最新导数微积分公式
- 格式:doc
- 大小:25.50 KB
- 文档页数:10
常用微积分式导数公式微积分是数学的一个重要分支,用于研究函数的变化规律。
在微积分中,导数是一个重要概念,用于描述函数在特定点的变化率。
下面是常用微积分式中的一些导数公式:1.基本导数公式:- 常数的导数是0:d/dx(c) = 0。
- 幂函数的导数:d/dx(x^n) = n*x^(n-1)。
- 指数函数的导数:d/dx(e^x) = e^x。
- 对数函数的导数:d/dx(ln(x)) = 1/x。
2.三角函数的导数公式:- 正弦函数的导数:d/dx(sin(x)) = cos(x)。
- 余弦函数的导数:d/dx(cos(x)) = -sin(x)。
- 正切函数的导数:d/dx(tan(x)) = sec^2(x)。
- 余切函数的导数:d/dx(cot(x)) = -csc^2(x)。
- sec函数的导数:d/dx(sec(x)) = sec(x) * tan(x)。
- csc函数的导数:d/dx(csc(x)) = -csc(x) * cot(x)。
3.反三角函数的导数公式:- 反正弦函数的导数:d/dx(arcsin(x)) = 1 / sqrt(1 - x^2)。
- 反余弦函数的导数:d/dx(arccos(x)) = -1 / sqrt(1 - x^2)。
- 反正切函数的导数:d/dx(arctan(x)) = 1 / (1 + x^2)。
- 反余切函数的导数:d/dx(arccot(x)) = -1 / (1 + x^2)。
- 反sec函数的导数:d/dx(arcsec(x)) = 1 / (,x, * sqrt(x^2- 1))。
- 反csc函数的导数:d/dx(arccsc(x)) = -1 / (,x, * sqrt(x^2 - 1))。
4.复合函数的导数公式:- 若y = f(g(x)),则y对x的导数为dy/dx = f'(g(x)) * g'(x)。
5.对数微分法则:- 若y = log_b(x),则dy/dx = 1 / (x * ln(b))。
高等数学导数、微分、不定积分公式(总3页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除一、基本导数公式:()()()()()()()()()()()()()()()''1'''''''2'2'''''21.2.3.ln 4.15.log ln 16.ln7.sin cos8.cos sin9.tan sec 10.cot csc 11.sec sec tan 12.csc csc cot 113.arcsin 114.arccos 115.arctan 11n n x xx xa kx kxnx a a ae ex x a x x x x x x x xx x x x x x x x x x x -========-==-==-==-=+()'216.a cot 1rc x =-+二、基本微分公式:()()()()()()()()()()()()()()1221.2.3.ln 4.15.ln 16.log ln7.sin cos8.cos sin9.tan sec 10.cot csc 11.sec sec tan 12.csc csc cot 113.arcsin 14.arccos n n xxxxa d kx k d x nx dx d aa adx d e e dxd x dxx d x dxx ad x xdx d x xdx d x xdx d x xdx d x x xdx d x x xdx d x dxd x -========-==-==-=()()221115.arctan 1116.cot 1dxd x dx xd arc x dx x=-=+=-+三、不定积分基本公式:11.2.13.14.ln 15.ln ||6.sin cos7.cos sin8.tan ln |cos |9.cot ln |sin |10.csc ln |csc cot |11.sec ln |sec tan |n nx x xxkdx kx c xx dx cn e dx e c a dx a cadx x c xxdx x cxdx x c xdx x c xdx x c xdx x x c xdx x x c+=+=++=+=+=+=-+=+=-+=+=-+=++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2232121311xdx x cx dx x cdx cx x =+=+=-+⎰⎰⎰222222222112.c cot sin113.sec tan cos 114.arctan 115.arcsin16.sec tansec 17.csc cot csc 118.arctan 119.ln ||220.dx cs