无锡市天一实验学校初三数学模拟试题
- 格式:docx
- 大小:302.99 KB
- 文档页数:5
2023年江苏省无锡市锡山区天一实验学校中考数学模拟试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.(3分)﹣5的相反数是()A.﹣5B.5C.D.﹣2.(3分)函数y=中自变量a的取值范围是()A.a>2B.a≥2C.a<2D.a≤23.(3分)下列运算正确的是()A.a3•a3=a9B.(﹣2a)2=﹣4a2C.(a2)4=a12D.a6÷a2=a44.(3分)已知一组数据:23,22,24,23,23,这组数据的方差是()A.3B.2C.D.5.(3分)若关于x的一元一次方程2k﹣x﹣4=0的解是x=﹣3,那么k的值是()A.B.C.6D.106.(3分)如图,将直尺与30°角的三角尺叠放在一起,若∠1=50°,则∠2的大小是()A.40°B.50°C.70°D.80°7.(3分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为点M.连接OC,DB.如果OC∥DB,图中阴影部分的面积是2π,那么图中阴影部分的弧长是()A.B.C.D.8.(3分)已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0B.m+n>0C.m<n D.m>n9.(3分)如图,直线y=x﹣2与y轴交于点C,与x轴交于点B,与反比例函数y=的图:S△BOC=1:2,则k的值为()象在第一象限交于点A,连接OA.若S△AOBA.2B.3C.4D.610.(3分)如图,直角三角形BEF顶点F在矩形ABCD的对角线AC上运动,连接AE.∠EBF=∠ACD,AB=6,BC=8,则AE的最小值为()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分,其中第18题第一空1分,第二空2分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)11.(3分)分解因式:x3﹣x=.12.(3分)若有意义,则x的取值范围是.13.(3分)用一个半径为4的半圆形纸片制作一个圆锥的侧面,那么这个圆锥底面圆的半径是.14.(3分)写出一个顶点坐标是(1,2)且开口向下的抛物线的解析式.15.(3分)某种药品经过两次降价,由每盒50元调至36元,若第二次降价的百分率是第一次的2倍.设第一次降价的百分率为x,由题意可列得方程:.16.(3分)如图,AB为⊙O的直径,点C、D在⊙O上,若∠CBA=70°,则∠D的度数是.17.(3分)在平面直角坐标系中,点A的坐标为(2,0),P是第一象限内任意一点,连接PO,PA,若∠POA=m°,∠PAO=n°,若点P到x轴的距离为1,则m+n的最小值为.18.(3分)已知四边形ABCD是矩形,AB=2,BC=4,E为BC边上一动点且不与B、C 重合,连接AE,如图,过点E作EN⊥AE交CD于点N.①若BE=1,那么CN的长;②将△ECN沿EN翻折,点C恰好落在边AD上,那么BE的长.三、解答题(本大题共10小题,共96分,请在答题卡指定区城内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)(1)计算:(2)化简:.;20.(8分)(1)解方程:x(x﹣3)+x=3;(2)解不等式组:.21.(10分)如图,已知:在△ABC中,AB=AC,点D,E分别在边AB,AC上,AD=AE.(1)求证:△ABE≌△ACD;(2)BE与CD交于点F,求证:BF=CF.22.(10分)一方有难,八方支援,医院需派2名医务人员驰援疫区,现需从王医生、张医生、李医生中任意选派2名前往.(1)“赵医生被选派”是事件,“王医生被选派”是事件.(填“不可能”或“必然”或“随机”)(2)试用画树状图或列表的方法表示这次选派所有可能的结果,并求出“王医生被选派”的概率.23.(10分)为了掌握防疫期间学生们的线上学习情况,返校后,特选取了一个水平相当的七年级班级进行跟踪调研,将同学们的考试成绩进行处理分析,制成频数分布表如表(成绩得分均为整数):组别成绩分组频数频率147.5~59.520.05259.5~71.540.10371.5~83.5a0.20483.5~95.5100.25595.5~107.5b c6107.5~12060.15合计40 1.00根据表中提供的信息解答下列问题:(1)表格中a=,b=,c=;(2)补充完整频数分布直方图;(3)若全市七年级共有120个班(平均每班40人),用这份试卷检测,规定108分及以上为优秀,预计全市优秀人数为;72分及以上为及格,及格的百分比为.24.(10分)如图,在Rt△ABC中,∠ACB=90°,O为BC上一点,以O为圆心,OB为半径的⊙O交AB于另一点D,E为AC上一点,且AE=DE.(1)求证:DE是⊙O的切线;(2)若OB=2,OC=1,tan A=,求AE的长.25.(10分)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均落在格点上,点B在网格线上.(Ⅰ)线段AC的长等于;(Ⅱ)以AB为直径的半圆的圆心为O,在线段AB上有一点P,满足AP=AC.请用无刻度的直尺,在如图所示的网格中,画出点P.26.(10分)2022年开封市中招体育考试项目为:长跑、1分钟跳绳为必考项目;足球运球、篮球运球(可任选一项);双手正面掷实心球、立定跳远(可任选一项).我校为了备考练习,准备重新购买新的足球和跳绳若干根,若购买12个足球和10根跳绳,共需1400元;若购买10个足球和12根跳绳,共需1240元.(1)求足球和跳绳的单价分别是多少元?(2)学校决定购买足球和跳绳共60个,且跳绳的数量不多于足球数量的,请设计出最省钱的购买方案,并说明理由.27.(10分)如图,抛物线y=x2+bx+c与x轴分别交于A,B两点(点A在点B的左侧),与y轴交于点C,若A(﹣1,0)且OC=3OA.(1)求该抛物线的函数表达式;(2)如图,点D是该抛物线的顶点,点P(m,n)是第二象限内抛物线上的一个点,分别连接BD、BC、BP.①若△PBC是直角三角形,且∠PBC=90°时,求P点坐标;②当∠PBA=2∠CBD时,求P点坐标.28.(10分)问题提出:已知矩形ABCD,点E为AB上的一点,EF⊥AB,交BD于点F.将△EBF绕点B顺时针旋转α(0°<α<90°)得到△E′BF′,则AE′与DF′有怎样的数量关系.【问题探究】探究一:如图,已知正方形ABCD,点E为AB上的一点,EF⊥AB,交BD于点F.(1)如图1,直接写出的值;(2)将△EBF绕点B顺时针旋转到如图2所示的位置,连接AE、DF,猜想DF与AE 的数量关系,并证明你的结论;探究二:如图,已知矩形ABCD,点E为AB上的一点,EF⊥AB,交BD于点F.如图3,若四边形ABCD为矩形,=,将△EBF绕点B顺时针旋转α(0o<α≤90o)得到△E′BF′(E、F的对应点分别为E′、F′点),连接AE′、DF′,则的值是否随着α的变化而变化.若变化,请说明变化情况;若不变,请求出的值.【一般规律】如图3,若四边形ABCD为矩形,BC=mAB,其它条件都不变,将△EBF绕点B顺时针旋转α(0°<α<90°)得到△E′BF′,连接AE′,DF′,请直接写出AE′与DF′的数量关系.2023年江苏省无锡市锡山区天一实验学校中考数学模拟试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.【分析】根据相反数的定义直接求得结果.【解答】解:﹣5的相反数是5.故选:B.【点评】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2.【分析】根据二次根式有意义的条件:被开方数是非负数即可得出答案.【解答】解:∵2﹣a≥0,∴a≤2.故选:D.【点评】本题考查了函数自变量的取值范围,掌握二次根式有意义的条件:被开方数是非负数是解题的关键.3.【分析】利用同底数幂的除法的法则,同底数幂的乘法的法则,幂的乘方与积的乘方的法则对各项进行运算即可.【解答】解:A、a3•a3=a6,故A不符合题意;B、(﹣2a)2=4a2,故B不符合题意;C、(a2)4=a8,故C不符合题意;D、a6÷a2=a4,故D符合题意;故选:D.【点评】本题主要考查同底数幂的除法,幂的乘方与积的乘方,同底数幂的乘法,解答的关键是对相应的运算法则的掌握.4.【分析】先计算出这组数据的平均数,再根据方差的计算公式列式计算即可.【解答】解:∵这组数据的平均数为×(23+22+24+23+23+23)=23,∴这组数据的方差为×[(22﹣23)2+3×(23﹣23)2+(22﹣23)2]=,故选:D.【点评】本题主要考查方差,解题的关键是掌握方差的定义,并熟记方差的计算公式.5.【分析】把x=﹣3代入方程得出2k+3﹣4=0,再求出k即可.【解答】解:∵关于x的一元一次方程2k﹣x﹣4=0的解是x=﹣3,∴2k+3﹣4=0,解得:k=,故选:A.【点评】本题考查了解一元一次方程和一元一次方程的解,能熟记一元一次方程的解的定义是解此题的关键.6.【分析】根据平角的定义和平行线的性质即可得到结论.【解答】解:如图:由题意得,∠3=60°,∵∠1=50°,∴∠4=180°﹣60°﹣50°=70°,∵AB∥CD,∴∠2=∠4=70°,故选:C.【点评】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.7.【分析】连接OD,BC,根据垂径定理和等腰三角形的性质得到DM=CM,∠COB=∠BOD,推出△BOD是等边三角形,得到∠BOC=60°,根据扇形的面积公式即可求得圆的半径,然后根据弧长公式求得即可.【解答】解:连接OD,BC.∵CD⊥AB,OC=OD,∴DM=CM,∠COB=∠BOD,∵OC∥BD,∴∠COB=∠OBD,∴∠BOD=∠OBD,∴OD=DB,∴△BOD是等边三角形,∴∠BOD=60°,∵OC∥DB,=S△CBD,∴S△OBD∴图中阴影部分的面积==2π,∴OC=2或﹣2(舍去),∴的长==π,故选:B.【点评】本题考查了垂径定理、扇形面积的计算,弧长的计算,圆周角定理,通过解直角三角形得到相关线段的长度是解答本题的关键.8.【分析】根据反比例函数的性质,可得答案.【解答】解:y=的k=﹣2<0,图象位于二四象限,∵a<0,∴P(a,m)在第二象限,∴m>0;∵b>0,∴Q(b,n)在第四象限,∴n<0.∴n<0<m,即m>n,故D正确;故选:D.【点评】本题考查了反比例函数的性质,利用反比例函数的性质:k<0时,图象位于二四象限是解题关键.9.【分析】先由直线y=x﹣2与y轴交于点C,与x轴交于点B,求出C(0,﹣2),B(2,0),那么S△BOC=OB•OC=×2×2=2,根据S△AOB:S△BOC=1:2,得出S△AOB=S=1,求出y A=1,再把y=1代入y=x﹣2,解得x的值,得到A点坐标,然后将A △BOC点坐标代入y=,即可求出k的值.【解答】解:∵直线y=x﹣2与y轴交于点C,与x轴交于点B,∴C(0,﹣2),B(2,0),=OB•OC=×2×2=2,∴S△BOC:S△BOC=1:2,∵S△AOB=S△BOC=1,∴S△AOB∴×2×y A=1,∴y A=1,把y=1代入y=x﹣2,得1=x﹣2,解得x=3,∴A(3,1).∵反比例函数y=的图象过点A,∴k=3×1=3.故选:B.【点评】本题考查了反比例函数与一次函数的交点问题,反比例函数与一次函数图象上点的坐标特征,三角形的面积,待定系数法求反比例函数解析式,求出A点坐标是解题的关键.10.【分析】过点B作BH⊥AC于点H,连接EH,由∠BEF=∠BHF=90°,推出E、B、F、H四点共圆,再证∠AHE=∠ACD=定值,推出点E在射线HE上运动,当AE⊥EH时,AE的值最小,然后求出AH与sin∠AHE,即可解决问题.【解答】解:过点B作BH⊥AC于点H,连接EH,如图所示:∴∠BEF=∠BHF=90°,∴E、B、F、H四点共圆,∴∠EHB=∠EFB,∵∠AHE+∠EHB=90°,∠EBF+∠EFB=90°,∴∠AHE=∠EBF,∵∠EBF=∠ACD,∴∠AHE=∠ACD=定值,∴点E在射线HE上运动,当AE⊥EH时,AE的值最小,∵四边形ABCD是矩形,∴AB=CD=6,BC=AD=8,∠D=90°,∴AC===10,∴sin∠AHE=sin∠ACD==,=AB•CB=AC•BH,∵S△ACB即×6×8=×BH,∴BH=,在Rt△AHB中,由勾股定理得:AH===,∴AE的最小值=AH•sin∠AHE==.故选:D.【点评】本题属于四边形综合题,考查了矩形的性质、锐角三角函数的定义、勾股定理、四点共圆、圆周角定理、轨迹、三角形面积以及最小值问题等知识,本题综合性强,熟练掌握矩形的性质,利用垂线段最短解决最值问题是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分,其中第18题第一空1分,第二空2分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)11.【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).【点评】本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.12.【分析】先根据二次根式及分式有意义的条件列出x的不等式组,求出x的取值范围即可.【解答】解:∵有意义,∴,解得x>0.故答案为:x>2.【点评】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.13.【分析】设圆锥的底面圆半径为r,根据圆锥的底面圆周长=扇形的弧长,列方程求解.【解答】解:设圆锥的底面圆半径为r,依题意,得2πr=4π,解得r=2.故答案为:2.【点评】本题考查了圆锥的计算.圆锥的侧面展开图为扇形,计算要体现两个转化:1.圆锥的母线长为扇形的半径,2.圆锥的底面圆周长为扇形的弧长.14.【分析】由题意可以设函数解析式为y=a(x﹣1)2+2,只要a<0即可.【解答】解:∵抛物线开口向下,顶点坐标为(1,2),∴a<0,设函数解析式为y=a(x﹣1)2+2,只要a<0取值即可;故答案为:y=﹣(x﹣1)2+2(答案不唯一).【点评】本题考查二次函数解析式的求法;熟练掌握二次函数解析式的顶点式,同时利用待定系数法求函数解析式是解题的关键.15.【分析】设第一次降价的百分率为x,则第二次降价的百分率为2x,根据该药品的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,此题得解.【解答】解:设第一次降价的百分率为x,则第二次降价的百分率为2x,依题意,得:50(1﹣x)(1﹣2x)=36.故答案为:50(1﹣x)(1﹣2x)=36.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.16.【分析】根据圆周角定理得到∠ACB=90°,∠D=∠A,然后利用互余计算出∠A,从而得到∠D的度数.【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠CBA=70°,∴∠A=20°,∴∠D=∠A=20°.故答案为20°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.17.【分析】由题意可作出以OA为直径的⊙M,根据已知条件及圆的相关知识可得答案.【解答】解:如图,在平面直角坐标系中作出以OA为直径的⊙M,设直线y=1与⊙M相切于点P,则MP垂直于直线y=1,根据三角形内角和定理可知,要使得m+n取得最小值,则需∠OPA取得最大值.∵点P到x轴的距离为1,而PM为半径,∴PM=1,∵点A的坐标为(2,0),∴OM=1,∴∠OPA为以OA为直径的圆的一个圆周角,∴∠OPA=90°.在直线y=1上任取一点不同于点P的一点P',连接OP',交⊙M于点Q,连接AQ,则∠AQO=90°>∠AP'O,∴∠OPA>∠AP'O,∴∠OPA的最大值为90°,∴m+n的最小值为90.故答案为:90.【点评】本题考查了坐标与图形的相关性质,明确圆的相关性质、三角形的内角和及外角性质等知识点是解题的关键.18.【分析】①求出CE=BC﹣BE=3,证明△ABE∽△ECN,得出=,即可得出结果;②过点E作EF⊥AD于F,则四边形ABEF是矩形,得出AB=EF=2,AF=BE,由折叠的性质得出CE=C′E,CN=C′N,∠EC′N=∠C=90°,证明△EC′F∽△NC′D,得出==,则==,由=,得出=,则==,得出C′D=BE,设BE=x,则C′D=AF=x,C′F=4﹣2x,CE=4﹣x,则=,=,求出DN=x(2﹣x),CN=,由CN+DN =CD=2,即可得出结果;【解答】解:①∵BE=1,∴CE=BC﹣BE=4﹣1=3,∵四边形ABCD是矩形,∴∠B=∠C=90°,∴∠BAE+∠BEA=90°,∵EN⊥AE,∴∠AEN=90°,∴∠BEA+∠NEC=90°,∴∠BAE=∠NEC,∴△ABE∽△ECN,∴=,∴=,解得:CN=;故答案为:;②过点E作EF⊥AD于F,如图所示:则四边形ABEF是矩形,∴AB=EF=2,AF=BE,由折叠的性质得:CE=C′E,CN=C′N,∠EC′N=∠C=90°,∴∠NC′D+∠EC′F=90°,∵∠C′ND+∠NC′D=90°,∴∠EC′F=∠C′ND,∵∠D =∠EFC ′,∴△EC ′F ∽△NC ′D ,∴==,∴==,∵=,∴=,∴==,∴C ′D =BE ,设BE =x ,则C ′D =AF =x ,C ′F =4﹣2x ,CE =4﹣x ,∴=,=,∴DN =x (2﹣x ),CN =,∴CN +DN =x (2﹣x )+=CD =2,解得:x =2或x =,∴BE =2或BE =.故答案为:2或.【点评】本题考查了矩形的判定与性质、相似三角形的判定与性质、折叠的性质、三角形面积的计算等知识,综合性强、涉及面广,难度大,熟练掌握相似三角形的判定与性质是解题的关键.三、解答题(本大题共10小题,共96分,请在答题卡指定区城内作答,解答时应写出文字说明、证明过程或演算步骤)19.【分析】(1)根据二次根式的性质、绝对值的性质以及负整数指数幂的意义即可求出答案.(2)根据分式的加减运算以及乘除运算法则即可求出答案.【解答】解:(1)原式=2+3﹣﹣3=.(2)原式=•====a﹣1.【点评】本题考查二次根式的性质、负整数指数幂的意义、绝对值的性质、分式的加减运算法则以及乘除运算法则,本题属于基础题型.20.【分析】(1)利用因式分解法求解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集.【解答】解:(1)x(x﹣3)+x=3,x(x﹣3)+(x﹣3)=0,(x﹣3)(x+1)=0,∴x﹣3=0或x+1=0,∴x1=3,x2=﹣1;(2),解不等式①,x≤3,解不等式②,x>﹣1,∴不等式组的解集是﹣1<x≤3.【点评】本题主要考查了解一元二次方程和解一元一次不等式组,熟练掌握各自的方法和步骤是解题的关键.21.【分析】(1)由SAS证明△ABE≌△ACD即可;(2)由全等三角形的性质得∠ABE=∠ACD,再由等腰三角形的性质得∠ABC=∠ACB,然后证出∠CBF=∠BCF,即可得出结论.【解答】证明:(1)在△ABE和△ACD中,,∴△ABE≌△ACD(SAS);(2)由(1)得:△ABE≌△ACD,∴∠ABE=∠ACD,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC﹣∠ABE=∠ACD﹣∠ACD,即∠CBF=∠BCF,∴BF=CF.【点评】本题考查了全等三角形的判定与性质、等腰三角形的判定与性质等知识,熟练掌握等腰三角形的判定与性质,证明△ABE≌△ACD是解题的关键.22.【分析】(1)由随机事件和不可能事件的定义即可得出答案;(2)画树状图,共有6个等可能的结果,“王医生被选派”的结果有4个,再由概率公式求解即可.