无功补偿电容器运行特性参数选取
- 格式:docx
- 大小:13.57 KB
- 文档页数:2
无功补偿元件的选型与应用电容电抗无功补偿是电力系统中的一项重要技术,通过补偿系统的无功功率,可以提高电力系统的功率因数,减少传输损耗,改善电压质量,提高系统的稳定性和运行效率。
其中,无功补偿元件在无功补偿系统中起着至关重要的作用,选型合适的无功补偿元件对于实现系统的无功补偿效果至关重要。
本文将就无功补偿元件的选型与应用电容电抗展开论述。
一、电容器与电抗器的作用与特点电容器和电抗器是无功补偿中常用的两种元件,它们在电力系统中具有各自独特的作用与特点。
1. 电容器的作用与特点电容器是一种能够提供无功功率的无源元件,其主要作用是通过供给感性无功功率来补偿系统中所需要的容性无功功率。
其特点如下:(1)电容器对系统的电压有一定的提高作用,可以改善供电电压质量。
(2)电容器可以提供快速的无功功率响应,对于电压波动较大的电力系统特别适用。
(3)电容器的无功功率消耗低,效率高,对于降低系统的无功功率损耗有明显的作用。
2. 电抗器的作用与特点电抗器是一种能够吸收无功功率的支路元件,其主要作用是通过消耗容性无功功率来补偿系统中所需要的感性无功功率。
其特点如下:(1)电抗器可以阻碍无功功率的传输,减少无功功率的流动。
(2)电抗器可以起到稳压作用,抑制电压的过高或过低;同时,也可以减轻电压波动对系统的影响。
(3)电抗器的无功功率消耗较大,效率相对较低,但其信号响应时间短,对电压波动有较好的抑制作用。
二、无功补偿元件的选型原则在进行无功补偿系统设计时,正确选型无功补偿元件是确保系统性能的关键一步。
以下是无功补偿元件选型的原则:1. 功率匹配原则无功补偿元件选型时,应根据系统的无功功率需要进行功率匹配。
对于容性无功功率,应选用电容器进行补偿;对于感性无功功率,应选用电抗器进行补偿。
2. 频率适应原则无功补偿元件的选型应考虑其在系统频率下的特性参数,确保其与系统频率相匹配。
一般情况下,无功补偿元件的频率适应范围应在±0.5%之内。
如何正确选择电容器的参数电容器是电子元件中常见的一种,广泛应用于各种电路中。
正确选择电容器的参数对于保证电路的性能和稳定性至关重要。
本文将介绍如何正确选择电容器的参数。
一、了解电容器的基本参数电容器的基本参数包括容值、额定电压、精度和温度系数等。
容值表示电容器可以储存的电荷量,单位为法拉(F)或微法(F);额定电压表示电容器能够承受的最大电压,超过该电压容易损坏;精度表示电容器的容值与额定值之间的误差范围,一般用百分比表示;温度系数表示电容器容值的变化与温度变化之间的关系。
二、考虑电路的需求在选择电容器参数时,需要根据电路的需求进行合理的选择。
首先确定电路所需要的容值范围,可以根据电容器的容值表找到合适的容值选项。
其次,考虑电路的工作电压范围,选择能够承受该电压范围的电容器。
此外,还需考虑电容器的精度和温度系数,选择能够满足电路要求的电容器。
三、选择适当的电容器类型根据实际需要,选择适当的电容器类型也是十分重要的。
目前常见的电容器类型包括固定电容器、可变电容器、陶瓷电容器、铝电解电容器等。
固定电容器容值稳定,适合在稳定的电路中使用;可变电容器可以根据需要调节其容值,适用于需要频繁调整容值的电路;陶瓷电容器具有良好的高频特性,适合在高频电路中使用;铝电解电容器容值大,适用于大容量需求的电路。
根据电路的特点和要求选择合适的电容器类型。
四、考虑电容器的尺寸和成本除了基本参数和电容器类型外,还需要考虑电容器的尺寸和成本。
电容器的尺寸直接影响到电路的布局和结构设计,需根据实际情况选择合适的尺寸。
同时,也需要考虑电容器的成本,选择符合预算和性能要求的电容器。
五、参考相关标准和规范在选择电容器参数时,可以参考相关的标准和规范。
电容器的制造和质量标准可以帮助我们了解电容器的性能和可靠性。
此外,一些应用场景会有特定的规范和要求,需要在选择电容器参数时加以考虑。
六、结合实际测试和验证最后,在选择电容器参数之后,需要进行实际测试和验证。
无功补偿电容标准
无功补偿是指在交流电路中对无功功率进行调整,以使功率因数达到要求的一种措施。
而电容则是一种常用的无功补偿装置。
在电路中串联一个电容器可以提供无功功率,并使功率因数变得更高。
关于电容的标准,通常有以下几个方面:
1. 额定电压:电容器有一定的耐电压能力,通常在标准中会规定电容器的额定工作电压范围。
2. 额定容量:电容器的容量通常以法拉(F)为单位,标准中
会规定电容器的额定容量范围。
3. 精度等级:电容器的容量精度也是一个重要的标准之一,通常以百分比表示,标准中会规定电容器的容量精度要求。
4. 工作温度范围:标准中也会规定电容器的工作温度范围,以确保电容器在各种环境条件下能够正常工作。
除了以上标准之外,还有一些特殊要求,如耐久性、绝缘电阻等,都会在相关的标准中进行规定。
具体的标准可以参考国家相关的电气标准或行业标准。
无功补偿装置的性能参数与指标解读无功补偿装置是一种重要的电力设备,用于管理和调整电力系统中的无功功率。