xdx x cx dx xdx x c xdx x c x dx x cx xdx x c x xdx x cdx x c x a a a dx x a c x a a x a==-+==+=++=+=+=-+=++-=+-+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰arcsin 21.ln ||22.ln ||xc a dx x c x c=+=++=++⎰⎰⎰()221ln 112x dx x c x =+++⎰ 21arctan 1dx x c x =++⎰四、特殊的三角函数值:五、三角函数的和差化积公式:sin sin 2sincos22sin sin 2cos .sin22cos cos 2cos .cos22cos cos 2sin .sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=⋅+--=+-+=+--=六、三角函数的积化和差公式:()()1sin cos sin sin 2αβαβαβ⋅=++-⎡⎤⎣⎦ ()()1cos sin sin sin 2αβαβαβ⋅=+--⎡⎤⎣⎦ ()()1cos cos cos cos 2αβαβαβ⋅=++-⎡⎤⎣⎦ ()()1sin sin cos cos 2αβαβαβ⋅=+--⎡⎤⎣⎦ 幂的公式:21cos 2sin 2aα-=21cos 2cos 2αα+=七、万能公式:令 tan 2x t = 则x=2arctant 221dx dt t=+ 22222sin cos 2tan2222sin 2sin cos 221sin cos 1tan 222x x x x x t x x x t α====+++ 22222222cos sin 1tan 1222cos 1cos sin 1tan 222x x xt x x x x t ---===+++ 222tan22tan 11tan 2x t x x t ==-- 八、平方关系:222222sin cos 11tan sec 1cot csc αβαααα+=+=+=九、导数关系:tan .cot 1sin .csc 1cos .sec 1αααααα===十、商的关系:sin sec tan cos csc ααααα== csc csc cot sin sec ααααα==。
导数、微分、积分公式总结【导数】(1)(u ± v)′=u′±v′(2)(u v)′=u′v+ u v′(记忆方法:u v + u v ,分别在“u”上、“v”上加′)(3)(c u)′= c u′(把常数提前)╭u╮′u′v- u v′(4)│——│=———————( v ≠ 0 )╰v╯v²【关于微分】左边:d打头右边:dx置后再去掉导数符号′即可【微分】设函数u=u(x),v=v(x)皆可微,则有:(1)d(u ± v)= du ± dv(2)d(u v)= du·v + u·dv╭u╮du·v - u·dv(3)d│——│=———————( v ≠ 0 )╰v╯v²(5)复合函数(由外至里的“链式法则”)dy——=f′(u)·φ′(x)dx其中y =f(u),u =φ′(x)(6)反函数的导数:1[ fˉ¹(y)]′=—————f′(x)其中,f′(x)≠ 0【导数】注:【】里面是次方的意思(1)常数的导数:(c)′=0(2)x的α次幂:╭【α】╮′【α -1】│x│=αx╰╯(3)指数类:╭【x】╮′【x】│a│=alna(其中a >0 ,a ≠ 1)╰╯╭【x】╮′【x】│e│=e╰╯(4)对数类:╭╮′1 1│logx│=——log e=———(其中a >0 ,a ≠ 1)╰a╯x a xlna1(lnx)′=——x(5)正弦余弦类:(sinx)′=cosx(cosx)′=-sinx【微分】注:【】里面是次方的意思(1)常数的微分:dC =0(2)x的α次幂:【α】【α -1】dx=αxdx(3)指数类:【x】【x】da=alnadx(其中a >0 ,a ≠ 1)【x】【x】de=edx(4)对数类:1 1dlogx=——log e=———dx(其中a >0 ,a ≠ 1)a x a xlna1dlnx =——dxx(5)正弦余弦类:dsinx =cosxdxdcosx =-sinxdx【导数】(6)其他三角函数:1(tanx)′=————=sec²xcos²x1(cotx)′=-————=-csc²xsin²x(secx)′=secx·tanx(cscx)′=-cscx·cotx(7)反三角函数:1(arcsinx)′=———————(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1(arccosx)′=-———————(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1(arctanx)′=—————1+x²1(arccotx)′=-—————1+x²【微分】(6)其他三角函数:1dtanx =————=sec²xdxcos²x1dcotx =-————=-csc²xdxsin²xdsecx =secx·tanxdxdcscx =-cscx·cotx dx(7)反三角函数:1darcsinx =———————dx(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1darccosx =-———————dx(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1darctanx =—————dx1+x²1darccotx =-—————dx1+x²导数的应用(一)——中值定理特殊形式【拉格朗日中值定理】—————→【罗尔定理】【拉格朗日中值定理】如果函数y =f(x)满足:(1)在闭区间〔a ,b〕上连续;(2)在开区间(a ,b)上可导。
大学数学微积分基本公式微积分是数学的一门基础学科,是研究变化率和积分的学科。
微积分理论的基础是一些基本公式,这些公式在微积分的各个领域中都有重要的应用。
本文将介绍一些大学数学微积分中常用的基本公式。
1. 导数公式导数是函数变化率的度量,表示函数在某一点上的斜率。
以下是几个常用的导数公式:1.1 常数函数的导数:对于常数c,其导数为0,即d(cx)/dx = 0。
1.2 幂函数的导数:对于函数f(x) = x^n,其中n是实数,其导数为d(x^n)/dx = nx^(n-1)。
1.3 指数函数的导数:对于函数f(x) = e^x,其中e是自然对数的底数,其导数为d(e^x)/dx = e^x。
1.4 对数函数的导数:对于函数f(x) = ln(x),其中ln表示自然对数,其导数为d(ln(x))/dx = 1/x。
1.5 三角函数的导数:对于函数f(x) = sin(x),其导数为d(sin(x))/dx= cos(x)。
类似地,d(cos(x))/dx = -sin(x),d(tan(x))/dx = sec^2(x)等。
2. 积分公式积分是导数的逆运算,表示函数的累积变化量。
以下是几个常用的积分公式:2.1 幂函数的积分:对于函数f(x) = x^n,其中n不等于-1,其积分为∫(x^n)dx = (1/(n+1))x^(n+1) + C,其中C是常数。
2.2 指数函数的积分:对于函数f(x) = e^x,其积分为∫(e^x)dx = e^x+ C。
2.3 对数函数的积分:对于函数f(x) = 1/x,其积分为∫(1/x)dx = ln|x|+ C。
2.4 三角函数的积分:对于函数f(x) = sin(x),其积分为∫sin(x)dx = -cos(x) + C。
类似地,∫cos(x)dx = sin(x) + C,∫sec^2(x)dx = tan(x) + C等。
3. 极限公式极限是微积分中一个重要概念,用于描述函数在某点趋近于某个值的行为。
微积分的公式大全微积分是数学的一个分支,主要研究连续变化的函数及其相关性质。
在微积分中,有许多重要的公式在各个方面被广泛应用。
下面给出了微积分的一些重要公式。
1.极限公式(1)a^0=1,a≠0(2)lim(x→0) sinx/x = 1(3)lim(x→∞) (1+1/x)^x = e(4)lim(x→∞) (1+1/n)^nt = e^t(5)lim(x→0) (1+x)^1/x = e(6)lim(x→∞) (1+1/x)^x = e2.微分公式(1)dy/dx (x^n) = nx^(n-1)(2)dy/dx (a^x) = a^x ln(a)(3)dy/dx (e^x) = e^x(4)d/dx (ln(x)) = 1/x(5)d/dx (sinx) = cosx(6)d/dx (cosx) = -sinx(7)d/dx (tanx) = sec^2x(8)d/dx (cotx) = -csc^2x(9)d/dx (secx) = secx tanx(10)d/dx (cscx) = -cscx cotx3.积分公式(1)∫x^n dx = x^(n+1)/(n+1) + C,n≠-1(2)∫a^x dx = a^x/ln(a) + C(3)∫e^x dx = e^x + C(4)∫1/x dx = ln,x, + C(5)∫sinx dx = -cosx + C(6)∫cosx dx = sinx + C(7)∫sec^2x dx = tanx + C(8)∫csc^2x dx = -cotx + C(9)∫secx tanx dx = secx + C(10)∫cscx cotx dx = -cscx + C4.导数规则(1)(f+g)’=f’+g’(2)(af)’ = af’,a为常数(3)(f×g)’=f’×g+f×g’(4)(f/g)’ = (f’g - fg’)/g^2,g≠0(5)(fog)’=f’og×g’,o表示复合函数(6)(f^n)’ = nf^(n-1) f’,n为常数5.积分规则(1)∫(f + g) dx = ∫f dx + ∫g dx(2)∫(af) dx = a∫f dx,a为常数(3)∫(f × g) dx = ∫f dx ∫g dx - ∫f’ dx ∫g dx + C,C 为常数(4)∫(1/f) dx = ∫1/f dx(5)∫f’(x) dx = f(x) + C,C为常数以上是微积分中的一些公式,它们在求解问题和推导定理时都起到了重要的作用。
