八年级数学第十一章三角形测试题
- 格式:ppt
- 大小:302.00 KB
- 文档页数:31
人教版八年级数学第十一章《三角形》单元测试题(含答案)时间:120分钟满分:120分一、选择题(共10小题,满分30分,每小题3分)1.(3分)如图,在四边形ABCD中,AB>AD,对角线AC平分∠BAD,下列结论正确的是()A.AB﹣AD>|CB﹣CD|B.AB﹣AD=|CB﹣CD|C.AB﹣AD<|CB﹣CD|D.AB﹣AD与|CB﹣CD|的大小关系不确定2.(3分)有两条高在三角形外部的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定3.(3分)如图,为了估计池塘两岸A,B间的距离,在池塘的一侧选取点P,测得P A=15米,PB=11米那么A,B间的距离不可能是()A.5米B.8.7米C.27米D.18米4.(3分)一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是()A.11B.12C.13D.145.(3分)如图,在△ABC中,AF平分∠BAC交BC于点F、BE平分∠ABC交AC于点E,AF与BE相交于点O,AD是BC边上的高,若∠C=50°,BE⊥AC,则∠DAF的度数为()A.10°B.12°C.15°D.20°6.(3分)如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,以下结论:①AD∥BC,②∠ACB=∠ADB,③∠ADC+∠ABD=90°,④∠ADB=45°﹣∠CDB,其中正确的结论有()A.1个B.2个C.3个D.4个7.(3分)如图,在三角形ABC中,AH⊥BC,BF平分∠ABC,BE⊥BF,EF∥BC,以下四个结论:①AH⊥EF;②∠ABF=∠EFB;③AC∥BE;④∠E=∠ABE.其中正确的结论有()A.4个B.3个C.2个D.1个8.(3分)如图,四边形ABCD为一长方形纸带,AD∥BC,将四边形ABCD沿EF折叠,C、D两点分别与C′、D′对应,若∠1=2∠2,则∠3的度数为()A.50°B.54°C.58°D.62°9.(3分)若n边形的内角和与外角和相加为1800°,则n的值为()A.7B.8.C.9D.1010.(3分)如图,大建从A点出发沿直线前进8米到达B点后向左旋转的角度为α,再沿直线前进8米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了72米,则每次旋转的角度α为()A.30°B.40°C.45°D.60°二、填空题(共5小题,满分15分,每小题3分)11.(3分)如图,正六边形ABCDEF的顶点A、F分别在正方形BMGH的边BH、GH上.若正方形BMGH的边长为6,则正六边形ABCDEF的边长为.12.(3分)如图,在△ABC中,∠B=80°,∠C=42°,AD⊥BC于点D,AE平分∠BAC,则∠DAE=.13.(3分)如图,在△ABC中,∠A=65°,则∠1+∠2=°.14.(3分)如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边AB=10,则它的周长等于.15.(3分)如图,在△ABC中,AD是中线,DE⊥AB于E,DF⊥AC于F,若AB=6cm,AC=4cm,则.三、解答题(共10小题,满分75分)16.(7分)如图所示,已知AD,AE分别是△ABC的高和中线,AB=6cm,AC=8cm,BC =10cm,∠CAB=90°.试求:(1)AD的长;(2)△ABE的面积;(3)△ACE和△ABE的周长的差.17.(7分)如图,P为△ABC内任意一点,求证:AB+AC>PB+PC.18.(7分)已知a,b,c分别为△ABC的三边,且满足a+b=3c﹣2,a﹣b=2c﹣6.(1)求c的取值范围;(2)若△ABC的周长为12,求c的值.19.(7分)如图所示,在△ABC中,CD⊥AB于点D,EF⊥CD于点G,∠ADE=∠EFC.(1)证明AB∥EF.(2)请说明∠AED=∠ACB的理由.(3)若∠BDE=2∠B+36°,求∠DEF的度数.20.(7分)已知:在△ABC中,AE平分∠BAC,BF平分∠ABC,AE、BF交于点G.(1)如图1:若∠C=60°,求∠AGB的度数;(2)如图2:点D是AE延长线上一点,连接BD、CD,∠ADC=∠ABG+∠BAG,求证:CD∥BF;(3)如图3:在(2)的条件下,过点G作GK∥AB,交BD于点K,点M在线段DC 的延长线上,连接KM,若∠ACB=∠BDA,∠ABC+∠BAE=2∠DKM,∠M=16°,求∠BAC的度数.21.(7分)如图所示,在△ABC中,AD平分∠BAC交BC于点D,BE平分∠ABC交AD 于点E.(1)若∠C=60°,∠BAC=80°,求∠ADB的度数;(2)若∠BED=60°,求∠C的度数.22.(7分)如图,在三角形ABC中,点D是BC上一点,点F是AC上一点,连接AD、DF,点E是AD上一点,连接EF,且∠1+∠2=180°,∠B=∠3.(1)求证:AB∥DF;(2)若FD平分∠CFE,∠BAD=50°,∠3=70°,求∠CAD的度数.23.(8分)如图,四边形ABCD中,∠A=75°,∠C=105°,BE平分∠ABC,DF平分∠ADC.求:(1)∠ABC+∠ADC的值;(2)∠BED+∠BFD的值.24.(9分)已知如图1,线段AB,CD相交于O点,连接AD,CB,我们把如图1的图形称之为“8字形”.那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)在图1中,请写出∠A,∠B,∠C,∠D之间的数量关系,并说明理由;(2)如图2,计算∠A+∠B+∠C+∠D+∠E+∠F的度数.25.(9分)△ABC中,AD是∠BAC的角平分线,AE是△ABC的高.(1)如图1,若∠B=40°,∠C=60°,求∠DAE的度数;(2)如图2(∠B<∠C),试说明∠DAE与∠B、∠C的数量关系;(3)拓展:如图3,四边形ABDC中,AE是∠BAC的角平分线,DA是∠BDC的角平分线,猜想:∠DAE与∠B、∠C的数量关系是否改变.说明理由.参考答案一、选择题(共10小题,满分30分,每小题3分)1.A;2.C;3.C;4.C;5.C;6.B;7.B;8.B;9.D;10.B;二、填空题(共5小题,满分15分,每小题3分)11.4;12.19°;13.245;14.10+10或610;15.;三、解答题(共10小题,满分75分)16.解:∵∠BAC=90°,AD是边BC上的高,∴AB•AC BC•AD,∴AD 4.8(cm),即AD的长度为4.8cm;(2)方法一:如图,∵△ABC是直角三角形,∠BAC=90°,AB=6cm,AC=8cm,∴S△ABC AB•AC6×8=24(cm2).又∵AE是边BC的中线,∴BE=EC,∴BE•AD EC•AD,即S△ABE=S△AEC,∴S△ABE S△ABC=12(cm2).∴△ABE的面积是12cm2.方法二:因为BE BC=5,由(1)知AD=4.8,所以S△ABE BE•AD5×4.8=12(cm2).∴△ABE的面积是12cm2.(3)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长﹣△ABE的周长=AC+AE+CE﹣(AB+BE+AE)=AC﹣AB=8﹣6=2(cm),即△ACE和△ABE的周长的差是2cm.17.证明:延长BP交AC于点D,在△ABD中,PB+PD<AB+AD①在△PCD中,PC<PD+CD②①+②得PB+PD+PC<AB+AD+PD+CD,即PB+PC<AB+AC,即:AB+AC>PB+PC.18.解:(1)∵a,b,c分别为△ABC的三边,a+b=3c﹣2,a﹣b=2c﹣6,∴,解得:1<c<6.故c的取值范围为1<c<6;(2)∵△ABC的周长为12,a+b=3c﹣2,∴a+b+c=4c﹣2=12,解得c=3.5.故c的值是3.5.19.解:(1)证明:∵CD⊥AB于点D,EF⊥CD于点G,∴∠BDC=∠FGC,=90°,∴AB∥EF(同位角相等,两直线平行).(2)证明:由(1)得AB∥EF,∴∠B=∠EFC(两直线平行,同位角相等),又∵∠ADE=∠EFC.∴∠B=∠ADE;(3)由(2)得∠B=∠ADE,∴DE∥BC,由(1)得AB∥EF,∴四边形BDEF是平行四边形(两组对边平行的四边形是平行四边形),∴∠DEF=∠B(平行四边形对角相等),∵∠B=∠ADE,∠BDE=2∠B+36°,∴180°﹣∠B=2∠B+36°,∴∠B=48°,∴∠DEF=48°.20.(1)证明:如图1,∵AE、BF分别平分∠BAC与∠ABC,∴,,在△ABC中,∠ABC+∠ACB+∠C=180°,∠C=60°,∴∠ABC+∠BAC=180°﹣60°=120°,∴∠ABF+∠BAE∠ABC∠BAC(∠ABC+∠BAC)120°=60°,∴∠AGB=180°﹣60°=120°;(2)证明:如图2,∵∠BGD是△ABG得一个外角,∴∠BGD=∠BAG+∠ABG,∵∠ADC=∠BAG+∠ABG,∴∠BGD=∠ADC,∴CD∥BF;(3)解:如图3,∵∠BED=∠AEC,∠ACB=∠BDA,∴∠CAE=∠DBE,∵AE平分∠BAC,BF平分∠ABC,设∠ABF=∠CBF=α,∠BAD=∠CAD=∠DBC=β,∴∠AEC=2α+β,∵∠ABC+∠BAE=2∠DKM,∴,∵GK∥AB,∴∠BGK=∠ABG=α,∴∠GKD=∠GBK+∠BGK=2α+β,∴,∵GB∥DM,∠M=16°,∴∠GBK+∠MDK=180°,∵∠GBK+∠GKB+∠BGK+∠MKD+∠KDM+∠M=360°,∠BKG+∠MKD=180°﹣∠GKM,∴180°+180°﹣∠GKM+∠BGK+∠M=360°,∴∠GKM=∠BGK+∠M,∴,∴β=32°,∴∠BAC=2×32°=64°.21.