【解答】解:(1)“赵医生被选派”是不可能事件,“王医生被选派”是随机事件,故答案为:不可能,随机;(2)把王医生、张医生、李医生分别记为:A、B、C,画树状图如图:共有6个等可能的结果,“王医生被选派”的结果有4个,∴“王医生被选派”的概率为=.【点评】此题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.掌握概率公式:概率=所求情况数与总情况数之比是解题的关键.23.【分析】(1)根据频率=频数÷总数及频数之和等于总人数求解即可;(2)根据(1)中所求结果即可补全图形;(3)总人数乘以样本中优秀对应的频率即可得出其人数,将72分及以上分组的频率相加即可得出其所占百分比.【解答】解:(1)a=40×0.2=8,b=40﹣(2+4+8+10+6)=10,c=10÷40=0.25,故答案为:8、10、0.25;(2)补全直方图如下:(3)预计全市优秀人数为120×40×0.15=720(人),及格的百分比为0.2+0.25+0.25+0.15=0.85=85%,故答案为:720人,85%.【点评】本题主要考查频数分布直方图及频率分布表的知识,难度不大,解答本题的关键是掌握频率=频数÷总数.24.【分析】(1)连接OD,由直角三角形的性质及等腰三角形的性质证得∠ODE=90°,则可得出结论;(2)连接OE,求出AC=6,设AE=DE=x,则CE=6﹣x,由勾股定理求出x的值,则可得出答案.【解答】(1)证明:连接OD,∵∠ACB=90°,∴∠A+∠B=90°,∵AE=DE,∴∠A=∠EDA,∴∠B+∠EDA=90°,又∵OB=OD,∴∠B=∠ODB,∴∠ODB+∠EDA=90°,∴∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:连接OE,∵OB=2,OC=1,∴BC=3,∵tan A==,∴AC=6,设AE=DE=x,则CE=6﹣x,∵∠OCE=∠ODE=90°,∴OC2+CE2=OE2,OD2+DE2=OE2,∴12+(6﹣x)2=22+x2,∴x=,∴AE=.【点评】本题考查了切线的判定,圆周角定理,勾股定理,等腰三角形的性质,解直角三角形,熟练掌握切线的判定是解此题的关键.25.【分析】(Ⅰ)利用勾股定理求解即可;(Ⅱ)①取BC与网格线的交点D,②连接OD延长OD交⊙O于点E,③连接AE交BC于点G,④连接BE,延长AC交BE的延长线于F,⑤连接FG延长FG交AB于点P,点P即为所求.【解答】解:(Ⅰ)AC==.故答案为:;(Ⅱ)如图,①取BC与网格线的交点D,②连接OD延长OD交⊙O于点E,③连接AE交BC于点G,④连接BE,延长AC交BE的延长线于F,⑤连接FG延长FG交AB于点P,点P即为所求.【点评】本题考查圆周角定理,勾股定理,等腰三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.26.【分析】(1)设足球和跳绳的单价分别为x元、y元,由题意列出方程组,解方程组解可;(2)设购买足球m个,则跳绳有(60﹣m)个,设总利润为W,知W=100m+20(60﹣m)=80m+1200,结合60﹣m≤m得m≥15,依据W随m的增大而增大求解即可.【解答】解:(1)设足球和跳绳的单价分别为x元、y元,由题意得:,解得:,答:足球和跳绳的单价分别为100元、20元;(2)设购买足球m个,则跳绳有(60﹣m)个,设总利润为W,则W=100m+20(60﹣m)=80m+1200,∵60﹣m≤m,解得m≥45,∵W随m的增大而增大,∴当m=45时,W取得最小值,即购买足球45个,跳绳15个时,最省钱.【点评】此题主要考查了二元一次方程组的应用以及一次函数、一元一次不等式的应用等知识,根据题意得出正确的等量关系是解题关键.27.【分析】(1)用待定系数法即可求解;(2)①证明BP和x轴负半轴的夹角为45°,得到直线PB的表达式为:y=﹣(x﹣3),进而求解;②证明△BMD为等腰三角形,求出tan∠HBD=tan∠PBA,得到直线BP的表达式,进而求解.【解答】解:(1)由点A的坐标知,OA=1,而OC=3AO=3,则CO=3,即点C(0,﹣3),则抛物线的表达式为:y=x2+bx﹣3,将点A的坐标代入上式得:0=1﹣b﹣3,解得:b=﹣2,故抛物线的表达式为:y=x2﹣2x﹣3;(2)①令y=x2﹣2x﹣3=0,解得:x=﹣1或3,即点B(3,0),故OB=OC=3,则∠ABC=45°=∠OCB,∵∠PBC=90°,则BP和x轴负半轴的夹角为45°,故直线PB的表达式为:y=﹣(x﹣3),联立y=x2﹣2x﹣3和y=﹣(x﹣3)并解得:x=﹣2,则点P(﹣2,5);②由抛物线的表达式知,点D(1,﹣4),则CD=,且CD和y轴负半轴的夹角为45°,而∠OCB=45°,故CD⊥BC,延长DC到M使CM=CD,连接BM,则△BMD为等腰三角形,则∠CBD=∠CBM,则∠MBD=2∠CBD=∠PBA,过点D作DH⊥BM于点H,=×MD×BC=×MB×DH,则S△BDM由点C、D、B的坐标得:MD=2CD=2,BC=3,BD==BM,即23=×HD,则HD=,则sin∠HBD==,则tan∠HBD==tan∠PBA,故直线BP的表达式为:y=﹣(x﹣3),联立y=x2﹣2x﹣3和上式并解得:即点P的坐标为:(﹣,).【点评】本题考查二次函数的综合运用,涉及到函数的图象及性质,解直角三角形等,其中(2),构建等腰三角形BDM是本题解题的关键.28.【分析】问题探究探究一:(1)直接利用等腰直角三角形的性质计算即可得出结论;(2)先判断出=,进而得出△ABE∽△DBF,即可得出结论;探究二:先画出图形得到图3,利用勾股定理得到BD=AB,再证明△BEF∽△BAD得到,则=,接着利用旋转的性质得∠ABE′=∠DBF′,BE′=BE,BF′=BF,所以==,然后根据相似三角形的判定方法得到△ABE′∽△DBF′,再利用相似的性质可得==;一般规律作FM⊥AD,垂足为M.依据勾股定理可得Rt△ABD中,BD==AB,再根据△DMF∽△ABD,可得=,即可得出DF=AE;【解答】解:问题探究:探究一:(1)∵BD是正方形ABCD的对角线,∴∠ABD=45°,BD=AB,∵EF⊥AB,∴∠BEF=90°,∴∠BFE=∠ABD=45°,∴BE=EF,∴BF=BE,∴DF=BD﹣BF=AB﹣BE=(AB﹣BE)=AE,∴=,故答案为:;(2)DF=AE,理由:由(1)知,BF=BE,BD=AB,∴=,由旋转知,∠ABE=∠DBF,∴=,∴DF=AE;探究二:∵四边形ABCD为矩形,∴AD=BC=AB,∴BD=AB,∵EF⊥AB,∴EF∥AD,∴△BEF∽△BAD,∴,∴=,∵△EBF绕点B顺时针旋转α(0°<α<90°)得到△E'BF',∴∠ABE′=∠DBF′,BE′=BE,BF′=BF,∴==,∴△ABE′∽△DBF′,∴==.即DF′=AE′;一般规律:AE与DF的数量关系是:DF=AE;理由:如图,作FM⊥AD,垂足为M.∵∠A=∠AEF=∠AMF=90°,∴四边形AEFM是矩形,∴FM=AE,∵AD=BC=mAB,∴Rt△ABD中,BD=AB,∵MF∥AB,∴=,∴DF=MF=AE.【点评】本题是相似形综合题,主要考查了相似三角形的判定和性质,旋转的性质,等腰直角三角形的判定和性质,等边三角形的判定和性质,判断出△BCE是等边三角形是解本题的关键。
江苏省无锡市锡山区天一实验学校2023-2024学年九年级上学期12月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A.35°6.如图,用矩形ABCD面半径为()A.47.在△ABC中,已知....B.A.12中,∠10.如图,在ABCBC边上运动(点E不与点运动变化过程中,下列结论:①正方形;③四边形CEDF的面积随点点在同一个圆上,且该圆面积最小为确结论的个数是()A.4B.3C.2D.117.如图,四边形ABCD内接于⊙线相交于点F.若∠E+∠F18.如图,在平面直角坐标系中,已知,为直线AB上一动点,若∠OPC三、解答题(1)求点M到地面的距离;(2)某搬家公司一辆总宽2.55米,总高3.5米的货车从该入口进入时,货车需与护栏CD保持0.65米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.(参考数据:3 1.73,结果精确到0.01米)24.如图,在边长为8的正方形ABCD中,点O为AD上一动点(为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点MBC于点N.(1)求证:△ODM∽△MCN;(2)设DM=x,求OA的长(用含x的代数式表示);(3)在点O运动的过程中,设△CMN的周长为p,试用含x的代数式表示现怎样的结论?(1)求二次函数的表达式;(2)如图①,过点M 作y 轴的平行线l 交BC 于点F ,交二次函数于点E ,记CEF 的面积为1S ,BMF 的面积为2S ,当。
江苏省无锡市天一实验学校中考数学一模试题一. 选择题(本大題共10小题,每小题3分,共30分•)1.已知|n-l| + >/7 + Z? = 0> 则a + b =A. —8B. —62. 估计苗+1的值在A. 2到3之间B. 3到4之间3. 卜列计算正确的是4. 在如图所示的四个图形为两个圆或相似的正多边形,其中位似图形的个数为(▲)A ・1个B ・2个 C. 3个 D. 4个5. 一个圆锥形工艺品,它的高为3逅cm ・侧面展开图是半圆.则此圆锥的侧面积是(▲)6. 将二次换数y =十的图象向下平移1个单位.则平移后的二次函数的解析式为(▲)A. y = -1 B . y = F + i c. y = (x-l)2D . y = (x+l)27. 一个几何体的三视图如图所示,则该几何体的形状可能是(▲)8. 一次数学测试后,随机抽取九年级某班5名学生的成绩如卞:91, 78, 98, 85, 98.关 于这组数据说法错误的是(▲)A.极差是20B.中位数是91C.众数是98D.平均数是919. 如图,矩形ABCD ,由四块小矩形拼成(四块小矩形放置是既不觅叠,也没有空隙),其 中②③两块矩形全等,如果要求出①④两块矩形的周长之和,则只要知道(▲)A.矩形ABCD 的周长B.矩形②的周长C. AB 的长D. BC 的长10. 如图,将一块等腰RtA ABC 的直角顶点C •放在00卜.,绕点C 旋转三角形,使边AC 经过圆A. 2a e 3a=6aB. ( - a 3) 2=a 6C. 6a-2a=3aD.(・ 2a) - 6a 3C. 6D. 8 (▲)A. 9nB ・ 18"27 C.——n2D. 27 n主视图 左视窗俯视图心O,某一时刻,斜边AB在匕截得的纟戈段DE = 2cm, R. BC = 7cm,则OC的长为(▲)11. 一个多边形的每一个外角为30。
・那么这个多边形的边数为12. 在第六次全国人I I 普查中,无锡市常住人II 约为800万人,其中65岁及以上人II 占9.2%.则该市65岁及以上人I I 用科学记数法表示约为 _______ ▲ ______ 人.13. _______________________________________ 使根式JT 二有意义的x 的取值范围是_________________________________________________ ▲ ___________ ・14・如图,在厶ABC 中,ZBAC=60%将△ ABC 绕着点A 顺时针旋转40。
2023-2024学年第二学期适应性练习初三数学试卷一、选择题(本大题共10小题,每小题3分,共30分.)1. 5的相反数是( )A. B. 5 C. D. 【答案】C【解析】【分析】本题考查了相反数.相反数的定义:只有符号不同的两个数叫做互为相反数,据此判断即可得结果.【详解】解:5的相反数是,故选:C .2. 全国深入践行习近平生态文明思想,科学开展大规模国土绿化行动,厚植美丽中国亮丽底色,2023年完成造林约3990000公顷.用科学记数法表示3990000是( )A. B. C. D. 【答案】C【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.【详解】解:,故选:C .3. 分式中x 的取值范围是( )A. B. C. D. 【答案】A【解析】【分析】本题考查分式有意义的条件,根据分式的分母不为0时,分式有意义,进行求解即可.【详解】解:由题意,得:,∴;故选:A .4. 下列运算正确的是( )155-15-5-73.9910⨯60.39910⨯63.9910⨯70.39910⨯10n a ⨯110a ≤<n a n 63990000 3.9910=⨯11x-1x ≠1x ≠-1x ≤-1x ≤10x -≠1x ≠A. B. C. D. 【答案】C【解析】【分析】本题考查整式的运算,根据合并同类项,积的乘方,同底数幂的乘法和除法法则,进行计算即可.【详解】解:A 、,原选项计算错误;B 、,原选项计算错误;C 、,原选项计算正确;D 、,原选项计算错误;故选C .5. 正五边形的每一个外角是( )A. B. C. D. 【答案】D【解析】【分析】本题考查正多边形的外角,根据多边形的外角和等于360度,进行求解即可.【详解】解:由题意,得:正五边形的每一个外角是;故选D .6. 整数a 满足则a 的值为()A. 3B. 4C. 5D. 6【答案】B【解析】【分析】本题考查了估算无理数的大小,熟练掌握夹逼法是解题的关键.根据夹逼法估算无理数的大小即可求出a的值.,∴,故选:B .7. 圆锥的展开图的面积为,圆锥母线与底面圆的半径之比为,则母线长为( ).A. 10B. 20C.D. 2221a a -=()224ab ab =235a a a ⋅=842a a a ÷=2222a a a -=()2224ab a b =235a a a ⋅=844a a a ÷=360︒108︒40︒72︒360725=︒a <<<<4a =2200πcm 2:1cm【答案】B【解析】【分析】本题考查圆锥的侧面积,设圆锥的底面圆的半径为,根据圆锥的侧面积公式列出方程进行求解即可.【详解】解:设圆锥的底面圆的半径为,则:母线长为,由题意,得:,∴(负值舍去),∴母线长为;故选:B .8. 如图,是等边三角形,点P 是边上的一个动点,点P 关于的对称点分别为,,连接,,,点P 从点A 运动到点B 的过程中,的面积变化情况为( )A. 保持不变B. 一直变小C. 先变大再变小D. 先变小再变大【答案】D【解析】【分析】本题考查等边三角形的性质,等腰三角形的判定和性质,含30度角的直角三角形的性质,连接,对称易证是顶角为120度的等腰三角形,腰长为的长,根据腰长先变小后变大,即可得出结果.【详解】解:∵是等边三角形,∴,∵点P 关于的对称点分别为,,∴,,∴,∴,r rcm 2rcm 12π2200π2r r ⨯⋅=10r =21020cm ⨯=AOB AB ,OA OB 1P 2P 1OP 2OP 12PP 12OPPOP 12OPP OP AOB 60AOB ∠=︒,OA OB 1P 2P 12OP OP OP ==21,AOP AOP BOP BOP ∠=∠∠=∠()212122120P OP AOP AOP BOP BOP AOP BOP AOB ∠=∠+∠+∠+∠=∠+∠=∠=︒122130OPP OP P ∠=∠=︒过点作,则:,,∴,∴的面积随着的变化而变化,∵为上的一个动点,∴当时,的面积最小,此时点为的中点,∴点P 从点A 运动到点B 的过程中,的面积先变小后变大,故选D .9. 若,,三点在同一函数图像上,则该函数图像可能是( )A. B. C. D.【答案】B【解析】【分析】考查正比例函数、反比例函数、二次函数的图象和性质,可以采用排除法,直接法得出答案.由点,的坐标特点,可知函数图象关于y 轴对称,再根据,的特点和函数的性质,可知在对称轴左侧y 随x 的增大而增大,由此得出答案.【详解】解: ,,∴点C 与点B 关于y 轴对称;由于A 、C 的图象关于原点对称,因此选项A 、C 错误;,O 12OD PP ⊥21122OD OP OP ==1222PP DP ===12212111222OP P S PP OD OP =⋅=⨯= 12OPP OP P AB OP AB ⊥12OPP P AB 12OPP ()4,2A m --()2,B m -()2,C m ()2,B m -()2,C m ()4,2A m --()2,B m -()2,B m - ()2,C m 2m m >-Q由,可知,在对称轴的左侧,y 随x 的增大而增大,对于二次函数只有时,在对称轴的左侧,y 随x 的增大而减小,选项不正确,故选:B .10. 如图,在平面直角坐标系中,,B 为x 轴正半轴上的动点,以为边在第一象限内作使得,,连接,则长的最大值为( )A. 6B. 7C. 8D. 9【答案】C【解析】【分析】过点作,交过点平行于轴的直线于点,证明,得到,进而求出的长,取的中点,连接,斜边上的中线求出的长,勾股定理求出,根据,进行求解即可.【详解】解:过点作,交过点平行于轴的直线于点,则:,,,∴,∵,∴,∴,∴,∴,()4,2A m --()2,B m -0a >D ∴()0,4A AB ABC 90BAC ∠=︒12ABC S =△OC OC C CE AC ⊥A x E ACE AOB ∽24AE AO ⋅=AE AE F ,OF CF CF OF OC OF CF ≤+C CE AC ⊥A x E 90ACE AOB ∠=︒=∠ABO EAB ∠=∠90OAE ∠=︒90OBA OAB ∠+∠=︒90BAC ∠=︒90BAE CAE ∠+∠=︒CAE BAO ∠=∠ACE AOB ∽AC AE OA AB=∴,∵,∴,∴,∵,∴,∴,取的中点,连接,则:,∵,∴,在中,由勾股定理,得:;∵,∴长的最大值为8;故选C .【点睛】本题考查坐标与图形,勾股定理,斜边上的中线,相似三角形的判定和性质,熟练掌握相关知识点,添加辅助线,构造相似三角形,是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分.)11. 因式分解:______.【答案】【解析】【分析】先提公因式m ,再利用平方差公式分解即可.【详解】解:.故答案为:.【点睛】本题主要考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.AC AB OA AE ⋅=⋅1122ABC S AB AC =⋅=△24AB AC ⋅=24OA AE ⋅=()0,4A 4OA =6AE =AE F ,OF CF 132AF EF AE ===90ACE ∠=︒132CF AE ==Rt OAF△5OF ==8OC OF CF ≤+=OC 3m m -=(1)(1)m m m +-32(1)(1)(1)m m m m m m m -=-=+-(1)(1)m m m +-12. 若x ,y 满足方程组,则______.【答案】1【解析】【分析】本题考查解二元一次方程组,将两个方程进行相加,即可得出结果.【详解】解:,,得:;∴;故答案为:1.13. 抛物线与y 轴交点的坐标为______.【答案】【解析】【分析】本题考查二次函数与坐标轴的交点问题,令,求出值,即可得出结果.【详解】解:∵,∴当时,,∴抛物线与y 轴交点的坐标为;故答案为:.14. 若关于的一元二次方程的一个根为1,则另一个根为______.【答案】-3【解析】【分析】根据根与系数的关系可得出两根之和为-2,从而得出另一个根.【详解】解:设方程的另一个根为m ,则1+m=-2,解得m=-3.故答案为:-3.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,,x 1•x 2=.232323x y x y +=⎧⎨+=⎩x y +=232323x y x y +=⎧⎨+=⎩①②+①②555x y +=1x y +=()212y x =-+()0,30x =y ()212y x =-+0x =()20123y =-+=()212y x =-+()0,3()0,3x 220x x k +-=12b x x a+=-c a15. 如图,平行于y 轴的直尺(部分)与反比例函数的图象交于A ,C 两点,与x 轴交于B ,D 两点,连结,点A ,B 对应直尺上的刻度分别为5,2,直尺的宽度,,则点C 的坐标是_________.