金属有机多孔配位聚合物的研究进展
- 格式:doc
- 大小:31.00 KB
- 文档页数:4
配位聚合物的应用研究研究组姓名选题意义配位聚合物(coordination polymers)是有机配体与金属离子通过自组装过程形成的具有周期性网络结构的晶体材料。
它结合了复合高分子和配位化合物两者的特点,是一类具有特殊性质的杂化材料。
作为新型功能性分子材料,配位聚合物的设计与合成,结构及其性能的研究越来越受到各个领域科学家的重视,形成了跨越多个学科的热点研究领域。
报告内容具有三维空旷网络结构的金属有机骨架材料(metal-organic framework,MOFs)是一种稳定的配位聚合物材料。
MOFs材料在溶剂分子脱除后能保持骨架结构稳定,具有超大的比表面积和孔体积。
稳定性的提高大大拓展了MOFs材料的应用领域,成为MOFs材料发挥其特殊性质的基础。
MOFs材料可以用于类分子筛载体、气体存储和分离、非线性光学、分子磁体、手性拆分、发光材料、光电转化、催化等众多领域。
其中MOFs在多相不对称催化和光催化领域的应用由于其重要性逐渐受到科学家的重视。
使用具有手性催化活性的有机分子作为配体,可以得到具有手性催化活性的MOFs材料。
这是一种特殊的多相化方式,催化剂负载量大,活性中心均匀分布,开放的孔道有利于底物与活性中心接近。
在手性催化中具有重要应用的卟啉、席夫碱、联萘配体都已成功合成了MOFs材料,而且材料具有较好的手性选择性。
以光学纯的手性酒石酸衍生物为配体,合成具有手性孔道的MOFs材料,不仅可以成功地拆分外消旋的配位化合物,而且还成功实现了对酯交换反应的不对称催化作用。
理论计算表明,MOFs材料也是一种合适的半导体材料,能带带隙在1.0到5.5eV之间。
有机部分吸收光子的能量,能够发生从有机到无机部分的电荷转移。
从而像半导体一样,能作为电子给体和受体。
光激发后,MOFs材料能发生光致变色、光催化产氢、光催化氧化有机物等反应。
前景展望由于作为配位聚合物组成部分的金属离子和有机配体的高度可调性和配位方式的多样性,配位聚合物具有无限的组成和结构可裁性,这是其它材料所无法比拟的。
配位聚合物的应用与进展王雄化学化工与材料学院应用化学1班 20133443摘要:配位聚合物是由金属和有机配体自组装而形成的, 具有独特的空间几何构型, 在非线性光学材料、气体吸附、手性拆分和催化、分子磁性材料、超导材料, 微孔材料等诸多方面都有广阔的应用前景。
本文介绍了配位聚合物的分类,列举了金属-有机骨架(MOFs)等功能型配位聚合物的研究进展,并对配位聚合物的发展前景作了展望。
关键词:配位聚合物;有机配体;合成方法;应用;催化引言:配位聚合物(coordination polymers)或金属-有机框架(metal-organic frameworks,简称MOFs)是指利用金属离子与有机桥联配体通过配位键合作用而形成的一类具有一维,二维或三维无限网络结构的配位化合物[1]。
近年来,配位聚合物作为一种新型的功能化分子材料以其良好的结构可裁性和易功能化的特性引起了研究者浓厚的兴趣。
配合物有无机的金属离子和有机配体,因此它兼有无机和有机化合物的特性,而且还有可能出现无机化合物和有机化合物均没有的新性质。
配位聚合物分子材料的设计合成、结构及性能研究是近年来十分活跃的研究领域之一,它跨越了无机化学、配位化学、有机化学、物理化学、超分子化学、材料化学、生物化学、晶体工程学和拓扑学等多个学科领域,它的研究对于发展合成化学、结构化学和材料化学的基本概念及基础理论具有重要的学术意义,同时对开发新型高性能的功能分子材料具有重要的应用价值[2-7]。
并对分子器件和分子机器的发展起着至关重要的作用。
配位聚合物在新的分子材料中将发挥重要的作用。
配位化学理论在材料的分子设计中也将起着重要的指导作用。
材料按其性能特征和用途大致可划分为结构材料和功能材料两大类。
功能材料种类繁多,功能各异,其共同的特点和发展趋势是:(1) 性能优异;(2) 分子化;(3) 巨大的应用前景。
金属有机光电磁材料综合了这几方面特点,将发展成为新一代材料,其结构和性能决定了它的应用越来越广泛。
金属配位聚合物的制备及其催化性能研究金属配位聚合物是由金属离子和有机配体通过配位作用所形成的化合物。
近年来,随着催化剂的应用不断发展,金属配位聚合物也逐渐成为了化工领域的研究热点。
通过对不同金属离子和配体的选择及其配位方式的控制,可以制备出不同结构和性质的金属配位聚合物,以及应用于不同领域的催化剂。
本文将从金属配位聚合物的制备方法、结构特征及催化性能等方面进行探讨。
一、金属配位聚合物的制备方法1. 溶剂热法溶剂热法是制备金属配位聚合物的一种常用方法。
该方法以有机配体为溶剂,在高温高压下将金属离子与有机配体进行配位反应,从而制得金属配位聚合物。
以铜离子和苯胺配体为例,具体制备方法如下:将铜盐和苯胺按一定比例混合,在甲醇溶液中加热,经过一定的时间和温度后,产生沉淀,即得到铜-苯胺配合物。
其化学反应式可表示为:CuCl2·2H2O + C6H5NH2 → [Cu(C6H5NH2)2]Cl2。
2. 水热法水热法是利用高温高压反应体系,在水热条件下进行的一种制备金属配位聚合物的常用方法。
该方法可通过调节反应条件,控制金属离子和有机配体之间的配位方式,从而得到不同形态和性质的金属配位聚合物。