解:(1)∵AD平分∠BAC,∠BAC=80°,∴∠DAC∠BAC=40°,∵∠ADB是△ADC的外角,∠C=60°,∴∠ADB=∠C+∠DAC=100°;(2)∵∠BED是△ABE的外角,∠BED=60°,∴∠BAD+∠ABE=∠BED=60°,∵AD平分∠BAC,BE平分∠ABC,∴∠BAC=2∠BAD,∠ABC=2∠ABE,∴∠BAC+∠ABC=2(∠BAD+∠ABE)=120°,∵∠BAC+∠ABC+∠C=180°,∴∠C=180°﹣(∠BAC+∠ABC)=60°.22.(1)证明:∵∠1+∠2=180°,∠1+∠DEF=180°,∴∠DEF=∠2.∴EF∥BC.∴∠3=∠FDC.∵∠B=∠3,∴∠B=∠FDC.∴AB∥DF.(2)解:∵AB∥DF,∴∠BAD=∠EDF=50°.∵FD平分∠CFE,∴∠EFC=2∠3=140°.∴∠AFE=180°﹣∠EFC=40°,∠1=∠3+∠EDF=70°+50°=120°.∴∠CAD=180°﹣∠1﹣∠AFE=20°.23.解:(1)∵四边形ABCD中,∠A=75°,∠C=105°,∴∠ABC+∠ADC=360°﹣75°﹣105°=180°;(2)如图,∵BE平分∠ABC,DF平分∠ADC,∴∠1∠ABC,∠2∠ADC,∴∠1+∠2(∠ABC+∠ADC)=90°,由三角形外角的性质可得,∠BED=∠1+∠A,∠BFD=∠2+∠A,∴∠BED+∠BFD=∠1+∠A+∠2+∠A=∠1+∠2+2∠A=90°+150°=240°.24.解:(1)在△AOD中,∠AOD=180°﹣∠A﹣∠D,在△BOC中,∠BOC=180°﹣∠B﹣∠C,∵∠AOD=∠BOC(对顶角相等),∴180°﹣∠A﹣∠D=180°﹣∠B﹣∠C,∴∠A+∠D=∠B+∠C;(2)如图3,连接AD,则∠BAD+∠B+∠C+∠ADC=360°,根据“8字形”数量关系,∠E+∠F=∠EDA+∠F AD,所以,∠A+∠B+∠C+∠D+∠E+∠F=360°.25.解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分线,∴∠CAD=∠BAD∠BAC=40°,∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC=180°﹣∠B﹣∠C,∵AD是∠BAC的角平分线,∴∠CAD=∠BAD∠BAC,∵AE是△ABC的高,∴∠AEC=90°,∴∠CAE=90°﹣∠C,∴∠DAE=∠CAD﹣∠CAE∠BAC﹣(90°﹣∠C)(180°﹣∠B﹣∠C)﹣90°+∠C∠C∠B,即∠DAE∠C∠B;(3)不变,理由:连接BC交AD于F,过点A作AM⊥BC于M,过点D作DN⊥BC于N,∵AE是∠BAC的角平分线,AM是高,∴∠EAM(∠ACB﹣∠ABC),同理,∠ADN(∠BCD﹣∠CBD),∵∠AFM=∠DFN,∠AMF=∠DNF=90°,∴∠MAD=∠ADN,∴∠DAE=∠EAM+∠MAD=∠EAM+∠ADN(∠ACB﹣∠ABC)(∠BCD﹣∠CBD)(∠ACD﹣∠ABD).。
第十一章《三角形》章节测试卷一.选择题(共12小题,满分48分,每小题4分)1.已知△ABC中,∠A=20°,∠B=70°,那么△ABC是( )A.直角三角形B.锐角三角形C.钝角三角形D.正三角形2.下面四个图形中,线段BD是△ABC的高的是( )A.B.C.D.3.要使如图所示的五边形木架不变形,至少要再钉上几根木条( )A.1根B.2根C.3根D.4根4.能把一个任意三角形分成面积相等的两部分是( )A.以上都可以B.高C.中线D.角平分线5.长度分别为3,8,x的三条线段能组成一个三角形,x的值可以是( )A.4B.5C.6D.116.如图,在△ABC中,∠BAC=90°,AD是△ABC的高,若∠B=20°,则∠DAC=( )A.90°B.20°C.45°D.70°7.如图所示,∠1=∠2=150°,则∠3=( )A.30°B.150°C.120°D.60°8.如图,在△ABC中,AB=2021,AC=2018,AD为中线,则△ABD与△ACD的周长之差为( )A.1B.2C.3D.49.若一个多边形的每个内角都等于150°,则这个多边形的边数是( )A.10B.11C.12D.1310.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A.90°B.135°C.270°D.315°11.△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数.符合条件的三角形有( )A.1个B.2个C.3个D.4个12.如图,在四边形ABCD中,∠ABC与∠BCD的平分线的交点E恰好在AD边上,则∠BEC=( )A.∠A+∠D﹣45°B.12(∠A+∠D)+45°C.180°-(∠A+∠D)D.12∠A+12∠D二.填空题(共4小题,满分16分,每小题4分)13.如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=20°,则∠1= °.14.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A= .15.如图,△ABC中,∠B=40°,∠C=30°,点D为边BC上一点,将△ADC沿直线AD折叠后,点C落到点E处,若DE∥AB,则∠AFD的度数为 .16.如图,D,E,F分别是△ABC的边AB,BC,AC上的中点,连接AE,BF,CD交于点G,AG:GE=2:1,△ABC的面积为6,设△BDG的面积为S1,△CGF的面积为S2,则S1+S2= .三.解答题(共8小题,满分86分)17.已知一个多边形的内角和是外角和的三倍,则这个多边形是几边形?18.如图,∠ABC=∠FEC=∠ADC=90°.(1)在△ABC中,BC边上的高是 ;(2)在△AEC中,AE边上的高是 ;(3)若AB=2.4cm,CD=2cm,AE=3cm,求△AEC的面积及CE的长.19.如图,已知D是△ABC边BC延长线上一点,DF⊥AB于点F,交AC于点E,∠A=35°,∠D=42°,求(1)∠ACD的度数;(2)∠AEF的度数.20.已知一等腰三角形的两边长x,y满足方程组{3x−y=55x+2y=23求此等腰三角形的周长.21.一个零件的形状如图,按规定∠A=90°,∠B和∠C应分别是32°和21°,检验工人量得∠BDC=149°,就判断这个零件不合格,运用三角形的有关知识说出零件不合格的理由.22.如图1所示,将一副三角板的直角顶点重合在点O处.(1)∠AOD ∠BOC;(填“>”“<”“=”)(2)若将三角尺按图2的位置摆放,∠AOC和∠BOD在数量上有何关系?说明理由;(3)在图2中,已知∠BOC与∠AOC的度数比为m:n,当a6m b11与a n+1b2n﹣11是同类项时,求∠BOD的度数.23.问题1现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.研究(1):如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是 研究(2):如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是 研究(3):如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.问题2研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是 .24.△ABC中,AD是∠BAC的角平分线,AE是△ABC的高.(1)如图1,若∠B=40°,∠C=60°,求∠DAE的度数;(2)如图2(∠B<∠C),试说明∠DAE与∠B、∠C的数量关系;(3)拓展:如图3,四边形ABDC中,AE是∠BAC的角平分线,DA是∠BDC的角平分线,猜想:∠DAE与∠B、∠C的数量关系是否改变.说明理由.答案一.选择题1.【解答】解:∵△ABC中,∠A=20°,∠B=70°,∴∠C=180°﹣20°﹣70°=90°,∴△ABC是直角三角形.故选:A.2.【解答】解:由图可得,线段BD是△ABC的高的图是D选项.故选:D.3.【解答】解:过五边形的一个顶点作对角线,有5﹣3=2条对角线,所以至少要钉上2根木条.故选:B.4.【解答】解:三角形的中线把三角形分成等底同高的两个三角形,面积相等,所以,能把一个任意三角形分成面积相等的两部分是中线.故选:C.5.【解答】解:8﹣3<x<8+3,5<x<11,只有选项C符合题意.故选:C.6.【解答】解:∵∠BAC=90°,∴∠DAC+∠BAD=90°,∵AD是△ABC的高,∴∠ADB=∠BAD+∠B=90°,∴∠DAC=∠B=20°,故选:B.7.