微积分的基本公式一定看精心整理微积分是数学的一个重要分支,研究变化的量与变化率,并通过极限、导数和积分等概念来描述和计算。
一、导数的求法公式1.基本导数公式:(1)常数函数的导数为0。
(2)幂函数的导数:设y=x^n,则y'=n*x^(n-1)。
(3)指数函数的导数:设y=a^x,则y' = ln(a) * a^x。
(4)对数函数的导数:设y=log_a(x),则y' = 1 / (x * ln(a))。
2.基本求导法则:(1)和差法则:设f(x)和g(x)是可导函数,则(f+g)'=f'+g',(f-g)'=f'-g'。
(2)常数倍法则:设f(x)是可导函数,c是常数,则(c*f)'=c*f'。
(3)乘积法则:设f(x)和g(x)是可导函数,则(f*g)'=f'*g+f*g'。
(4)商法则:设f(x)和g(x)是可导函数,且g(x)≠0,则(f/g)'=(f'*g-f*g')/g^2(5)复合函数法则:设f(x)和g(x)是可导函数,则(f(g(x)))'=f'(g(x))*g'(x)。
二、常见函数的积分公式1.基本积分公式:(1)幂函数的积分:设n≠-1,则∫x^n dx = (1/(n+1)) * x^(n+1) + C,其中C为常数。
(2)指数函数的积分:∫e^x dx = e^x + C,其中C为常数。
(3)对数函数的积分:∫(1/x) dx = ln,x, + C,其中C为常数。
2.基本初等函数的积分:(1)正弦函数与余弦函数的积分:∫sin(x) dx = -cos(x) + C,∫cos(x) dx = sin(x) + C,其中C为常数。
(2)正切函数的积分:∫tan(x) dx = ln,sec(x), + C,其中C为常数。
导数微分不定积分公式一、导数导数是微积分中的重要概念,表示函数在特定点上的变化率。
假设函数y=f(x),其中x是自变量,y是因变量,那么函数在其中一点x=a处的导数表示为f'(a)或$\frac{dy}{dx}$。
导数的定义可以通过极限来表示:$$f'(a) = \lim_{h \to 0}\frac{f(a+h)-f(a)}{h}$$其中,h是一个无穷小的增量。
导数有以下几个基本规则:1. 常数规则:如果f(x)是一个常数,那么它的导数等于零,即$\frac{d}{dx}(c) = 0$。
2. 幂函数规则:对于幂函数f(x) = $x^n$,其中n是任意实数,它的导数是f'(x) = $nx^{(n-1)}$。
3. 指数函数规则:对于指数函数f(x) = $a^x$,其中a是常数且大于零,它的导数是f'(x) = $a^x\ln(a)$。
4. 对数函数规则:对于对数函数f(x) = $\log_a{x}$,其中a是常数且大于零且不等于1,它的导数是f'(x) = $\frac{1}{x\ln(a)}$。
5.和差规则:设f(x)和g(x)是可导函数,那么它们的和(差)f(x)±g(x)的导数是f'(x)±g'(x)。
6. 积法则:设f(x)和g(x)是可导函数,那么它们的积fg的导数是f'(x)g(x)+f(x)g'(x)。
7. 商法则:设f(x)和g(x)是可导函数,且g(x)不等于零,那么它们的商$\frac{f(x)}{g(x)}$的导数是$\frac{f'(x)g(x)-f(x)g'(x)}{(g(x))^2}$。
此外,还有复合函数的导数、隐函数的导数等规则,它们的求导公式可以根据基本规则和链式法则来推导。
二、微分微分是导数的一个重要应用,它描述了函数局部变化的情况。
微分有两种方式表示,一种是微分形式,另一种是微分方程形式。
导数微积分公式大全1.函数的导数定义公式:若函数$f(x)$在区间$[a, b]$内有定义,且对于任意$x\in(a, b)$,函数$f(x)$在点$x$处的导数存在,则导数的定义如下:\begin{align*}f'(x) &= \lim_{\Delta x \to 0} \frac{f(x + \Delta x) -f(x)}{\Delta x}\\&= \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}\end{align*}2.基本导数法则:(1)常数函数导数:若$f(x)=C$,其中$C$为常数,则$f'(x)=0$。