以铁离子和苯甲酸配体为例,具体制备方法如下:将铁盐和苯甲酸按一定比例混合,在水热条件下加热反应,待完全反应后,冷却至室温后得到红色晶体,即铁-苯甲酸配合物。
其化学反应式可表示为:FeCl3·6H2O + C6H5CH2COOH →[Fe(C6H5CH2COO)3]。
3. 共沉淀法共沉淀法是一种简单易行的制备金属配位聚合物的方法。
该方法通常将金属盐和有机配体一同加入反应体系中,通过共沉淀的方式,使金属离子与有机配体之间形成配位键,从而得到金属配位聚合物。
以锌离子和4-氨基苯磺酸为例,具体制备方法如下:将锌盐和4-氨基苯磺酸按一定比例混合,在水溶液中反应,在一定的温度下进行搅拌和过滤,最终得到白色固体,即锌-4-氨基苯磺酸配合物。
金属配位聚合物的合成与性能研究金属配位聚合物是一种具有特殊结构和性能的新型材料,其合成方法和性能研究一直备受学术界的关注。
本文将介绍金属配位聚合物的合成方法、性能研究以及其在材料科学中的应用。
一、金属配位聚合物的合成方法金属配位聚合物的合成方法多样,可以通过配位反应合成,也可通过溶剂热法、溶胶-凝胶法等合成。
1. 配位反应合成配位反应合成是一种常用的金属配位聚合物合成方法。
首先选择金属离子和配体,通过它们之间的配位作用形成聚合物结构。
常用的配体包括有机酸、有机碱等。
通过调节配体的配位特性和金属离子的电子结构,可以合成出具有不同结构和性能的金属配位聚合物。
2. 溶剂热法溶剂热法是一种简便有效的金属配位聚合物合成方法。
通过将金属盐和有机配体溶解在合适的溶剂中,在高温条件下,经过反应和结晶过程,得到金属配位聚合物。
溶剂热法具有操作简便、反应快速等优点。
3. 溶胶-凝胶法溶胶-凝胶法是一种通过控制溶胶和凝胶形成过程来合成金属配位聚合物的方法。
通常可以选择适当的溶胶,在其中溶解金属盐和有机配体,通过加热、干燥等处理,使其形成凝胶,再经过适当的后处理方法,得到金属配位聚合物。
二、金属配位聚合物的性能研究金属配位聚合物具有丰富的结构和性能,其性能研究对于深入理解其特性和应用具有重要意义。
1. 结构表征金属配位聚合物的性能研究的重要一环是其结构表征。
通过使用X射线衍射、红外光谱、核磁共振等技术手段,可以确定金属配位聚合物的晶体结构、配位结构和配位键等信息。
2. 物理性能研究金属配位聚合物的物理性能研究主要包括热学性质、光学性质、导电性等。
通过热重分析、差示扫描量热法、紫外可见光谱、电导率测试等手段,可以评估金属配位聚合物在热学、光学和电学方面的性能。
3. 应用性能研究金属配位聚合物在催化、吸附等领域具有广泛的应用前景。
对于金属配位聚合物的应用性能研究,可以通过评估其在吸附分离、催化反应中的效果,来探究其应用潜力和机理。
南京航空航天大学硕士学位论文摘要金属-有机配位聚合物是由金属中心离子与有机配体自组装而形成的。
金属-有机配位聚合物新颖的多样结构导致其许多特殊的性能。
由于含硫芳基多齿配体本身结构的多样性,在与金属离子配位时,可以组装出结构新颖和功能独特的配合物。
它们表现出不同寻常的光、电、磁等性质,在非线性光学,磁性和催化材料等方面具有潜在的应用前景。
本课题为含硫金属-有机配位聚合物的合成和性能表征。
文中对到目前为止的金属-有机配位聚合物的研究成果进行了系统的总结。
本论文分别以对苯二胺和对苯二酚为有机小分子,与二硫化碳在碱性条件下反应,在反复实验的基础上,找到了合适的反应条件,冷凝回流合成出了以硫为配位原子的有机配体。
用均相法和溶剂热合成法,将生成的配体与过渡金属在含有表面活性剂的条件下混合发生配位反应,制备了相应的含硫过渡金属配位聚合物,考察各反应因素对配位聚合物形貌的影响。
最后,通过FTIR,EDS,SEM,TEM,紫外-可见等分析手段对配体和配合物进行表征,发现所合成的镉(Ⅱ)配位聚合物具有半导体的性质。
关键词:金属-有机配位聚合物,溶剂热合成,二硫化碳,配体,表征iABSTRACTMetal-organic coordination polymers are a type of self-assembly formed by organic ligands and metal ions. Diversified structures of the coordination polymers result in unusual properties of the novel materials. Duo to the structure multiformity of multidentate organic ligand with the sulfur and aryl, they can assemble out complexes of novel structures and unique fuctions if coordinated with metal ions. They have shown distinctive optical, electrical, and magnetic properties, thus they have a potential applied prospect in nonlinear optics, magnetic and catalytic materials.The subject is to synthesize and analyze the property of sulfur metal-organic coordination