【解答】解:∵∠1=∠2=150°,∴∠ABC=∠BAC=180°﹣150°=30°,∴∠3=∠ABC+∠BAC=60°.故选:D.8.【解答】解:∵AD为中线,∴DB=DC,∴△ABD与△ACD的周长之差为:(AB+AD+BD)﹣(AD+DC+AC)=AB+AD+BD﹣AD﹣DC﹣AC=AB﹣AC=2021﹣2018=3,故选:C.9.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.10.【解答】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.11.【解答】解:方程组{x+2y=104x+3y=20的解为:{x=2 y=4,∵△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数,∴2<第三边长<6,1∴第三边长可以为:3,5.∴这样的三角形有2个.故选:B.12.【解答】解:∵四边形的内角和=360°,∴∠ABC+∠BCD=360°﹣(∠A+∠D),∵∠ABC与∠BCD的平分线的交点E恰好在AD边上,∴2∠EBC=∠ABC,2∠ECB=∠BCD,∴∠EBC+∠ECB=12(∠ABC+∠BCD)=12×[360°−(∠A+∠D)],∴∠BEC=180°﹣(∠EBC+∠ECB)=180°−12×[360°−(∠A+∠D)]=12(∠A+∠D),故选:D.二.填空题13.【解答】解:∵∠A=60°,∠C=50°,∴∠ABC=180°﹣∠A﹣∠C=180°﹣60°﹣50°=70°,∴∠1=∠ABC﹣∠D=50°﹣20°=50°.故答案为:50.14.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABC=2∠ABP,∠ACM=2∠ACP,又∵∠ABP=20°,∠ACP=50°,∴∠ABC=2×20°=40°,∠ACM=2×50°=100°,∴∠A=∠ACM﹣∠ABC=60°,故答案为60°.15.【解答】解:∵∠B=40°,∠C=30°,∴∠BAC=110°,由折叠的性质得,∠E=∠C=30°,∠EAD=∠CAD,∵DE∥AB,∴∠BAE=∠E=30°,∴∠CAD=40°,∴∠ADC=180°﹣∠CAD﹣∠C=110°,∴∠AFD=110°﹣40°=70°,故答案为:70°.16.【解答】解:∵D,E,F分别是△ABC的边AB,BC,AC上的中点,∴AD=DB,AF=CF,∴△BDG的面积=△ADG的面积,△CFG的面积=△AGF的面积,∴设△BDG的面积为S1,△CGF的面积为S2,则S1+S2=四边形ADGF的面积,∵△ABC的面积为6,AG:GE=2:1,∴四边形ADGF的面积=23×12×6=2,∴S1+S2=2,故答案为:2三.解答题17.解:设这个多边形为n边形,n边形的内角和为:(n﹣2)×180°,n边形的外角和为:360°,根据题意得:(n﹣2)×180°=3×360°,解得:n=8,答:这个多边形是八边形.18.解:(1)在△ABC中,BC边上的高是线段AB;故答案为线段AB;(2)在△AEC中,AE边上的高是线段CD;故答案为线段CD;(3)∵S△AEC=12×AE×CD=12×CE×AB,∴CE=AE⋅CDAB= 2.5(cm).19.解:(1)∵DF⊥AB,∴∠B=90°﹣∠D=48°,∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=83°;(2)∵DF⊥AB,∴∠AFD=90°,∴∠AEF=90°﹣∠A=55°.20.解:解方程组组{3x−y=55x+2y=23得{x=3 y=4,所以,等腰三角形的两边长为3,4.若腰长为3,底边长为4,由3+3=6>4知,三角形的周长为10.若腰长为4,底边长为3,则三角形的周长为11.所以,这个等腰三角形的周长为10或11.21.解:延长CD交AB于点E,∵∠BEC是△ACE的一个外角,∴∠BEC=∠A+∠C=90°+21°=111°,同理,∠BDC=∠BEC+∠B=111°+32°=143°,而检验工人量得∠BDC=149°,所以零件不合格.22.解:(1)∵∠AOB=∠COD=90°,∴∠AOB+∠BOD=∠COD+∠BOD,即∠AOD=∠BOC.故答案为:=;(2)∵∠AOB=∠COD=90°,∴∠AOC+∠BOD=180°.故∠AOC和∠BOD在数量上的关系为:∠AOC+∠BOD=180°;(3)∵a6m b11与a n+1b2n﹣11是同类项,∴{6m=n+111=2n−11,解得{m=2n=11,∵∠BOC与∠AOC的度数比为m:n,11﹣2=9,∴∠BOC=90°×2=20°,11−2∴∠BOD=90°﹣20°=70°.故∠BOD的度数是70°.23.解:(1)如图1,∠1=2∠A,理由是:由折叠得:∠A=∠DA′A,∵∠1=∠A+∠DA′A,∴∠1=2∠A;故答案为:∠1=2∠A;(2)如图2,猜想:∠1+∠2=2∠A,理由是:由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠ADB+∠AEC=360°,∴∠1+∠2=360°﹣∠ADE﹣∠A′DE﹣∠AED﹣∠A′ED=360°﹣2∠ADE﹣2∠AED,∴∠1+∠2=2(180°﹣∠ADE﹣∠AED)=2∠A;故答案为:∠1+∠2=2∠A;(3)如图3,∠2﹣∠1=2∠A,理由是:∵∠2=∠AFE+∠A,∠AFE=∠A′+∠1,∴∠2=∠A′+∠A+∠1,∵∠A=∠A′,∴∠2=2∠A+∠1,∴∠2﹣∠1=2∠A;(4)如图4,由折叠得:∠BMN=∠B′MN,∠ANM=∠A′NM,∵∠DNA+∠BMC=360°,∴∠1+∠2=360°﹣2∠BMN﹣2∠ANM,∵∠BMN+∠ANM=360°﹣∠A﹣∠B,∴∠1+∠2=360°﹣2(360°﹣∠A﹣∠B)=2(∠A+∠B)﹣360°,故答案为:∠1+∠2=2(∠A+∠B)﹣360°.24.解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分线,∠BAC=40°,∴∠CAD=∠BAD=12∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC =180°﹣∠B ﹣∠C ,∵AD 是∠BAC 的角平分线,∴∠CAD =∠BAD =12∠BAC ,∵AE 是△ABC 的高,∴∠AEC =90°,∴∠CAE =90°﹣∠C ,∴∠DAE =∠CAD ﹣∠CAE =12∠BAC ﹣(90°﹣∠C )=12(180°﹣∠B ﹣∠C )﹣90°+∠C =12∠C −12∠B ,即∠DAE =12∠C −12∠B ; (3)不变,理由:连接BC 交AD 于F ,过点A 作AM ⊥BC 于M ,过点D 作DN ⊥BC 于N ,∵AE 是∠BAC 的角平分线,AM 是高,∴∠EAM =12(∠ACB ﹣∠ABC ),同理,∠ADN =12(∠BCD ﹣∠CBD ),∵∠AFM =∠DFN ,∠AMF =∠DNF =90°,∴∠MAD =∠ADN ,∴∠DAE =∠EAM+∠MAD =∠EAM+∠ADN =12(∠ACB ﹣∠ABC )+12(∠BCD ﹣∠CBD )=12(∠ACD ﹣∠ABD ).。
八年级数学上册第十一章《三角形》单元测试题一、选择题(每小题只有一个正确答案)1.下列说法正确的是()A.三角形分为等边三角形和三边不相等的三角形B.等边三角形不是等腰三角形C.等腰三角形是等边三角形D.三角形分为锐角三角形,直角三角形,钝角三角形2.如图,△ABC中,△ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若△A=24°,则△BDC等于()A. 42°B. 66°C. 69°D. 77°3.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为()A. 7B. 8C. 9D. 104.如图,在△BDF和△ABC中,它们相同的角是()A. △AB. △CC. △ABCD. △ACB5.如图,AB△CD,AD与BC相交于点O,已知角α、β,则用角α、β表示△AOC,则△AOC=()A.α+βB. 180°-α+βC. 2α-βD. 180°+α-β6.若三角形的三边长分别为3,4,x,则x的值可能是()A. 1B. 6C. 7D. 107.如图所示的图形中,属于多边形的有()个.A. 3个B. 4个C. 5个D. 6个8.如图,△ABC中,△1=△2,△3=△4,若△D=25°,则△A=()A. 25°B. 65°C. 50°D. 75°9.适合条件△A=△B=△C的三角形一定是()A.锐角三角形B.钝角三角形C.直角三角形D.任意三角形10.八边形的内角和是()A. 1440°B. 1080°C. 900°D. 720°11.如图,点D在BC的延长线上,连接AD,则△EAD是()的外角.A. △ABCB.△ACDC. △ABDD.以上都不对12.如图,在△ABC中,EF△AC,BD△AC,BD交EF于G,则下面说法中错误的是()A.BD是△BDC的高B.CD是△BCD的高C.EG是△BEF的高D.BE是△BEF的高二、填空题13.