(2)幂函数导数:若$f(x) = x^n$,其中$n$为正整数,则$f'(x) = nx^{n-1}$。
(3)指数函数导数:若$f(x)=e^x$,则$f'(x)=e^x$。
(4)对数函数导数:若$f(x) = \ln x$,则$f'(x) = \frac{1}{x}$。
(5)三角函数导数:若$f(x) = \sin x$,则$f'(x) = \cos x$;若$f(x) = \cos x$,则$f'(x) = -\sin x$;若$f(x) = \tan x$,则$f'(x) = \sec^2 x$。
3.四则运算法则:若函数$f(x)$和$g(x)$都在一些区间上可导,则其和、差、积、商的导数如下:(1)和的导数:$(f+g)'(x)=f'(x)+g'(x)$(2)差的导数:$(f-g)'(x)=f'(x)-g'(x)$(3) 积的导数:$(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x)\cdot g'(x)$(4) 商的导数:$\left(\frac{f}{g}\right)'(x) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{[g(x)]^2}$4.复合函数导数:若函数$y=f(g(x))$可微分,则导数$f'(g(x))$和$g'(x)$的乘积等于复合函数$y$对$x$的导数:\\frac{dy}{dx} = \frac{dy}{dg} \cdot \frac{dg}{dx}\]5.高阶导数:若函数$f(x)$的导数$f'(x)$存在,则导数$f'(x)$的导数称为$f(x)$的二阶导数,表示为$f''(x)$,类似地,导数$f''(x)$的导数称为$f(x)$的三阶导数,以此类推。
基本的导数和积分公式基本的导数和积分公式是微积分的基础,它们是在求解导数和积分时经常使用的公式集合。
这些公式涉及到各种函数的导数和积分,如常数函数、幂函数、指数函数、对数函数、三角函数等。
下面我将介绍一些常见的基本导数和积分公式。
1.常数函数:f(x)=C,其导数为f'(x)=0,其中C为常数;积分:∫f(x)dx= Cx + K,其中K为积分常数。
1.幂函数:f(x)=x^n,其中n为常数;导数:f'(x) = nx^(n-1);积分(n ≠ -1):∫x^n dx = (1/(n+1))x^(n+1) + K;积分(n = -1):∫x^(-1) dx = ln,x, + K。
1.指数函数:f(x)=a^x,其中a为常数且a>0;导数:f'(x) = a^x * ln(a);积分:∫a^xdx = (1/ln(a)) * a^x + K。
1. 自然对数函数:ln(x),其中x>0;导数:(ln(x))' = 1/x;积分:∫(1/x) dx = ln,x, + K。
2. 一般对数函数:log_a(x),其中x>0且a>0且a≠1;导数:(log_a(x))' = (1/(xln(a)));积分:∫(1/(xln(a))) dx = log_a,x, + K。
1. 正弦函数:sin(x);导数:(sin(x))' = cos(x);积分:∫cos(x) dx = sin(x) + K。
2. 余弦函数:cos(x);导数:(cos(x))' = -sin(x);积分:∫sin(x) dx = -cos(x) + K。
3. 正切函数:tan(x);导数:(tan(x))' = sec^2(x);积分:∫sec^2(x) dx = tan(x) + K。
4. 余切函数:cot(x);导数:(cot(x))' = -csc^2(x);积分:∫csc^2(x) dx = -cot(x) + K。
微积分的基本公式微积分是数学的一个分支,涉及到函数、极限、导数、积分等概念和理论。
在微积分中,有很多基本公式被广泛应用于解决各种问题。
下面是一些微积分的基本公式及其应用:1.导数公式:-常数导数公式:对于任意常数c,其导数为0。
- 幂函数导数公式:对于任意实数n,导数公式为d(x^n) / dx = n * x^(n-1)。
- 指数函数导数公式:对于任意实数a,指数函数e^x的导数为d(e^x) / dx = e^x。
- 对数函数导数公式:对于任意实数a和b,自然对数函数ln(x)的导数为d(ln(x)) / dx = 1 / x。
2.积分公式:- 幂函数积分公式:对于任意实数n(n ≠ -1),积分公式为∫(x^n)dx = (1 / (n+1)) * x^(n+1) + C,其中C为常数。
- 指数函数积分公式:对于任意实数a,指数函数e^x的积分公式为∫e^xdx = e^x + C,其中C为常数。
- 对数函数积分公式:对于任意实数a和b,自然对数函数ln(x)的积分公式为∫(1 / x)dx = ln,x, + C,其中C为常数。
3.基本微积分定理:基本微积分定理是微积分的核心定理之一,它定量描述了函数与其导函数之间的关系。