在现代电力系统中,无功功率是不可避免的,并且可能会导致诸多问题,如电压稳定性下降、效率低下、设备损坏等。
因此,无功补偿装置的性能参数与指标对于电力系统的运行和稳定至关重要。
本文将对无功补偿装置的性能参数与指标进行解读。
一、静态无功补偿装置(SVC)的性能参数与指标1. 静态无功补偿装置的基本性能参数包括无功容量、电压调制范围和响应速度等。
无功容量是指装置能够提供的无功功率大小,通常以千伏安(kVar)为单位。
电压调制范围表示装置能够在电力系统中调整电压的程度,一般以百分比表示。
响应速度是指装置从接收命令到实际调整无功功率所需的时间,常以毫秒(ms)为单位。
2. 静态无功补偿装置的指标包括无功补偿率和功率因数。
无功补偿率是指无功补偿装置所提供的无功功率与系统总无功功率的比值,通常以百分比表示。
功率因数是指电力系统中有功功率与视在功率的比值,它反映了电力系统的运行效率。
在静态无功补偿装置的作用下,功率因数可以得到显著改善,提高电力系统的效率。
二、动态无功补偿装置(DSTATCOM)的性能参数与指标1. 动态无功补偿装置的基本性能参数包括无功容量、电压调制范围、响应速度和谐波抑制能力等。
与静态无功补偿装置相比,动态无功补偿装置的无功容量通常更大,能够提供更高的无功功率。
电压调制范围表示装置对电压进行调整的幅度,响应速度表示调整电压所需的时间,谐波抑制能力表示装置对谐波电压的抑制效果。
2. 动态无功补偿装置的指标包括响应时间、跟踪能力和失控保护等。
响应时间是指装置从接收无功功率调整命令到实际调整所需的时间,它反映了装置的调节速度。
跟踪能力是指装置能否实时跟踪电力系统的无功功率需求。
失控保护是一种安全保护机制,用于防止装置失控或发生故障时对电力系统造成不利影响。
三、无功补偿装置的其他性能参数与指标除了上述提及的性能参数与指标外,还有一些其他的重要参数需要关注。
无功补偿器最佳参数
无功补偿器最佳参数的选择是一个关键的问题,它直接影响到电力系统的稳定性和经济性。
无功补偿器通常用于电网中解决电力负荷无功功率的问题,以提高电力系统的功率因数和稳定性。
无功补偿器参数的选择应考虑以下因素:
1.无功补偿器的功率容量:应根据电力系统的负荷特性和功率因数的要求来确定无功补偿器的功率容量。
2.无功补偿器的投切方式:无功补偿器的投切方式包括手动、自动和智能投切方式。
应根据电力系统的管理和控制要求来选择投切方式。
3.无功补偿器的电容量:无功补偿器的电容量应根据电力系统的功率因数和无功功率需求来确定。
应确保无功补偿器具有足够的电容量,以满足系统的无功功率需求。
4.无功补偿器的响应速度:无功补偿器的响应速度应根据电力系统的负荷特性和稳定性要求来确定。
应确保无功补偿器具有足够快的响应速度,以保证电力系统的稳定性。
综上所述,无功补偿器最佳参数的选择应考虑电力系统的负荷特性、功率因数和无功功率需求,以及无功补偿器的功率容量、投切方式、电容量和响应速度等因素。
- 1 -。
电容补偿装置中各器件的选择方法电容器首先要确定补偿的容量、方式、分组、以及系统的电压等级及谐波情况,作为电容器的基础选择条件。
例如:系统电压为400V 系统中含有少量的5次及以上谐波,同时补偿容量在450kvar 。
最小负荷的无功功率接近于90kvar 。
三相用电负荷。
以下各个元器件的选取均遵照这个条件设计。
1)首先根据系统中的谐波情况,选择6%的串联电抗器。
6%的电抗器是如何确定的呢?L X L ω= 感抗值 1C X Cω=容抗值*2n f ωπ= (n 谐波次数1、2、3、4、5.。
)因此,随着谐波次数的增加感抗值n*L X 成倍增加、容抗值C X /n 成倍递减。
*C L X n X n=在谐波为n 时 支路的感抗值与容抗值相等,谐波n 次数继续递增,则支路的感抗大于容抗,因此支路成感性,在一个感性的支路就可以达到抑制谐波的作用。
n =当6%*L C X X = n=4.01 因此只要大于4次的谐波,在该支路的阻抗值均成感性,因此达到抑制5次以上谐波的作用。
(由此可知,电抗率以取6%为宜,可避免因电抗器、电容参数的制造误差或运行中参数变化而造成对5次谐波的谐振。
) 2)电容的电压及容量的选取。
系统电压400V 单组容量90Kvar 共补40042516%C V U V ==- 因此选用440V 30Kvar 的电容器 3个作为一个补偿组。
2、电抗器首先要计算电抗器的发热电流,这个电流是电抗器长期运行的电流,也是主回路器件计算的基本标准。
1)电抗率的选择6% 上面已经计算过了,不再累述。