一副三角板,如图所示叠放在一起,则图中△α的度数是.14.如图,点D、E为△ABC边BC、AC上的两点,将△ABC沿线段DE折叠,点C落在BD上的C′处,若△C=30°,则△AEC′=.15.如图,写出△ADE的外角.16.在图中过点P任意画一条直线,最多可以得到____________个三角形.17.如图,已知△A=30°,△B=40°,△C=50°,那么△AOB=度.三、解答题18.如图,点D是△ABC的边BC上的一点,△B=△BAD=△C,△ADC=72°.试求△DAC的度数.19.如图,已知AB△CD,EF与AB、CD分别相交于点E、F,△BEF与△EFD的平分线相交于点P,求证:△EPF为直角三角形.20.多边形的内角和随着边数的变化而变化.设多边形的边数为n,内角和为N,则变量N与n之间的关系可以表示为N=(n-2)•180°.例如:如图四边形ABCD的内角和:N=△A+△B+△C+△D=(4-2)×180°=360°问:(1)利用这个关系式计算五边形的内角和;(2)当一个多边形的内角和N=720°时,求其边数n.21.已知:在△ABC中,△BAC=90°,AD△BC于点D,△ABC的平分线BE交AD于F,试说明△AEF=△AFE.22.已知凸四边形ABCD中,△A=△C=90°.(1)如图1,若DE平分△ADC,BF平分△ABC的邻补角,判断DE与BF位置关系并证明;(2)如图2,若BF、DE分别平分△ABC、△ADC的邻补角,判断DE与BF位置关系并证明.答案解析1.【答案】D【解析】A.三角形分为等腰三角形和三边不相等的三角形,故本选项错误,B.等边三角形是等腰三角形,故本选项错误,C.等腰三角形不一定是等边三角形,故本选项错误,D.三角形分为锐角三角形,直角三角形,钝角三角形,故本选项正确,故选D.2.【答案】C【解析】在△ABC中,△ACB=90°,△A=24°,△△B=90°-△A=66°.由折叠的性质可得:△BCD=△ACB=45°,△△BDC=180°-△BC D-△B=69°.故选C.3.【答案】A【解析】设这个多边形的边数为n,根据题意得,(n-2)•180°=360°×2+180°,解得n=7.故选A.4.【答案】C【解析】△BDF的角有△D,△DBF,△DFB;△ABC的角有△A,△ACB,△ABC;它们相同的角是△ABC.5.【答案】A【解析】△AB△CD,△△ABO=β.在△AOB中,利用三角形的外角性质得到△AOC=△A+△ABO=α+β.故选A.6.【答案】B【解析】△4﹣3=1,4+3=7,△1<x<7,△x的值可能是6.故选B.7.【答案】A【解析】根据多边形的定义:平面内不在同一条直线上的几条线段首尾顺次相接组成的图形叫多边形.显然只有第一个、第二个、第五个.故选A8.【答案】C【解析】△BD是△ABC的平分线,△△DBC=△ABC,△CD是△ABC的外角平分线,△△ACD=(△A+△ABC),△△D+△DBC+△ACB+△ACD=180°,即△ABC+△ACB+(△A+△ABC)=155°△,△A+△ABC+△ACB=180°△,△△ABC+△ACB=130°,△△A=50°.故选C.9.【答案】B【解析】设△A=x°,则△B=x°,△C=3x°.根据三角形的内角和定理,得x+x+3x=180,x=36.则△C=108°.则该三角形是钝角三角形.故选B.10.【答案】B【解析】由题意得:180°(8-2)=1080°,故选B.11.【答案】C【解析】根据三角形的一边与另一边的延长线组成的角叫做三角形的外角,图中△EAD是△ABD的外角,所以正确的选项是C.12.【答案】D【解析】A.BD△AC,则BD是△BDC的高,故命题正确;B.CD△BD,则CD是△BCD的高,故命题正确;C.EG△BG,则EG是△BEF的高,故命题正确;D.错误;13.【答案】75°【解析】如图,△1=45°-30°=15°, △α=90°-△1=90°-15°=75°.故答案为:75°14.【答案】60°【解析】根据折叠可得:EC=EC′, △△EC′D=△C,△△C=30°, △△EC′D=30°,△△AEC′=30°+30°=60°,故答案为:60°.15.【答案】△BDF、△DEC和△AEF【解析】根据三角形的一边与另一边的延长线组成的角叫做三角形的外角,图中符合条件的角是△BDF、△DEC和△AEF.16.【答案】6【解析】如图1,有2个三角形;如图2,有4个三角形;如图3,有4个三角形;如图4,有5个三角形;如图5,有6个三角形.综上所述,最多有6个三角形.17.【答案】120【解析】延长BO交AC于D, △△B=40°,△C=50°,△△ADO=40°+50°=90°,△△A=30°, △△AOB=30°+90°=120°,故答案为:120.18.【答案】解:△△ADC是△ABD的外角,△ADC=72°,△△ADC=△B+△BAD.又△△B=△BAD,△△B=△BAD=36°.△△B=△BAD=△C,△△C=36°.在△ADC中,△△DAC+△ADC+△C=180°△△DAC=180°-△ADC-△C=180°-72°-36°=72°.【解析】先根据三角形外角的性质得出△ADC=△B+△BAD,再由△B=△BAD可知△B=△BAD=36°,在△ADC中,根据三角形内角和定理即可得出结论.19.【答案】证明:△AB△CD, △△BEF+△EFD=180°,又EP、FP分别是△BEF、△EFD的平分线,△△PEF=△BEF,△EFP=△EFD,△△PEF+△EFP=(△BEF+△EFD)=90°,△△P=180°-(△PEF+△EFP)=180°-90°=90°,△△EPF为直角三角形.【解析】要证△EPF为直角三角形,只要证△PEF+△EFP=90°,由角平分线的性质和平行线的性质可知,△PEF+△EFP=(△BEF+△EFD)=90°.20.【答案】解:(1)N=(5-2)×180°=540°(2)根据题意得:(n-2)×180°=720°解得n=6.【解析】(1)将n=5代入公式,依据公式计算即可;(2)将N=720°代入公式,得到关于n的方程,然后求解即可.21.【答案】证明:△BE平分△ABC,△△CBE=△ABE,△△BAC=90°,△△ABE+△AEF=90°,△DA△BC,△△CBE+△BFD=90°,△△AEF=△BFD,△△BFD=△AFE(对顶角相等),△△AEF=△AFE【解析】根据角平分线的定义求出△ABE=△EBC,再利用△BAC=90°,AD△BC于点D推出△AEF=△AFE.22.【答案】解:(1)DE△BF,延长DE交BF于点G△△A+△ABC+△C+△ADC=360°又△△A=△C=90°,△△ABC+△ADC=180°△△ABC+△MBC=180°△△ADC=△MBC,△DE、BF分别平分△ADC、△MBC△△EDC=△ADC,△EBG=△MBC,△△EDC=△EBG,△△EDC+△DEC+△C=180°△EBG+△BEG+△EGB=180°又△△DEC=△BEG△△EGB=△C=90△DE△BF;(2)DE△BF,连接BD,△DE、BF分别平分△NDC、△MBC△△EDC=△NDC,△FBC=△MBC,△△ADC+△NDC=180°又△△ADC=△MBC△△MBC+△NDC=180°△△EDC+△FBC=90°,△△C=90°△△CDB+△CBD=90°△△EDC+△CDB+△FBC+△CBD=180°即△EDB+△FBD=180°,△DE△BF.【解析】(1)DE△BF,延长DE交BF于G.易证△ADC=△CBM.可得△CDE=△EBF.即可得△EGB=△C=90゜,则可证得DE△BF;(2)DE△BF,连接BD,易证△NDC+△MBC=180゜,则可得△EDC+△CBF=90゜,继而可证得△EDC+△CDB+△CBD+△FBC=180゜,则可得DE△BF.。
图1 图 2一、填空题(每题3分;共30分)1.如果三角形的一个角等于其它两个角的差;则这个三角形是______三角形.2.已知ABC ∆中;AD BC ⊥于D ;AE 为A ∠的平分线;且35B ︒∠=;65C ︒∠=;则DAE ∠的度数为___ __ . 3.ABC ∆中如果132A B C ∠=∠=∠;则A ∠= . 4.已知;如图1;130ACD ∠=;A B ∠=∠;那么A ∠的度数是 .5.如图2所示;图中有 个三角形; 个直角三角形.6.四边形ABCD 中;若+=+A B C D ∠∠∠∠;2C D ∠=∠;则C ∠= .7.某足球场需铺设草皮;现有正三角形、正四边形、正五边形、正六边形、正八边形、正十边形6种形状的草皮;请你帮助工人师傅选择两种草皮来铺设足球场;可供选择的两种组合是 .8.若一个n 边形的边数增加一倍;则内角和将增加 度.9.如图3;BC ED ⊥于O ;27A ∠=;20D ∠=;则B ∠= ;ACB ∠= .10.如图4;由平面上五个点A B C D E 、、、、连结而成;则++++A B C D E ∠∠∠∠∠= .二、选择题(每题3分;共24分)11.如果一个三角形的三个外角之比为2:3:4;则与之对应的三个内角度数之比为( ). A .4:3:2 B .5:3:1 C .3:2:4 D .12.三角形中至少有一个内角大于或等于( ).A .45°B .55°C .60°D .65°13.