polymers. In this dissertation, we do the summary of the development and achievements of metal-organic coordination polymers. In this paper, we use p-phenylenediamine or p-dihydroxybenzene as small organic molecules to react with carbon bisulfide in alkaline condition. We find out the appropriate reaction condition on the basis of repeated experiments, and synthesize organic ligand with the sulfur as coordination atom in the condition of refluxing. Then we use the acquired ligands to react with transition metal ions under surfactant by solvothermal and homogeneous techniques and get the corresponding transition metal complexes with the sulfur atom. We have explored the influences of all kinds of synthesis factors for their morphologies. Finally, through analytical methods such as FTIR, EDS, SEM, TEM, UV-vis, we characterize the ligands and complexes, and suggest that the Cd(Ⅱ) complex is a semi-conductor.Keywords: metal-organic coordination polymers, solvothermal synthesis, carbon bisulfide, ligand, characterizeii图表清单图清单图1.1 金属-有机配位聚合物的金属中心 (5)图1.2 组装金属-有机配位聚合物使用的多齿配体 (6)图3.1 配体合成实验装置图 (19)图4.1 实验Pt-02-04配体L的红外谱图 (34)图4.2 实验Pt′-03-04配体L′的红外谱图 (35)图4.3 实验Pt-02-04配体L的能谱分析图 (35)图4.4 实验Pt′-03-04配体L′的能谱分析图 (36)图4.5 均相法合成的Cd(Ⅱ)配位聚合物TEM图(PEG-400, 5%) (37)图4.6 均相法合成的Cd(Ⅱ)配位聚合物TEM图(PEG-400, 2%) (38)图4.7 特殊形貌的Ni(Ⅱ)配位聚合物的SEM图 (39)图4.8 特殊形貌的Co(Ⅱ)配位聚合物的SEM图 (40)图4.9 特殊形貌的Cd(Ⅱ)配位聚合物的SEM图 (40)图4.10 特殊形貌的Cu(Ⅰ)配位聚合物的SEM图 (41)图 4.11 不同温度下所得Cd(Ⅱ)配位聚合物的SEM图 (a)120℃ (b) 150℃ (43)图 4.12不同降温速率下所得Cu(Ⅰ)配位聚合物的SEM图 (a)5℃/h (b)2℃/h (44)图4.13 添加不同的表面活性剂所得产物的SEM图 (45)图4.14添加不同量的表面活性剂所得产物的SEM图 (46)图4.15 Cd(Ⅱ)配位聚合物液态紫外可见图 (47)图4.16 Cd(Ⅱ)配位聚合物的能谱分析图 (48)Ⅱ配位聚合物(A)固态紫外-可见图;(B)吸收系数与光子能图4.17 Cd()量的关系图 (49)表清单表1.1 几个对应金属-有机配位聚合物的基本概念 (4)vi南京航空航天大学硕士学位论文表3.1 实验所用药品 (17)表3.2 合成配体主要药品物性 (18)表3.3 仪器及设备 (19)表3.4 以对苯二胺为有机小分子R合成配体 (20)表3.5 以对苯二酚为有机小分子R′合成配体 (21)表3.6 均相法合成配位聚合物的实验结果 (23)表3.7 溶剂热合成配位聚合物的实验结果 (24)vii承诺书本人郑重声明:所呈交的学位论文,是本人在导师指导下,独立进行研究工作所取得的成果。
配位聚合物多孔材料与吸附分离1.引言1.1 概述概述部分的内容可以包括对配位聚合物多孔材料及其在吸附分离中的重要性进行简要介绍。
以下是一个参考范例:概述:随着化学和材料科学的发展,多孔材料在各个领域中得到了广泛的应用。
其中,配位聚合物多孔材料作为一种新兴的材料,在吸附分离领域表现出了巨大的潜力。
配位聚合物多孔材料是一类具有规则孔道结构的有机-无机杂化材料,其结构由有机配体和金属离子通过配位键组装而成。
这些金属配合物材料具有高度可调控性,其孔道尺寸和形状可以通过合适的配体和金属离子选择来进行调节,从而适应不同分子或离子的吸附需求。
这使得它们能够在吸附分离过程中实现高效的分子识别和选择性吸附。
配位聚合物多孔材料在吸附分离中的应用非常广泛。
首先,它们在气体分离中具有良好的性能。