根据基本微积分定理,如果F(x)是函数f(x)的一个原函数,则有∫f(x)dx = F(x) + C,其中C为常数。
4.链式法则:链式法则是求复合函数导数的一个重要工具。
设有函数y = f(g(x)),其中f(u)和g(x)分别是可导函数,那么复合函数关于自变量x的导数可以表示为dy / dx = dy / du * du / dx。
5.积分换元法:积分换元法是求定积分的一个常用方法。
当遇到被积函数中含有复杂的函数形式时,可以通过引入一个合适的变量代换,将原函数转化为较简单的形式来进行积分计算。
上述只是微积分中的几个基本公式,实际上微积分涉及到更多的公式和方法。
微积分在物理、工程、经济学等领域中具有广泛的应用,可以用于描述和分析各种变化过程,计算曲线的斜率、面积、体积等。
16个微积分公式微积分是数学的一个重要分支,研究的是函数的极限、导数和积分等概念及其应用。
下面将介绍16个微积分公式,包括导数和积分的基本公式以及一些常用的微积分技巧。
一、导数的基本公式1. 常数函数的导数公式:常数函数的导数为0。
这是因为常数函数在任意点的斜率都是0。
2. 幂函数的导数公式:幂函数的导数等于指数乘以底数的指数减1。
3. 指数函数的导数公式:指数函数的导数等于该函数自身乘以底数的自然对数。
4. 对数函数的导数公式:对数函数的导数等于该函数自身除以自变量。
5. 三角函数的导数公式:三角函数的导数可以通过基本的三角函数关系推导得出。
二、积分的基本公式1. 定积分的基本公式:定积分可以看作是函数在给定区间上的面积。
计算定积分可以使用牛顿-莱布尼茨公式,即求导和积分的逆运算。
2. 不定积分的基本公式:不定积分是积分的一种形式,表示函数的原函数。
计算不定积分可以使用导数和积分的基本公式。
三、微积分的常用技巧1. 函数的导数与原函数的关系:函数的导数可以用来求函数的原函数,而函数的原函数可以用来求函数的积分。
2. 导数的链式法则:如果一个函数是两个函数的复合函数,那么它的导数可以通过链式法则来计算。
3. 积分的换元法:积分的换元法是一种常用的求积法则,可以通过变量代换来简化积分的计算。
4. 积分的分部积分法:分部积分法是积分的一种常用技巧,可以将一个复杂的积分转化为两个简单的积分。
5. 积分的化简技巧:有时候,积分的式子可以通过一些化简技巧来简化,如分子分母的拆分、积分区间的变换等。
6. 导数的极值问题:导数可以用来求函数的极值点,通过判断导数的正负可以确定函数的增减性。
7. 积分的应用:积分在物理学、经济学等领域有广泛的应用,如求曲线的长度、求物体的质心等。
8. 微分方程的解法:微分方程是微积分的一个重要应用,可以用来描述物理系统的变化规律。
求解微分方程可以通过积分的方法来得到解析解。
9. 隐函数的求导:隐函数是指用一个方程来表示的函数,它的导数可以通过求偏导数来计算。
高中常用微积分公式表微积分可以被认为是数学的核心部分,高中的学生在学习高数的过程中,微积分公式是学习的重要组成部分。
下面我们来了解一些常见的高中数学微积分公式。
首先,让我们来看看一些基础的微积分公式。
1、求导公式:$frac{d}{dx}(u(x)cdot v(x))=u(x)cdotv(x)+u(x)cdot v(x)$2、求积分公式:$int u(x)cdot v(x);dx=u(x)cdot v(x)-int u(x)cdot v(x);dx$3、泰勒公式:$f(x)=f(a)+frac{f(a)}{1!}(x-a)+frac{f(a)}{2!}(x-a)^2+frac{f ^{(3)}(a)}{3!}(x-a)^3+cdots$4、微分中值定理:如果在$[a,b]$区间内,函数$f(x)$连续,则存在一个$cin[a,b]$使得$f(c)=frac{f(b)-f(a)}{b-a}$。
接下来,看看一些更复杂的微积分公式。
1、三角函数的偏导公式:$frac{partial}{partialx}Sin(x)=Cos(x)$、$frac{partial}{partial x}Cos(x)=-Sin(x)$2、极限公式:$lim_{xrightarrow a}f(x)=L$3、改变变量公式:$int f(x)dx=int f(x(t))x(t)dt$4、泰勒展开公式:$f(x)=f(a)+frac{1}{1!}f(a)(x-a)+frac{1}{2!}f(a)(x-a)^2+frac {1}{3!}f^{(3)}(a)(x-a)^3+cdots$最后,我们来看看一些极端的微积分公式。
1、极限的运算公式:$lim_{xrightarrow 0}frac{Sin(x)}{x}=1$2、Stoke公式:$int_{C}overrightarrow{F}cdot doverrightarrow{s}=iint_{S}(ablatimesoverrightarrow{F})cdot doverrightarrow{S}$3、有界分的定公式:$int_{a}^{b}f(x);dx=F(b)-F(a)$4、微分的运算公式:$frac{d^2y}{dx^2}=frac{d}{dx}frac{dy}{dx}$通过以上介绍,相信大家都能够更加熟悉高中常用的微积分公式了。