2)发热电流计算发热电流的条件有 电容器的电压等级和容量,以及系统电压400V*(1+10%)、谐波电压(3次1.5%; 5次4%; 7次3%);电容偏差C* (1+5%).111333555771C L C L C L C L X X X X X X X X X X XX =-=-=-=-13151714401.5%4%3%U VU U U U U U ====111333555777U I X U I X U I X U I X ====1.05*Ith =以30kvar 为例,计算所得热电流为85A3、支路熔断器*1.06In Ith = (A B C 相电容偏差6%) 85A*1.06=90.1A 选择NT00 100A4、晶闸管(SKKT 106/16E )晶闸管的额定电流:ITRMS =180A 反向可重复峰值电压:VRRM=1600V在该系统中,当电容器组切除电网时,晶闸管两端将承受至少2倍电网的峰值电压1244V 。
无功补偿控制器的选型什么是无功补偿控制器?无功补偿控制器是一种用于控制电力系统中的无功功率的电器设备。
它可以补偿电力系统中产生的无功功率,以便更有效地利用电力系统的能源,并增加电力系统的电能功率因数。
在现代电力系统中,无功补偿控制器得到广泛使用,因为它可以提高电力质量、降低电力消耗、降低成本、提高效率,其作用至关重要。
无功补偿控制器的选型选型是对无功补偿控制器的功率和控制模式进行选择的过程。
选择正确型号的无功补偿控制器是确保电气系统正常运行的重要步骤。
下面我们来讨论无功补偿控制器的选型标准。
额定电压在选择无功补偿控制器时,首先需要确定其所需的额定电压。
在选择无功补偿控制器前,必须计算并确定整个电力系统的电压、电流和功率因数。
根据所计算的电力需求,可以确认所需的无功补偿容量,这对于选择无功补偿控制器的额定电压至关重要。
额定容量在确认无功补偿控制器的额定电压后,需要确定其额定容量。
无功补偿控制器的额定容量通常以千乏(kVAR)为单位表示,用于补齐电力系统中的无功功率。
为确保选用的无功补偿控制器符合容量要求,需要在计算负载和功率因数时,应用电力传输方程。
控制模式无功补偿控制器有三种常见的控制模式,在选择控制模式时,需要考虑到电源和负载之间的距离和类型,以及所需的稳定性和控制要求。
控制模式包括:1.单独控制模式单独控制模式是最常见的模式,无功补偿控制器只控制一个负载。
2.联合控制模式联合控制模式允许无功补偿控制器同时控制多个负载。
通过这种方式,可以确保对多个负载进行反应,从而使电力系统平衡。
3.自适应控制模式自适应控制模式是一种智能型控制模式,可以根据电力系统当前的负载和功率因数水平,自动调整无功补偿控制器的容量。
其他要素虽然选择额定电压、额定容量和控制模式是选择无功补偿控制器时最重要的标准,但还有许多其他要素要考虑,包括:1.生产商和销售商的信誉度和质量保证2.适用的行业和应用领域3.可用性和可靠性4.可操作性和易用性5.确保符合安全标准和法规6.可维护性和维修服务结论总而言之,在选择无功补偿控制器时,需要根据电气系统的具体要求正确选配额定电压、额定容量和控制模式,同时还要考虑品牌信誉度、可用性、可维护性和其他因素。
无功补偿装置的选型与布置方法无功补偿装置作为电力系统中重要的设备之一,能够有效地改善电力系统的功率因数,提高电力传输效率,降低线路和设备的损耗,保障电力系统的稳定运行。
本文将从无功补偿装置的选型和布置方法两个方面进行论述,并提出一些实用的建议。
一、无功补偿装置选型方法无功补偿装置的选型应综合考虑电力系统的负载特性、功率因数要求、装置额定容量、成本等多个因素。
1. 考虑负载特性在选型无功补偿装置时,首先要了解电力系统的负载特性,包括系统的瞬态特性、谐波分析和无功需求曲线等。
根据负载特性可以确定无功补偿装置的类型,如静态无功补偿装置(SVC)、STATCOM等。
2. 确定功率因数要求根据电力系统的功率因数要求确定无功补偿装置的容量。
一般来说,电力系统的功率因数应在0.95以上,根据实际情况可以适度调整。
功率因数越低,无功补偿装置的容量就需要相应增大。
3. 选取合适的装置额定容量装置的额定容量是选型的重要依据之一。
根据电力系统的负荷需求和功率因数要求,结合装置的负载能力和承受能力,选取合适的额定容量。
4. 综合成本考虑除了以上因素外,还需要综合考虑无功补偿装置的成本因素。
包括购买、安装、运行、维护等成本,以及无功补偿装置的寿命和可靠性等因素。
经济性是选型过程中需要重点考虑的因素之一。
二、无功补偿装置布置方法无功补偿装置的布置要结合电力系统的特点和实际情况,合理布置,确保其有效运行。
1. 平衡布置无功补偿装置应尽量均匀地布置在电力系统中,以实现负荷的无功均衡。
合理布置可以减小线路的无功损耗,优化电力系统的电压质量。
2. 注意容量匹配在布置过程中,应注意无功补偿装置的容量与负载容量的匹配。
过大或过小的装置容量都会影响系统的稳定性和经济性。
根据实际需求,进行灵活的调整和优化。
3. 考虑装置位置无功补偿装置的布置还需要考虑其位置选择。
一般来说,无功补偿装置应尽量靠近负载中心,以减小线路损耗和电压波动。
同时,还要充分考虑设备的安全性和维护便利性。
无功补偿在电力系统中的电容器选择与配置电力系统中的无功补偿是调节电力负载的重要手段,它不仅可以提高电力质量,还能提高电网的传输能力。
而电容器作为无功补偿的重要组成部分,在电力系统中起着至关重要的作用。
本文将讨论无功补偿在电力系统中的电容器选择与配置。
