逻辑函数的公式化简法
- 格式:ppt
- 大小:520.50 KB
- 文档页数:7
逻辑函数的公式化简法
公式化简法的原理就是反复使用规律代数的基本公式和常用公式消去函数式中多余的乘积项和多余的因式,以求得函数式的最简形式。
公式化简法没有固定的步骤。
现将常常使用的方法归纳如下:
一、并项法
二、汲取法
利用公式A+AB=A,汲取掉(即除去)多余的项。
A和B同样也可以是任何一个简单的规律式。
【例】试用汲取法化简下列规律函数:
三、消项法利用公式AB+ C+BC=AB+ C及AB+ C+BCD=AB+ C,将BC或BCD消去。
其中A、B、C、D都可以是任何简单的规律式。
【例】用消项法化简下列规律函数:
四、消因子法利用公式A+B=A+B,可消去多余的因子。
A、B均可以是任何简单的规律式。
【例】试用消因子法化简下列规律函数
五、配项法1、依据基本公式A+A=A可以在规律函数式中重复写入某一项,有时能获得更加简洁的化简结果。
2、依据基本公式A+=1,可以在函数式中乘以(A+ ),然后拆成两项分别与其他项合并,有时能得到更加简洁的化简结果。
在化简简单的规律函数时,往往需要敏捷、交替地运用上述方法,才能得到最终的化简结果。
【例】化简规律函数。
逻辑函数化简公式逻辑函数化简是一种将复杂的逻辑表达式简化为更简洁形式的方法。
通过化简,我们可以减少逻辑电路的复杂性,提高电路的性能和效率。
公式化简的过程涉及到逻辑运算的规则和性质。
下面是一些常见的逻辑函数化简公式:1. 同一律:A + 0 = A,A * 1 = A。
这表示在逻辑表达式中,与0相或的结果是原始信号本身,与1相与的结果是原始信号本身。
2. 吸收律:A + A * B = A,A * (A + B) = A。
这表示当一个信号与另一个信号的与运算结果相或,或者一个信号的与运算结果与另一个信号相与时,结果都是原始信号本身。
3. 分配律:A * (B + C) = A * B + A * C,A + (B * C) = (A + B) * (A + C)。
这表示在逻辑表达式中,可以将与运算分配到相或的运算中,或者将相或的运算分配到与运算中。
4. 德摩根定律:(A + B)' = A' * B',(A * B)' = A' + B'。
这表示在逻辑表达式中,如果一个信号取反后与另一个信号相与,或者一个信号取反后与另一个信号相或,相当于原始信号分别与另一个信号取反后的结果相或相与。
通过运用这些公式,我们可以逐步将复杂的逻辑表达式进行化简,从而得到更简洁的形式。
这有助于我们设计更简单、更高效的逻辑电路,并且减少电路的成本和功耗。
然而,化简过程也需要谨慎进行,需要根据具体情况来选择最优的化简策略。
有时候,过度地化简可能会导致逻辑电路的复杂性增加,或者引入一些错误。
因此,在进行逻辑函数化简时,我们需要充分理解逻辑运算的规则和性质,并结合具体的应用场景来进行合理化简。
逻辑函数的代数(公式)化简法代数化简法的实质就是反复使用逻辑代数的基本公式和常用公式消去多余的乘积项和每个乘积项中多余的因子,以求得函数式的最简与或式。
因此化简时,没有固定的步骤可循。
现将经常使用的方法归纳如下:①吸收法:根据公式A+AB=A 可将AB 项消去,A 和B 同样也可以是任何一个复杂的逻辑式。
()F A A BC A BC D BC =+⋅⋅+++例:化简()()()()()()F A A BC A BC D BCA A BC A BC D BCA BC A BC A BC D A BC=+⋅⋅+++=+++++=+++++=+解:现将经常使用的方法归纳如下:②消因子法:利用公式A+AB=A +B 可将AB 中的因子A 消去。
A 、B 均可是任何复杂的逻辑式。