如图5;下列说法中错误的是( ).A .1∠不是ABC ∆的外角B .1+2B ∠∠∠<C .ACD ∠是ABC ∆的外角 D .+ACD A B ∠∠∠>14.如图6;C 在AB 的延长线上;CE AF ⊥于E ;交FB 4020F C ︒︒∠=∠=,;则于D ;若图5 图6 图7 B DA ACFBA ∠的度数为( ).A .50°B .60°C .70°D .80°15.三条线段5,3,a b c ==的值为整数;由a b c 、、为边可组成三角形( ). A .5个 B .3个 C .1个 D .无数个16.多边形每一个内角都等于150°;则从此多边形一个顶点发出的对角线有( ). A .7条 B .8条 C .9条 D .10条17.如图7;ABC ∆中;D 为BC 上的一点;且ABD ACD S S =;则AD 为( ). A .高 B .中线C .角平分线D .不能确定18.现有长度分别为2468cm cm cm cm 、、、的木棒;从中任取三根;能组成三角形的个数为( ).A . 1B . 2C . 3D . 4三、解答题(共46分)22.如图;四边形ABCD 中;90A C O∠=∠=;BE 平分ABC ∠;DF 平分ADC ∠;试问BE 与DF 平行吗?为什么?第十一章《三角形》参考答案41、解:(1)如果腰长为4cm;则底边长为16-4-4=8cm.三边长为4cm;4cm;8cm;不符合三角形三边关系定理.这样的三边不能围成三角形。
第11章 三角形 全章测试一、选择题(每题3分,共30分)1. 以下列各组长度的线段为边,能构成三角形的是 ( )A .7,3,4B .5,6,12C .3,4,5D .1,2,3 2. 等腰三角形的一个外角是80°,则其底角是( )A .100°B .100°或40°C .40°D .80 3.一个多边形的每一个外角都等于40°,那么这个多边形的内角和为( )A .1260°B .1080°C .1620°D .360°4.用一批完全相同的多边形地砖铺地面,不能进行镶嵌的是( ) A.正三角形 B.正方形 C.正六边形 D.正八边形5.下列说法正确的是( )A.三角形的角平分线、中线及高都在三角形内B.直角三角形的高只有一条.C.三角形至少有一条高在形内D.钝角三角形的三条高都在形外. 6.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是( ) A .5 B .6 C .7 D .8 7.在下图中,正确画出AC 边上高的是( ).EBAC C A BCA BCA BE EE(A ) (B ) (C ) (D ) 8.如图所示,∠A 、∠1、∠2的大小关系是( ) A. ∠A >∠1>∠2 B. ∠2>∠1>∠A C. ∠A >∠2>∠1 D. ∠2>∠A >∠19. 给出下列命题:⑴三角形的一个外角一定大于它的一个内角.⑵若一个三角形的三个内角之比为1:3:4,它肯定是直角三角形 ⑶三角形的最小内角不能大于60°⑷三角形的一个外角等于和它不相邻的两个内角的和 其中真命题的个数是 ( )(A )1个 (B )2个 (C )3个 (D )4个10.如图1,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )A .∠A=∠1+∠2B .2∠A=∠1+∠2C .3∠A=2∠1+∠2D .3∠A=2(∠1+∠2)E DA CB二、填空题(每题3分,共30分)11.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是 . 12.已知等腰三角形的两边长是5cm 和11cm ,则它的周长是 _______13.一个等腰三角形的周长为18,已知一边长为5,则其他两边长为 ____________. 14.已知一个三角形的三条边长为2、7、x ,则x 的取值范围是 _______. 15.如图所示,AB∥CD,∠ABE=66°,∠D=54°,则∠E 的度数为 . 16.如图,∠A +∠B +∠C +∠D +∠E +∠F= .17.在△ABC 中,在△ABC 中,∠A-∠B=∠B-∠C =15°则∠A 、∠B 、∠C 分别为 .18.如图,在△ABC 中,两条角平分线BD 和CE 相交于点O ,若∠BOC=116°,那么∠A 的度数是_______。
第十一章三角形测试题一、选择题(每小题3分,共30分)1.三角形按边分类可分为( )A.不等边三角形、等边三角形B.等腰三角形、等边三角形C.不等边三角形、等腰三角形、等边三角形D.不等边三角形、等腰三角形2.如图1,图中三角形的个数是( )图1A.6 B.7 C.8 D.93.如图2,AD⊥BC于点D,GC⊥BC于点C,CF⊥AB于点F,下列关于高的说法中错误的是( )图2A.△AGC中,CF是AG边上的高B.△GBC中,CF是BG边上的高C.△ABC中,GC是BC边上的高D.△GBC中,GC是BC边上的高4.如图3,小明做了一个长方形框架,发现很容易变形,请你帮他选择一个最好的加固方案( )图3图45.如图5,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为( )图5A.118° B.119° C.120° D.121°6.如图6是六边形ABCDEF,则该图形的对角线的条数是( )图6A.6 B.9 C.12 D.187.如图7,考古学家发现在地下A处有一座古墓,古墓上方是煤气管道,为了不影响管道,准备在B,C处开工挖出“V”字型通道.如果∠DBA=130°,∠ECA=135°,那么∠A的度数是( )图7A.75° B.80° C.85° D.90°8.如图8,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C越来越大.若∠A减小x°,∠B增加y°,∠C增加z°,则x,y,z之间的关系是( )图8A.x=y+z B.x=y-zC.x=z-y D.x+y+z=1809.如图9,已知长方形ABCD,一条直线将该长方形ABCD分割成两个多边形(含三角形).若这两个多边形的内角和分别为M和N,则M+N不可能是( )图9A.360° B.540° C.720° D.630°10.某木材市场上木棒规格与对应价格如下表:规格 1 m 2 m 3 m 4 m 5 m 6 m价格(元/根)101520253035小明的爷爷要做一个三角形的木架养鱼用,现有两根长度分别为3 m和5 m的木棒,还需要到该木材市场上购买一根木棒.则小明的爷爷至少带的钱数应为( )A.10元 B.15元 C.20元 D.25元请将选择题答案填入下表:题号12345678910总分答案第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.已知一个等腰三角形两边的长分别为3和6,则该等腰三角形的周长是________.12.如图10,AD是△ABC的中线,已知△ABD的周长为25 cm,AB比AC长6 cm,则△ACD的周长为________cm.图1013.如图11,直角三角形的两条直角边AC,BC分别经过正九边形的两个顶点,则图中∠1+∠2的度数是________.1114.有一张直角三角形纸片,记作△ABC,其中∠B=90°.按如图12方式剪去它的一个角(虚线部分),在剩下的四边形ADEC中,若∠1=165°,则∠2的度数为________.图1215.有一程序,如果机器人在平地上按如图13所示的步骤行走,那么机器人回到A点处行走的路程是________.图1316.如图14所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,D,E分别为垂足.若∠AFD=158°,则∠EDF=________°.图14三、解答题(共52分)17.(6分)如图15,佳佳和音音住在同一小区(A点),每天一块去学校(B点)上学.一天,佳佳要先去文具店(C点)买练习本再去学校,音音要先去书店(D点)买书再去学校.这天两人从家到学校谁走的路远?为什么?图1518.(6分)已知一个多边形的内角和与外角和之比为11∶2.(1)求这个多边形的内角和;(2)求这个多边形的边数.19.(6分)如图16,在△ABC中,BD是∠ABC的平分线,CE是AB边上的高,且∠ACB =60°,∠ADB=97°,求∠A和∠ACE的度数.图1620.(6分)如图17,用钉子把木棒AB,BC和CD分别在端点B,C处连接起来,AB,CD 可以转动,用橡皮筋把AD连接起来,设橡皮筋AD的长是x cm.(1)若AB=5 cm,CD=3 cm,BC=11 cm,求x的最大值和最小值;(2)在(1)的条件下要围成一个四边形,你能求出橡皮筋长x的取值范围吗?图1721.(6分)如图18,它是一个大型模板,设计要求BA与CD相交成20°角,DA与CB 相交成40°角,现测得∠A=145°,∠B=75°,∠C=85°,∠D=55°,就断定这块模板是合格的,这是为什么?图1822.(7分)已知△ABC的周长是20,三边分别为a,b,c.(1)若b是最大边,求b的取值范围;(2)若△ABC是三边均不相等的三角形,b是最大边,c是最小边,且b=3c,a,b,c 均为整数,求△ABC的三边长.23.(7分)如图19,在△ABC中,点E在AC上,∠AEB=∠ABC.