【答案】【解析】【分析】根据点A 、B 对应直尺上的刻度分别为5、2,OB =2.即可求得A 的坐标,进而求出反比例函数解析式,直尺的宽度,可得C 点横坐标,代入解析式可求坐标.【详解】解:∵直尺平行于y 轴,A 、B 对应直尺的刻度为5、2,∴AB=3,∵ OB =2,∴A 点坐标为:(2,3),把(2,3)代入得,,解得,m=6,反比例函数解析式为,∵直尺的宽度BD =2,OB =2.∴C 的横坐标为4,代入得,,∴点C 的坐标是(0)m y x x=>AC 2BD =2OB =34,2⎛⎫ ⎪⎝⎭2BD =m y x=32m =6y x=6y x =6342y ==34,2⎛⎫ ⎪⎝⎭故答案为:【点睛】本题考查了坐标与图形性质,待定系数法确定函数解析式,熟练掌握待定系数法是解本题的关键.16. 一次函数图象经过点,当时,,则k 的值可以是___________.(写出一个即可)【答案】7(答案不唯一,满足即可)【解析】【分析】本题考查一次函数的性质,将代入得,可知当时,,由此可得,求解即可,根据一次函数的性质得是解决问题关键.【详解】解:将代入得:,即,亦即:,当时,,∵,即,∴,故答案为:7(答案不唯一,满足即可).17. 如图,在四边形中,,,,点为的中点,射线交的延长线于点,连接.若,,求的长为______.【答案】【解析】【分析】先证明得,再证明四边形菱形,由菱形性质得,则,再由勾股定理求出的长,然后由勾股定理求出的长即可.【详解】证明:,,的342⎛⎫ ⎪⎝⎭,y kx b =+()1,12x =59y <<48k <<()1,1y kx b =+1y kx k =-+2x =1y k =+519k <+<519k <+<()1,1y kx b =+1k b +=1b k =-1y kx k =-+2x =211y k k k =-+=+59y <<519k <+<48k <<48k <<ABCD AD BC ∥90A ∠=︒BD BC =E CD BE AD F CF 1AD =2CF =BF ()BCE FDE ASA ≌BC FD =BCFD 2BD DF CF ===3AF AD DF =+=AB BF AD BC ∥ FDE BCE ∴∠=∠点为的中点,,在与中,,,,,四边形为平行四边形,又,平行四边形是菱形;,,,,,即的长为故答案为:【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、平行四边形的判定与性质以及勾股定理等知识,熟练掌握菱形的判定与性质是解题的关键.18. 如图,在中,,将沿翻折得到,若经过的内心I ,则的长为______.【答案】2 E CD DE EC ∴=BCE FDE BCE FDE CE DEBEC FED ∠=∠⎧⎪=⎨⎪∠=∠⎩()BCE FDE ASA ∴ ≌BC FD ∴=AD BC ∥ ∴BCFD BD BC = ∴BCFD 2BD DF CF ∴===3AF AD DF ∴=+=90A ∠=︒ AB ∴===BF ∴===BF ABCD Y 3,5AB AD ==ABD △BD A BD ' A D 'CBD △DI【解析】【分析】翻折,结合内心是三角形三条角平分线的交点,以及平行线的性质,推出,,证明,求出的长,再根据等积法结合角平分线的性质,得到,进行求解即可.【详解】解:∵翻折,∴,∵,∴,,∴,∴,∴,∵点I 是的内心,∴平分,平分,∴,∴,∵,∴,∴,∴,即:,∴,∴,∵平分,∴到的距离相等,∴又∵(同高三角形的面积比等于底边比),CDE DBC ∠=∠BE DE =CDE CBD ∽,CE BE CD DI CE IE=ADB BDE ∠=∠ABCD Y AD BC ∥3,5CD AB BC AD ====ADB DBE ∠=∠BDE DBE ∠=∠BE DE =CBD △CI DCE ∠DI BDC ∠BDE CDE ∠=∠CDE DBC ∠=∠DCE DCB ∠=∠CDE CBD ∽CD CE BC CD=2CD BC CE =⋅95CE =95CE =165ED BE BC CE ==-=CI DCE ∠I ,CE CD ::CDI CEI S S CD CE= ::CDI CEI S S DI IE =∴,即:,∴,∴;故答案为:2.【点睛】本题考查平行四边形的性质,三角形的内心,折叠的性质,相似三角形的判定和性质,角平分线的性质等知识点,熟练掌握相关知识点,并灵活运用,是解题的关键.三、解答题.(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19. (1)计算:;(2)化简:.【答案】(1(2)【解析】【分析】本题考查特殊角的三角函数值,零指数幂,整式的运算:(1)先进行特殊角的三角函数值,零指数幂和去绝对值运算,再进行加减运算;(2)先根据平方差公式和单项式乘以多项式的法则,进行计算,再合并同类项即可.【详解】解:(1)原式;(2)原式.20. (1)解方程:;(2)解不等式组:.【答案】(1)(2)【解析】【分析】本题考查解分式方程,求不等式组的解集:(1)将分式方程转化为整式方程,求解后检验即可;(2)分别求出每一个不等式的解集,找到它们的公共部分,即为不等式组的解集.CD DI CE IE =35935DI IE ==58DI DE =55162885DI DE ==⨯=()02cos 45π33︒---()()()2222x y x y x x y +---4-22y xy-+()02cos 45π332134=︒---=--=-22224422x y x xy y xy =--+=-+2111x x x =+++()312213a a a ⎧+->⎨-≤⎩12x =524a <≤【详解】解:(1),∴,解得:;经检验,是原方程的解;∴方程的解为:.(2)由①,得:;由②,得:,∴不等式组的解集为:.21. 如图,已知为平行四边形的对角线上的两点,且.(1)求证:;(2)若,求证:四边形为矩形.【答案】(1)见解析(2)见解析【解析】【分析】本题考查了矩形的判定、平行四边形的判定与性质、全等三角形的判定与性质等知识,熟练掌握矩形的判定,证明三角形全等是解题的关键.(1)由证明即可;(2)由全等三角形性质得,.再证,则四边形为平行四边形.然后由矩形的判定即可得出结论.【小问1详解】证明:四边形是平行四边形,,,,的2111x x x =+++21x x =++12x =12x =12x =()312213a a a ⎧+->⎨-≤⎩①②54a >2a ≤524a <≤E F 、ABCD BE DF =ABE CDF △≌△90AEC ∠=︒AECF SAS ABE CDF △≌△AE CF =AEB CFD ∠=∠AE CF AECF ABCD AB CD ∴=AB CD ABE CDF ∴∠=∠在和中,,;【小问2详解】如图,由(1)可知,,,.,,四边形为平行四边形.又,平行四边形矩形.22. 为了解学生对校园安全知识的掌握情况,现从九年级随机选取甲、乙两组各20名同学组织一次测试,并对本次测试成绩(满分为分)进行统计学处理:【收集数据】甲组名同学的成绩统计数据:(单位:分)乙组名同学中成绩在分之间数据:(满分为分,得分用x 表示,单位:分)【整理数据】(得分用表示)(1)完成下表分数/班级甲班(人数)乙班(人数) 【分析数据】请回答下列问题:(2)填空:平均分中位数众数为ABE CDF AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩(SAS)ABE CDF ∴≌△△ABE CDF △≌△AE CF ∴=AEB CFD ∠=∠180AEB AEO CFD CFE ∠+∠=∠+∠=︒AED CFE ∴∠=∠AE CF ∴∥∴AECF 90AEC =︒∠ ∴AECF 100208790607792835676857195959068788068958581207080x ≤<100707275767678787879x 060x ≤<6070x ≤<7080x ≤<8090x ≤<90100x ≤≤13466114甲班 乙班 (3)若成绩不低于分为优秀,请以甲组、乙组共人为样本估计全年级人中优秀人数为多少?【答案】(1),(2),(3)人【解析】【分析】(1)根据数据统计的方法以及各组数据之和等于样本容量可得答案;(2)根据中位数、众数的定义可求出、的值;(3)求出样本中甲乙两个班“优秀”所占的百分比,进而估计总体中“优秀”所占的百分比,再乘总人数即可.【小问1详解】解:由题意可知,乙班在的数据有个,在的有,个,故答案为:,;【小问2详解】甲班人中得分出现次数最多的是分,共出现次,因此甲班学生成绩的众数,将乙班名学生的成绩从小到大排列,处在中间位置的两个数的平均数为,因此中位数,故答案为:,;【小问3详解】(人),答:甲班、乙班共人为样本估计全年级人中优秀人数约为人.【点睛】本题考查中位数、众数,频数分布表,掌握中位数、众数以及“频率”是正确解答的前提.23. 如图,在电路AB 中,有三个开关:S 1、S 2、S 3.80.682=a 80.35b =7880401600959578.5840a b 7080x ≤<98090x ≤<2011945----=952095395a =20787978.52+=78.5b =9578.5665416008402020+++⨯=+401600840=频数总数(1)当开关S 1已经是闭合状态时,开关S 2、S 3的断开与闭合是随机的,电路AB 能正常工作的概率是 ;(2)若三个开关S 1、S 2、S 3的断开与闭合都是随机的,求电路AB 能正常工作的概率.【答案】(1);(2)【解析】【分析】先画树状图展示出所有等可能结果,从中找到使电路AB 正常工作的情况数,在根据概率公式计算即可;【详解】(1)画树状图如下:由树状图知,共有4种等可能结果,其中电路AB 能正常工作的有3种结果,∴电路AB 能正常工作的概率是;故答案是.(2)画树状图如下:34383434由树状图知,共有8种等可能结果,其中电路AB 能正常工作的有3种结果,∴电路AB能正常工作的概率是;【点睛】本题主要考查了画树状图求概率,准确分析计算是解题的关键.24. 尺规作图在中,,,若点D 是斜边上一个动点,点K 在上,点B 、点D 、点K 组成的三角形为等腰三角形,(1)连接,使,请用尺规作图的方法,作出点K ,点D 的具体位置.(2)在(1)的条件下,求此时的面积.【答案】(1)图见解析(2)【解析】【分析】本题考查复杂作图,等腰三角形的判定和性质,勾股定理,解直角三角形等知识点,熟练掌握相关知识点,正确的作图,是解题的关键.(1)以为圆心,的长为半径化弧,交于点,作的中垂线交于点,即为所求;(2)过点作,设,勾股定理求出的值,利用,求出的长,再利用三角形的面积公式进行求解即可.【小问1详解】如图,即为所求;38Rt ABC △90ACB ∠=︒6,9AC BC ==AB BC ,CD KD CD DK ⊥BDK 7526C AC ABD BD BC K ,D K D DE BC ⊥BK DK x ==x 5sin 13DE DK DCK CD CK ∠===DE ,D K由作图可知:,,∴为等边三角形,,∵,∴,∴,即:,故点即为所求;【小问2详解】过点作,设,则:,由(1)知,由勾股定理,得:,即:,解得:,∴,∵,∴,∴的面积为.25. 如图,在一块长为,宽为矩形地面上,要修建两条同样宽且互相垂直的平行四边形道路,平行四边形道路与矩形边所夹锐角,剩余部分(图中①②③④部分)种上草坪,使草坪面积为,求图中x 的值.的DK BK ∠=AC CD =△BKD ,B BDK A ADC ∠=∠∠=∠90B A ∠+∠=︒90BDK ADC ∠+∠=︒90CDK ∠=︒CD DK ⊥,D K D DE BC ⊥BK DK x ==9CK BC BK x =-=-6CD AC ==222CD DK CK +=()22269x x +=-52x =5513,9222DK BK CK ===-=5sin 13DE DK DCK CD CK ∠===5301313DE CD ==BDK 11530752221326BK DE ⋅=⨯⨯=22m 17m 160∠=︒2299m【答案】2【解析】【分析】本题考查了平行四边形的性质、矩形的面积公式以及三角函数的应用,找到正确的数量关系是解题的关键.先利用三角函数求出道路的宽度,然后根据矩形面积两条道路的面积 + 两条道路重合部分的面积 = 草坪面积列出方程即可.【详解】作平行矩形的长,则,又两条平行四边形互相垂直,.由题意可知:米,米,米,矩形面积两条道路的面积 + 两条道路重合部分的面积 = 草坪面积,根据题意得,可列方程为:,解得:,(不合题意,舍去)图中x 的值为2.26. 如图,四边形为正方形,点E 为中点,连接,将纸片折叠,使点C 落在上的点G 处,折痕为;展平后进行第二次折叠,使落在上,上的点H 与点G 重合,折痕为,展平后进行第三次折叠,使点A 落在上点Q 处,折痕为.-AC 60ACB ∠=︒ ∴90ABC ∠=︒AC x =1cos 602BC x x =︒=sin 60AB x x =︒= -∴222172217299x x x ⎫⨯--+=⎪⎪⎭12x =250x =∴ABCD CD BE BE EF BC BE BC BI BE BP(1)写出和的关系,并说明理由.(2)求证:H 为的黄金分割点.(3)以下结论:①P 是的黄金分割点;②P ,Q ,I 三点共线;③,正确的是______(请在横线上填写序号)【答案】(1),,理由见解析(2)证明见解析(3)①②③【解析】【分析】(1)正方形性质,得到,进而得到,折叠,得到,进而得到,即可得出结论;(2)设,得到,,进而得到,进而得到(3)连接,证明,得到,得到,判断②,设,则:,,勾股定理求出的值,进而求出的值,解直角三角形,求出的值,进而求出的长,判断①③即可.【小问1详解】解:,理由如下:∵四边形为正方形,∴,,,∴,∵折叠,∴,的EF PB BC AD DE EQ PQ +=EF PB ∥2PB EF =AB CD CEB ABE ∠=∠11,22BEF BEC PBE ABE ∠=∠∠=∠PBE BEF ∠=∠CE a =2BC a =,EG CE a BE ===)1BG BH a ==-BH BC =QI QBI CBI ≌90,IQB C IQ IC ∠=∠=︒=180BQP IQP ∠+∠=︒,CE DE CI IQ x α====2AB BC BQ AD a ====IE a x =-x ,DI IQ DP AP PQ ,EF PB ∥ABCD AB CD AB CD =90A C ∠=∠=︒CEB ABE ∠=∠11,22CEF BEF BEC ABP PBE ABE ∠=∠=∠∠=∠=∠∴,∴;∵,,∴,∴,∴;【小问2详解】证明:设,则:,∵折叠,∴,∵四边形为正方形,∴,∴,∴,∴∴H 为的黄金分割点;【小问3详解】连接,∵正方形,∴,∵翻折,∴,,CEF ABP PBE BEF ∠=∠=∠=∠EF PB ∥CEF ABP ∠=∠90A C ∠=∠=︒BAP ECF ∽2PB AB CD EF CE CE===2PB EF =CE α=2CD α=,EG CE a BG BH ===ABCD 90,2BCD BC CD a ∠=︒==BE ==)1BH BG BE EG a ==-=-BH BC ==BC QI ABCD ,90AB BC BAP C =∠=∠=︒,90AB BQ BC BQP A ==∠=∠=︒QBI CBI ∠=∠∵,∴,∴,∴,∴三点共线,故②正确;设,则:,,∴,∴,由勾股定理,得:,∴,解得:,∴,∴,∵,∴,∴,∴,∵,∴,故③正确;∵,∴P 是的黄金分割点;故①正确;BI BI =QBI CBI ≌90,IQB C IQ IC∠=∠=︒=180BQP IQP ∠+∠=︒,,P Q I ,CE DE CI IQ x α====2AB BC BQ AD a ====IE a x =-BE =)2EQ a =-222IE EQ IQ =+())2222a x a x ⎡⎤-=+⎣⎦)22x a =-()(145IE a a =-+=-(6DI DE IE a =+=-tan QE PD DIP IQ DI∠==12PD DI ==(132PD DI a ==()231PQ AP AD DP a a ==-=-+=))21DE EQ a a a +=+-=-DE EQ PQ +=PD AP ==AD综上:正确的有①②③;故答案为:①②③.【点睛】本题考查正方形的折叠问题,勾股定理,黄金分割,解直角三角形,相似三角形的判定和性质等知识点,熟练掌握正方形的性质,折叠的性质,利用勾股定理和直角三角形的性质求值,是解题的关键.27. 如图,为的直径,点C 是上任意一点,过点C 作于G ,交于D ,,连接.分别交于F 、H .(1)如图1,求证:.(2)如图1,若,,求的长.(3)当点C 在圆上运动的过程中,试判断之间的数量关系,并说明理由.【答案】(1)见解析 (2)6(3),理由见解析【解析】【分析】(1)根据垂径定理,圆周角定理,得到,即可得出结论;(2)根据,求出的长,进而求出的长,圆周角定理,得到,求出的长,进而求出的长,利用三角函数求出的长,再利用三角函数求出的长即可;(3)将沿着翻折,使点于上的点重合,得到,进而推出,三线合一,得到,根据,即可得出结论.【小问1详解】解:为的直径,,∴,∵,AB O O CD AB ⊥O AC EC=AE CD BC 、AF CF =4AG =3tan 4EAB ∠=EH AG BG BE 、、BG AG BE =+CAF ACF ∠=∠3tan 4FG EAB AG ∠==FG ,AF CG tan tan ACG ABC ∠=∠BG AB BE EH BEC BC E AB M ,BE BM CE CM ==AC CM =AG GM =BG BM MG =+AB O CD AB ⊥ AC AD = AC EC=∴,∴,∴;【小问2详解】∵,,∴,∴,∴,∴,∴,∵为的直径,∴∵,∴,∴,∴,,∴,∵,∴设,则:,∴,∴,∴;【小问3详解】,理由如下:∵, AC CE=CAF ACF ∠=∠AF CF =CD AB ⊥4AG =3tan 4FG EAB AG ∠==3FG=5AF ==5CF AF ==8CG CF FG =+=AB O 90AEB ∠=︒AC CE AD ==ACG CBG EBC ∠=∠=∠41tan tan tan 82CG EH AG ACG CBG EBC BG BE CG ∠=∠=∠=====216BG CG ==12HE BE =20AB AG BG =+=3tan 4BE EAB AE ∠==3,4BE x AE x ==520AB x ==4x =12BE =162HE BE ==BG AG BE =+ AC CE=∴,,∴平分,∵为直径,∴,将沿着翻折,使点于上的点重合,则:,∴,∵,∴,∵,∴,∴.【点睛】本题考查圆周角定理,垂径定理,解直角三角形,勾股定理,等腰三角形的判定和性质,全等三角形的判定和性质,熟练掌握相关知识点,从复杂图形中有效的获取信息,是解题的关键.28. 如图,一次函数与二次函数的图像交于A 、D 两点(点A 在点D 左侧),与二次函数的图象交于B 、C 两点(点B 在点C 左侧).(1)如图1,若,,请求出的值.(2)如图1,若,点B 与A 横坐标之差为1,试探究的值是否为定值?如果是,请求出这个比值:如果不是,请说明理由.AC CE =ABC EBC ∠=∠BC ABE ∠AB AB BE >BEC BC E AB M BEC BMC ≌,BE BM CE CM ==AC CE =AC CM =CG AM ⊥AG MG =BG BM MG BE AG =+=+()0,0y mx n m n =+≠>2y x =22y x =1m =1n =:AB CD 1m =:AB CD(3)如图2,若,求的值.【答案】(1(2)(3)【解析】【分析】(1)分别求出点A、B、C、D的坐标,再根据两点之间的距离公式,求出,即可解答;(2)先求出点A、B、C、D的横坐标,过点A、B、C、D分别作x轴的垂线,垂足分别为点E、F、G、H;过点A作于点P,过点C作于点Q,易证,则,根据点B与A横坐标之差为1,德吹,,进而得出,再求出(3)先求出点A、B、C、D的横坐标,由(2)同理可得:,,推出,进而求出,即可解答.【小问1详解】解:若,,则一次函数为,联立和得:,解得,,联立和得:,:2AB CD=:BC AD231310,AB CDAP BF⊥CQ DH⊥ABP CDQ∽::AB CD AP CQ=1AP=1B Ax x-=5=D CCQ x x=-=:2B AD Cx xAB CDx x-==-:C BD Ax xBC ADx x-=-3m=-26nm=1m=1n=1y x=+1y x=+2y x=21y xy x=+⎧⎨=⎩xy⎧=⎪⎪⎨⎪=⎪⎩xy⎧=⎪⎪⎨⎪=⎪⎩A∴D1y x=+22y x=212y xy x=+⎧⎨=⎩解得或,,,【小问2详解】解:当时,一次函数为,联立和得:,解得,联立和得:,解得:,过点A 、B 、C 、D 分别作x 轴的垂线,垂足分别为点E 、F 、G 、H ;过点A 作于点P ,过点C 作于点Q ,∵轴,轴,∴,∴,又,,1212x y ⎧=-⎪⎪⎨⎪=⎪⎩12x y =⎧⎨=⎩11,22B ⎛⎫∴ ⎝-⎪⎭()1,2C AB ∴==CD ==:AB CD ∴==1m =y x n =+y x n =+2y x =2y x n y x=+⎧⎨=⎩A D x x ==y x n =+22y x =22y x n y x =+⎧⎨=⎩B C x x ==AP BF ⊥CQ DH ⊥BF x ⊥DH x ⊥BF DH ∥ABP CDQ ∠=∠AP BF ⊥CQ DH ⊥∴,∴,∵点B 与A 横坐标之差为1,∴,,整理得:,∵,∴.【小问3详解】解:联立和得:,解得联立和得:,解得:由(2)可得:,ABP CDQ ∽::AB CD AP CQ =1AP =1B A x x -=1=5=32D C CQ x x =-===32::1:23AB CD AP CQ ===y mx n =+2y x =2y m n y x =+⎧⎨=⎩A D x x ==y mx n =+22y x =22y mx n y x =+⎧⎨=⎩B C x x ==:2B A D Cx x AB CD x x -==-,整理得:,由图可知:一次函数图象经过二、四象限,则,两边同时除以m 得:,令,则,解得:,∴,,同理可得:.【点睛】本题考查了二次函数与一次函数综合,解题的关键是熟练掌握求二次函数和一次函数交点的方法和步骤.2=3m =-0m <3=2n t m =3=6t =26n m=15==13:110C BD A x x BC AD x x -====+=-。