由于其高度可调控的结构特点,配位聚合物多孔材料能够实现对不同气体的选择性吸附,例如氧气、二氧化碳等气体的分离和纯化。
其次,配位聚合物多孔材料在液相分离中也具有显著的优势。
由于其多孔结构提供了大量的吸附位点,使得它们能够高效地吸附和分离溶液中的目标物质,例如有机染料、重金属离子等。
本文将重点介绍配位聚合物多孔材料在吸附分离中的应用,并讨论其在分离过程中的优势和局限性。
此外,还将展望配位聚合物多孔材料在吸附分离领域的发展前景,探讨其在环境净化、能源储存和药物制备等方面的应用潜力。
通过对配位聚合物多孔材料的全面了解和深入研究,我们有望进一步拓展吸附分离技术的应用范围,为解决能源、环境和生命科学等领域的重大问题提供新的解决方案。
文章结构部分的内容可以如下编写:1.2 文章结构本文主要分为引言、正文和结论三个部分。
引言部分首先对配位聚合物多孔材料与吸附分离的关系进行概述,介绍了该领域的研究现状和重要性。
接着说明了本文的目的,即探讨配位聚合物多孔材料在吸附分离中的应用和优势,并展望了其未来的发展前景。
正文部分将进一步阐述配位聚合物多孔材料的定义和特点,包括其结构组成、制备方法和表征手段等方面的内容。
南开大学卜显和:多孔配位聚合物的发展历程及研究进展2020-01-04以下文章来源于中国科学杂志社,作者中国科学:化学多孔配位聚合物(PCP)(包括金属有机框架)是一类由金属节点和配体通过配位键连接形成的晶态多孔材料。
作为一类新兴的无机-有机杂化材料, PCP具有丰富且可调节的结构和功能, 因此其在气体吸附分离、催化、传感等诸多领域展现出巨大的应用潜力, 是多学科交叉的研究热点。
南开大学化学学院卜显和教授课题组近期在《中国科学:化学》发表评述,依据PCP的结构及性质特点,总结了第一至第四代多孔配位聚合物PCP研究的发展历程, 介绍了该领域的主要研究内容和典型研究进展, 进而基于该领域未来面临的挑战和发展趋势分析了材料的实用化前景。
近年来, 多孔配位聚合物(porous coordination polymer, PCP) (包括金属有机框架(metal-organic framework, MOF))的研究方兴未艾。
PCP是由金属节点(金属离子或金属簇)和有机连接体通过配位键自组装形成的具有无限网络结构的材料。
其作为配位超分子化学的一个重要组成部分, 与无机化学、有机化学、晶体工程、拓扑学、材料化学及固态化学等领域相互交叉、渗透, 现已成为化学和材料领域的研究热点之一。
相较于传统的无机多孔材料(如沸石分子筛、微孔二氧化硅), PCP具有结构和组成多样、结构可设计、孔道可调节和易于功能化的优点。
因此, 这类材料在吸附分离、催化、检测、磁性以及光电等领域展现出巨大的应用价值和潜力。
按照PCP的发展历程和属性对其进行的分类根据剑桥晶体数据中心的统计, 1972~2016年, 约有7万例可被定义为MOF的新结构被合成, 对应的可定义为PCP的化合物的数量更加庞大。
基于PCP数量的急剧增长, 相关研究论文的发表数量也在逐年递增。
与此同时, 涉及PCP材料的研究领域不断扩大。
目前PCP的研究热点主要集中在以下5个方面。
收稿日期:2009-09-09作者简介:杨捷,女,硕士,江苏盐城人,研究方向:纳米多孔配位聚合物。
文章编号:1002-1124(2009)12-0054-03Sum 171No.11化学工程师ChemicalEngineer2009年第12期体合成的骨架结构比较简单,但稳定性较差。
多齿配体的配位情况比较复杂,得到的配合物稳定性较好。
有机配体主要包括羧酸类、氨类、吡啶类、醇类和腈类等。
常见的中性配体为含氮杂环类化合物。
1.2金属离子的选择构筑MOFs的另一要素是金属离子。
金属离子在构筑配位聚合物中充当连接配体的结点,不同金属离子具有不同的配位数和配位构型,因而在构筑MOFs中起着不同的连接作用。
近几年,除过渡金属离子外,稀土金属离子尤其是镧系金属离子开始被使用,它们的配位数较高,为七、八或九配位,可以形成具有丰富多彩结构的M OFs。
由上可见,设计具有一定功能的多孔配位聚合物比较简单,但在实际的合成中却很难控制M OFs 的结构,主要问题是:(1)当客体分子移走后,合成的骨架容易坍塌;(2)骨架网络的相互贯穿(interpene-tration)现象,即两个或两个以上的独立无限网络通过物理作用互相交织在一起而形成一个分子整体。
相互贯穿会导致孔径大幅度减小甚至完全消失,为了避免贯穿结构,人们对结点和联结桥进行了精心的设计,虽然采取了很多方法避免相互贯穿,但最终的结构还是很难控制。
2MOFs的分类随着配位化学涵盖的范围和研究内容的不断扩大,MOFs的种类和数目在不断增长,结构新颖、性能特殊的配合物源源不断地涌现。
目前,M OFs的合成主要采用几种配体:含氮杂环配体、含羧基配体、含氮杂环与羧酸混合配体、两种羧酸混合配体等。
最常用的是前两种,下面我们将分别介绍。
2.1含羧基配体的MOFsYaghi用锌盐与对苯二甲酸(BDC)反应得到了立方结构的三维多孔聚合物[Zn4O(BDC)3](M OF-5)(图1(a))[3],球体代表形成的孔洞,其直径为1.85 nm,比表面积为2500~3000m2·g-1。