一、电容器的选择电力系统中的电容器按其电压等级分为低压电容器和高压电容器。
在选择电容器时,需要考虑以下几个因素:1. 电容器的额定电压:电容器的额定电压应大于或等于系统运行电压,以保证其正常运行,并具有足够的安全裕度。
2. 电容器的容量:选择合适的电容器容量是保证无功补偿效果的关键。
容量过小,则无法达到预期的补偿效果;容量过大,则可能造成电力系统的谐振问题。
因此,在选择容量时,需要根据负载的无功功率需求进行合理补偿。
3. 电容器的损耗:电力系统中的电容器存在一定的损耗,这些损耗将转化为热量,影响电容器的寿命。
因此,在选择电容器时,需要考虑其损耗因数和寿命。
二、电容器的配置电容器的配置是指将电容器合理地安装在电力系统的不同位置,以实现最优的无功补偿效果。
1. 单点补偿:单点补偿是指将电容器集中安装在负载侧,通过控制器控制其开关,以实现对负载无功功率的补偿。
这种配置适用于小型的负载系统,能够提供有效的无功补偿。
2. 多点补偿:多点补偿是指将电容器分散安装在电力系统的不同位置,根据不同位置的负载功率需求,分别进行无功补偿。
这种配置适用于大型的负载系统,能够更加精确地进行无功补偿。
3. 静止补偿器配置:静止补偿器是一种集中式的无功补偿设备,它能够通过电力电子器件实现对电容器的精确控制。
在配置静止补偿器时,需要考虑电容器和补偿器之间的匹配,以及静止补偿器的控制策略。
三、电容器的维护与管理为了确保电容器能够正常运行并延长其使用寿命,需要进行定期的维护与管理。
具体措施包括:1. 定期检查电容器的运行状态,包括电压、电流和温度等参数的监测,以及电容器外观的检查。
2. 定期清洁电容器周围的环境,避免灰尘和湿气的积聚,影响电容器的散热和运行。
摘要:依据用电设备的功率因数,可测算输电线路的电能损失。
通过现场技术改造,可使低于标准要求的功率因数达标,实现节电目的。
本文分析了无功补偿的作用和补偿容量的选择方法,着重论述了低压电网和异步电动机无功补偿容量的配置。
结合应用实例说明采用无功补偿技术,提高低压电网和用电设备的功率因数,已成为节电工作的一项重要措施。
1、前言无功补偿,就其概念而言早为人所知,它就是借助于无功补偿设备提供必要的无功功率,以提高系统的功率因数,降低能耗,改善电网电压质量。
无功补偿的合理配置原则从电力网无功功率消耗的基本状况可以看出,各级网络和输配电设备都要消耗一定数量的无功功率,尤以低压配电网所占比重最大。
为了最大限度地减少无功功率的传输损耗,提高输配电设备的效率,无功补偿设备的配置,应按照“分级补偿,就地平衡”的原则,合理布局。
(1)总体平衡与局部平衡相结合,以局部为主。
(2)电力部门补偿与用户补偿相结合。
在配电网络中,用户消耗的无功功率约占50%~60%,其余的无功功率消耗在配电网中。
因此,为了减少无功功率在网络中的输送,要尽可能地实现就地补偿,就地平衡,所以必须由电力部门和用户共同进行补偿。
(3)分散补偿与集中补偿相结合,以分散为主。
集中补偿,是在变电所集中装设较大容量的补偿电容器。
分散补偿,指在配电网络中分散的负荷区,如配电线路,配电变压器和用户的用电设备等进行的无功补偿。
集中补偿,主要是补偿主变压器本身的无功损耗,以及减少变电所以上输电线路的无功电力,从而降低供电网络的无功损耗。
但不能降低配电网络的无功损耗。
因为用户需要的无功通过变电所以下的配电线路向负荷端输送。
所以为了有效地降低线损,必须做到无功功率在哪里发生,就应在哪里补偿。
所以,中、低压配电网应以分散补偿为主。
(4)降损与调压相结合,以降损为主。
2、影响功率因数的主要因素功率因数的产生主要是因为交流用电设备在其工作过程中,除消耗有功功率外,还需要无功功率。
无功补偿及补偿电容器的选用一、无功补偿的意义在工业企业中,大量用电设备都是感性负载,如电动机、电焊机、电炉等,并且功率因数都比较低。
功率因数低,不仅使电源设备得不到充分利用,并且无功电流在输电线和电源设备中会引起有功损耗,造成了大量电能的浪费,还会使线路压降增加,严重地影响了电压质量。
1、补偿无功功率,可以增加电网中有功功率的输送比例。
2、补偿无功功率,可以减少发、供电设备的设计容量,减少投资。
例如当功率因数从cosφ₁=0.8增加到cosφ=0.95时,装1kvar的电容器可节省设备容量0.52kW;对原有设备而言,相当于增大了发、供电设备容量。
因此,对新建、改建工程,应充分考虑无功补偿,便可以减少设计容量,从而减少投资。
3、补偿无功功率,可以降低线损。
若cosφ₁为补偿前的功率因数,cosφ为补偿后的功率因数,cos φ>cosφ₁,则由公式ΔΡ%=(1-cosφ₁/cosφ)×100%可知:提高功率因数后,线损率也下降了。
减少设计容量、减少投资,增加电网中有功功率的输送比例,以及降低线损都直接决定和影响着供电企业的经济效益。
所以功率因数是考核经济效益的重要指标,规划、实施无功补偿势在必行。
二、无功补偿的原理由于负载大部分是感性的,需取用感性无功功率。
为此要提高功率因数,就得设法减小感性无功功率。