导数、微分、积分公式总结【导数】(1)(u ± v)′=u′±v′(2)(u v)′=u′v+ u v′(记忆方法:u v + u v ,分别在“u”上、“v”上加′)(3)(c u)′= c u′(把常数提前)╭u╮′u′v- u v′(4)│——│=———————( v ≠ 0 )╰v╯v²【关于微分】左边:d打头右边:dx置后再去掉导数符号′即可【微分】设函数u=u(x),v=v(x)皆可微,则有:(1)d(u ± v)= du ± dv(2)d(u v)= du·v + u·dv╭u╮du·v - u·dv(3)d│——│=———————( v ≠ 0 )╰v╯v²(5)复合函数(由外至里的“链式法则”)dy——=f′(u)·φ′(x)dx其中y =f(u),u =φ′(x)(6)反函数的导数:1[ fˉ¹(y)]′=—————f′(x)其中,f′(x)≠ 0【导数】注:【】里面是次方的意思(1)常数的导数:(c)′=0(2)x的α次幂:╭【α】╮′【α -1】│x│=αx╰╯(3)指数类:╭【x】╮′【x】│a│=alna(其中a >0 ,a ≠ 1)╰╯╭【x】╮′【x】│e│=e╰╯(4)对数类:╭╮′1 1│logx│=——log e=———(其中a >0 ,a ≠ 1)╰a╯x a xlna1(lnx)′=——x(5)正弦余弦类:(sinx)′=cosx(cosx)′=-sinx【微分】注:【】里面是次方的意思(1)常数的微分:dC =0(2)x的α次幂:【α】【α -1】dx=αxdx(3)指数类:【x】【x】da=alnadx(其中a >0 ,a ≠ 1)【x】【x】de=edx(4)对数类:1 1dlogx=——log e=———dx(其中a >0 ,a ≠ 1)a x a xlna1dlnx =——dxx(5)正弦余弦类:dsinx =cosxdxdcosx =-sinxdx【导数】(6)其他三角函数:1(tanx)′=————=sec²xcos²x1(cotx)′=-————=-csc²xsin²x(secx)′=secx·tanx(cscx)′=-cscx·cotx(7)反三角函数:1(arcsinx)′=———————(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1(arccosx)′=-———————(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1(arctanx)′=—————1+x²1(arccotx)′=-—————1+x²【微分】(6)其他三角函数:1dtanx =————=sec²xdxcos²x1dcotx =-————=-csc²xdxsin²xdsecx =secx·tanxdxdcscx =-cscx·cotx dx(7)反三角函数:1darcsinx =———————dx(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1darccosx =-———————dx(-1 <x <1)/ ̄ ̄ ̄ ̄ ̄√1-x²1darctanx =—————dx1+x²1darccotx =-—————dx1+x²导数的应用(一)——中值定理特殊形式【拉格朗日中值定理】—————→【罗尔定理】【拉格朗日中值定理】如果函数y =f(x)满足:(1)在闭区间〔a ,b〕上连续;(2)在开区间(a ,b)上可导。
导数微积分公式
导数、微分、积分公式总结
【导数】
(1)(u ± v)′=u′±v′
(2)(u v)′=u′v+ u v′(记忆方法:u v + u v ,分别在“u”上、“v”上加′)(3)(c u)′= c u′(把常数提前)
╭u╮′u′v- u v′
(4)│——│=———————( v ≠ 0 )
╰v╯v²
【关于微分】
左边:d打头
右边:dx置后
再去掉导数符号′即可
【微分】
设函数u=u(x),v=v(x)皆可微,则有:
(1)d(u ± v)= du ± dv
(2)d(u v)= du·v + u·dv
╭u╮du·v - u·dv
(3)d│——│=———————( v ≠ 0 )
╰v╯v²
(5)复合函数(由外至里的“链式法则”)
dy
——=f′(u)·φ′(x)
dx
其中y = f(u),u =φ′(x)
(6)反函数的导数:
1
[ fˉ¹(y)]′=—————
f′(x)
其中,f′(x)≠ 0
【导数】
注:【】里面是次方的意思
(1)常数的导数:
(c)′= 0
(2)x的α次幂:
╭【α】╮′【α - 1】
│x│=αx