江苏省无锡市天一实验学校九年级数学一模试题注意事项:1.本试卷满分130分,考试时间为120分钟.2.卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果. 3.所有的试题都必须在答题纸上作答,在试卷或草稿纸上答题无效. 一、选择题(本大题共10小题,每小题3分,共30分) 1.9的算术平方根等于( ▲ ) A .3 B .3-C .3±D .32.下列运算正确的是( ▲ ) A .()426x x = B .246x x x += C .()3221(0)x x x x x -÷=-≠ D .428x x x •=3.使31x -有意义的x 的取值范围是( ▲ )A .13x >B .13x >-C . 13x ≥D .13x ≥-4. 下列图案既是轴对称图形,又是中心对称图形的是( ▲ )A .B .C .D .5.如果正三角形的内切圆半径为1,那么这个正三角形的边长为( ▲ )A.2B. 23C. 3D. 37.如图, AB 是⊙O的直径,C 、D 是⊙O 上的点,AD DC =,连结AD 、AC ,若∠DAB =55°,则∠CAB 等于( ▲ )A 、14°B 、16°C 、20°D 、18°8.下列命题中错误的是( ▲ )A .两组对边分别相等的四边形是平行四边形B .一组对边平行的四边形是梯形C .一组邻边相等的平行四边形是菱形D .对角线相等的平行四边形是矩形 9.直线y=x 与双曲线)0(>k xky =的一个交点为A ,且OA =2,则k 的值为( ▲ ) A 、1 B 、2 C 、2 D 、2210.在平面直角坐标系中,以点()3,5-为圆心,r 为半径的圆上有且仅有....两点到x 轴所在直线的距离等于1,则圆的半径r 的取值范围是( ▲ )A .4r >B .06r <<C .46r ≤<D .46r <<二、填空题(本大题共8小题,每小题2分,共16分) 11.2-的倒数是______▲_______.12.0.000用科学记数法可表示为____▲___________.13.分解因式:a 2b -b 3= ▲ . 14.方程0122=--x x 的解是▲ .15.如图,梯形ABCD 中,AB ∥DC ,AB ⊥BC ,AB =2cm ,CD =4cm .以BC 上一点O 为圆心的圆弧经过A 、D 两点,且∠AOD =90°,则圆心O 到弦AD 的距离是 ▲ .16.如图,在梯形ABCD 中,AD ∥BC ,点E 、F 、G 、H 是两腰上的点,AE =EF =FB ,CG =GH =HD ,且四边形EFGH 的面积为6cm 2,则梯形ABCD 的面积为 ▲ cm 2.17.如图,在△ABC 中,AB = 10,AC = 6,BC = 8,⊙O 为△ABC 的内切圆,点D 是斜边AB 的中点,则tan∠ODA = ▲ .三、解答题(本大题共10小题,共84分)19.(本题满分8分)计算:(1)2(5)(cos 60)|4|-+- ;(2).25624322+-+-÷+-a a a a a 20.(本题满分8分)(1)解方程:x x x -=+--23123;(2)解不等式组:110334(1)1x x +⎧-⎪⎨⎪--<⎩≥ 21.(本题满分6分)如图,在△ABC 中,AB=AC ,D 为BC 中点,四边形ABDE 是平行四边形.求证:四边形ADCE 是矩形.22.(本题满分7分)某中学九(1)班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.请你根据图表中的信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为 ▲ ;(2)选择长跑训练的人数占全班人数的百分比是 ▲ ,该班共有同学 ▲ 人;(3)根据测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数增加25% , 请求出参加训练之进球数(个) 8 7 6 5 4 3 人数214782训练后篮球定时定点投篮测试进球数统计表长跑铅球 篮球 立定跳远20%10%60%项目选择情况统计图前的人均进球数.23. (本题满分8分)“时裳”服装店现有A 、B 、C 三种品牌的衣服和D 、E 两种品牌的裤子,温馨家现要从服装店选购一种品牌的衣服和一种品牌的裤子.(1)写出所有选购方案(利用树状图或列表方法表示)(2)如果(1)中各种选购方案被选中的可能性相同,那么A 品牌衣服被选中的概率是多少? 24.(本题满分7分)如图所示,电工李师傅借助梯子安装天花板上距地面2 .90m 的顶灯.已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m .矩形面与地面所成的角α为78°.李师傅的身高为l.78m ,当他攀升到头顶距天花板0.05~0.20m 时,安装起来比较方便.请问他站立在梯子的第几级踏板上安装比较方便?,请你通过计算判断说明.(参考数据:sin78°≈0.98,cos78°≈0.21,tan78°≈4.70)25.(本题满分10分)在平面直角坐标系中,点B 的坐标为(0,10),点P 、Q 同时从O 点出发,在线段OB 上做往返运动,点P 往返一次需10s ,点Q 往返一次需6s .设动点P 、Q 运动的时间为x (s ),动点离开原点的距离是y . (1)当0≤x ≤10时,在图①中,分别画出点P 、点Q 运动时关于x 的函数图象,并回答:①点P 从O 点出发,1个往返之间与点Q 相遇几次(不包括O 点)?②点P 从O 点出发,几秒后与点Q 第一次相遇? (2)如图②,在平面直角坐标系中,□OCDE 的顶点C (6,0),D 、E 、B 在同一直线上.分别过点P 、Q 作PM 、QN 垂直于y 轴,P 、Q 为垂足.设运动过程中两条直线PM ,QN 与□OCDE 围成图形(阴影部分)的面积是S ,试求当x (0≤x ≤5)为多少秒时,S 有最大值.最大值是多少?26.(本题满分10分)如图,抛物线y=ax 2+bx -4a 经过A (-1,0)、C (0,4)两点,与x 轴交于另一点B .(1)求抛物线的解析式;(2)已知点D (m ,m +1)在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标;(3)在(2)的条件下,连接BD ,点P 为抛物线上一点,且∠DBP =45°,求点P 的坐标.27.(本题满分10分)如图1,在直角坐标系x oy 中,O 是坐标原点,点A 在x 正半轴上,OA =123cm ,点B 在y 轴的正半轴上,OB =12cm ,动点P 从点O 开始沿OA 以23cm/s 的速度向点A 移动,动点Q 从点A 开始沿AB 以4cm/s 的速度向点B 移动,动点R 从点B 开始沿BO 以2cm/s 的速度向点O 移动.如果P 、Q 、R 分别从O 、A 、B 同时移动,移动时间为t (0<t <6)s.(1)求∠OAB 的度数.(2)以OB 为直径的⊙O′与AB 交于点M ,当t 为何值时,PM 与⊙O′相切?28.(本题满分10分)定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径.(1)如图1,损矩形ABCD ,∠ABC =∠ADC =90°,则该损矩形的直径是线段 . (2)在线段AC 上确定一点P ,使损矩形的四个顶点都在以P 为圆心的同一圆上(即损矩形的四个顶点在同一个圆上),请作出这个圆,并说明你的理由. 友情提醒:“尺规作图”不要求写作法,但要保留作图痕迹.(3)如图2,,△ABC 中,∠ABC =90°,以AC 为一边向形外作菱形ACEF ,D 为菱形ACEF 的中心,连结BD ,当BD 平分∠ABC 时,判断四边形ACEF 为何种特殊的四边形?请说明理由.若此时AB =3,BD =42,求BC 的长.y xO A B CABCD图1EFDCBA 图2-无锡市天一实验学校初三 第一次模拟考试数学参考答案三、解答题(本大题共有10小题,共84分)19.计算(本题满分8分)(1)2(5)(cos 60)|4|-+- (2).25624322+-+-÷+-a a a a a =5-1+4……3分 =22(3)53(2)(2)2a a a a a a -+•-++-+……2分 =8 ……4分 =2522a a -++ ……3分 =32a -+ ……4分20.(本题满分8分)(1)解方程:x x x -=+--23123 (2)解不等式组:110334(1)1x x +⎧-⎪⎨⎪--<⎩≥①②解:去分母得x-3+x-2=-3……1分 解:由①得x≤2……1分整理得2x=2 由②得x>1.5……2分系数化为1得x=1 ……2分 ∴原不等式的解集是1.5<x≤2……4分 检验:当x=1时,x-2≠0……3分 ∴原方程的解是x=1 ……4分 21.(本题满分6分)证明:∵□ABDE 且D 为BC 中点 ∴AE∥CD,AE=CD ∴四边形ADCE 是平行四边形……3分又∵AB=AC ,D 为BC 中点 ∴∠ADC=90°……5分 ∴四边形ADCE 是矩形……6分 22.(本题满分7分)解:(1) 5 ;……2分 (2) 10% ,……3分 40 人;……5分 (3)参加训练之前的人均进球数=54125%=+……7分……4分(2)∵共6钟选购方案,其中A 品牌衣服被选中的方案有2钟∴A 品牌衣服被选中的概率是2163=……8分 24.(本题满分7分)解:过点A 、D 作AE 、DF ⊥BC 于E 、F 在Rt △ACE 中,tan78°=AECE∴AE=CE tan78°=0.5×4.70=2.35……1分 设他站立在梯子的第n 级踏板 由△C DF∽△CAE 得DF CD ==AE CA 7n∴DF=2.357n……2分 ∴h=2.90-1.78-2.357n =1.12-2.357n……3分又∵0.05≤h ≤0.20 ∴0.05≤1.12-2.357n≤0.20……4分 解得2.74≤n ≤3.19……5分 ∵n 为正整数 ∴n=3……6分∴站立在梯子的第3级踏板上安装比较方便……7分(1)实线表示点P的函数图像,虚线表示点Q的函数图像……2分①点P从O点出发,1个往返之间与点Q相遇2次……4分②点P从O点出发,3.75秒后与点Q第一次相遇……6分(2)S=OC×PQ=6PQ当0≤x≤3时,S=6(1023x x-)=8x∴当x=3时,S max=24当3<x≤3.75时,S=6[(20-103x)-2x]=120-32x∴当x=3时,S max=24当3.75<x≤5时,S=6[2x- (20-103x)]=32x-120∴当x=5时,S max=40综上所述:当x=5时,S max=40……10分26.(本题满分10分)(1)y=-x2+3x+4……2分(2)D’(0,1)……5分(3)设P(x,-x2+3x+4)过点P作PF⊥x轴于点F∵∠DBP=∠CBO=45°∴∠DBE=∠PBF又∵∠DEB=∠PFB=90°∴△BDE∽△BPF∴BE DEBF PF=即2532222434x x x=--++即5x2-18x-8=0解得x=4(舍)或-0.4 ∴P(-0.4,2.64)……10分28.(1)该损矩形的直径是线段AC……1分(2)取AC中点O,以O为圆心、12AC为半径作圆……3分(3)正方形理由:构造⊙O,使点A、B、C、D都在圆上∵∠ABC=90°且BD平分∠ABC∴∠1=∠CBD=∠ABD=45°又∵菱形ACEF∴AE平分∠CAF ∴∠CAF=90°∴菱形ACEF是正方形……7分过点A作AG⊥BD于GBC=5……10分。
江苏省无锡市锡山区江苏省天一中学(实验学校)2024-2025学年九年级上学期10月月考数学试题一、单选题1.下列方程中,是一元二次方程的有( )①21x x +=;②22340x xy -+=;③211x x -=;④20x =;⑤233x x +=. A .1个; B .2个; C .3个; D .4个. 2.若一元二次方程230x x a -+=的一个根为2x =,则a 的值为( )A .2B .2-C .4D .4-3.如图,若点D 是线段AB 的黄金分割点(AD BD >),6AB =,则AD 的长是( )A .3B .1C .9-D .3 4.方程2230x x --=配方后可化成()2x m n +=的形式,则m n +的值为( )A .5B .4C .3D .15.如图,已知12∠=∠,那么添加下列的一个条件后,仍无法判定ABC ADE △△∽的是( )A .AB AC AD AE = B .B D ∠=∠ C .AB BC AD DE = D .C AED ∠=∠6.若关于x 的一元二次方程()2110k x x -++=有实数根,则k 的取值范围是( )A .54k ≥B .54k >C .54k >且1k ≠D .54k ≤且1k ≠ 7.下列各组图形中,一定相似的是( )A .两个正方形B .两个矩形C .两个菱形D .两个平行四边形 8.如图,在ABC V 中,D 是AC 的中点,点F 在BD 上,连接AF 并延长交BC 于点E ,若31BF FD =::,=10BC ,则CE 的长为( )A .3B .4C .5D .1039.《算法统宗》是中国古代数学名著,作者是明代数学家程大位.书中记载了一道“荡秋千”问题:“平地秋千未起,踏板一尺离地;送行二步与人齐,五尺人高曾记;仕女佳人争蹴,终朝笑语欢嬉;良工高士素好奇,算出索长有几?”译文:“秋千静止的时候,踏板离地1尺,将它往前推送两步(两步=10尺)时,此时踏板升高离地5尺,秋千的绳索始终拉得很直,试问秋千绳索有多长?”若设秋千绳索长为x 尺,则可列方程为( ).A .()222101x x +=+B .()222110x x ++= C .()222104x x +=- D .()222410x x -+= 10.如图,在边长为2的正方形ABCD 中,P 是BC 边上一动点(不含B 、C 两点),将ABP V 沿直线AP 翻折,点B 落在点E 处;在CD 上有一点M ,使得将CMP !沿直线MP 翻折后,点C 落在直线PE 上的点F 处,直线PE 交CD 于点N ,连接MA ,NA .则以下结论中正确的是.( )①CMP BPA ∽△△;②CNP V的周长始终不变: ③当P 为BC 中点时,AE 为线段NP 的中垂线;④线段AM :⑤当ABP ADN △△≌时,2BP =.A .2个B .3个C .4个D .5个二、填空题11.已知23a b =,则b a =. 12.关于x 的方程()222310m m x x --+-=是一元二次方程,则m 的值为.13.如果两个相似三角形的面积之比为4:9,这两个三角形的周长的和是100cm ,那么较小的三角形的周长为cm .14.若α,β为方程2x 2-5x-1=0的两个实数根,则2α2+3αβ+5β的值为.15.电脑病毒传播快,如果一台电脑被感染,经过两轮感染后就会有121台电脑被感染,若每轮感染中平均一台电脑会感染x 台电脑,则x =.16.已知关于x 的一元二次方程()()22121c x bx a x --=+,其中a 、b 、c 分别为ABC V 三边的长,如果方程有两个相等的实数根,则ABC V 的形状为.17.如图,ABC ADE ∽△△,90BAC DAE ∠=∠=︒,3AB =,4AC =,点 D 在线段BC 上运动,P 为线段DE 的中点,在点D 的运动过程中,CP 的最小值是.18.如图①②,在平面直角坐标系中,点P 的坐标为(),点(,0)M t 是横轴上的一点,点N 在y 轴上,且90MPN ∠=︒,0t ≤≤(1)如图①,当0t =时,PM PN=;(提示:过点P 作x 轴垂线,垂足为H ,交过点N 作y 轴的垂线于点G )(2)连接MN ,设MN 的中点为T ,在点M 从0t =这个时刻走到t =点T 所走过的路线长是.三、解答题19.按要求解下列方程:(1)23610x x +-=(配方法)(2)2650x x -+=(3)290x --=(公式法)(4)()()()2243225x x x x +--=+.20.化简再求值:2221111a a a a a --⎛⎫÷-- ⎪-+⎝⎭,其中a 是方程280x x --=的根. 21.已知关于x 的方程2(2)20x k x k -++=(1)求证:无论k 取任何实数,方程总有实数根;(2)若等腰ABC V 的一边3a =,另两边长b 、c 恰好是这个方程的两个根,求ABC V 的周长. 22.如图,在6×10的方格纸ABCD 中有一个格点△EFG ,请按要求画线段.(1)在图1中,过点O 画一条格点线段PQ (端点在格点上),使点P ,Q 分别落在边AD ,BC 上,且PQ 与FG 的一边垂直.(2)在图2中,仅用没有刻度的直尺找出EF 上一点M ,EG 上一点N ,连结MN ,使△EMN 和△EFG 的相似比为2:5.(保留作图痕迹)23.如图,在平行四边形ABCD 中,E 是边AD 的延长线上一点,连接BE 交CD 于点F ,交对角线AC 于点G .(1)若12DE AD ==,,求CF DF的值; (2)求证:BCF EAB ∽V V .24.济南市公安交警部门提醒市民:“出门戴头盔,放心平安归”.某商店统计了某品牌头盔的销售量,四月份售出375个,六月份售出540个,且从四月份到六月份月增长率相同.(1)求该品牌头盔销售量的月增长率;(2)经市场调研发现,此种品牌头盔如果每个盈利10元,月销售量为500个,若在此基础上每个涨价1元,则月销售量将减少20个,现在既要使月销售利润达到6000元,又要尽可能让顾客得到实惠,那么该品牌头盔每个应涨价多少元?25.