Cd(Ⅱ)金属有机配位聚合物的设计合成、结构研究研究内容:1.前言2.实验部分3.数据分析4.结果与讨论研究方法、手段及步骤:1.利用溶剂热反应合成金属有机配位聚合物2.表征3.性质分析参考文献:[1] 孟庆金,戴安邦. 配位化学的创始与现代化. 高等教育出版社,1998.[2] 金斗满, 朱文祥. 配位化学的研究方法[M]. 北京: 科学出版社, 1996.[3] 游效曾. 配位化合物的结构和性质. 科学出版社第二版,2011.[4] 王小峰. 基于次级结构单元微孔金属-羧酸框架化合物的构筑及性质[D]: [博士学位论文]. 广州:中山大学,2008.[5] Wang X Y, Wang L, Gao S, et al. Solvent-TunedAzido-Bridged Co2+ Layers: Square,Honeycomb, and Kagomé[J]. J. Am. Chem.Soc., 2006, 128 (3): 674–675.[6] Zhu A X, Liu Yan, Zhang W X. Isoreticular 3Dzinc(II) frameworks constructed by unsymmetric 1,2,4-triazolate ligands: Syntheses, structures,and sorption properties[J]. Inorganic Chemistry Communications, 2013, 30:88-91.[7] Zeng Y F, Hu X, Liu F C, et al. Azido-mediatedsystems showing different magnetic behaviors[J].Chem. Soc. Rev., 2009, 38(2): 469-480.Cd(Ⅱ)金属有机配位聚合物的设计合成、结构研究摘要金属-有机配位聚合物是近年来配位化学和晶体工程学研究的焦点,其结构的多样性以及在气体吸附、催化、磁性、手性识别与分离、发光和生物学、非线性光学等方面潜在的应用价值引起了化学界的广泛关注。
第28卷第6期2008年12月山西化工sHANxIC脏MICALl∞USTRYv01.28No.6Dec.20087:‘::。
’::::综述与论坛.’j.:…._…….:,金属一有机骨架材料的合成及其研究进展龙沛沛1,程绍娟2,赵强1,李晋平1(1.太原理工大学精细化工研究所,山西太原030024;2.洛阳理工学院环境与化学系。
河南洛阳471023)摘要:介绍了金属一有机骨架材料(MOFs)的结构特点和合成方法,论述了金属.有机骨架材料在国内外的研究进展,介绍了其在气体存储,尤其是储氢方面的研究现状。
关键词:金属一有机骨架材料;合成;储氢中图分类号:0614,TB30文献标识码:A文章编号:1004—7050(2008)06.0021.05金属一有机骨架材料(met',d.organicframeworks,简称MOFS)是一种新型的多孔材料,因其具有高孔性、比表面积大、合成方便、骨架规模大小可变以及可根据目标要求作化学修饰、结构丰富等优点,现已在气体吸附、催化、光电材料等领域受到人们的广泛关注。
MOFs又名配位聚合物或杂合化合物,是利用有机配体与金属离子间的金属.配体络合作用自组装形成的具有超分子微孔网络结构的类沸石(有机沸石类似物)材料…。
制备MOFs的金属离子和有机配体丰富多样,可以根据材料的性能,如官能团、孔道的尺寸和形状等来加以选择。
最常用的有机连接配体为含有N、O等能提供孤对电子的原子的刚性配体,如多羧酸、多磷酸、多磺酸、吡啶、嘧啶等。
有机连接配体通过离子键与中心金属离子结合。
中心金属离子几乎涵盖了所有过渡金属元素形成的离子,甚至包括四价的金属离子。
这为新的MOFs的出现提供了无数的可能。
1国内外研究进展目前,国外开展MOFs材料研究的机构主要有基金项目:山西省自然科学基金资助项目(2006011021)收稿日期:2008.08—19作者简介:龙沛沛,女,1983年出生,太原理工大学桕细化工研究所在读硕士研究生。
金属有机骨架材料成型的研究进展张迎亚;张利雄【摘要】金属有机骨架材料(MOFs)是由无机金属离子或离子簇与有机配体通过配位键自组装而成的有机-无机杂化多孔固体材料.一般采用水热或溶剂热法制备,产品为微米或亚微米尺度大小的晶体,不适宜于规模化工业应用,需要将其构建成成型体.由于MOFs材料组成上的特殊性,尚缺乏统一的普适性成型方法.本文综述了MOFs 成型方法,主要包括共混成型法、原位生长法及高内相乳液法.根据固化方式及实验过程的不同,共混成型法又可分为溶胶-凝胶法、静电纺丝法;原位生长法可分为一步合成法、逐步法以及层叠层法.最后从负载量、适用范围、MOFs分散的均匀性以及成型前后对MOFs性质的影响等方面,对这几种成型方法进行比较,并对MOFs 成型体制备的方法作出展望.【期刊名称】《南京工业大学学报(自然科学版)》【年(卷),期】2018(040)006【总页数】7页(P124-130)【关键词】金属有机骨架;成型方法;杂化多孔固体材料【作者】张迎亚;张利雄【作者单位】南京工业大学化工学院材料化学工程国家重点实验室,江苏南京210009;南京工业大学化工学院材料化学工程国家重点实验室,江苏南京 210009【正文语种】中文【中图分类】TB383;O641.4;O635金属有机骨架(MOFs),也被称为多孔配位聚合物(PCPs)或多孔配位网状化合物(PCNs),是由金属离子或离子簇与多齿有机配体通过配位键桥连自组装配位而成的具有周期性网络结构的新型有机-无机杂化多孔固体材料[1]。
