有关性质
20、三角形的内心和外心
21、弦切角定理及其推论
22、相交弦定理、割线定理和切割线定理
23、面积公式