╰╯
(3)指数类:
╭【x】╮′【x】
│a│=a lna(其中a > 0 ,a ≠ 1)
╰╯
╭【x】╮′【x】
│e│=e
╰╯
(4)对数类:
╭╮′ 1 1
│logx│=——log e=———(其中a > 0 ,a ≠ 1)
╰a╯ x a xlna
1
(lnx)′=——
x
(5)正弦余弦类:
(sinx)′= cosx
(cosx)′=-sinx
【微分】
注:【】里面是次方的意思
(1)常数的微分:
dC = 0
(2)x的α次幂:
【α】【α - 1】
dx=αxdx
(3)指数类:
【x】【x】
da=a lnadx(其中a > 0 ,a ≠ 1)
【x】【x】
de=e dx
(4)对数类:
1 1
dlogx=——log e=———dx(其中a > 0 ,a ≠ 1)
a x a xlna
1
dlnx =——dx
x
(5)正弦余弦类:
dsinx = cosxdx
dcosx =-sinxdx
【导数】
(6)其他三角函数:
1
(tanx)′=————= sec²x
cos²x
1
(cotx)′=-————=-csc²x
sin²x
(secx)′= secx·tanx
(cscx)′=-cscx·cotx
(7)反三角函数:
1
(arcsinx)′=———————(-1 < x <1)
/ ̄ ̄ ̄ ̄ ̄
√1-x²
1
(arccosx)′=-———————(-1 < x <1)
/ ̄ ̄ ̄ ̄ ̄
√1-x²
1
(arctanx)′=—————
1+x²
1
(arccotx)′=-—————
1+x²
【微分】
(6)其他三角函数:
1
dtanx =————= sec²xdx
cos²x
1
dcotx =-————=-csc²xdx
sin²x
dsecx = secx·tanxdx
dcscx =-cscx·cotx dx
(7)反三角函数:
1
darcsinx =———————dx(-1 < x <1)
/ ̄ ̄ ̄ ̄ ̄
√ 1-x²
1
darccosx =-———————dx(-1 < x <1)
/ ̄ ̄ ̄ ̄ ̄
√ 1-x²
1
darctanx =—————dx
1+x²
1
darccotx =-—————dx
1+x²
导数的应用(一)——中值定理
特殊形式
【拉格朗日中值定理】—————→【罗尔定理】
【拉格朗日中值定理】
如果函数y = f(x)满足:
(1)在闭区间〔a ,b〕上连续;
(2)在开区间(a ,b)上可导。
则:在(a ,b)内至少存在一点ξ( a <ξ < b ),使得
f(b)- f(a)
f′(ξ)=————————
b - a
【罗尔定理】
如果函数y = f(x)满足:
(1)在闭区间〔a ,b〕上连续;
(2)在开区间(a ,b)上可导;
(3)在区间端点的函数值相等,即f(a)= f(b)。
则:在(a ,b)内至少存在一点ξ( a <ξ < b ),使得f′(ξ)=0。
导数的应用(二)——求单调性、极值(辅助作图)
【单调性】
(1)如果x ∈(a ,b)时,恒有f′(x)> 0 ,
则f(x)在(a ,b)内单调增加;
(2)如果x ∈(a ,b)时,恒有f′(x)< 0 ,
则f(x)在(a ,b)内单调减少。
【极值】
若函数f(x)在点x₁处可导,且f(x)在x₁处取得
极值,则f′(x₁)= 0 。
导数的应用(三)——曲线的凹向与拐点(辅助作图)
【凹向】
设函数y = f(x)在区间(a ,b)内具有二阶导数,
(1)若当x∈(a ,b)时,恒有f〃(x)> 0 ,
则曲线y = f(x)在区间(a ,b)内上凹;
(2)若当x∈(a ,b)时,恒有f〃(x)< 0 ,
则曲线y = f(x)在区间(a ,b)内下凹。
【拐点】
曲线上凹与下凹的分界点。
第一类:常数的积分
∫0dx = C
∫dx = x + C (1的积分)
∫kdx = kx + C
第二类:x的α次幂的积分
【α】 1【α+1】
∫x dx =——— x+ C(α ≠ 1)
α+1
第三类:倒数的积分【注意:绝对值】
1
∫——dx = ln|x| + C (x ≠ 0)
x
第四类:指数的积分
【x】 1【x】
∫a dx =——— a+ C(a > 0 ,a ≠ 1)
lna
【x】【x】
∫e dx = e+ C
第五类:三角函数的积分
∫sinxd x =-cosx + C
∫cosxdx = sinx + C
∫tanxdx =-ln|cosx| + C【选记】
∫cotxdx = ln|sinx| + C【选记】
∫sec²xdx = tanx + C
∫csc²xdx =-cotx + C
第六类:结果为反三角函数
1
∫————dx = arcsinx + C =-arccosx + C₁ / ̄ ̄ ̄
√ 1-x²
1
∫————dx = arctanx + C =-arccotx + C₁1+x²。