材料1:法国数学家弗朗索瓦・韦达在著作《论方程的识别与订正》中提出一元二次方程()2200,40ax bx c a b ac ++=≠-≥的两根1x ,2x 有如下的关系(韦达定理):12b x x a +=,12c x x a⋅=; 材料2:如果实数m 、n 满足210m m --=、210n n --=,且m n ≠,则可利用根的定义构造一元二次方程210x x --=,将m 、n 看作是此方程的两个不相等实数根.请根据上述材料解决下面问题:(1)①已知一元二次方程22350x x --=的两根分别为1x ,2x ,则12x x +=_______,12x x ⋅=_______.②已知实数a ,b 满足:2430a a +-=,2430b b +-=(a b ≠),则11a b+=_______. (2)已知实数m 、n 、t 满足:2411m m t -=+,2411n n t -=+,且0m n <<,求(1)(1)m n ++的取值范围.26.每到三月就会让人想起那句:“西湖美景,三月天哪”,雷峰塔是杭州西湖的标志性景点,为了测出雷峰塔的高度,初三学生小白设计出了下面的测量方法:已知塔前有一4米高的小树CD ,发现水平地面上点E 、树顶C 和塔顶A 恰好在一条直线上,测得57BD =米,D E 、之间有一个花圃无法测量,然后在E 处放置一个平面镜,沿BE 后退.退到G 处恰好在平面中看到树顶C 的像,此时 2.4EG =米,测量者眼睛到地面的距离FG 为1.6米,求出塔高AB .27.阅读感悟:已知方程2210x x +-=,求一个一元二次方程,使它的根分别是已知方程根的2倍. 解:设所求方程的根为y ,则2y x =.所以2y x =. 把2y x =代入已知方程,得221022y y ⎛⎫+⋅-= ⎪⎝⎭. 化简,得2440y y +-=,故所求方程为2440y y +-=.这种利用方程的代换求新方程的方法,我们称为“换元法”.请用阅读材料提供的“换元法”求新方程(要求:把所求方程化为一般形式.解决问题:(1)已知方程230x x --=,求一个一元二次方程,使它的根分别比已知方程的根大1.则所求方程为:______;(2)方程20ax bx c ++=()20040a c b ac ≠≠-≥,,的两个根与方程______的两个根互为倒数.(3)已知关于x 的一元二次方程()200ax bx c a ++=≠的两个实数根分别为1和12-,求关于y 的一元二次方程()()()22024420200c y b y b a c -+-=-≠的两个实数根.28.如图,在平面直角坐标系中,直线AB 与x 轴、y 轴分别交于点A 、点B ,直线CD 与x 轴、y 轴分别交于点C 、点D ,AB 与CD 相交于点E ,线段OA ,OC 的长是一元二次方程218720x x -+=的两根(OA OC >),5BE =,43OB OA =. (1)求点A 、点C 的坐标; (2)求直线CD 的解析式; (3)在x 轴上是否存在一点P ,使以点C 、E 、P 为顶点的三角形与DCO ∆相似?若存在,请求出点P 的坐标;若不存在,请说明理由.。
江苏省无锡市天一实验学校2024-2025学年九年级数学第一学期开学预测试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)分式方程132x x=-的解为()A .1x =B .2x =C .3x =D .4x =2、(4分)菱形ABCD 的一条对角线长为6,边AB 的长是方程x 2-7x+12=0的一个根,则菱形ABCD 的周长为()A .12B .14C .16D .243、(4分)把(a -根号外的因式移入根号内,结果()A .B .CD .4、(4分)如图,若平行四边形ABCD 的周长为40cm ,BC =23AB ,则BC =()A .16crnB .14cmC .12cmD .8cm5、(4分)下列根式中是最简二次根式的是()A .BCD .6、(4分)下列图形既是轴对称图形,又是中心对称图形的是()A .三角形B .圆C .角D .平行四边形7、(4分)如图,A 、B 两点在反比例函数1k y x =的图象上,C 、D 两点在反比例函数2ky x=的图象上,AC y ⊥轴于点E ,BD y ⊥轴于点F ,4AC =,2BD =,6EF =,则12k k -的值是()A .8B .6C .4D .108、(4分)如果规定[x]表示不大于x 的最大整数,例如[2.3]=2,那么函数y=x ﹣[x]的图象为()A .B .C .D .二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图所示,一次函数的图象与x 轴的交点为,则下列说法:①y 的值随x 的值的增大而增大;②b>0;③关于x 的方程的解为.其中说法正确的有______只写序号10、(4分)如图,在矩形中,,,为边上一点,将沿翻折,点落在点处,当为直角三角形时,________.11、(4分)在一次智力抢答比赛中,四个小组回答正确的情况如下图.这四个小组平均正确回答__________道题目?(结果取整数)12、(4分)如图,60MON ∠=︒,以点O 为圆心,任意长为半径画弧,交OM 于点A ,交ON 于点B ,再分别以点A 、B 为圆心,大于12AB 长为半径画弧交于点C ,过点C 作射线OC ,在射线OC 上截取10OP cm =,过点P 作PD OM ⊥,垂足为点D ,则PD 的长为________________.13、(4分)计算.三、解答题(本大题共5个小题,共48分)14、(12分)先化简,再求值:2222102114511a a a a a a a--+-⋅----,其中1a =-.15、(8分)如图,在△ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 的中点,且BC =2AF 。
2024学年 江苏省无锡市天一实验学校九年级下学期数学3月一模卷试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.2024的倒数是( ) A .2024B .2024-C .2024D .120242.下列运算正确的是 ( ) A .()235x x = B .235x x x += C .()236328a b a b-=-D .()()22a b a b a b --+=-3.陈芋汐在2023年杭州亚运会女子十米跳台项目中获得了亚军,其中第五轮跳水的7个成绩分别是(单位:分):9.0,9.0,8.5,9.0,9.5,9.0,8.5.这组数据的众数和中位数分别是( ) A .9.0,8.5B .9.0,9.0C .8.5,8.75D .9.0,9.254.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .5.若圆锥的底面半径为3,母线长为5,则这个圆锥的侧面积为( ) A .6πB .8πC .15πD .30π6.下列结论中,正确的是( ) A .四边相等的四边形是正方形 B .对角线相等的菱形是正方形C .正方形两条对角线相等,但不互相垂直平分D .矩形、菱形、正方形都具有“对角线相等”的性质7.魏晋时期的数学家刘徽首创“割圆术”,用圆内接正多边形的面积去无限逼近圆面积. 如图所示的圆的内接正十二边形,若该圆的半径为1,则这个圆的内接正十二边形的面积为( )A .1B .2C .3D .48.如图,在矩形ABCD 中,对角线AC BD ,交于点O ,过点O 作EF AC ⊥交AD 于点E ,交BC 于点F .已知4AB =,AOE △的面积为5,则DE 的长为( )A .2B C D .39.如图,点 D 是OABC Y 内一点,AD 与x 轴平行,BD 与 y 轴平行,BD120,BCD BDC S ∠=︒=V 若反比例函数()0k y x x =<的图象经过C ,D 两点,则 k 的值是( )A .-B .6-C .-D .12-10.如图,抛物线21043y ax x =-+与直线43=+y x b 经过点()2,0A ,且相交于另一点B ,抛物线与y 轴交于点C ,与x 轴交于另一点E ,过点N 的直线交抛物线于点M ,且MN y ∥轴,连接,,,AM BM BC AC ,当点N在线段AB 上移动时(不与A 、B 重合),下列结论正确的是( )A .MN BN AB +< B .BAC BAE ∠=∠C .12ACB ANM ABC ∠-∠=∠D .四边形ACBM 的最大面积为13二、填空题11.分解因式:2x 2﹣8= 12有意义,则实数x 的取值范围是. 13.清代诗人袁枚的一首诗《苔》中写到:“白日不到处,青春恰自来.苔花如米小,也学牡丹开”,若苔花的花粉直径约为0.0000084米,用科学记数法表示为米. 14.南宋数学家杨辉在他的著作《杨辉算法》中提出这样一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形地的面积为864平方步,已知长与宽的和为60步,问长比宽多几步? 设矩形的长为x 步,则可列出方程为.15.如图,在 ABC V 中,点 D 在线段 AC 上,点 F 在线段 BC 的延长线上,若5BF CF =,四边形 CDEF 是平行四边形,且 BDE △与 ADE V 的面积和为6,则ABC V 的面积为.16.规定:若()11,a x y =r ,()22,b x y =r ,则1221a b x y x y ⋅=+r r.例如()1,3a =r ,()2,4b =r ,则143210a b ⋅=⨯+⨯=r r.已知()1,2a x x =+-r ,()3,4b x =-r ,且12x ≤≤,则a b ⋅r r 的最小值是.17.(1)如图①,Rt ABC △中,90,6,8ABC AB BC ∠===o ,点 D 是边 AC 的中点. 以点 A 为圆心,2为半径在 ABC V 内部画弧,若点 P 是上述弧上的动点,点 Q 是边 BC 上的动点,PQ QD +的最小值是(2)如图②,矩形 ABCD 中 300AB BC ==. E 为 CD 中点,要在以点 A 为圆心,10为半径的圆弧上选一处点 P ,边 BC 上选一处点 ,Q M N 、是以 Q 为圆心,10为半径的半圆的三等分点处,PM NE +的最小值是.18.如图,在△ABC 中,90ABC ∠=︒,以AC 为边在△ABC 外作等腰三角形△AMC ,满足AM CM =,AM //BC ,O 是边AC 的中点,连结BO ,作射线BO 交折线段A —M —C 于点N ,若MN =2,ON =3,则AM 的长为.三、解答题19.(1)计算:()3o 145-(2)化简:2421a a a -⎛⎫÷- ⎪⎝⎭. 20.解方程与不等式组: (1)2410x x -=+ (2)()33121318x x x x -⎧+≥+⎪⎨⎪--<-⎩21.如图,已知AB DC =,AB CD ∥,且AF CE =.(1)求证:ABE CDF △≌△;(2)若30BCE ∠=︒,70CBE ∠=︒,求CFD ∠的度数.22.甲、乙两人做游戏,他们在一只不透明的袋子中装了五个小球,分别标有数字:1,1,2,2,3,这些小球除编号外都相同.(1)搅匀后,甲从中任意摸出一个小球,则这个小球的编号是偶数的概率为;(2)搅匀后,甲从中任意摸出一个小球,记录小球的编号后放回、搅匀,乙再从中任意摸出一个小球,若摸出两个小球编号之和为偶数甲获胜;否则,乙获胜,请你用画树状图或列表的方法说明谁获胜的概率大.23.劳动教育是新时代党对教育的新要求,某校为了解学生参加家务劳动的情况,随机抽取了部分学生在某个星期日做家务的时间 t (单位 h )作为样本,将收集的数据整理后分为 A B C D E ,,,,五个组别,其中 A 组的数据分别为:0.50.40.4,,,0.40.3,,绘制成如下不完整的统计图表. 各组劳动时间的频数分布表各组劳动时间的扇形统计图请根据以上信息解答下列问题(1)本次调查的样本容量为,频数分布表中的 a 的值为; (2)A 组数据的众数为h ,B 组所在扇形的圆心角的大小为; (3)若该校有1200名学生,估计该校学生劳动时间超过 1h 的人数 24.如图,矩形ABCD 中,E 为AD 的中点. (1)在CD 边上求作一点F ,使得2CFB ABE ∠=∠; (2)在(1)中,若9AB =,6BC =,求BF 的长.25.O e 是ABC V 的外接圆,=AB AC ,过点A 作AE BC ∥,交射线BO 于点E ,过点C 作CH BE ⊥于点H ,交直线AE 于点D .(1)求证:DE 是O e 的切线.(2)已知BC tan 12=D ∠,求DE 的长度.26.1是一种儿童可折叠滑板车,该滑板车完全展开后示意图如图2所示,由车架AB CE EF --和两个大小相同的车轮组成车轮半径为8 cm ,已知58cm BC =,30cm CD =,12cm DE =,68cm EF =,4cos 5ACD ∠=,当A ,E ,F 在同一水平高度上时,135CEF ∠=︒.(1)求AC 的长;(2)为方便存放,将车架前部分绕着点D 旋转至AB EF ∥,按如图3所示方式放入收纳箱,试问该滑板车折叠后能否放进长100cm a =的收纳箱(收纳箱的宽度和高度足够大),请说明理由(参考数据:1.4). 27.在平面直角坐标系中为,抛物线2y x bx c =-++(b 、c 为常数)的对称轴为直线1x =,与y 轴交点坐标为()0,3. (1)求此抛物线对应的函数表达式;(2)点 A 、点 B 均在这个抛物线上(点 A 在点 B 的左侧),点 A 的横坐标为 m ,点 B 的横坐标为 4m -. 将此抛物线上 A B 、两点之间的部分(含 A B 、两点)记为图象 G . ①当点 A 在 x 轴上方,图象 G 的最高与最低点的纵坐标差为6时,求 m 的值; ②设点 ()1,D n ,点 ()1,1E n -,将线段 DE 绕点 D 逆时针旋转 90o 后得到线段 DF ,连接 EF ,当 DEF V (不含内部)和二次函数在 0x ≥范围上的图像有且仅有一个公共点时,求 n 的取值范围.28.如图1,四边形ABCD 中4,90,tan ,103AD BC B C CD ∠=︒==∥.(1)线段AB =;(2)如图2,点O 是CD 的中点,E F 、分别是AD BC 、上的点,将DEO V 沿着EO 翻折得GEO △,将COF V沿着FO 翻折使CO 与GO 重合. ①当点E 从点D 运动到点A 时,点G 走过的路径长为5π2,求AD 的长;②在①的条件下,若E 与A 重合(如图3),Q 为EF 中点,P 为OE 上一动点,将FPQ△沿PQ 翻折得到FPQ 'V ,若F PQ ''V 与APF V 的重合部分面积是APF V 面积的14,求AP 的长.。
天一2024—2025学年九年级10月份月考试卷时间:120分钟 总分:150分一、选择题(共10小题,每小题3分,共30分)1. 下列方程中,是一元二次方程的有( )①21x x +=;②22340x xy −+=;③211x x −=;④20x =;⑤233x x +=.A. 1个;B. 2个;C. 3个;D. 4个. 【答案】C【解析】 【分析】本题主要考查一元二次方程的定义,熟练掌握一元二次方程的定义是解题的关键;因此此题可根据“只含有一个未知数,并且未知数的最高次数为2的整式方程叫做一元二次方程”,据此问题可求解.【详解】解:①21x x +=是一元二次方程;②22340x xy −+=不是一元二次方程;③211x x−=不是一元二次方程;④20x =是一元二次方程;⑤233x x +=是一元二次方程;所以是一元二次方程的有3个; 故选C . 2. 若一元二次方程230x x a −+=的一个根为2x =,则a 的值为( )A. 2B. 2−C. 4D. 4− 【答案】A【解析】【分析】本题主要考查一元二次方程的解,此题比较简单,需要同学们熟练掌握.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立,最后转化成解a 的一元一次方程.【详解】解:把2x =代入方程230x x a −+=可得460a −+=, 解得2a =,故选:A .3. 如图,若点D 是线段AB 的黄金分割点(AD BD >),6AB =,则AD 的长是( )A. 3B. 1C. 9−D. 3【答案】D【解析】【分析】本题主要考查了黄金分割.根据黄金分割的定义可得6AD =,即可求解. 【详解】解:∵点D 是线段AB 的黄金分割点(AD BD >),6AB =,∴63AD ==−. 故选:D4. 方程2230x x −−=配方后可化成()2x m n +=的形式,则m n +的值为( ) A. 5B. 4C. 3D. 1 【答案】C【解析】【分析】本题考查解一元二次方程的方法—配方法.先将常数移项到右边,再在左边配成完全平方即可.【详解】解: 2230x x −−= 223x x ∴−=2214x x ∴−+=2(1)4x ∴−=1,4m n ∴=−=3m n ∴+=.故选:C .5. 如图,已知12∠=∠,那么添加下列的一个条件后,仍无法判定ABC ADE △△∽的是( )A AB AC AD AE = B. B D ∠=∠ C. AB BC AD DE = D. C AED ∠=∠【答案】C【解析】【分析】本题主要考查了相似三角形的判定,两组角分别对应相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边对应成比例的两个三角形相似,据此逐一判断即可.【详解】解:∵12∠=∠,.∴12BAE BAE ∠+∠=∠+∠,∴DAE BAC ∠=∠, 添加条件AB AC AD AE=,结合DAE BAC ∠=∠,可以根据两组对边对应成比例且它们的夹角相等的两个三角形相似得到ABC ADE △△∽,故A 不符合题意;添加条件B D ∠=∠,结合DAE BAC ∠=∠,可以根据两组角对应相等的两个三角形相似得到ABC ADE △△∽,故B 不符合题意; 添加条件AB BC AD DE=,结合DAE BAC ∠=∠,不可以得到ABC ADE △△∽,故C 不符合题意; 添加条件C AED ∠=∠,结合DAE BAC ∠=∠,可以根据两组角对应相等的两个三角形相似得到ABC ADE △△∽,故D 不符合题意;故选:C .6. 若关于x 的一元二次方程()2110k x x −++=有实数根,则k 的取值范围是( ) A. 54k ≥ B. 54k > C. 54k >且1k ≠ D. 54k ≤且1k ≠ 【答案】D【解析】【分析】根据根的判别式和一元二次方程的定义得出10k −≠且()214110k ∆=−×−×≥,求解即可得到答案.【详解】解: 关于x 的一元二次方程()2110k x x −++=有实数根, ()210Δ14110k k −≠ ∴ =−×−×≥, 解得:54k ≤且1k ≠, 故选:D .【点睛】本题考查了一元二次方程根的判别式及一元二次方程的定义,一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:①0∆>,方程有两个不相等的实数根,②0∆=,方程有两个相等的实数根,③0∆<,方程没有实数根.7. 下列各组图形中,一定相似的是( )A. 两个正方形B. 两个矩形C. 两个菱形D. 两个平行四边形【答案】A【解析】【分析】根据相似图形的概念逐项进行判断即可.【详解】解:A 、任意两个正方形的对应角相等,对应边的比也相等,故一定相似,故此选项符合题意; B 、任意两个矩形对应角相等,但对应边的比不一定相等,故不一定相似,此选项不符合题意, C 、任意两个菱形的对应边的比相等,但对应角不一定相等,故不一定相似,此选项不符合题意; D 、任意两个平行四边形对应边的比不一定相等,对应角也不一定相等,故不一定相似,此选项不符合题意;故选:A .【点睛】本题考查的是相似图形的概念,掌握对应角相等,对应边的比相等的多边形,叫做相似多边形是解题的关键.8. 如图,在ABC 中,D 是AC 的中点,点F 在BD 上,连接AF 并延长交BC 于点E ,若31BF FD =::,=10BC ,则CE 的长为( )A. 3B. 4C. 5D. 103【答案】B【解析】 【分析】本题考查的是平行线分线段成比例定理,过点D 作DH AE ∥,交BC 于H ,根据平行线分线段成比例定理得到32BE EC =,计算即可. 