中考数学几何证明压轴题大全

  • 格式:doc
  • 大小:243.00 KB
  • 文档页数:8

下载文档原格式

  / 8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2.

(1) 求证:DC=BC;

(2) E 是梯形内一点,F 是梯形外一点,且∠E DC=∠F BC ,DE=BF ,试判断△E CF 的形

状,并证明你的结论;

(3) 在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值.

[解析] (1)过A 作DC 的垂线AM 交DC 于M,

则AM=BC=2.

又tan ∠ADC=2,所以2

12

DM ==.即DC=BC. (2)等腰三角形.

证明:因为,,DE DF EDC FBC DC BC =∠=∠=. 所以,△DEC ≌△BFC

所以,,CE CF ECD BCF =∠=∠.

所以,90ECF BCF BCE ECD BCE BCD ∠=∠+∠=∠+∠=∠=︒

即△ECF 是等腰直角三角形.

(3)设BE k =,则2CE CF k ==,所以EF =. 因为135BEC ∠=︒,又45CEF ∠=︒,所以90BEF ∠=︒.

E

B

F

C

D

A

所以22(22)3BF k k k =

+=

所以1sin 33

k BFE k ∠=

=.

2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G .

(1)求证:△ADE ≌△CBF ;

(2)若四边形 BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论.

[解析] (1)∵四边形ABCD 是平行四边形,

∴∠1=∠C ,AD =CB ,AB =CD . ∵点E 、F 分别是AB 、CD 的中点, ∴AE =

21AB ,CF =2

1

CD . ∴AE =CF

∴△ADE ≌△CBF .

(2)当四边形BEDF 是菱形时, 四边形 AGBD 是矩形.

∵四边形ABCD 是平行四边形, ∴AD ∥BC . ∵AG ∥BD ,

∴四边形 AGBD 是平行四边形.

∵四边形 BEDF 是菱形, ∴DE =BE . ∵AE =BE ,

∴AE =BE =DE .

∴∠1=∠2,∠3=∠4.

∵∠1+∠2+∠3+∠4=180°, ∴2∠2+2∠3=180°. ∴∠2+∠3=90°. 即∠ADB =90°. ∴四边形AGBD 是矩形

3、如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转.

(1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测

量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想;

(2)若三角尺GEF 旋转到如图13-3所示的位置时,线段FE 的延长线与AB 的延长

线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.

[解析](1)BM =FN .

证明:∵△GEF 是等腰直角三角形,四边形ABCD 是正方形,

∴ ∠ABD =∠F =45°,OB = OF . 又∵∠BOM =∠FON , ∴ △OBM ≌△OFN . ∴ BM =FN .

图13-2

E A B D

F O M N 图13-3 A B D E

F

O M N

C

图13-1 A ( B ( E ) O

(2) BM =FN 仍然成立.

(3) 证明:∵△GEF 是等腰直角三角形,四边形ABCD 是正方形,

∴∠DBA =∠GFE =45°,OB =OF . ∴∠MBO =∠NFO =135°.

又∵∠MOB =∠NOF , ∴ △OBM ≌△OFN . ∴ BM =FN .

4、如图,已知⊙O 的直径AB 垂直于弦CD 于E ,连结AD 、BD 、OC 、OD ,且OD =5。 (1)若sin ∠BAD =

3

5

,求CD 的长; (2)若 ∠ADO :∠EDO =4:1,求扇形OAC (阴影部分)的面积(结果保留π)。

[解析] (1)因为AB 是⊙O 的直径,OD =5

所以∠ADB =90°,AB =10

在Rt △ABD 中,sin ∠BAD BD

AB

=

又sin ∠BAD =35,所以BD 103

5

=,所以BD =6

AD AB BD =

-=-=22221068

因为∠ADB =90°,AB ⊥CD

所以DE AB AD BD CE DE ··,== 所以DE ⨯=⨯1086 所以DE =

245

所以CD DE ==

2485

(2)因为AB 是⊙O 的直径,AB ⊥CD

所以CB BD AC AD ⌒⌒⌒⌒

,==

所以∠BAD =∠CDB ,∠AOC =∠AOD 因为AO =DO ,所以∠BAD =∠ADO 所以∠CDB =∠ADO

设∠ADO =4x ,则∠CDB =4x

由∠ADO :∠EDO =4:1,则∠EDO =x 因为∠ADO +∠EDO +∠EDB =90° 所以4490x x x ++=︒ 所以x =10°

所以∠AOD =180°-(∠OAD +∠ADO )=100°