1F A AB BEA B BE A B E=++=++=++例:2()F AB AB ABCD ABCDAB AB AB AB CDAB AB AB ABCDAB AB CD=+++=+++=+++=++现将经常使用的方法归纳如下:③合并项法(1):运用公式A B +AB=A 可以把两项合并为一项,并消去B 和B 这两个因子。
根据代入规则,A 和B 可以是任何复杂的逻辑式。
例:化简F BCD BCD BCD BCD=+++()()()()F BCD BCD BCD BCDBCD BCD BCD BCD BC D D BC D D BC BC B=+++=+++=+++=+=现将经常使用的方法归纳如下:③合并项法(2):利用公式A+A=1可以把两项合并为一项,并消去一个变量。
例:1()1F ABC ABC BCA A BC BCBC BC =++=++=+=现将经常使用的方法归纳如下:③合并项法(2):利用公式A+A=1可以把两项合并为一项,并消去一个变量。
例:2()()()()F A BC BC A BC BC ABC ABC ABC ABCAB C C AB C C AB AB A=+++=+++=+++=+=现将经常使用的方法归纳如下:例:1()()()()()(1)(1)()F AB AB BC BCAB AB C C BC A A BCAB ABC ABC BC ABC ABCAB ABC BC ABC ABC ABC AB C BC A AC B B AB BC AC=+++=+++++=+++++=+++++=+++++=++④配项法:将式中的某一项乘以A+A 或加A A ,然后拆成两项分别与其它项合并,进行化简。
6、逻辑代数的化简(公式法和卡诺图法)⼀、逻辑函数的化简将⼀个逻辑表达式变得最简单、运算量最少的形式就叫做化简。
由于运算量越少,实现逻辑关系所需要的门电路就越少,成本越低,可靠性相对较⾼,因此在设计逻辑电路时,需要求出逻辑函数的最简表达式。
由此可以看到,函数化简是为了简化电路,以便⽤最少的门实现它们,从⽽降低系统的成本,提⾼电路的可靠性。
通常来说,我们化简的结果会有以下五种形式为什么是这五种情况,这个跟我们实现的逻辑电路的元器件是有关系的。
在所有的逻辑电路中,都是通过与、或、⾮三种逻辑电路来实现的,之前说过逻辑“与或”、“或与”、“与或⾮”组合逻辑电路是具有完备性的,也就是说能够通过它们不同数量的组合能够实现任何电路。
通过不同的“与或”电路组成的电路,最后化简的表达式就是“与或”表达式,其他同理。
⼆、将使⽤“与或”表达式的化简表达式中乘积项的个数应该是最少的表达了最后要⽤到的与门是最少的,因为每⼀个乘积项都需要⼀个与门来实现。
同时也对应了或门输⼊端的个数变少,有2个与项或门就有2个输⼊端,有3个与项或门就有3个输⼊端。
所以第⼀个条件是为了我们的与门和或门最少。
每⼀个乘积项中所含的变量个数最少它是解决每⼀个与门的输⼊端最少。
逻辑函授的化简有三种⽅法三、逻辑函数的代数化简法3.1 并项法并项法就是将两个逻辑相邻(互补)的项合并成⼀个项,这⾥就⽤到了“合并律”将公因⼦A提取出来合并成⼀项,b和b⾮相或的结果就等于1,所以最后的结果就是A。
吸收法是利⽤公式“吸收律”来消去多余的项3.3 消项法消项法⼜称为吸收律消项法3.4 消因⼦法(消元法)3.4 配项法左边的例⼦⽤到了⽅法1,右边的例⼦⽤到了⽅法2。
3.5 逻辑函数的代数法化简的优缺点优点:对变量的个数没有限制。
在对定律掌控熟练的情况下,能把⽆穷多变量的函数化成最简。
缺点:需要掌握多个定律,在使⽤时需要能够灵活应⽤,才能把函数化到最简,使⽤门槛较⾼。
逻辑函数的公式化简法(经典实用)逻辑函数公式化简法是一种在数字逻辑设计中常用的方法,用于简化逻辑函数表达式,以便更有效地进行逻辑电路设计。
以下是一些经典实用的逻辑函数公式化简法:
1.摩根定律
摩根定律可以将两个逻辑函数表达式进行等价转换。
它有两个版本:
① 0-1律:¬(A+B) = ¬A * ¬B
② A律:¬(A*B) = ¬A + ¬B
使用摩根定律可以将复杂的逻辑函数表达式转换为更简单的形式。
2.吸收律
吸收律可以用来简化逻辑函数表达式中的冗余项。
它有两个版本:
① A+AB=A
② A+A'B=A+B
使用吸收律可以消除逻辑函数表达式中的冗余项,使表达式更简洁。
3.分配律
分配律可以将逻辑函数表达式中的括号展开,使表达式更易于分析。
它有两个版本:
① A*(B+C)=AB+AC
② A+(B C)=(A+B)(A+C)
使用分配律可以简化逻辑函数表达式中的括号,使表达式更简洁。
4.反演律
反演律可以用来求得一个逻辑函数的反函数。
它在数字逻辑设计中非常有用,因为它允许我们在一个逻辑函数和它的反函数之间进行转换。
反演律的公式为:A' * (A * B) = B。
通过使用以上经典实用的逻辑函数公式化简法,我们可以将复杂的逻辑函数表达式转换为更简单的形式,从而更有效地进行逻辑电路设计。
1.3.4 逻辑函数的化简•对逻辑函数进行化简,可以求得最简逻辑表达式,也可以使实现逻辑函数的逻辑电路得以简化,这样既有利于节省元器件,也有利于提高可靠性。
•逻辑函数有如下三种化简方法:•公式化简法:利用逻辑代数的基本公式和规则来化简逻辑函数。
•图解化简法:又称卡诺图(Karnaugh Map)化简法。
•表格法:又称Q-M(Quine-McCluskey)化简法。
1.逻辑函数的公式化简法同一个逻辑函数,可以用不同类型的表达式表示,主要有以下五类:“与或”表达式、“或与”表达式、“与非”-“与非”表达式、“或非”-“或非”表达式、“与或非”表达式。
例如函数:=+Z AC AB“与或”表达式A B A C“或与”表达=++()()式AC AB“与非”-“与非”表达=⋅式=+++A B A C“或非”-“或非”表达式“与或非”表达式判断最简“与或”表达式的条件如下:(1)乘积项(即与项)个数最少的“与或”表达式;(2)当乘积项个数相等,则每个乘积项中因子(即变量)的个数最少的“与或”表达式。
例1-5 以下4个“与或”表达式是相等的,即它们表示同一个函数:(1)(2)(3)(4)=+++=++=++=++Z AC BC AB ACAC ABC ACAC BC ACAC AB AC 试判断哪一个是最简“与或”表达式。
(1)(2)(3)(4)=+++=++=++=++Z AC BC AB ACAC ABC ACAC BC ACAC AB AC 解:根据判断条件(1),式(1)含有4个与项,而式(2)~(4)都含有3个与项,因此,式(2)~(4)有可能最简;进一步比较与项中个数,式(3)和式(4)中,各与项都含2个变量,而式(2)中有一个与项含3个变量。
结论:式(3)和式(4)同为该函数的最简“与或”表达式。
公式法化简:借助定律和定理化简逻辑函数,常用以下几种方法。
(1)并项法利用互补率1A A +=()+=+=A BC A BC A B C C A B()()+++=⋅⊕+⋅⊕=A BC BC A BC BC A B C A B C A+=B ABD B,将两项合并为一项,合并时消去一个变量,如:(2)吸收法利用定理1(A + AB = A ),吸收掉(即除去)多余的项,如:(3)消去法利用定理2(+=+A AB A B ()++=++=+=+AB A C BC AB A B C AB ABC AB C(4)配项法根据互补律,利用()=+B A A B +A A ()()+++=+++++AB BC BC AB AB BC A A BC AB C C =+++++AB BC ABC A BC ABC ABC()()()=+++++AB ABC BC ABC A BC ABC =++AB BC A C),消去多余的因子,如:,先添上()作配项用,以便最后消去更多的项。