(1)如图①,作∠BAC的平分线AD,分别交CB,BE于点D,F.求证:∠EFD=∠ADC;(2)如图②,作△ABC的外角∠BAG的平分线AD,交CB的延长线于点D,反向延长AD 交BE的延长线于点F,则(1)中的结论是否仍然成立?为什么?图1924.(8分)已知:如图20,在四边形ABCD中,∠D=90°,∠ABC=∠BCD,点E在直线BC上,点F在直线CD上,且∠AEB=∠CEF.(1)如图20①,若AE平分∠BAD,求证:EF⊥AE;(2)如图20②,若AE平分四边形ABCD的外角,其余条件不变,则(1)中的结论是否仍然成立?并说明理由.图20答案1.D 2.C 3.C . 4.B . 5.C 6.B . 7.C 8.A . 9.D 10.C 11.15 12.19 13.190° 14.105° . 15.30米 16.68 .17.解:佳佳从家到学校走的路远. 理由:佳佳从家到学校走的路是AC +CD +BD ,音音从家到学校走的路是AD +BD.∵在△ACD 中,AC +CD >AD ,∴AC +CD +BD >AD +BD ,即佳佳从家到学校走的路远.18.解:(1)360°×112=1980°.即这个多边形的内角和为1980°.(2)设该多边形的边数为n,则(n-2)×180°=1980°,解得n=13.即这个多边形的边数为13.19.解:∵∠ADB=∠DBC+∠ACB,∴∠DBC=∠ADB-∠ACB=97°-60°=37°.∵BD是∠ABC的平分线,∴∠ABC=74°,∴∠A=180°-∠ABC-∠ACB=46°.∵CE是AB边上的高,∴∠AEC=90°,∴∠ACE=90°-∠A=44°.20.解:(1)x的最大值是5+3+11=19,最小值是11-3-5=3.(2)由(1)得橡皮筋长x的取值范围为3<x<19.21.解:如图,延长DA,CB相交于点F,延长BA,CD相交于点E.∵∠C+∠ADC=85°+55°=140°,∴∠F=180°-140°=40°.∵∠C+∠ABC=85°+75°=160°,∴∠E=180°-160°=20°.符合设计要求,故这块模板是合格的.22.解:(1)依题意有b≥a,b≥c.∵a +c >b ,∴a +b +c ≤3b 且a +b +c >2b ,则2b <20≤3b ,解得203≤b <10. (2)∵203≤b <10,b 为整数, ∴b =7,8,9.∵b =3c ,且c 为整数,∴b =9,c =3,∴a =20-b -c =8.故△ABC 的三边长分别为a =8,b =9,c =3.23.解:(1)证明:∵AD 平分∠BAC ,∴∠BAD =∠DAC.∵∠EFD =∠DAC +∠AEB ,∠ADC =∠ABC +∠BAD ,且∠AEB =∠ABC ,∴∠EFD =∠ADC.(2)∠EFD =∠ADC 仍然成立.理由:∵AD 平分∠BAG ,∴∠BAD =∠GAD.∵∠FAE =∠GAD ,∴∠FAE =∠BAD.∵∠EFD =∠AEB -∠FAE ,∠ADC =∠ABC -∠BAD ,且∠AEB =∠ABC ,∴∠EFD =∠ADC.24.解:(1)证明:∵∠BAE =180°-∠ABC -∠AEB ,∠EFC =180°-∠BCD -∠CEF ,且∠ABC =∠BCD ,∠AEB =∠CEF ,∴∠BAE =∠EFC.∵AE 平分∠BAD ,∴∠BAE=∠DAE,∴∠EFC=∠DAE.∵∠EFC+∠EFD=180°,∴∠DAE+∠EFD=180°,∴∠AEF+∠D=360°-(∠DAE+∠EFD)=180°.∵∠D=90°,∴∠AEF=90°,∴EF⊥AE.(2)EF⊥AE仍成立.理由如下:如图.∵∠1=∠ABC-∠AEB,∠F=∠BCD-∠CEF,且∠ABC=∠BCD,∠AEB=∠CEF,∴∠1=∠F.∵AE平分四边形ABCD的外角,∴∠1=∠2,∴∠F=∠2.∵∠2+∠EAD=180°,∴∠F+∠EAD=180°,∴∠AEF+∠D=360°-(∠F+∠EAD)=180°.∵∠D=90°,∴∠AEF=90°,∴EF⊥AE.。
八年级数学第11章《三角形》综合测试及答案一、选择题(本大题共10小题,每小题3分,共30分.•在每小题所给出的四个选项中,只有一项是符合题目要求的)1.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.5cm,6cm,10cmC.1cm,1cm,3cm D.3cm,4cm,9cm2.等腰三角形的一边长等于4,一边长等于9,则它的周长是()A.17 B.22 C.17或22 D.133.适合条件∠A=12∠B=13∠C的△ABC是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形4.已知等腰三角形的一个角为75°,则其顶角为()A.30° B.75° C.105° D.30°或75°5.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是()A.5 B.6 C.7 D.86.三角形的一个外角是锐角,则此三角形的形状是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定7.下列命题正确的是()A.三角形的角平分线、中线、高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高 D.直角三角形斜边上的高等于斜边的一半9.已知等腰△ABC的底边BC=8cm,│AC-BC│=2cm,则腰AC的长为()A.10cm或6cm B.10cm C.6cm D.8cm或6cm10.如图1,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是(• )A.∠A=∠1+∠2 B.2∠A=∠1+∠2 C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)(10题) (13题) (14题) 二、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)11.三角形的三边长分别为5,1+2x,8,则x的取值范围是________.12.四条线段的长分别为5cm、6cm、8cm、13cm,•以其中任意三条线段为边可以构成___个三角形.13.如图:∠A+∠B+∠C+∠D+∠E+∠F等于________.14.如果一个正多边形的内角和是900°,则这个正多边形是正______边形.15.n边形的每个外角都等于45°,则n=________.16.乘火车从A站出发,沿途经过3个车站方可到达B站,那么A、B两站之间需要安排______种不同的车票.17.将一个正六边形纸片对折,并完全重合,那么,得到的图形是________边形,•它的内角和(按一层计算)是_______度.18.如图,已知∠1=20°,∠2=25°,∠A=55°,则∠BOC的度数是_____.三、解答题(本大题共6小题,共46分,解答应写出文字说明,•证明过程或演算步骤)19.(6分)如图,BD平分∠ABC,DA⊥AB,∠1=60°,∠BDC=80°,求∠C的度数.20.(8分)如图:(1)画△ABC的外角∠BCD,再画∠BCD的平分线CE.(2)若∠A=∠B,请完成下面的证明:已知:△ABC中,∠A=∠B,CE是外角∠BCD的平分线.求证:CE∥AB.21.(8分)(1)如图4,有一块直角三角形XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB=_______,∠XBC+∠XCB=_______.(4) (5)(2)如图5,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ•仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.22.(8分)引人入胜的火柴问题,成年人和少年儿童都很熟悉.如图是由火柴搭成的图形,拿去其中的4根火柴,使之留下5个正方形,•且留下的每根火柴都是正方形的边或边的一部分,请你给出两种方案,并将它们分别画在图(1)、(2)中.23.(8分)在平面内,分别用3根、5根、6根……火柴首尾..依次相接,•能搭成什么形状的三角形呢?通过尝试,列表如下所示:问:(1)4根火柴能拾成三角形吗?(2)8根、12根火柴能搭成几种不同形状的三角形?并画出它们的示意图.24.(8分)如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)∠5的度数是多少?(3)求四边形ABCD各内角的度数.答案1.B 2.B 点拨:由题意知,三角形的三边长可能为4,4,9或4,9,9.但4+4<9,说明以4,4,9为边长构不成三角形.所以,这个等腰三角形的周长为22.故选B.3.B 点拨:设∠A=x°,则∠B=2x°,∠C=3x°,由三角形内角和定理,•得x+•2x+3x=180.解得x=30.∴3x=3×30=90.故选B.4 .D 点拨:分顶角为75°和底角为75°两种情况讨论.5.C 点拨:据题意,得(n-2)·180=2×360+180.解得n=7.故选C.6.B 7.B 点拨:若三角形中三个内角都小于60°,则三个内角的和小于180°,•与内角和定理矛盾.