【详解】解:过点D 作DH AE ∥,交BC 于H ,则1CH CD HE DA ==,3BE BF EH FD==, ∴32BE EC =, ∵=10BC ,∴=4CE ,故选:B .9. 《算法统宗》是中国古代数学名著,作者是明代数学家程大位.书中记载了一道“荡秋千”问题:“平地秋千未起,踏板一尺离地;送行二步与人齐,五尺人高曾记;仕女佳人争蹴,终朝笑语欢嬉;良工高士素好奇,算出索长有几?”译文:“秋千静止的时候,踏板离地1尺,将它往前推送两步(两步=10尺)时,此时踏板升高离地5尺,秋千的绳索始终拉得很直,试问秋千绳索有多长?”若设秋千绳索长为x 尺,则可列方程为( ).A. ()222101x x +=+B. ()222110x x ++=C. ()222104x x +=−D. ()222410x x −+= 【答案】D【解析】 【分析】设秋千的绳索长为 x 尺,根据题意可得 ()4AO x =−尺,利用勾股定理可得方程,即可求解.【详解】解:设秋千的绳索长为x 尺,则OA OB x ==尺由题意可知:1AC =尺,5BD CE ==尺,则4AE =尺,则()4OEx =−尺,由勾股定理可得:222OE BE OB +=,则可列方程为:()222410x x −+=.故选:D . 【点睛】此题主要考查了考查了勾股定理的应用,关键是正确理解题意,表示出 OE 的长,掌握直角三角形中两直角边的平方和等于斜边的平方.10. 如图,在边长为2的正方形ABCD 中,P 是BC 边上一动点(不含B 、C 两点),将ABP 沿直线AP 翻折,点B 落在点E 处;在CD 上有一点M ,使得将CMP 沿直线MP 翻折后,点C 落在直线PE 上的点F 处,直线PE 交CD 于点N ,连接MA ,NA .则以下结论中正确的是.( )①CMP BPA ∽△△;②CNP 的周长始终不变:③当P 为BC 中点时,AE 为线段NP 的中垂线;④线段AM:⑤当ABP ADN △△≌时,2BP =−.A. 2个B. 3个C. 4个D. 5个【答案】B【解析】 【分析】由折叠的性质可得CPM FPM APE APB ==∠∠,∠∠,则由平角的定义可得90CPM APB ∠+∠=°,再由正方形的性质得到90C B ∠=∠=°,则可证明CMP BPA ∽△△,据此可判断①;由折叠的性质可得AE AB PB PE ==,,90AEP B ∠=∠=°,则90AD AE AEN D ==°=,∠∠,证明()HL ADN AEN ≌,得到DN EN =,再根据三角形周长公式可得CNP 的周长CD CB =+,据此可判断②;设DNNE x ==,则2CN x =−,由勾股定理得()()222121x x +−=+,解得23x =,即32DN =,NE PE ≠,据此可判断③;设PB x =,则2PC x =−,由相似三角形的性质得到CM PC PB AB =,即22CM x x −=,则()()2211121222CM x x x =−−=−−+,则当1x =时,CM 有最大值12,此时DM 有最小值32,又由AM ==DM 最小时,AM 最小,据此可判断④;由全等三角形的性质得到DNPB PE EF ===,设DN PB PE EF m ====,则2NC PC m ==−,2PN m =,由勾股定理得,()()()222222m m m −+−=,解得2m =−+2m =−−,中2BP =−+,据此可判断⑤.【详解】解:由折叠的性质可得CPM FPM APE APB ==∠∠,∠∠,∵180CPM FPM APE APB +++=°∠∠∠∠,∴90CPM APB ∠+∠=°,的∵四边形ABCD 是正方形,∴90C B ∠=∠=°,∴CMP BPA ∽△△,故①正确;∵四边形ABCD 是正方形,∴90AD AB D B =∠=∠=°,,由折叠的性质可得AE AB PB PE ==,,90AEP B ∠=∠=°, ∴90AD AE AEN D ==°=,∠∠,又∵AN AN =,∴()HL ADN AEN ≌,∴DN EN =,∴CNP 的周长4CN CP PN CN NE CP PE CN DN CP PB CD CB =++=+++=+++=+=, ∴CNP 的周长始终不变,故②正确:当P 为BC 中点时,则1PE PB PC ===,设DNNE x ==,则2CN x =−, 在Rt PCN △中,由勾股定理得222CN PC PN +=,∴()()222121x x +−=+, 解得23x =, ∴32DN =, ∴NE PE ≠,∴AE 不为线段NP 的中垂线,故③错误;设PB x =,则2PC x =−,∵CMP BPA ∽△△, ∴CM PC PB AB=,即22CM x x −=, ∴()()2211121222CM x x x =−−=−−+, ∴当1x =时,CM 有最大值12, ∴此时DM 有最小值32,∵AM ==∴当DM 最小时,AM 最小,∴52AM =最小值,故④错误; ∵ABP ADN △△≌,∴DNPB PE EF ===, 设DNPB PE EF m ====,则2NC PC m ==−,2PN m =, 在Rt PCN △中,由勾股定理得222CN PC PN +=,∴()()()222222m m m −+−=,解得2m =−+2m =−−,∴2BP =−+,故⑤正确;∴正确的有①②⑤,共3个,故选:B .【点睛】本题主要考查了勾股定理,正方形与折叠问题,相似三角形的性质与判定,全等三角形的性质与判定,二次函数的最值问题等等,熟知正方形的性质和折叠的性质是解题的关键. 二、填空题(共83分,第18题第1空1分,第2空2分,共24分) 11. 已知23a b =,则b a =_______. 【答案】32 【解析】【分析】本题主要考查了比例的性质,直接根据比例的性质求解即可. 【详解】解:∵23a b =, ∴32b a =, 故答案为:32. 12. 关于x 的方程 222310mm x x 是一元二次方程,则m 的值为______.【答案】-2【解析】【分析】根据一元二次方程的定义,列出关于m 的一元二次方程和一元一次不等式,即可求解.【详解】∵ 222310m m x x 是一元二次方程,∴20m −≠,222m −=,解得2m =−,故答案为:-2.【点睛】本题考查了一元二次方程的定义,正确掌握一元二次方程的定义是解题的关键.13. 如果两个相似三角形的面积之比为4:9,这两个三角形的周长的和是100cm ,那么较小的三角形的周长为______cm .【答案】40【解析】【分析】根据相似三角形的性质,即可解答.【详解】解: 两个相似三角形的面积之比为4:9,∴这两个三角形的周长之比为2:3,设两个三角形的周长分别为2k ,()30k k ≠,又 这两个三角形的周长的和是100cm ,23100k k ∴+=,解得20k =,故较小的三角形的周长为:()222040cm k =×=, 故答案为:40.【点睛】本题考查了相似三角形性质,熟练掌握和运用相似三角形的性质是解决本题的关键.14. 若α,β为方程2x 2-5x-1=0的两个实数根,则2α2+3αβ+5β的值为____.【答案】12【解析】【详解】试题解析:∵α为22510x x −−= 的实数根,∴22510,αα−−= 即2251αα=+, 223551355()31ααββααββαβαβ∴++=+++=+++,∵α、β为方程22510x x −−=的两个实数根,的51,22αβαβ∴+==−, ∴25123553()112.22ααββ++=×+×−+= 故答案为12.点睛:一元二次方程20ax bx c ++=的两根分别是12,.x x 则1212,.b c x x x x a a +=−= 15. 电脑病毒传播快,如果一台电脑被感染,经过两轮感染后就会有121台电脑被感染,若每轮感染中平均一台电脑会感染x 台电脑,则x =__________.【答案】10【解析】【分析】设每轮感染中平均一台电脑会感染x 台电脑.则经过一轮感染,1台电脑感染给了x 台电脑,这(1)x +台电脑又感染给了(1)x x +台电脑.等量关系:经过两轮感染后就会有121台电脑被感染,然后可列方程进行求解.【详解】解:每轮感染中平均一台电脑会感染x 台电脑,列方程得:1(1)121x x x +++=,221200x x +−=解得:112x =−(舍去),210x =. 答:每轮感染中平均一台电脑会感染10台电脑.故答案为:10.【点睛】此题主要考查了一元二次方程的应用中传播问题,题目比较典型,能够正确表示每轮感染中,有多少台电脑被感染,是解决此题的关键.16. 已知关于x 的一元二次方程()()22121c x bx a x −−=+,其中a 、b 、c 分别为ABC 三边的长,如果方程有两个相等的实数根,则ABC 的形状为______.【答案】直角三角形【解析】【分析】本题考查了一元二次方程根的判别式,勾股定理逆定理,一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:①0∆>,方程有两个不相等的实数根,②0∆=,方程有两个相等的实数根,③0∆<,方程没有实数根.原方程可以化为()220a c x bx a c +++−=,由题意得出()()()2240b a c a c ∆=−+−=,推出222a b c =+,即可得解.【详解】解:原方程可以化为:()220a c x bx a c +++−=, ∵方程有两个相等的实数根,∴()()()2240b a c a c ∆=−+−=,∴222a b c =+,∴ABC 为直角三角形,故答案为:直角三角形.17. 如图,ABC ADE ∽△△,90BAC DAE ∠=∠=°,3AB =,4AC =,点 D 在线段BC 上运动,P 为线段DE 的中点,在点D 的运动过程中,CP 的最小值是_______.【答案】2【解析】【分析】本题考查了相似三角形的判定及性质,三角形斜边上的中线性质,熟悉运用相似三角形的性质建立比值关系是解题的关键.利用ABC ADE ∽△△,90BAC DAE ∠=∠=°,判定出ABD ACE ∽,通过相似三角形的性质可得到90ACE ACB ECD +=°=∠∠∠,由P 为线段DE 的中点推出12CP DE =,再利用相似三角形的比值关系求出DE 的长即可.【详解】解:∵ABC ADE ∽△△, ∴AB AC AD AE=, ∵90BAC DAE ∠=∠=°,∴BAC DAC DAE DAC ∠−∠=∠−∠,∴BAD CAE ∠=∠, ∴ABD ACE ∽,∴ABD ACE ∠=∠,∵90ABD ACB ∠+∠=°,∴90ACE ACB ECD +=°=∠∠∠,∵P 为线段DE 的中点, ∴12CP DE =, ∴当DE 最小时CP 最小, 又∵DE AD BC AB=, ∴AD DE BC AB=×,BC 与AB 都为定值,即AD 最小时,DE 最小,则AD BC ⊥时符合题意,AD 为BC 边上的高,在Rt BAC 中,3AB =,4AC =,则:5BC, ∵1122ABC S AB AC BC AD =×=× ,即:1134522AD ××=××, 解得:125AD =, ∵AB AC AD AE=, ∴125543AD DE BC AB =×=×=, ∴114222CP DE ==×=; 故答案为:2.18. 如图①②,在平面直角坐标系中,点P 的坐标为(),点(,0)M t 是横轴上的一点,点N 在y 轴上,且90MPN ∠=°,0t ≤≤.(1)如图①,当0t =时,PM PN=_______;(提示:过点P 作x 轴垂线,垂足为H ,交过点N 作y 轴的垂线于点G )(2)连接MN ,设MN 的中点为T ,在点M 从0t =这个时刻走到t =这个时刻的过程中,点T 所走过的路线长是_______.【答案】 ①.②. 【解析】 【分析】本题主要考查了相似三角形的判定与性质、直角三角形的性质、勾股定理的等内容.(1)过P 作PH x ⊥轴于点H ,过N 作y 轴的垂线交PH 于点G ,证PGN MHP ∽即可得解;(2)连接OT ,PT ,则OT PT =,所以点T 在点T 在线段PO 的垂直平分线上,从而发现当0t ≤≤时,点T 在DE 上运动,求出DE 长度即可.【详解】解:(1)过P 作PH x ⊥轴于点H ,过N 作y 轴的垂线交PH 于点G ,则90MPN PGN MHP ∠=∠=∠=°,()P ,3PH ∴=,GN MH ==,90MPN ∠=° ,90GPN MPH ∴∠+∠=°,90GPN PNG ∠+∠=° ,MPH PNG ∴∠=∠,90PGN MHP ∠=∠=° ,∴PGN MHP ∽,∴PM P M H PG PN N H G ===∴9PG ==,∴12ON GH PH PG ==+=,(2)如图,连接OT ,PT ,ON 的中点E ,过P 作PH x ⊥轴于点H ,则3PH =,OH =90MPN MON ∠=∠=° ,MN 的中点为T ,12MT NT MN ∴==, ∴点T 在线段PO 的垂直平分线上,设线段PO 的垂直平分线交x 轴于点D ,则OD DP =,DH OH OD DP =−=∵Rt PDH △中,222PD DH PH =+,∴()2223PD DP =+,解得OD DP ==当0t =时,M 与原点重合,此时90OPN ∠=°,得到12MN ON ==,此时点T 与ON 的中点E 重合,162OE ON ∴==,∴DE =,当t=时,OM=,此时HM OM OH =−=∴(22222336OP OP PH =+=+=,22222312MP HM PH =+=+=,∴(222248OP MP OM +==,∴90OPM NPM °∠=∠=,即此时点N 与原点重合,T 与D 重合,∴当0t ≤≤时,点T 在DE 上运动,点T所走过的路线为线段DE ,DE =即在点M 从0t=这个时刻走到t =这个时刻过程中,点T 所走过的路线长是故答案为:三、解答题(共10小题,共96分)19. 按要求解下列方程:(1)23610xx +−=(配方法)的(2)2650x x −+=(3)290x −−=(公式法)(4)()()()2243225x x x x +−−=+.【答案】(1)12x x =(2)1215x x ==,(3)12x x ==(4)12162x x =−=−, 【解析】【分析】本题主要考查了解一元二次方程:(1)先把二次项系数化为1,再把常数项移到方程右边,接着把方程两边同时加上一次项系数一半的平方进行配方,再解方程即可;(2)把方程左边利用十字相乘法分解因式,然后解方程即可;(3)利用公式法解方程即可;(4)先把原方程化成一般式,再利用因式分解法解方程即可.【小问1详解】解:∵23610x x +−=, ∴21203x x +−=, ∴2123x x +=, ∴24213x x ++=,∴()2413x +=,∴1x +=解得12x x = 【小问2详解】解:∵2650x x −+=,∴()()150x x −−=, ∴10x −=或50x −=,解得1215x x ==,; 【小问3详解】解:∵290x −−=,∴19a b c =−=−,,∴(()2419480∆=−−××−=>,∴x解得12x x ==【小问4详解】解:∵()()()2243225x x x x +−−=+,∴()()22246944210x x x x x x ++−−+=+∴22242436442100x x x x x ++−+−−−=,∴218320x x ++=, ∴()()2160x x ++=, ∴20x +=或160x +=,解得12162x x =−=−,. 20. 化简再求值:2221111a a a a a −− ÷−− −+,其中a 是方程280x x −−=的根. 【答案】21−a a ,18【解析】 【分析】本题主要考查了分式的化简求值,一元二次方程解的定义,先把小括号内的分式通分化简,再把除法变成乘法后约分化简,再根据一元二次方程的解是使方程左右两边相等的未知数的值得到280a a −−=,即28a a −=,据此可得答案. 【详解】解:2221111a a a a a −− ÷−− −+()()22121111a a a a a a −−−+÷+−+ ()()222111a a a a a a −−÷+−+ ()()()21112a a a a a a −+⋅+−− ()11a a =− 21a a=−, ∵a 是方程280x x −−=的根,∴280a a −−=,∴28a a −=,∴原式18=. 21. 已知关于x 的方程2(2)20x k x k −++=(1)求证:无论k 取任何实数,方程总有实数根;(2)若等腰ABC 的一边3a =,另两边长b 、c 恰好是这个方程的两个根,求ABC 的周长.【答案】(1)证明见解析(2)7或8【解析】【分析】本题考查了一元二次方程的根的判别式,等腰三角形的周长.(1)证明Δ0≥即可得到无论k 取任何实数,方程总有实数根;(2)先解方程得到2x =或x k =,再根据等腰ABC 分情况计算即可.【小问1详解】证明:()()22Δ24122k k k =−+−××=− , 无论k 取何值,2(2)0k −≥,∴Δ0≥,∴无论k 取任何实数,方程总有实数根;【小问2详解】解:2(2)20x k x k −++=. (2)()0x x k ∴−−=,2x ∴=或x k =, ∵3a =,两边长b 、c 恰好是这个方程的两个根,∴ABC 的三边长为2,3,k ,∴当2k =时,等腰ABC 的为2,3,2,此时周长3227a b c =++=++=;当3k =时,等腰ABC 的为2,3,3,此时周长3328a b c =++=++=;综上所述,ABC 的周长为7或8.22. 如图,在6×10的方格纸ABCD 中有一个格点△EFG ,请按要求画线段.(1)在图1中,过点O 画一条格点线段PQ (端点在格点上),使点P ,Q 分别落在边AD ,BC 上,且PQ 与FG 的一边垂直.(2)在图2中,仅用没有刻度的直尺找出EF 上一点M ,EG 上一点N ,连结MN ,使△EMN 和△EFG 的相似比为2:5.(保留作图痕迹)【答案】(1)见解析 (2)见解析【解析】【分析】(1)根据题意找到格点,P Q ,画出线段PQ 即可【小问1详解】如图所示,PQ 即为所求,【小问2详解】如图所示,取格点,J K,连接OJ交EF于点M,连接OK交EG于点N连接MN,则MN即为所求,//EO JFMOE MHF∴∽∴23 OE MEJF MF==同理23 ENNG=,EM ENE EMF EG∴=∠=∠EMN EFG∴∽∴25 EMEF=.【点睛】本题考查了相似变换作图,掌握平行线分线段成比例,相似三角形的性质与判定是解题的关键.23. 如图,在平行四边形ABCD中,E是边AD的延长线上一点,连接BE交CD于点F,交对角线AC于点G.(1)若12DE AD ==,,求CF DF的值; (2)求证:BCF EAB ∽ .【答案】(1)2(2)证明见解析【解析】【分析】本题考查几何综合,涉及平行四边形性质、相似三角形的判定与性质和平行线性质等知识,熟记平行四边形性质、相似三角形的判定与性质是解决问题的关键.(1)由平行四边形性质,结合三角形相似的判定与性质即可得到答案;(2)由平行线性质得到EAB BCD ∠=∠、AD BC ∥,结合平行线性质得到E CBE =∠∠,利用相似三角形的判定定理即可得证.小问1详解】解:在平行四边形ABCD 中,2BC AD ==,AD BC ∥,DEF CBF ∴∽△△,221CF BC DF DE ∴===; 【小问2详解】证明:由(1)知AD BC ∥,则E CBE =∠∠,在平行四边形ABCD 中,EAB BCD ∠,∴BCF EAB ∽ .24. 济南市公安交警部门提醒市民:“出门戴头盔,放心平安归”.某商店统计了某品牌头盔的销售量,四月份售出375个,六月份售出540个,且从四月份到六月份月增长率相同.(1)求该品牌头盔销售量的月增长率;(2)经市场调研发现,此种品牌头盔如果每个盈利10元,月销售量为500个,若在此基础上每个涨价1元,则月销售量将减少20个,现在既要使月销售利润达到6000元,又要尽可能让顾客得到实惠,那么该品牌头盔每个应涨价多少元?