由于容性无功功率与感性无功功率的性质正好相反,所以要补偿感性负载的无功功率可以采用在感性负载两端并联电容器的办法。
电流在电感元件中做功时,电流超前于电压90°;而电流在电容元件中做功时,电流滞后电压90°。
在同一电路中,电感电流与电容电流方向相反,互差180°。
如果在电感元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流矢量与电压矢量之间的夹角缩小,从而提高电能做功的能力,这就是无功补偿的原理。
三、补偿电容器的选用1、补偿电容量的计算要把感性负载的功率因数从cosφ₁提高到cosφ需并联的电容量C 可按下式求得,即C=(Ptgφ₁-Ptgφ)/ωU²=P (tgφ₁-tgφ)/ωU²例:已知220V、40W的日光灯工作时的电流为0.4A,cosφ=0.545。
电动机无功补偿容量的选择及注意事项浙江省宁海县供电局高补林采用低压静电电容器,在对感应电动机进行无功补偿时.准确、合理地选择补偿容量,可以最大限度地减少系统中流过的无功功率,降低电能的损耗,提高电压质量。
目前,我们对城关公用低压线路上的感应电动机,普遍推行无功就地补偿,以减少公用线路日益上升的线损,我局已作为技改措施计划落实。
1 容量选择1.l 单台三相电动机补偿容量,应把电动机空载时的功率因数补偿至1为原则、若以满载时耗用的无功功率作为补偿依据,空载时必为过补偿。
因此,补偿容量按下式计算:(1)式中U——电动机的额定电压kVI0——电动机的空载电流 AQ——无功补偿容量kvar1.2 补偿容量的校正。
当电网的实际运行电压低于电容器的额定电压,则电容器输出容量达不到额定值,应按下式进行校正。
校正后为实际应补偿的容量:Q′=K2Q (2)式中U eB——电容器的额定电压U L——电网的代表日均方根电压值1.3 对电动机组的补偿,应根据其行业的特点,确定需要系数及同期率,然后由(1)、(2)式求得补偿容量。
2 运行时注意事项2.l 正常巡视电容器的运行情况,如发现有外壳鼓涨、漏油、绝缘放电及温升过高等情况.应及时处理,以防止事故扩大。
2.2在实际运行中,尤其是用电低谷,网络的电压将大大上升,当电网电压超过电容的额定电压的10%时,或电容器电流超过额定电流的1.3倍时,电容器应退出运行。
2.3补偿电容器一定要装设放电装置,放电装置按附图接线,运行时,K1闭合。
放电时,K2闭合。
放电回路不得装设熔丝。
2.4 低压电容器的保护可采用刀闸开关与低压熔断器或空气开关相配合的办法。
10KV线路变压器及电动机无功补偿1.怎样进行无功补偿应采取就地平衡的原则,使电网任一时刻无功总出力(含无功补偿)与无功总负荷(含无功总损耗)保持平衡。
某供电局已实现了变电所的集中补偿,本文不再涉及,仅就10KV线路,配变与电动机的补偿加以讨论。
无功补偿控制器的选型在电力系统中,无功功率补偿是提高电力系统运行质量的一种重要手段,能够保证电力系统正常运行。
而无功补偿控制器作为实现无功补偿的重要设备,其选型则显得尤为重要。
本文将介绍无功补偿控制器的选型,主要包括选型依据、选型指标和选型流程。
选型依据在进行无功补偿控制器选型前,需要明确选型依据。
无功补偿控制器选型的主要依据应包括以下几个方面:1.电力系统中存在的无功功率2.无功补偿容量及电压等级3.无功补偿控制器的功能需求4.无功补偿控制器的可靠性要求5.无功补偿控制器的成本预算在进行无功补偿控制器选型时,应根据上述依据进行选择,以满足实际的应用需求。
选型指标在选型依据的基础上,应根据实际的应用需求,选择合适的无功补偿控制器。
无功补偿控制器的选型指标主要包括以下几个方面:1.额定电压:与电力系统中的电压等级相匹配,通常为0.4KV、10KV、35KV等多种类型。
2.无功补偿功率:也称为“无功容量”,是控制器提供的无功补偿容量,通常以千乏(kVar)为单位。
3.响应速度:是控制器响应电网无功功率波动的能力,通常单位为毫秒(ms)级别。
4.精度:指控制器在输出无功功率时所达到的误差水平,数值通常以百分比表示。
5.可靠性:是控制器在运行过程中的稳定性和可靠性能够达到的水平。
6.成本:控制器购买成本及维护成本。
根据实际应用需求,进行综合评估并选择合适的选型指标。
选型流程无功补偿控制器的选型流程可以分为如下几个步骤:1.确定无功补偿容量及电压等级:根据实际应用需求确定无功补偿容量及电压等级。
2.确定无功补偿控制器功能需求:确定无功补偿控制器需要具备的功能,比如控制方式、控制精度等。
3.选择控制器类型:选择符合功能需求和技术指标的无功补偿控制器类型。
4.选型对比:根据不同产品的技术指标、功能、性价比等方面进行对比评估,选出满足要求的一些产品。
5.确定控制器型号:从候选控制器中根据实际应用需求和成本等因素最终确定一款无功补偿控制器型号。
补偿电容器怎么选择电动机的就地补偿,都是补偿电动机的空载无功:空载无功一般为电动机功率的20~30%。
也就是15KW的电动机补偿3KVAR左右。
接地不规范,正确的应当是配电柜上还有一根线接到接地体上面的。