所以,三角形中至少有一个内角不小于60°.8.B 9.A 点拨:∵BC=8cm,│AC-BC│=2cm,∴AC=10cm或6cm.•经检验以10cm,•10cm,8cm,或6cm,6cm,8cm为边长均能构成三角形.故选A.10.B 点拨:可根据三角形、四边形内角和定理推证.11.1<x<6 点拨:8-5<1+2x<8+5,解得1<x<6.12.2 点拨:以5cm、6cm、8cm或6cm、8cm、13cm为边长均可构成三角形.13.360°点拨:∵图中正好有两个三角形:△AEC,△BDF,∴∠A+∠B+∠C+∠D+∠E+∠F=36014.七 15.8 点拨:n=36045︒︒=8. 16.10 17.四;36018.100°点拨:连接AO并延长,易知∠BOC=∠BAC+∠1+∠2=55°+20°+25•°=100°.19.解:在△ABD中,∵∠A=90°,∠1=60°,∴∠ABD=90°-∠1=30°.∵BD平分∠ABC,∴∠CBD=∠ABD=30°.在△BDC中,∠C=180°-(∠BDC+∠CBD) =180°-(80°+30°)=70°.20.(1)如答图(2)证明:∵∠A=∠B,∠BCD是△ABC的外角,∴∠BCD=∠A+•∠B=2∠B,∵CE是外角∠BCD的平分线,∴∠BCE=12∠BCD=12×2∠B=∠B,∴CE∥AB(•内错角相等,两直线平行)点拨:如答图所示,要证明两直线平行,只需证内错角∠B=∠BCE即可.21.(1)150°;90°(2)不变化.∵∠A=30°,∴∠ABC+∠ACB=150°,∵∠X=•90°,∴∠XBC+∠XCB=90°,∴∠ABX+∠ACX=(∠ABC-∠XBC)+(∠ACB-∠XCB)=(∠ABC+•∠ACB)-(∠XBC+∠XCB)=150°-90°=60°.点拨:此题注意运用整体法计算.22.如答图7-2.23.解:(1)4根火柴不能搭成三角形;(2)8根火柴能搭成一种三角形(3,3,2);12根火柴能搭成三种不同的三角形(4,4,4;5,5,2;3,4,5).图略.24.解:(1)CO是△BCD的高.理由:在△BDC中,∵∠BCD=90°,∠1=∠2,∴∠1=∠2=90°÷2=45°.又∵∠1=∠3,∴∠3=45°.∴∠DOC=180°-(∠1+∠3)=180°-2×45°=90°,∴CO⊥DB.∴CO是△BCD的高.(2)∠5=90°-∠4=90°-60°=30°.(3)∠CDA=∠1+∠4=45°+60°=105°,∠DCB=90°,∠DAB=∠5+∠6=30°+30°=60°,∠ABC=105°.。
人教版八年级数学上册第十一章《三角形》达标检测卷(含答案)(总分120分,时间:90分钟)题号一二三总分得分一、选择题(每题3分,共30分)1.现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1个B.2个C.3个D.4个2.下列判断:①有两个内角分别为50°和20°的三角形一定是钝角三角形;②直角三角形中两锐角之和为90°;③三角形的三个内角中不可以有三个锐角;④有一个外角是锐角的三角形一定是钝角三角形,其中正确的有()A.1个B.2个C.3个D.4个3.图中能表示△ABC的BC边上的高的是()A B C D4.如图,在△ABC中,∠A=40°,点D为AB延长线上一点,且∠CBD=120°,则∠C的度数为()A.40°B.60°C.80°D.100°(第4题)(第7题) (第9题) (第10题) 5.等腰三角形的周长为13 cm,其中一边长为3 cm,则该等腰三角形的底边长为()A.7 cm B.3 cm C.9 cm D.5 cm6.八边形的内角和为()A.180°B.360°C.1 080°D.1 440°7.如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()A.60°B.65°C.70°D.80°8.若一个多边形的内角和小于其外角和,则这个多边形的边数是()A.3 B.4 C.5 D.69.如图,在△ABC中,∠CAB=52°,∠ABC=74°,AD⊥BC于D,BE⊥AC于E,AD与BE交于F,则∠AFB的度数是()A.126°B.120°C.116°D.110°10.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A.30°B.36°C.38°D.45°二、填空题(每题3分,共30分)11.若一个三角形的三个内角度数之比为4∶3∶2,则这个三角形的最大内角为________度.12.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有________性.(第12题)13.已知△ABC的两条边长分别为3和5,且第三边的长c为整数,则c的取值可以为________.14.如图,在Rt△ABC中,∠ABC=90°,AB=12 cm,BC=5 cm,AC=13 cm,若BD是AC边上的高,则BD的长为________cm.(第14题) (第15题)15.如图,点D在△ABC的边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是______度.16.如果一个多边形的内角和为其外角和的4倍,那么从这个多边形的一个顶点出发共有________条对角线.(第17题)17.如图是一副三角尺拼成的图案,则∠CEB=________°.18.如图,∠1+∠2+∠3+∠4+∠5+∠6=________.(第18题)19.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为________.20.如图,D,E,F分别是△ABC的边AB,BC,AC上的中点,连接AE,BF,CD 交于点G,AG∶GE=2∶1,△ABC的面积为6,设△BDG的面积为S1,△CGF的面积为S2,则S1+S2=________.(第20题)三、解答题(21、22题每题6分,23、24题每题8分,25、26题每题10分,27题12分,共60分)21.如图,CD是△ABC的角平分线,DE∥BC,∠AED=70°,求∠EDC的度数.(第21题)22.如图.(1)在△ABC 中,BC 边上的高是________; (2)在△AEC 中,AE 边上的高是________;(3)若AB =CD =2 cm ,AE =3 cm ,求△AEC 的面积及CE 的长.(第22题)23.如图,将六边形纸片ABCDEF 沿虚线剪去一个角(∠BCD)后,得到∠1+∠2+∠3+∠4+∠5=440°,求∠BGD 的度数.(第23题)24.在等腰三角形ABC 中,AB =AC ,一边上的中线BD 将这个三角形的周长分为18和15两部分,求这个等腰三角形的底边长.25.如图,在△ABC 中,∠1=100°,∠C =80°,∠2=12∠3,BE 平分∠ABC.求∠4的度数.(第25题)26.已知等腰三角形的三边长分别为a ,2a -1,5a -3,求这个等腰三角形的周长. 27.已知∠MON =40°,OE 平分∠MON ,点A ,B ,C 分别是射线OM ,OE ,ON 上的动点(A ,B ,C 不与点O 重合),连接AC 交射线OE 于点D.设∠OAC =x°.(1)如图(1),若AB ∥ON ,则①∠ABO 的度数是________;②当∠BAD =∠ABD 时,x =________;当∠BAD =∠BDA 时,x =________. (2)如图(2),若AB ⊥OM ,则是否存在这样的x 的值,使得△ADB 中有两个相等的角?若存在,求出x 的值;若不存在,说明理由.(第27题)答案一、1.B 2.C 3.D4.C 点拨:∵∠CBD 是△ABC 的外角,∴∠CBD =∠C +∠A.又∵∠A =40°,∠CBD =120°,∴∠C =∠CBD -∠A =120°-40°=80°.5.B6.C 点拨:八边形的内角和为(8-2)×180°=1 080°. 7.C8.A 点拨:设这个多边形的边数为n ,依题意有(n -2)×180°<360°,即n <4.所以n =3.9.A 点拨:在△ABC 中,∠CAB =52°,∠ABC =74°,∴∠ACB =180°-∠CAB -∠ABC =180°-52°-74°=54°.在四边形EFDC 中,∵AD ⊥BC ,BE ⊥AC ,∴∠ADC =90°,∠BEC =90°,∴∠DFE =360°-∠DCE -∠FDC -∠FEC =360°-54°-90°-90°=126°.∴∠AFB =∠DFE =126°.10.B 点拨:∵五边形ABCDE 是正五边形,∴∠BAE =(5-2)×180°÷5=108°.∴∠AEB =(180°-108°)÷2=36°.∵l ∥BE ,∴∠1=∠AEB =36°.故选B .二、11.80 12.稳定 13.3,4,5,6,714.6013 点拨:由等面积法可知AB·BC =BD·AC ,所以BD =AB·BC AC =12×513=6013(cm ). 15.60 点拨:∵∠ACD 是△ABC 的外角,∴∠ACD =∠A +∠B =80°+40°=120°.