【答案】(1)头盔销售量的月增长率为20%;(2)该品牌的头盔每个应涨价5元.【解析】【分析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.(1)设该品牌头盔销售量的月增长率为x ,根据该品牌头盔4月份及6月份的月销售量,得出关于x 的一【元二次方程,解之取其正值即可;(2)设头盔每个涨价m 元,根据“月销售利润达到6000元”,得出关于m 的一元二次方程求解,根据“尽可能让市民得到实惠”取舍即可.【小问1详解】解:设头盔销售量的月增长率为x ,根据题意得:()23751540x +=,解得10.2x =,2 2.2x =−(舍去), ∴头盔销售量的月增长率为20%;【小问2详解】解:设头盔每个涨价m 元,根据题意得:()()10500206000m m +−=, 整理得215500m m −+=,解得15m =,210m =(舍去), 答:该品牌的头盔每个应涨价5元25. 材料1:法国数学家弗朗索瓦・韦达在著作《论方程的识别与订正》中提出一元二次方程()2200,40ax bx c a b ac ++=≠−的两根1x ,2x 有如下的关系(韦达定理):12b x x a+=,12c x x a⋅=; 材料2:如果实数m 、n 满足210m m −−=、210n n −−=,且m n ≠,则可利用根的定义构造一元二次方程210x x −−=,将m 、n 看作是此方程的两个不相等实数根.请根据上述材料解决下面问题:(1)①已知一元二次方程22350x x −−=的两根分别为1x ,2x ,则12x x +=_______,12x x ⋅=_______.②已知实数a ,b 满足:2430a a +−=,2430b b +−=(a b ≠),则11a b+=_______. (2)已知实数m 、n 、t 满足:2411m m t −=+,2411n n t −=+,且0m n <<,求(1)(1)m n ++的取值范围.【答案】(1)①1.5, 2.5−;②43(2)()()5119m n <++<【解析】 【分析】本题考查根与系数的关系,根的判别式.(1)①根据根与系数的关系解答;②根据题意,得到实数a ,b 是方程 2430x x +−= 的两个根,根据根与系数的关系进行求解即可; (2)根据根与系数的关系,m ,n 是方程24110x x t −−−=的解,进而得到(1)(1)16m n mn m n t ++=+++=−−,再根据根与系数的关系和根的判别式求出t 的范围,即可.【小问1详解】解:① 一元二次方程22350x x −−=的两根分别为1x ,2x ,12 1.5x x ∴+=,12 2.5x x ⋅=−, 故答案为:1.5, 2.5−;② 实数a ,b 满足:2430a a +−=,2430()b b a b +−=≠, a ∴,b 是方程2430x x +−=的解, ∴aa +bb =−4,3ab =−, ∴1143a b a b ab++==; 故答案为:43; 【小问2详解】解: 实数m 、n 、t 满足:2411m m t −=+,2411n n t −=+m ∴,n 是方程24110x x t −−−=的解,4m n ∴+=,11mn t =−−, (1)(1)16m n mn m n t ∴++=+++=−−0m n << ,∴()Δ1641110t =−××−−>,110mn t =−−>,解得1511t −<<−,569t ∴<−−<,5(1)(1)9m n ∴<++<.26. 每到三月就会让人想起那句:“西湖美景,三月天哪”,雷峰塔是杭州西湖的标志性景点,为了测出雷峰塔的高度,初三学生小白设计出了下面的测量方法:已知塔前有一4米高的小树CD ,发现水平地面上点E 、树顶C 和塔顶A 恰好在一条直线上,测得57BD =米,D E 、之间有一个花圃无法测量,然后在E 处放置一个平面镜,沿BE 后退.退到G 处恰好在平面中看到树顶C 的像,此时 2.4EG =米,测量者眼睛到地面的距离FG 为1.6米,求出塔高AB .【答案】塔高AB 为42米【解析】【分析】本题考查相似三角形的性质和判定,根据题意得到FGE CDE ∽ ,利用相似三角形的性质得出DE ,再证明ABE CDE ∽△△,利用相似三角形的性质,即可得出AB .【详解】解:由题知CED FEG ∠=∠,CD BG ⊥,FG BG ⊥,∴90FGE CDE ∠=∠=°,∴FGE CDE ∽ , ∴FG EG CD DE=, 2.4EG =米, 1.6FG =米,4CD =米, ∴1.62.44DE =, 解得:6DE =米,AB BG ⊥,∴90ABE CDE ∠=∠=°,∴AB CD ∥,∴ABE CDE ∽△△, ∴AB BE CD DE=, 57BD =米,∴57663BE BD DE =+=+=米,∴6346AB =, 解得:42AB =米,答:塔高AB 为42米.27. 阅读感悟:已知方程2210x x +−=,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y ,则2y x =.所以2y x =. 把2y x =代入已知方程,得221022y y +⋅−=. 化简,得2440y y +−=,故所求方程为2440y y +−=.这种利用方程的代换求新方程的方法,我们称为“换元法”.请用阅读材料提供的“换元法”求新方程(要求:把所求方程化为一般形式.解决问题:(1)已知方程230x x −−=,求一个一元二次方程,使它的根分别比已知方程的根大1.则所求方程为:______;(2)方程20ax bx c ++=()20040a c b ac ≠≠−≥,,的两个根与方程______的两个根互为倒数. (3)已知关于x 的一元二次方程()200ax bx c a ++=≠的两个实数根分别为1和12−,求关于y 的一元二次方程()()()22024420200c y b y b a c −+−=−≠的两个实数根.【答案】(1)2310y y −−=(2)20cy by a ++=(3)2025和2022【解析】【分析】本题考查了解一元二次方程,理解题意,熟练掌握换元法是解此题的关键.(1)仿照例子,写出已知方程和所求方程的根的关系,进行替换,化简可得所求方程;(2)仿照例子,写出已知方程和所求方程的根的关系,进行替换,化简可得所求方程;(3)由(2)可得:关于x 的一元二次方程的根与关于2024y −的一元二次方程的根互为倒数,可求出关于2024y −的一元二次方程()()2202420240c y b y a −+−+=的两个实数根,即可得解.【小问1详解】解:设所求方程的根为y ,则1y x =+, 1x y ∴=−,把1x y =−代入已知方程得:()()21130y y −−−−=,化简得:2310y y −−=,故答案为:2310y y −−=;【小问2详解】解:设所求方程的根为y ,则1y x =, 1x y∴=, 把1x y =代入已知方程得:2110a b c y y ++=, 化简得:20cy by a ++=,故答案为:20cy by a ++=;【小问3详解】解:()()()22024420200c y b y b a c −+−=−≠ , ()()2202420240c y b y a ∴−+−+=, 由(2)可得:关于x 的一元二次方程的根与关于2024y −的一元二次方程的根互为倒数, 12024y x−∴=, 关于x 的一元二次方程()200ax bx c a ++=≠的两个实数根分别为1和12−, ∴关于2024y −的一元二次方程()()2202420240c y b y a −+−+=的两个实数根分别为1和2−, ∴20241y −=或20242y −=−,解得:2025y =或2022y =, ∴关于y 的一元二次方程()()2202420240c y b y a −+−+=的两个实数根分别为2025或2022.28. 如图,在平面直角坐标系中,直线AB 与x 轴、y 轴分别交于点A 、点B ,直线CD 与x 轴、y 轴分别交于点C 、点D ,AB 与CD 相交于点E ,线段OA ,OC 的长是一元二次方程218720x x −+=的两根(OA OC >),5BE =,43OB OA =. (1)求点A 、点C 的坐标;(2)求直线CD 的解析式;(3)在x 轴上是否存在一点P ,使以点C 、E 、P 为顶点的三角形与DCO ∆相似?若存在,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)(12,0)A ,(6,0)C −;(2)483y x =+;(3)存在,1(3,0)P ,2(19,0)P 【解析】 【分析】(1)用因式分解法求解一元二次方程,即可求解;(2)根据相似三角形求得点E 的坐标,再用待定系数法求解即可;(3)分两种情况进行讨论,当90EPC ∠=°和90CEP ∠=°时,利用相似三角形的性质,分别求解即可.【详解】解:(1)解方程218720x x −+=得,16x =,212x =,∵ OA OC >,∴12OA =,6OC =,∴(12,0)A ,(6,0)C −(2)作EF y ⊥于F∵5BE =,43OB OA =,∴412163OB =×=,∴20AB∵EF OA ∥∴BEF BAO △∽△,∴EFBF BE AO BO BA==,即5121620EF BF == ∴3EF =,4BF =,16412OF =−=,∴(3,12)E设直线CD 的解析式为y kx b =+∴60312k b k b −+= += ,解得438k b = = ∴设直线CD 的解析式为483y x =+(3)存在满足条件的点P 使得点C 、E 、P 为顶点的三角形与DCO ∆相似,由题意可得:(0,8)D,15CE ==,10CD =∵90COD ∠=°,DCO ECP ∠=∠当90EPC ∠=°时,COD CPE △∽△,此时(3,0)P当90CEP ∠=°时,COD CEP △∽△ 则OC CD CE CP =,即61015CP=,解得25CP = 19OP CP OC =−=∴(19,0)P综上,(3,0)P 或(19,0)P【点睛】此题考查了一次函数与几何的应用,涉及了相似三角形的性质,待定系数法求解函数解析式,解题的关键是掌握一次函数和相似三角形的有关性质.。
江苏省无锡市天一实验校2024年毕业升学考试模拟卷数学卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)1.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是( )A .B .C .D .2.如图,将含60°角的直角三角板ABC 绕顶点A 顺时针旋转45°度后得到△AB′C′,点B 经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是( )A .2πB .3πC .4πD .π3.如图是一组有规律的图案,它们是由边长相同的小正方形组成的,其中部分小正方形涂有阴影,依此规律,第2018个图案中涂有阴影的小正方形个数为( )A .8073B .8072C .8071D .80704.如图所示的几何体的主视图是( )A.B.C.D.5.下列四个式子中,正确的是()A.81=±9 B.﹣()26-=6 C.(23+)2=5 D.1216=46.估计7+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A.12B.14C.16D.1168.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于,否则就有危险,那么梯子的长至少为()A.8米B.米C.米D.米9.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,BD的长为43π,则图中阴影部分的面积为()A.4633π-B.8933π-C.33223π-D.8633π-10.如图,实数﹣3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是()A.点M B.点N C.点P D.点Q二、填空题(本大题共6个小题,每小题3分,共18分)11.在Rt△ABC纸片上剪出7个如图所示的正方形,点E,F落在AB边上,每个正方形的边长为1,则Rt△ABC的面积为_____.12.一个布袋里装有10个只有颜色不同的球,这10个球中有m 个红球,从布袋中摸出一个球,记下颜色后放回,搅匀,再摸出一个球,通过大量重复试验后发现,摸到红球的频率稳定在0.3左右,则m 的值约为__________.13.若一次函数y=kx ﹣1(k 是常数,k≠0)的图象经过第一、三、四象限,则是k 的值可以是_____.(写出一个即可).14.已知一次函数y=ax+b 的图象如图所示,根据图中信息请写出不等式ax+b≥2的解集为___________.15.当a ,b 互为相反数,则代数式a 2+ab ﹣2的值为_____.16.已知:如图,△ABC 内接于⊙O ,且半径OC ⊥AB ,点D 在半径OB 的延长线上,且∠A=∠BCD=30°,AC=2,则由BC ,线段CD 和线段BD 所围成图形的阴影部分的面积为__.三、解答题(共8题,共72分)17.(8分)如图,AB 为O 的直径,4AB =,P 为AB 上一点,过点P 作O 的弦CD ,设BCD m ACD ∠=∠.(1)若2m =时,求BCD ∠、ACD ∠的度数各是多少?(2)当2323AP PB -=+m ,使弦CD 最短?如果存在,求出m 的值,如果不存在,说明理由;(3)在(1)的条件下,且12APPB=,求弦CD的长.18.(8分)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx﹣3(m≠0)与x轴交于A(3,0),B两点.(1)求抛物线的表达式及点B的坐标;(2)当﹣2<x<3时的函数图象记为G,求此时函数y的取值范围;(3)在(2)的条件下,将图象G在x轴上方的部分沿x轴翻折,图象G的其余部分保持不变,得到一个新图象M.若经过点C(4.2)的直线y=kx+b(k≠0)与图象M在第三象限内有两个公共点,结合图象求b的取值范围.19.(8分)当x取哪些整数值时,不等式21222xx-≤-+与4﹣7x<﹣3都成立?20.(8分)某数学兴趣小组为测量如图(①所示的一段古城墙的高度,设计用平面镜测量的示意图如图②所示,点P 处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处.已知AB⊥BD、CD⊥BD,且测得AB=1.2m,BP=1.8m.PD=12m,求该城墙的高度(平面镜的原度忽略不计):请你设计一个测量这段古城墙高度的方案.要求:①面出示意图(不要求写画法);②写出方案,给出简要的计算过程:③给出的方案不能用到图②的方法.21.(8分)某农场用2台大收割机和5台小收割机同时工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机同时工作5小时共收割小麦8公顷.1台大收割机和1台小收割机每小时各收割小麦多少公顷?22.(10分)如图,抛物线与x轴相交于A、B两点,与y轴的交于点C,其中A点的坐标为(﹣3,0),点C的坐标为(0,﹣3),对称轴为直线x=﹣1.(1)求抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.23.(12分)先化简,再求值:(x ﹣2﹣52x +)÷2(3)2x x ++,其中x=3. 24.解方程(1)2430x x --=;(2)()22(1)210x x ---=参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到长方形的图形.【题目详解】解:A 、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误;B 、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;C 、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;D 、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误.故选:B .【题目点拨】本题重点考查三视图的定义以及考查学生的空间想象能力.2、A【解题分析】试题解析:如图,∵在Rt △ABC 中,∠ACB=90°,∠BAC=60°,AC=1,∴BC=ACtan60°AB=2∴S △ABC =12AC•BC=2. 根据旋转的性质知△ABC ≌△AB′C′,则S △ABC =S △AB′C′,AB=AB′.∴S 阴影=S 扇形ABB′+S △AB′C′-S △ABC =2452360π⨯ =2π. 故选A .考点:1.扇形面积的计算;2.旋转的性质.3、A【解题分析】观察图形可知第1个、第2个、第3个图案中涂有阴影的小正方形的个数,易归纳出第n 个图案中涂有阴影的小正方形个数为:4n +1,由此求解即可.【题目详解】解:观察图形的变化可知:第1个图案中涂有阴影的小正方形个数为:5=4×1+1; 第2个图案中涂有阴影的小正方形个数为:9=4×2+1; 第3个图案中涂有阴影的小正方形个数为:13=4×3+1; …发现规律:第n 个图案中涂有阴影的小正方形个数为:4n +1;∴第2018个图案中涂有阴影的小正方形个数为:4n +1=4×2018+1=1.故选:A .【题目点拨】本题考查了图形的变化规律,根据已有图形确定其变化规律是解题的关键.4、C【解题分析】主视图就是从正面看,看列数和每一列的个数.【题目详解】解:由图可知,主视图如下故选C.【题目点拨】考核知识点:组合体的三视图.5、D【解题分析】A、8181的算术平方根;B、先算-6的平方,然后再求36C、利用完全平方公式计算即可;D、121616.【题目详解】A819,故A错误;B、()26-36,故B错误;C、23266,故C错误;D、121616=4,故D正确.故选D.【题目点拨】本题主要考查的是实数的运算,掌握算术平方根、平方根和二次根式的性质以及完全平方公式是解题的关键.6、B【解题分析】分析:直接利用27<3,进而得出答案.详解:∵27<3,点睛:此题主要考查了估算无理数的大小,正确得出7的取值范围是解题关键.7、B【解题分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.【题目详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为41= 164,故选B.【题目点拨】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.8、C【解题分析】此题考查的是解直角三角形如图:AC=4,AC⊥BC,∵梯子的倾斜角(梯子与地面的夹角)不能>60°.∴∠ABC≤60°,最大角为60°.即梯子的长至少为米,9、D【解题分析】连接BD,BE,BO,EO,先根据B、E是半圆弧的三等分点求出圆心角∠BOD的度数,再利用弧长公式求出半圆的半径R,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为S△ABC﹣S扇形BOE,然后分别求出面积相减即可得出答案.【题目详解】解:连接BD,BE,BO,EO,∵B,E是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAD=∠EBA=30°,∴BE∥AD,∵BD的长为43π,∴604 1803Rππ=解得:R=4,∴AB=AD cos30°=3,∴BC=12AB=3∴AC3BC=6,∴S△ABC=12×BC×AC=12×36=3∵△BOE和△ABE同底等高,∴△BOE和△ABE面积相等,∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=26048 63633603ππ⨯=故选:D.