假如是直接接在配电柜上,而配电柜没有接到接地体的话,那设备漏电的话,配电柜也会带电,是特别危急的。
选择无功补偿主要考虑几个方面:由于电网不洁净,尤其使用变频设备较多的场合,谐波问题严峻,因此无功补偿一般都选用电容器串电抗器。
来防止谐波放大,保证电容器的平安。
1,调谐频率的选择,通过电抗器与电容器阻抗比来确定调谐频率,一般来说预防5次谐波,可选择电抗器6%2,电容器耐电压=系统电压+电抗器压升+谐波电压三者缺一不行。
3,电抗器耐电流=系统电流+谐波电流。
供应一个例题参考:问:将功率因数从0.9提高到1.0所需的补偿容量,与将功率因数从0.8提高到0.9所需的补偿容量相比()A. 一样多B. 更多些C. 少一些D. 不肯定选;B!解释:根据配置无功补偿的计算公式:Qc=P(tg a1-tg a2)其中:Qc,是需要补偿的电容器容量值,单位:KvarP,是系统有功功率,此处可以看作一个确定的有功功率值,单位:Kwtg a1,是补偿前功率因数Cos a1 的相角的正切。
tg a2,是补偿后功率因数Cos a2的相角的正切。
对于从0.9提高到1.0,用三角函数公式计算得:tg a1=0.48,tg a2=0.00带入前面公式:Qc=P*(0.0.48-0.00)=0.48P (Kvar)对于从0.8提高到0.9,用三角函数公式计算得:tg a1=0.75,tg a2=0.48带入前面公式:Qc=P*(0.75-0.48)=0.27P (Kvar)所以:选:B,更多一些。
这说明,当功率因数较低的时候,提高功率因数的代价,比原本功率因数高的时候,来的更简单。
与同学考试是一个道理。
平常考60、70分的同学,要考80分、90分,比平常考90分的同学盼望考99分简单。
无功补偿标准无功补偿是电力系统中的重要组成部分,其目的是消除无功功率在电力系统中的负面影响。
在电力系统中,负载和输电线路产生的电流中不仅包含有功功率,还包含无功功率。
无功功率的存在会导致电力系统的电压波动和功率损耗,并且还会影响电能质量。
为了保证电力系统的稳定运行和提高电能质量,无功补偿就显得尤为重要。
无功补偿可以通过电容器和电感器等设备来实现。
电容器可以提供无功电流,电感器则可以吸收无功电流,通过合理配置这些设备可以实现无功功率的补偿和平衡。
为了确保无功补偿的有效性和合理性,制定无功补偿标准是必要的。
无功补偿标准主要包括两个方面的内容,即无功功率的测量和无功补偿设备的配置。
无功功率的测量是无功补偿的前提和基础。
只有准确测量了系统中的无功功率,才能确定所需要的补偿量和补偿方式。
无功功率的测量可以使用无功功率因数仪、功率负载分析仪等设备进行。
这些设备可以实时监测系统的无功功率水平,并提供相应的数据。
无功补偿设备的配置是制定无功补偿标准的核心内容。
在电力系统中,根据不同的负载类型和无功功率水平,可以进行不同程度的无功补偿。
为了保证无功补偿的有效性和经济性,无功补偿设备的配置需要综合考虑系统的无功功率需求、负载的无功功率因数、电力系统的容量等因素。
同时还需要参考国内外类似电力系统的实践经验和技术标准,以确保配置的合理性和可行性。
无功补偿设备的配置通常包括以下几个方面的内容:一是确定系统需求的无功功率量级和补偿方式。
根据系统的负载类型、无功功率因数以及稳定运行的要求,确定系统需要进行的无功补偿量级和补偿方式。
二是选择合适的无功补偿设备。
根据系统的无功功率需求和负载特性,选择合适的无功补偿设备,包括电容器、电感器、无功发生器等设备。
三是确定无功补偿设备的合理布置和连接方式。
根据系统的结构和拓扑特点,合理布置和连接无功补偿设备,以确保补偿效果的最大化。
四是设定无功补偿设备的控制策略和运行参数。
无功补偿设备的控制策略和参数设置直接影响其补偿效果,需要根据实际情况进行调整和优化。
无功补偿设备的选型与采购指南无功补偿设备是一种用于改善电力系统功率因数的重要装置。
在电力系统中,由于诸多因素的影响,例如电动机的运行、电容器的使用和电感元件等,会导致功率因数下降,从而降低电力系统的效率和稳定性。
因此,选择和采购适合的无功补偿设备对于提高电力系统的运行效率和质量具有重要意义。
本文将为您介绍无功补偿设备的选型与采购指南。
一、功率因数与无功补偿设备功率因数是电力系统中的重要参数,定义为有用功与视在功之比。
当功率因数低于标准,即小于0.9时,电力系统将出现一系列负面影响,包括线路损耗增加、电气设备发热升高、电能计量误差等。
无功补偿设备的作用就是通过补偿无功功率,提高电力系统的功率因数。
二、无功补偿设备的选型指南1. 考虑电力系统的负荷特性在选型无功补偿设备时,首先需要考虑电力系统的负荷特性,包括负载类型、变化范围和稳定性。
根据负荷特性选取适当的无功补偿设备类型,例如静态无功补偿器(SVC)、电容器组合补偿器(CCB)、电容器自投自切补偿器等。
2. 计算无功功率补偿量在选型无功补偿设备时,需要根据电力系统的负荷需求和功率因数目标来计算无功功率补偿量。
通过测量和计算,确定所需的无功功率补偿容量,并根据补偿容量来选择合适的无功补偿设备。