MOFs与传统的多孔材料沸石分子筛一样,具有规整的孔道及相似的拓扑结构,但MOFs材料在性能上表现出明显优势,例如,高达7 000 m2/g[2-3]的超高比表面积、可调控的孔径尺寸及可修饰的孔道表面等,在气体储存[4-5]、分离[6-7]、催化[8-9]、化学传感器[10-11]及药物输送[12-13]等领域具有广泛的应用前景。
金属配位聚合物的可控合成与性能调控研究金属配位聚合物(metal-organic polymers, MOFs)是一类由金属离子与有机配体通过配位键形成的大分子网络结构,具有多种应用潜力,例如催化剂、气体储存和分离材料等。
近年来,研究人员对金属配位聚合物的可控合成与性能调控进行了大量研究,取得了显著的进展。
一、可控合成方法1. 模板法模板法是一种常用的合成金属配位聚合物的方法。
在该方法中,研究人员首先选择一种模板化合物,如有机小分子或胶体微球,然后通过适当的配位反应将金属和有机配体与模板化合物结合形成金属配位聚合物。
这种方法可以控制金属配位聚合物的形貌和结构。
2. 水热法水热法是一种常用的合成金属配位聚合物的方法。
在该方法中,研究人员将金属离子与有机配体以适当的比例混合,在高温高压的水热条件下反应一段时间,形成金属配位聚合物。
这种方法通常具有反应时间短、温度易于控制等优点。
二、性能调控方法1. 添加功能配体通过在金属配位聚合物的合成过程中添加具有特定功能的配体,可以对其性能进行调控。
例如,添加具有吸附性能的功能配体可以提高金属配位聚合物的气体储存和分离能力;添加具有催化性能的功能配体可以提高金属配位聚合物的催化活性。
2. 调控金属离子的配位环境金属离子的配位环境对金属配位聚合物的性能具有重要影响。
通过调控金属离子的配位环境,如溶剂选择、温度控制等,可以改变金属配位聚合物的结构和性能。
例如,在高温条件下合成金属配位聚合物可以提高其催化活性。
三、研究进展与应用展望近年来,金属配位聚合物的可控合成与性能调控研究取得了显著进展,并在多个领域展示出潜在的应用价值。
例如,在催化剂领域,金属配位聚合物可以作为高效的催化剂用于有机反应的催化转化;在气体储存和分离领域,金属配位聚合物可以作为高性能的气体储存和分离材料。
然而,金属配位聚合物的可控合成与性能调控还存在一些挑战。
其中,合成金属配位聚合物的方法多样,但对于某些特殊结构的金属配位聚合物,合成方法仍然不够成熟;另外,金属配位聚合物的性能调控还需要更深入的研究,以实现更准确的性能调控。
新型多孔配位聚合物材料的研究随着科学技术的不断发展,新材料的研究正逐渐成为人们关注的焦点之一。
在这个领域中,新型多孔配位聚合物材料的研究备受瞩目。
这种材料不仅有广泛的应用领域,而且具有许多独特的性质和优势。
本文将重点探讨这种材料的研究进展、结构特点、应用前景等方面。
一、概述在多孔材料的范畴中,配位聚合物材料(Coordination polymers,CPs)是一类非常受欢迎的材料。
它们具有高度可调性、结构独特、孔径可调等特点,通过改变它们的结构能够调控它们的性质。
新型多孔配位聚合物材料(MPCPs)是配位聚合物材料的一种新型进化,指在单一材料中融合了完全不同类型的孔和功能单元的多孔配位聚合物。
MPCP作为一种非常有前途的多孔材料,具有较高的比表面积、非常规的孔道结构和多功能性。
二、结构特征MPCPs的基本结构单元由金属离子、有机配体和功能单元组成。
其中,金属离子常用铜、锌、铝、铱等,有机配体则是通过柔性的有机配体和刚性的配体构建的。
细化地来说,MPCPs 的框架特征在如下几个方面:(1) 多维结构MPCPs多维结构的优势在于其可较好地限制小分子的活性剂,并使反应运行在较高的反应条件下,得到的产物的活性也是较高的。
(2) 孔径可调节性MPCPs 中的孔道大小、形状和疏密度可由其构建的有机配体、功能化单元的改变而调整。
(3) 组分可多样性MPCPs中的功能化单元可以是具有结构多样性的嵌入化合物,如激发剂、催化剂和药物等。
具有这种组分多样性的MPCPs在生物医学领域的应用前景非常广泛。
三、应用前景MPCPs因其高度可调性和多功能性而在不同领域得到广泛的应用。
根据其不同的结构和特征,其应用方向有如下稳定性。
(1) 气体分离MPCPs的内部架构被广泛用于对不同气体的分离。
这一领域可以应用于油田地球化学研究和空气净化生态系统研究,目前对于稀有气体的分离效果尤为符合实际需求。
(2) 催化剂MPCPs中的功能化单元通常选用金属配合物,而且展现了在稠密性的第一类负载均匀的分布,极大地提高了催化剂的活性和选择性,同时有助于延长催化剂的使用寿命,使其在石油、医药等化工领域中大放异彩。
解析金属配位聚合物的力学性质及应用前景金属配位聚合物是一类由金属离子与有机配体通过配位键结合形成的聚合物。
它们具有独特的力学性质和广泛的应用前景。
本文将从理论和实验研究的角度来探讨金属配位聚合物的力学性质,并展望其在可持续发展、新材料合成和生物医学等领域的应用前景。
首先,金属配位聚合物的力学性质是研究的重要方面之一。
通过理论计算和实验分析可以得知,金属配位聚合物具有优异的力学性能,如高强度、较高的模量和韧性。
这得益于金属离子与有机配体之间的配位作用和非共价键的相互作用,使得聚合物形成了强而稳定的三维结构。
此外,合理设计金属配位聚合物的结构和配位键可以进一步调控其力学性能。