【题目点拨】本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键. 10、D【解题分析】∵实数-3,x ,3,y 在数轴上的对应点分别为M 、N 、P 、Q ,∴原点在点M 与N 之间,∴这四个数中绝对值最大的数对应的点是点Q .故选D .二、填空题(本大题共6个小题,每小题3分,共18分)11、494【解题分析】如图,设AH=x ,GB=y ,利用平行线分线段成比例定理,构建方程组求出x ,y 即可解决问题.【题目详解】解:如图,设AH =x ,GB =y ,∵EH ∥BC , AH EH AC BC∴=, 135x x y∴=++① ∵FG ∥AC ,FG BG AC BC∴= 135y x y=++②, 由①②可得x =12,y =2, ∴AC =72,BC =7,∴S △ABC =494, 故答案为494. 【题目点拨】本题考查图形的相似,平行线分线段成比例定理,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.12、3【解题分析】在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.【题目详解】解:根据题意得,10m =0.3,解得m =3. 故答案为:3.【题目点拨】本题考查随机事件概率的意义,关键是要知道在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近.13、1【解题分析】由一次函数图象经过第一、三、四象限,可知k >0,﹣1<0,在范围内确定k 的值即可.【题目详解】解:因为一次函数y =kx ﹣1(k 是常数,k ≠0)的图象经过第一、三、四象限,所以k >0,﹣1<0,所以k 可以取1. 故答案为1.【题目点拨】根据一次函数图象所经过的象限,可确定一次项系数,常数项的值的符号,从而确定字母k 的取值范围.14、x≥1.【解题分析】试题分析:根据题意得当x≥1时,ax+b≥2,即不等式ax+b≥2的解集为x≥1.故答案为x≥1.考点: 一次函数与一元一次不等式.15、﹣1.【解题分析】分析:由已知易得:a+b=0,再把代数式a 1+ab-1化为为a(a+b)-1即可求得其值了.详解:∵a 与b 互为相反数,∴a+b=0,∴a 1+ab-1=a(a+b)-1=0-1=-1.故答案为:-1.点睛:知道“互为相反数的两数的和为0”及“能够把a 1+ab-1化为为a(a+b)-1”是正确解答本题的关键.16、23﹣23π. 【解题分析】 试题分析:根据题意可得:∠O=2∠A=60°,则△OBC 为等边三角形,根据∠BCD=30°可得:∠OCD=90°,OC=AC=2,则CD=23,OCD 1223232S =⨯⨯=,OBC 60423603S ππ⨯==扇形,则2233S π=-阴影.三、解答题(共8题,共72分)17、(1)30ACD ∠=︒,60BCD ∠=︒ ;(2)见解析;(3)1077DC =. 【解题分析】(1)连结AD 、BD,利用m 求出角的关系进而求出∠BCD 、∠ACD 的度数;(2)连结OD ,由所给关系式结合直径求出AP ,OP ,根据弦CD 最短,求出∠BCD 、∠ACD 的度数,即可求出m 的值.(3)连结AD 、BD ,先求出AD ,BD ,AP ,BP 的长度,利用△APC ∽△DPB 和△CPB ∽△APD 得出比例关系式,得出比例关系式结合勾股定理求出CP ,PD ,即可求出CD .【题目详解】解:(1)如图1,连结AD 、BD .AB 是O 的直径90ACB ∴∠=︒,90ADB ∠=︒又2BCD ACD ∠=∠,ACB BCD ACD ∠=∠+∠30ACD ∴∠=︒,60BCD ∠=︒(2)如图2,连结OD . 2323AP PB -=+,4AB =, 23423AP AP -∴=-+,则()()()2342323AP AP +=---, 解得23AP a =-023P AP ∴=-=要使CD 最短,则CD AB ⊥于P3cos 2OP POD OD ∴∠==, 30POD ∴∠=︒15ACD ∴∠=︒,75BCD ∠=︒5BCD ACD ∴∠=∠5m ∴=,故存在这样的m 值,且5m =;(3)如图3,连结AD 、BD .由(1)可得30ABD ACD ∠=∠=︒,4AB =2AD ∴=,23BD =12AP PB =, 43AP ∴=,83BP =, APC DPB ∠=∠,ACD ABD ∠=∠ APC DPB ∴∆∆∽AC AP PC DB DP BP∴==,433AC DP AP DB ∴⋅=⋅=⋅=①, 4832339PC DP AP BP ⋅=⋅=⋅=② 同理CPB APD ∆∆∽BP BC DP AD∴=, 816233BC DP BP AD ∴⋅=⋅=⋅=③,由①得3AC DP=,由③得163BC DP =16:3:32AC BC ∴==, 在ABC ∆中,4AB =,22216433DP DP ⎛⎫⎛⎫∴+= ⎪ ⎪ ⎪⎝⎭⎝⎭,DP ∴=由②329PC DP PC ⋅==,得PC =7DC CP PD ∴=+=. 【题目点拨】本题考查了相似三角形的判定与性质和锐角三角函数关系和圆周角定理等知识,掌握圆周角定理以及垂径定理是解题的关键.18、(1)抛物线的表达式为y=x 2﹣2x ﹣2,B 点的坐标(﹣1,0);(2)y 的取值范围是﹣3≤y <1.(2)b的取值范围是﹣83<b<25.【解题分析】(1)、将点A坐标代入求出m的值,然后根据二次函数的性质求出点B的坐标;(2)、将二次函数配成顶点式,然后根据二次函数的增减性得出y的取值范围;(2)、根据函数经过(-1,0)、(3,2)和(0,-2)、(3,2)分别求出两个一次函数的解析式,从而得出b的取值范围.【题目详解】(1)∵将A(2,0)代入,得m=1,∴抛物线的表达式为y=2x-2x-2.令2x-2x-2=0,解得:x=2或x=-1,∴B点的坐标(-1,0).(2)y=2x-2x-2=()21x--3.∵当-2<x<1时,y随x增大而减小,当1≤x<2时,y随x增大而增大,∴当x=1,y最小=-3.又∵当x=-2,y=1,∴y的取值范围是-3≤y<1.(2)当直线y=kx+b经过B(-1,0)和点(3,2)时,解析式为y=25x+25.当直线y=kx+b经过(0,-2)和点(3,2)时,解析式为y=54x-2.由函数图象可知;b的取值范围是:-2<b<25.【题目点拨】本题主要考查的就是二次函数的性质、一次函数的性质以及函数的交点问题.在解决第二个问题的时候,我们首先必须要明确给出x的取值范围是否是在对称轴的一边还是两边,然后根据函数图形进行求解;对于第三问我们必须能够根据题意画出函数图象,然后根据函数图象求出取值范围.在解决二次函数的题目时,画图是非常关键的基本功.19、2,1【解题分析】根据题意得出不等式组,解不等式组求得其解集即可.【题目详解】根据题意得21222473xxx-⎧≤-+⎪⎨⎪-<-⎩①②,解不等式①,得:x≤1,解不等式②,得:x>1,则不等式组的解集为1<x≤1,∴x可取的整数值是2,1.【题目点拨】本题考查了解不等式组的能力,根据题意得出不等式组是解题的关键.20、(1)8m;(2)答案不唯一【解题分析】(1)根据入射角等于反射角可得∠APB=∠CPD ,由AB⊥BD、CD⊥BD 可得到∠ABP=∠CDP=90°,从而可证得三角形相似,根据相似三角形的性质列出比例式,即可求出CD的长.(2)设计成视角问题求古城墙的高度.【题目详解】(1)解:由题意,得∠APB=∠CPD,∠ABP=∠CDP=90°,∴Rt△ABP∽Rt△CDP,∴AB CD BP BP=,∴CD=1.212 1.8⨯=8.答:该古城墙的高度为8m(2)解:答案不唯一,如:如图,在距这段古城墙底部am的E处,用高h(m)的测角仪DE测得这段古城墙顶端A的仰角为α.即可测量这段古城墙AB的高度,过点D作DC⊥AB于点C.在Rt△ACD中,∠ACD=90°,tanα=AC CD,∴AC=α tanα,∴AB=AC+BC=αtanα+h【题目点拨】本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.21、1台大收割机和1台小收割机每小时各收割小麦0.4hm2和0.2hm2.【解题分析】此题可设1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷,根据题中的等量关系列出二元一次方程组解答即可【题目详解】设1台大收割机和1台小收割机每小时各收割小麦x 公顷和y 公顷根据题意可得()22x 5y 3.6{ 5328x y +=+=解得0.4{ 0.2x y == 答:每台大小收割机每小时分别收割0.4公顷和0.2公顷.【题目点拨】此题主要考查了二元一次方程组的实际应用,解题关键在于弄清题意,找到合适的等量关系22、(1)y =x 2+2x ﹣3;(2)点P 的坐标为(2,21)或(﹣2,5);(3)94. 【解题分析】(1)先根据点A 坐标及对称轴得出点B 坐标,再利用待定系数法求解可得;(2)利用(1)得到的解析式,可设点P 的坐标为(a ,a 2+2a ﹣3),则点P 到OC 的距离为|a |.然后依据S △POC =2S △BOC列出关于a 的方程,从而可求得a 的值,于是可求得点P 的坐标;(3)先求得直线AC 的解析式,设点D 的坐标为(x ,x 2+2x ﹣3),则点Q 的坐标为(x ,﹣x ﹣3),然后可得到QD 与x 的函数的关系,最后利用配方法求得QD 的最大值即可.【题目详解】解:(1)∵抛物线与x 轴的交点A (﹣3,0),对称轴为直线x =﹣1,∴抛物线与x 轴的交点B 的坐标为(1,0),设抛物线解析式为y =a (x +3)(x ﹣1),将点C (0,﹣3)代入,得:﹣3a =﹣3,解得a =1,则抛物线解析式为y =(x +3)(x ﹣1)=x 2+2x ﹣3;(2)设点P 的坐标为(a ,a 2+2a ﹣3),则点P 到OC 的距离为|a |.∵S △POC =2S △BOC , ∴12•OC •|a |=2×12OC •OB ,即12×3×|a |=2×12×3×1,解得a =±2. 当a =2时,点P 的坐标为(2,21);当a =﹣2时,点P 的坐标为(﹣2,5).∴点P 的坐标为(2,21)或(﹣2,5).(3)如图所示:设AC 的解析式为y =kx ﹣3,将点A 的坐标代入得:﹣3k ﹣3=0,解得k =﹣1,∴直线AC 的解析式为y =﹣x ﹣3.设点D 的坐标为(x ,x 2+2x ﹣3),则点Q 的坐标为(x ,﹣x ﹣3).∴QD =﹣x ﹣3﹣( x 2+2x ﹣3)=﹣x ﹣3﹣x 2﹣2x +3=﹣x 2﹣3x =﹣(x 2+3x +94﹣94)=﹣(x +32)2+94, ∴当x =﹣32时,QD 有最大值,QD 的最大值为94. 【题目点拨】本题主要考查了二次函数综合题,解题的关键是熟练掌握二次函数的性质和应用.2332【解题分析】根据分式的运算法则即可求出答案.【题目详解】 原式()2245223x x x x --+=⨯++, ()()()2+33223x x x x x -+=⨯++,33x x -=+. 当3x 333=+32= 【题目点拨】 本题考查的知识点是分式的化简求值,解题关键是化简成最简再代入计算.24、(1)127x =,227x =;(2)11x =,23x =-.【解题分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得.【题目详解】(1)解:∵1a =,4b =-,3c =-,∴224(4)41(3)280b ac ∆=-=--⨯⨯-=>,∴2x ====±∴12x =22x =;(2)解:原方程化为:2(1)2(1)(1)0x x x --+-=,因式分解得:[](1)(1)2(1)0x x x ---+=,整理得:(1)(3)0x x ---=,∴10x -=或30x --=,∴11x =,23x =-.【题目点拨】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.。
无锡市天一实验学校初三数学模拟试题
2010.3 注意事项:1.答案一律写在答卷上,写在试卷上无效。
2.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效.
一、精心选一选(本大题共有7小题,每小题3分,共21分.)
1.下列计算正确的是 ( )
A. 325
2a a a += B. 32
6
(2)4a a -= C. a 2·a 3=a 6 D. 623a a a ÷=
2. 不等式组213
3
x x +⎧⎨
>-⎩≤的解集在数轴上表示正确的是( )
3.下列调查适合作普查的是( ) A .了解在校大学生的主要娱乐方式 B .了解无锡市居民对废电池的处理情况 C .日光灯管厂要检测一批灯管的使用寿命
D .对甲型H1N1流感患者的同一车厢的乘客进行医学检查 4.用四个全等的矩形和一个小正方形拼成如图1所示的大正 方形,已知大正方形的面积是144,小正方形的面积是4, 若用x ,y 表示矩形的长和宽(x >y ),则下列关系式中不正 确的是 A .x +y =12 . B .x -y =2.
C .xy =35.
D .x 2
+y 2
=144.
5.图2是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )
6. 已知33-=-y x ,则y x 35+-的值是( )
A .0
B .2
C .5
D .8
7.如图3,直线3
33
y x =
+与x 轴、y 轴分别相交于A B , 两点,圆心P 的坐标为(1
0),,圆P 与y 轴相切于点O .若将圆P 沿x 轴向左移动,当圆P 与该直线相交时,横坐标为整数的点P
的个数是 ( )
A. 2
B. 3
C. 4
D. 5
二、细心填一填(本大题共有12小题,15空, 每空2分,共30分.)
-3
1 0 A . -3 1 0 B . -3 1
0 C .
-3
1 0 D .
图2
A .
B .
C .
D .
O y
B A
图3
P
图1
y
x
8.8-的相反数是 ,25的算术平方根是 . 9.已知75A ∠=°,则A ∠的余角的度数是 . 10. 函数2x
y x
=-中自变量x 的取值范围是 ;
函数26y x =
-中自变量x 的取值范围是 11. 因式分解:32
4x xy -=___________.
12. 关于x 的一元二次方程2
20x x m -+=有两个实数根分别为1x 和 2x ,则m 的取值范 围是_____________,12x x += .
13.2010年上海世界博览会即将举行,各项准备工作即将完成,其中中国馆计划投资00元,将00
保留两个有效数字的近似数应为____________ 元. 14.如图4,已知直线110AB CD DCF =︒∥,∠,且AE AF =,则A ∠= .
15.如图5,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=70°,则∠AED 的度数是_________________ .
16.已知一组数据1,a ,3,6,7,它的平均数是4,这组数据的众数是 .
17.如果三角形的三边长分别为3 、4和5,那么连接这个三角形三边中点,所得的三角形的周长是
18.如图6,在平面直角坐标系中,函数k
y x
=
(k >0)的图象经过点(12)A ,、B 两点,过 点A 作x 轴的垂线,垂足为C ,连结AB 、BC .若ABC △的面积为3,则点B 的坐标为 .
19.李老师从油条的制作受到启发,设计了一个数学问题:如图7,在数轴上截取从原点到1的对应点的线段AB ,对折后(点A 与B 重合)再均匀地拉成1个单位长度的线段,这一过程称为一次操作(如在第一次操作后,原线段AB 上的
14,34均变成12,1
2
变成1,等).那么在线段AB 上(除A ,B )的点中,在第n 次操作后,恰好被拉到与1重合的点所对应的数之和是____________.
三、认真答一答(本大题共有9小题,共79分,解答需写出必要的文字说明、演算步骤或证明过程.)
20. (本小题满分6分)(1)计算:()1
01201013122-⎛⎫
--+-- ⎪⎝⎭
(结果保留根号).
3- 2- 1- 0 1 2 3 4 567 8 9 10 1112 A
0 2 1 B 图7
1
2 3
4 D
C B A E
图5 图6
A F
B
C
D
E 图4
(本小题满分6分)(2)先化简,再求值:4
21)211(2--÷-+x x x ,其中x=3 21.(本题满分8分)
如图8,线段AB 的端点在边长为1的小正方形网格的格点上,现将线段AB 绕点A 按逆时针方向旋转90°得到线段AC .
⑴请你在所给的网格中画出线段AC 及点B 经过的路径;
⑵若将此网格放在一平面直角坐标系中,已知点A 的坐标为(1,3),点B 的坐标 为(-2, -1),则点C 的坐标为 ;
⑶线段AB 在旋转到线段AC 的过程中,线段AB 扫过的区域的面积为 ;
⑷若有一张与⑶中所说的区域形状相同的纸片,将它围成一个几何体的侧面,则该几何体底面圆的半径长为 .
22. (本题满分8分)如图9,在矩形纸片ABCD 中,将矩形纸片沿着对角线AC 折叠,使点 D 落在点F 处,设AF 与BC 相交于点E . ⑴试说明△ABE ≌△CFE ; ⑵若AB =6,AD =8,求AE 的长.
23(本题满分7分)某中学开展以“我最喜欢的职业”为主题的调查活动.通过对学生的随机抽样调查得到一组数据,下面两图(如图10、图11)是根据这组数据绘制的两幅不完整的统计图.请你根据图中所提供的信息解答下列问题: (1)求在这次活动中一共调查了多少名学生
(2)在扇形统计图中,求“教师”所在扇形的圆心角的度数.
(3)补全两幅统计图.
其它
教师
A
B 图8 E
D C B A
F
图9
24.(本题满分7分)如图12,有四张背面相同的纸牌A,B,C,D ,其正面分别画有四个不同的图形,小明将这四张纸牌背面朝上洗匀后随机摸出一张,放回后洗匀再随机摸出一张.
(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A,B,C,D 表示); (2)求两次摸牌的牌面图形既是中心对称图形又是轴对称图形的概率.
25.(本题满分8分)如图13,某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的眼睛与地面的距离()AB 是1.7m ,看旗杆顶部M 的仰角为45o
;小红的眼睛与地面的距离()CD 是1.5m ,看旗杆顶部M 的仰角为30o
.两人相距28米且位于旗杆两侧(点B N D ,,在同一条直线上). 请求出旗杆MN 的高度.(参考数据:2
1.4≈,3 1.7≈,结果保留整数)
26. (本题10分)
如图14,所示,边长为2的正方形OABC 如图放置在平面直角坐标系中,抛物线2
y ax bx c =++过点A ,B ,且1250a c +=。
(1)求抛物线的解析式;
(2)如果点P 由点A 开始沿AB 边以每秒2个单位的速度向点B 移动,同时点Q 由点B 开始沿BC 边以每秒1个单位的速度向点C 移动,设移动时间为t 秒。
① 当线段PQ 的长取得最小值时,在抛物线上是否存在点R ,使得以P ,B ,Q ,R 为顶点的四
M
N B A D
C
30° 45° 图13
图12
边形为平行四边形如存在,求出点R 的坐标;如不存在,请说明理由。
② 设线段PQ 的中点为M ,试探索点M 在什么线上运动并直接写出其解析式。
27.(本题10分)如图15:已知,直角梯形ABCD 中,AD 3
5
(本题9分)将一块 a (cm)× b (cm )×c (cm) (a <
16所示)放入一长方体水槽(如图17所示)内,铁块现向水槽内匀速注水,直至注满水槽为止。
因为铁块在水槽内有三种不同的放 t (s)的函数关系用图像法来反映其全过程有三个不(三次注水速度相同)。
(1) (i) ,a=____________,b=____________;
(ii) t 1与2.
(2) c 、t 1、t 2的值.
图18
图17
图16
图14 A B C D (备用图)。