3. 考虑设备的响应速度无功补偿设备的响应速度对于电力系统的稳定性和可靠性至关重要。
在选型无功补偿设备时,需要考虑设备的响应速度是否满足电力系统的要求,以确保能够及时补偿无功功率变化。
4. 考虑设备的可靠性和寿命在选型无功补偿设备时,需要考虑设备的可靠性和寿命。
选择具有高可靠性的品牌和型号,确保设备在长期运行中的稳定性和可靠性。
同时,了解设备的维护要求和寿命预期,以便进行合理的维护和更换计划。
5. 考虑设备的成本效益无功补偿设备的选型过程中,成本效益是一个重要的考虑因素。
在选择设备时,需要综合考虑设备价格、使用寿命、维护成本和节能效果等因素,确保所选设备具有良好的经济性和可行性。
无功补偿装置的选型及参数调节无功补偿装置是电力系统中常用的设备,用于补偿电力系统中的无功功率,提高系统的功率因数,改善电力质量。
本文将就无功补偿装置的选型和参数调节进行探讨。
一、无功补偿装置的选型无功补偿装置根据其工作原理和补偿方式的不同,可以分为静态无功补偿装置和动态无功补偿装置两大类。
1. 静态无功补偿装置静态无功补偿装置是指通过电容器、电感器等静态元件进行无功功率的补偿。
根据补偿方式的不同,静态无功补偿装置又可以分为并联补偿和串联补偿两种。
(1)并联补偿并联补偿是指将电容器或电容器组与电网并联连接,通过提供电网所需的无功功率来实现补偿。
在并联补偿中,电容器的容量需要根据负载的状况进行选型。
一般来说,负载较为稳定的情况下,可以选用固定容量的电容器;而负载波动较大的情况下,应选用可调节容量的电容器。
(2)串联补偿串联补偿是指将电感器或电抗器与电网串联连接,通过提供电网所需的无功功率来实现补偿。
同样地,在串联补偿中,电感器的参数需要根据负载的情况进行选择。
负载较为稳定的情况下,可以选用固定参数的电感器;而负载波动较大的情况下,应选用可调参的电感器。
2. 动态无功补偿装置动态无功补偿装置是指通过电力电子器件控制无功功率的补偿。
常见的动态无功补偿装置包括静止无功发生器(STATCOM)和静止同步补偿器(SVC)等。
动态无功补偿装置的选型主要需要考虑装置响应的速度、补偿容量、电流和电压的能力等因素。
根据电力系统的需求进行综合评估后,才能选择合适的动态无功补偿装置。
二、无功补偿装置参数调节无功补偿装置的参数调节需要根据电力系统的工作条件和要求进行调整,以最大程度地提高系统的无功补偿效果。
1. 并联补偿参数调节在并联补偿中,电容器的参数调节主要包括容量的选择和电压的调整。
(1)容量的选择电容器的容量选择应考虑系统的负载情况和无功功率需求。
容量过小会导致无功功率补偿效果不佳,而容量过大则会造成电容器的浪费。
无功补偿电容器运行特性参数选取
1 电力电容器及其主要特性参数
电力电容器是无功补偿装置的主要部件。
随着技术进步和工艺更新,纸介质电容器已被
自愈式电容器所取代,自愈式电容器采用在电介质中两面蒸镀金属体为电极,其最大的改进是电容器在电介质局部击穿时其绝缘具有自然恢复性能,即电介质局部击穿时,击穿处附近的金属涂层将熔化和气化并形成空洞,由此虽然会造成极板面积减少使电容C 及相应无功功率有所下降,但不影响电容器正常运行。
自愈式电容器主要特性参数有额定电压、电容、无功功率。
1. 1 额定电压
《自愈式低电压并联电容器》第3. 2 条规定“电容器额定电压优先值如
下0. 23 ,0. 4 ,0. 525 及0. 69 kV。
”电容器额定电压选取一般比电气设备额定运行电压高5 %。
1. 2 电容
电容器的电容是极板上的电荷相对于极板间电压的比值,该值与极板面积、极板间绝缘
厚度和绝缘介质的介电系数有关,
其计算式为C = 1 4πε× S D
式中ε为极板间绝缘介质的介电系数; S 为电容器极板面积; D 为电容器绝缘层厚度。
在上式中,电容C 数值与电压无直接关系, C 值似乎仅取决于电容器极板面积和绝缘介质,但这只是电容器未接网投运时的静态状况;接网投运后,由于电介质局部击穿造成极板面积减少从而会影响到电容C 数值降低,因此运行过程中, 电容C 是个逐年衰减下降的变量,其衰减速度取决于运行电压状况和自身稳态过电压能力。
出厂电容器的电容值定义为静态电
容。
一般,投运后第一年电容值下降率应在2 %以内,第二年至第五年电容值下降率应在1 %~
2 % ,第五年后因电介质老化,电容值将加速下降,当电容值下降至出厂时的85 %以下,可认为该电容器寿命期结束。
1. 3 无功功率
在交流电路中,无功功率QC = UI sinφ由于电容器电介质损耗角极小,φ= 90°,所以sin
φ= 1 ,则无功功率QC = UI =ωCU2 ×10 - 3 = 2πf CU2 ×10 - 3 (μF) ,从该式可见,电容器无功功率不仅取决于电容C ,而且还与电源频率f 、端电压U 直接相关,电容器额定无功功率的准确定义应是标准频率下外接额定电压时静态电容C 所对应的无功率。
接网投运后电容器所输出实际无功功率能否达到标定容量,则需视运行电压状况。