例如,通过控制配体的刚性和功能化修饰,可以实现聚合物的可逆变形和可编程组装,拓展其在材料科学中的应用。
其次,金属配位聚合物在材料科学和工程中具有广泛的应用前景。
首先是在可持续发展领域的应用。
金属配位聚合物可以用作高效的催化剂,用于可持续能源的转化和环境污染物的降解。
此外,金属配位聚合物还可以作为可再生能源材料和电池材料,用于储能和能源转换。
其次,在新材料合成方面,金属配位聚合物可以用于制备高性能的纳米颗粒、多孔材料和嵌段共聚物等功能材料。
这些材料在生物医学、电子器件和传感器等领域具有潜在的应用价值。
最后,在生物医学领域,金属配位聚合物可以设计成具有靶向性、可控释放药物的纳米载体,用于癌症治疗和诊断。
此外,金属配位聚合物还可以用于组织工程和生物成像等领域。
与此同时,金属配位聚合物的研究还面临着一些挑战。
首先是合理设计和合成金属配位聚合物的方法和策略。
由于其复杂的结构和特殊的化学性质,金属配位聚合物的合成往往较为困难,需要耗费较长的合成时间和条件。
其次是金属配位聚合物的稳定性和可持续性问题。
一些金属配位聚合物在环境和生物体内的稳定性较差,会限制其在实际应用中的使用。
因此,研究人员需要寻找新的配体和金属离子,以提高金属配位聚合物的稳定性和可持续性。
新型催化剂的开发及应用研究随着科技的不断发展和进步,新型催化剂的开发和应用研究也越来越受到人们的关注。
催化剂是一种能够加速化学反应速度、提高反应产物产率和选择性的物质。
在化学工业、能源、环保等领域都有广泛的应用。
因此,新型催化剂的研究和开发对于促进工业和环保事业的可持续发展具有重要意义。
一、金属有机骨架材料(MOF)催化剂金属有机骨架材料(MOF)是一种新型的多孔配位聚合物材料。
MOF具有具有高度可控的孔道结构、丰富的功能基团和特异的光、电、磁、催化等性质。
因此,MOF在工业催化、气体分离、吸附分离、传感材料、药物递送等领域都有广泛的用途。
其中,以铁、钴、镍、铜等为催化中心的MOF催化剂具有催化活性高、化学稳定性强、可重复使用等特点。
例如,Fe-MOF催化剂能够催化苯乙酮、苯甲醛、反式-β-苯乙烯酮等的氧化反应;Cu-MOF催化剂可以用于二烯烃和乙烯之间的[4+2]环加成反应。
二、生物基催化剂生物基催化剂是指利用酶催化反应的催化剂。
生物体内的酶具有高活性、高选择性、高稳定性等特点,因此具有广泛的应用价值。
目前,将酶固定在多孔介质或功能化表面上成为一种重要方法。
生物基催化剂应用在化学合成、酶传感器、医学化学等领域。
以蘑菇多酚酶为例,它具有较广的底物适应性,对多酚类化合物的氧化反应具有高选择性。
因此,将多酚酶固定在多孔介质或纳米粒子上,成为一种研究热点。
已有多项研究表明,多酚酶固定化催化剂对抗氧化剂等化合物,具有明显的高选择性、高稳定性以及良好的重复性。
三、纳米催化剂纳米催化剂是指粒径在1-100纳米的催化剂,其特点是具有高比表面积、高催化活性和可控的物理、化学性质。
因此,纳米催化剂应用范围广泛,在能源、环保、化学合成等领域得到广泛应用。
例如,三氧化钼纳米催化剂具有较高的氧化能力、高的活性表面积和较多的氧化态钼原子。
应用该纳米催化剂可以催化邻苯二酚和对苯二酚氧化反应、二氧化硫脱除反应等。
此外,CuO纳米催化剂也可以应用于废水处理、柴油氧化、有机反应等领域。
金属有机多孔配位聚合物的研究进展
多孔材料在物质分离、气体储存和异相催化等领域有着广泛的应用。
传统的无机多孔材料包括硅藻土和沸石等天然多孔材料和名目繁多的(如,活性炭、活性氧化铝、蛭石、微孔玻璃、多孔陶瓷等)人工多孔材料。
天然无机多孔材料的结构类型有限,人造无机多孔材料虽然可克服这一缺点(通过改变制备工艺,人们可以制备从微孔、中孔到大孔等各类多孔材料),但是人造多孔材料的缺点是无法获得均匀孔结构。
近年来"无机!有机杂化配合物作为一种新型的多孔材料引起了人们的广泛关注。
人们将这种配合物定义为金属有机类分子筛"其孔洞处在纳米的数量级" 又称纳米微孔配位聚合物,这类材料的功能可以通过无机物种或有机桥联分子进行调节,过渡金属可以将其还原转化为沸石性主体,从而产生一些有趣的具有磁性和光谱特性的孔洞,而有机物质可以调节孔道尺寸、改变孔的内表面,还具有化学反应性或手性,可以弥补传统分子筛的许多不,在异相催化、手性拆分、气体存储、离子交换、主客体化学、荧光传感器以及光电磁多功能材料等领域显示出良好的应用前景。
和无机多孔材料相比,这类分子材料具有(1)结构多样性:MOFs是由金属离子(node)和有机配体(linker或spacer)通过配位键形成的配位聚合物,有机配体分子的多样性和金属离子配位几何的多样性导致了它们构成的配位聚合物结构的多样性(2)分子设计和分子剪裁的可行性:调节有机配体的几何性质和选择不同配位几何的金属离子可调控配位聚合物孔的结构(3)制备条件温和:在常压或几十个大气压,200度左右或更低的温度下反应等优点,因而对MOFs 的研究备受化学和材料科学工作者的关注。
由于配位聚合物的形成可以看作具有各自配位特征的配体和金属离子之间的合理识别与组装,因此,配体的几何构型和配位性能及金属离子的配位趋向和配位能力对配位聚合物的结构起着决定作用。
此外,阴离子、溶剂、反应物配比、溶液的pH、合成方法(水热或溶剂热,溶液法、扩散法、溶胶法)、反应温度等也对配位聚合物的结构有重要的影响。
作为一个重要组成部分,金属离子在配位聚合物的形成中起到极其重要的作用,配体的配位信息就是通过金属离子,根据它们配位点化学本性和几何学的规则来识别的。