当电网电压低于电容器额定电压时,电容器所输出的无功功率将小于标定值。
因此如果电容器额定电压选择偏高,电容器实际运行电压长期低于额定值,很可能因电容器无功出力低于设计值造成电网无功短
缺。
2 无功补偿电容装置参数的选取误区
无功补偿装置在进行设计选型及设备订货时,提供给厂家的参数往往仅是电容补偿柜型
号和无功功率数值,而电容器额定电压及静态电容值这两个重要参数常被忽略。
由于电容器
生产厂家对产品安装处电压状况不甚了解,在产品设计时往往侧重于降低产品生产成本和减
少电介质局部击穿,所选取的电容器额定电压往往高于国家标准推荐值,这样做对电网运行的无功补偿效果会造成什么影响对电网建设投资又会引起什么变化呢可通过以下案例进行
分析。
例如某台10 0. 4 kV 变压器,按照功率因数0. 9 的运行要求,需在变压器低压侧进行集中
无功补偿,经计算需补偿无功功率100 kvar ,如果按额定电压U = 450 V 配置电容器,根据QC=ωCU2 ×10 - 3 计算,电容器组的静态电容值C 为1 572μF ,接入电网后在运行电压U =400 V 的状态下,该电容器实际向电网提供的无功功率QC 为79 kvar ,补偿效果仅达预期的79 %。
反之,在上述条件下,要想保证实际补偿效果为100 kvar ,则至少需配置电容器无功功率为127 kvar ,也就意味着设备投资需要增加27 %。
中山市2004 年变压器增加898 台,合计容量近60 万kvar ,按30 %补偿率计需补偿无功功率近18 万kvar 。
按上述分析,如选取额定电压为450 V ,则无功补偿量需在原有数字上增加4. 86 万kvar ,既便采取交流接触器投切静态补偿方式,设备购置投资亦需增加1 080 万元年。
如采取晶闸管投切动态补偿方式,则设备购置投资增加额则达到1980 万元年。
因此,为保证实际补偿效果与设计一致,无功补偿设备订货不仅应提出电容补偿柜的型号和无功功率数量,还应明确电容器额定电压,同时应要求设备生产厂家在电容器出厂铭
牌上标明无功功率数量,额定电压数值以及静态电容C 数值。
3 低压电容器额定电压及稳态过电压范围的选取
从以上分析可见,电容器额定电压高于运行电压可能造成补偿容量不足或引起设备投资
的增加;而电容器额定电压选取过低又可能因电介质局部击穿造成电容C 值下降从而影响补偿效果。
正确的选择原则应是在保证补偿效果的前提下,既满足建设前期设备投资最少,同
时又需做到电容器运行期间电介质局部击穿率最低,也就是说电容器运行电压需尽可能保持
在电容器所允许的稳态过电压范围内。
《自愈式低电压并联电容器》第4. 1. 5. 1 条对电容器稳态过电压明确规定如下“电容器应能在1. 1 倍额定电压下长期运行,并且在整个使用寿命期内可承受200 次以内的1. 15 倍额定电压值的电压冲击。
”中山市1998 年以来公用变压器低压台区的供电半径基本达到城镇为250 m 以内,农村为500 m 以内,变压器设置按深入负荷中心原则,75 %以上的低压负荷分布在变压器附近150 m 内,根据国家《供电营业规则》规定10 kV 及以下三相供电用户受电端电压偏差为±7 %,220 V 单相供电用户受电端电压偏差为+ 7 %~- 10
%。
本着兼顾变压器近端用户最高受电端电压和远端用户最低受电端电压的原则,一般10 0. 4
kV 公用变压器低压出口平均电压保持在400~440 V ,但短时间仍存在 440 V 的最高电压。
近期,对550 台公用配电变压器的抽样检测数据1300 万组进行统计分析,看到电压为400~
440 的抽样数据1 181 万组,约占90. 85 %;电压为440~460 V 的108. 4 万组,约占8. 34 %;
电压≥460 V 的10. 6 万组,约占0. 82 %。
按以上变压器低压运行状况,如电容器额定电压选取400 V ,则每台变压器所配置电容器
大约每年可能经受193 次1. 15 倍额定电压冲击,显而易见,对于电容器极板局部击穿乃至运行寿命都非常不利。
如果将电容器额定电压提高,又将大大增加设备投资。
对此,采取的做法是按国家标准优先推荐值
选取电容器额定电压为400 V ,同时电容器投切采用并联控制原
则。
4 并联控制投切电容器
采取电容器安装处的功率因数和电压两参数为投切控制依据来进行综合控制,可确保无
功补偿装置电容器运行区域始终保持在1. 1 倍稳定过电压范围。
电容器投入运行的条件为
功率因数低于设计要求且电压低于上限值,或电压低于下限值同时功率因数小于1 ;切除电容器退出运行的条件为功率因数高于1 或电压高于上限值。
一般电压上限取1. 05 倍额定电压,电压下限取0. 9 倍额定电压。
近期,笔者对所在地区2002 年安装的320 套公用变压器低压侧无功补偿电容器进行抽检测试,所得数据显示安装处功率因数为0. 91 ~0. 99 之间,最高运行电压为419 V ,电容器静态电容值年平均下降 1.
2 %。
事实证明,采取功率因数与电压并联控制投切方式,无功功率的补偿效果及稳定电容器的运行电压均效果良好。