首先,金属离子本身的特性决定
其与不同化学本性的配位原子结合的能力和方式。
其次,金属离子的配位数决定周围配体的数目,配位构型决定配体的排布方式,而离子半径决定着配体配位基团可接近金属离子的自由空间的大小。
因此,通过选择不同的金属离子可对组装过程进行调控,得到不同的结构。
相对于较为有限的金属离子,有机配体的多样性和可调控性使其成为目前配位聚合物研究的焦点,选择和设计多功能的有机配体对配位聚合物的生成起着极其重要的作用。
配体中配位原子本身的性质、配位能力、配位模式,和配位原子的数目、分布方式(包括对称性、配位点间的间距、配位点间的连接基团),以及配体的配位构型等都影响最终结构的生成。
可以利用配体配位情况的不同,组装出多种多样的拓扑结构,还可以将配体中各组分所具有的不同功能引入到目标产物中,产生有机配体不具有的功能,或者使某些原有的功能大大提高。
有些情况下,还可以作为反应的前体,进一步和其他的金属离子或者有机配体生成更为复杂、更为有趣的配位聚合物。
自上世纪九十年代以来,MOFs的研究已经历了三个里程碑式的发展。
1990年,Robson等人第一次用多齿型配体与金属离子配位,得到了具有特殊几何结构的金属有机骨架材料,并研究了它们的孔结构。
1995年,Yaghi课题组和Moore 课题组真正开始研究这类金属有机骨架化合物的气体吸附性质。
这类第一代多孔材料存在着致命的缺点,它的孔隙是靠客体分子来支撑的,当客体分子被移走后,材料的骨架即塌陷。
因此,制备具有永久孔隙的金属有机框架(MOFs)结构的多孔材料成为新的研究目标。
1999年,Yaghi等报道了第一个具有永久孔隙的金属有机框架(MOFs)结构的材料,并首次将次级结构单元(secondary building units, SBUs)的概念应用到多孔配位聚合物的合成中,并发现,SBUs可增加多孔配位聚合物骨架的稳定性。
Yaghi得到的化合物MOF-5的比表面积已达到了2900 m2/g。
随后,Yaghi对MOF-5骨架进行化学修饰,得到了16种MOFs-5的同系物,研究了MOFs-5同系物对甲烷的吸附性能。
此外,Kitagawa、Bülow和Zhou等课题组也得到了不同孔结构的MOFs材料,这类多孔材料具有较大的孔道和对N2、H2、CO、CO2、CH4、C2H6等具有选择性的吸附。
由刚性配体形成的多孔配位聚合物被称为是第二代MOFs材料。
近两年来,在MOFs中引入柔性有机配体受到人们关注。
柔性配体在MOFs 中可能存在多种分子构象,气体吸附和解吸会导致配体不同构象间发生相互转
换,表现出从晶体到晶体可逆的结构转变。
MOFs材料类海绵状结构转变可能使其在高选择性气体吸附和分离中有很大的应用前景,引入柔性有机配体的多孔配位聚合物被称为是第三代MOFs材料。
相互贯穿是指两个基本点或多个相互独立的对称性相似的、但不存在共价键的结构的周期性排布,这种排布能够填充空间,周期间存在弱的非共价相互作用。
对于具有多孔性结构稳定的晶体物质,相互贯穿是很难避免的。
使用长链的键合配体,理论上可以得到较大的孔洞,实际上由于形成相互贯穿的结构,使其孔道较小或不存在。
一般对微孔材料的尺寸和可进入性具有负的效应,但仍然存在较大空洞结构的例子。
如何具有尽可能大的表面积,是多孔材料研究面临的很大挑战。
已报道的无序结构中,表面积最大的是碳,为2030m2/g。
而有序结构中,表面积最大的是Y型沸石,为904m2/g。
但是随着金属有机孔洞材料的发展,表面积已大大提高。
Yaghi等人曾报道了至今金属有机孔洞材料表面积最大的化合物,其表面积达4500 m2/g,并对如何设计表面积更大的结构进行了计算和探讨。
多孔材料最重要的性质是对气体的吸附。
吸附等温线用来测定化合物对不同气体的吸附。
一般来说,金属有机纳米簇合物一般显示I类型(即Langmuir型)吸收。
关于沸石对不同气体(CH4、N2、CO2、Ar、Kr、和Xe)的吸附性能的研究表明,气体的亲合性与孔洞大小相关。
此外,还受其他因素的影响:亲合力、空间位阻等,如:M3(BTC)2H2O 对于含有孤电子对的气体如H2O、NH3有较好的亲合力,而对于CO、CO2等只含有活性较差的电子对,吸附性很差;而一些大的分子,则因空间位阻而不能进入孔道。
作为气体吸附材料,一个很好的例子是Yaghi等人在2003年的Science上发表的一种金-有机材料MOF-5。
其最大吸收能力可达1g MOF-5分子吸收45mg H2 (即质量分数为4.5%)。
与美国能源部6.5%的应用目标十分接近。
继Yaghi 后不久,Pan 等人制备了一个Cu 化合物,气体存储的质量分数为1% 为了进行比较,再次测定了MOF-5的H2吸附等温线,发现在同样大气压下气体的存储质量分数可达1.65%,是Cu化合物的1.8倍。
而MOF-5分子的孔洞体积却是后者的6.6倍。
这表明,孔洞体积并不是决定气体吸附量的唯一因素。
还应考虑孔洞质量,而后者的关键因素是吸附气体与孔洞体积的相对大小。
因此,
最好的材料要具有合适的孔洞吸附气体,还要具有尽可能大的孔洞体积。
南京大学熊仁根、游效曾等在光学活性类沸石的组装及其手性拆分功能研究方面设计和合成具有手性与催化功能的无机材料。
以奎宁作为配体同金属离子自组装构成了一个能进行光学拆分的三维类沸石。
这是目前第一个能拆分的具有光学活性的类沸石。