又∵CE 平分∠ACD ,∴∠ACE =12∠ACD =12×120°=60°.16.7 17.10518.360° 点拨:如图,∵∠1+∠5=∠8,∠4+∠6=∠7,∠2+∠3+∠7+∠8=360°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.(第18题)19.120°20.2 点拨:∵E 为BC 的中点,∴S △ABE =S △ACE =12S △ABC =3.∵A G ∶GE =2∶1,△BGA 与△BEG 为等高三角形,∴S △BGA ∶S △BEG =2∶1,∴S △BGA =2.又∵D 为AB 的中点,∴S △BGD =12S △BGA =1.同理得S △CGF =1.∴S 1+S 2=2.三、21.解:∵DE ∥BC ,∴∠ACB =∠AED =70°.∵CD 平分∠ACB ,∴∠BCD =12∠ACB =35°.又∵DE ∥BC ,∴∠EDC =∠BCD =35°.22.解:(1)AB ;(2)C D ;(3)∵AE =3 cm ,CD =2 cm ,∴S △AEC =12AE·CD =12×3×2=3(cm 2).∵S △AEC =12CE·AB =3 cm 2,AB =2 cm ,∴CE =3 cm .23.解:∵六边形ABCDEF 的内角和为180°×(6-2)=720°,且∠1+∠2+∠3+∠4+∠5=440°,∴∠GBC +∠C +∠CDG =720°-440°=280°,∴∠BGD =360°-(∠GBC +∠C +∠CDG)=80°.24.解:设这个等腰三角形的腰长为a ,底边长为b. ∵D 为AC 的中点, ∴AD =DC =12AC =12a.根据题意得⎩⎨⎧32a =18,12a +b =15,或⎩⎨⎧32a =15,12a +b =18.解得⎩⎪⎨⎪⎧a =12,b =9,或⎩⎪⎨⎪⎧a =10,b =13.又∵三边长为12,12,9和10,10,13均可以构成三角形. ∴这个等腰三角形的底边长为9或13.25.解:∵∠1=∠3+∠C ,∠1=100°,∠C =80°,∴∠3=20°.∵∠2=12∠3,∴∠2=10°,∴∠B AC =∠2+∠3=10°+20°=30°,∴∠ABC =180°-∠C -∠BAC =180°-80°-30°=70°.∵BE 平分∠ABC ,∴∠ABE =35°.∵∠4=∠2+∠ABE ,∴∠4=45°.26.解:当底边长为a 时,2a -1=5a -3,即a =23,则三边长为23,13,13,不满足三角形三边关系,不能构成三角形;当底边长为2a -1时,a =5a -3,即a =34,则三边长为12,34,34,满足三角形三边关系.能构成三角形,此时三角形的周长为12+34+34=2;当底边长为5a-3时,2a-1=a,即a=1,则三边长为2,1,1,不满足三角形三边关系,不能构成三角形.所以这个等腰三角形的周长为2.27.解:(1)①20°②120;60(2)①当点D在线段OB上时,若∠BAD=∠ABD,则x=20.若∠BAD=∠BDA,则x =35.若∠ADB=∠ABD,则x=50.②当点D在射线BE上时,因为∠ABE=110°,且三角形的内角和为180°,所以只有∠BAD=∠BDA,此时x=125,综上可知,存在这样的x的值,使得△ADB中有两个相等的角,且x=20,35,50或125.。
人教版八年级数学上册第十一章《三角形》考试卷(含答案)一、选择题(共10小题)1. 如图,窗户打开后,用窗钩AB可将其固定,所运用的几何原理是( )A. 两点之间线段最短B. 三角形两边之和大于第三边C. 三角形的稳定性D. 两点确定一条直线2. 下列各组数中,能作为一个三角形三边长的是( )A. 1,1,2B. 1,2,4C. 2,3,5D. 2,3,43. 如图,AB∥CD,AC,BD相交于点E,若∠DEC=100∘,∠C=40∘,则∠B的度数是( )A. 30∘B. 40∘C. 50∘D. 60∘4. 一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是( )A. 3B. 4C. 6D. 125. 把一把直尺与一块三角板如图放置,若∠1=45∘,则∠2的度数为( )A. 115∘B. 120∘C. 145∘D. 135∘6. 如图,∠C,∠1,∠2之间的大小关系是( )A. ∠1<∠2<∠CB. ∠2>∠1>∠CC. ∠C>∠1>∠2D. ∠1>∠2>∠C7. 已知一个多边形的内角和是1080∘,则这个多边形是( )A. 六边形B. 七边形C. 八边形D. 九边形8. 如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影等于( )A. 2cm2B. 1cm2C. 12cm2 D. 14cm29. 在△ABC中,如果∠A:∠B:∠C=1:2:3,那么△ABC的形状是( )A. 直角三角形B. 锐角三角形C. 等腰三角形D. 等腰直角三角形10. 如图,在△ABC中,点D是∠ABC和∠ACB的平分线的交点,∠A=80∘,∠ABD=30∘,则∠DCB的度数为( )A. 25∘B. 20∘C. 15∘D. 10∘二、填空题(共8小题)11. 三角形中,其中两条边长分别为4cm和7cm,则第三边c的长度的取值范围是.12. 一副三角板按如图所示摆放,则α的度数为.13. 如图,在△ABC中,∠C=90∘,∠A=20∘,BD为∠ABC的平分线,则∠BDC=.14. 如图,在△ABC中,∠ABC=∠C,∠A=40∘,BD⊥AC于点D,则∠DBC=度.15. 一个多边形截去一个角(截线不过顶点)后,形成的多边形的内角和是2520∘,则原多边形的边数是.16. 将一副常规的三角尺按如图方式放置,则图中∠AOB的度数为.17. 如图,在△ABC中,∠ACB=90∘,∠A=50∘.如果将△ABC沿着CD所在直线翻折,使点A溶在边CB上Aʹ处,那么∠AʹDB=.18. 已知,如图1,在△ABC,∠ABC、∠ACB的角平分线交于点O,则∠BOC=90∘+12∠A=1 2×180∘+12∠A.如图2,在△ABC中,∠ABC、∠ACB的两条三等分角线分别对应交于O1、O2,则∠BO1C=23×180∘+13∠A,∠BO2C=13×180∘+23∠A.根据以上阅读理解,你能猜想(n等分时,内部有n−1个点)(用n的代数式表示)∠BO1C=.三、解答题(共6小题)19. 如图所示,已知AD,AE分别是△ABC高和中线,AB=6cm,AC=8cm,BC=10cm,∠CAB=90∘.试求:(1)AD的长;(2)△ABE的面积;(3)△ACE与△ABE的周长的差.20. 请回答下列问题.(1)如图(1),BD,CD分别是△ABC的内角∠ABC,∠ACB的平分线,请说明∠BDC与∠A∠A.之间的等量关系是∠BDC=90∘+12(2)如图(2),BD,CD是△ABC的两个外角的平分线,请你探究∠BDC与∠A之间有怎样的等量关系.(3)如图(3),BD,CD分别是△ABC的一个内角的平分线与一个外角的平分线,试探究∠BDC与∠A之间的等量关系.21. 在△ABC中,CD是AB边上的中线,如果△BCD的周长比△ACD的周长多3cm,且AC=4cm,求边BC的长.22. 如图,在△ABC中,∠BAC=45∘,AD是∠BAC的角平分线,BE是边AC上的高,AD,BE相交于点O,求∠AOB的度数.23. 如图,在△ABC中,AD是∠BAC的角平分线,BE是边AC上的高,AD,BE相交于点O,如果∠AOE=67.5∘,求∠ABE的度数.24. 如图,在△ABC中,已知∠BAC=86∘,BD平分∠ABC,CD∥AB,∠ACB=34∘,求∠D的度数.参考答案1. C2. D【解析】A选项:1+1=2,故不能作为三角形三边长;B选项:1+2=3<4,故不能作为三角形三边长;C选项:2+3=5,故不能作为三角形三边长;D选项:2+3=5>4,故能作为三角形三边长.3. B4. B【解析】正多边形的每个内角的度数都等于相邻外角的度数,则外角的度数为90∘,360÷90∘=4,则正多边形的边数是4.5. D【解析】易知∠2=∠1+90∘,∵∠1=45∘,∴∠2=45∘+90∘=135∘.6. D7. C【解析】设这个多边形是n边形,由题意知,(n−2)×180∘=1080∘,所以n=8,所以该多边形的边数是八边形.8. B【解析】S阴影=12S△BCE=14S△ABC=1cm2.9. A10. B【解析】∵BD平分∠ABC,∴∠ABC=2∠ABD=2×30∘=60∘,∴∠ACB=180∘−∠A−∠ABC=180∘−80∘−60∘=40∘,∵CD平分∠ACB,∴∠DCB=12∠ACB=12×40∘=20∘.11. 3cm<c<11cm【解析】三角形两边的和大于第三边,两边的差小于第三边,由题意得7−4<c<7+4,即3<c<11.12. 105∘13. 55∘14. 2015. 15【解析】设截去一个角后的多边形的边数为n,于是(n−2)⋅180∘=2520∘,解得n=16.一个多边形截去一个角(截线不过顶点)后边数增加1,所以原多边形有15条边.16. 105∘17. 10∘18. n−1n ×180∘+1n∠A【解析】根据题中所给的信息,总结可得:∠BO1C=n−1n ×180∘+1n∠A,故答案为:∠BO1C=n−1n ×180∘+1n∠A.19. (1)∵∠BAC=90∘,AD是边BC上的高,∴12AB⋅AC=12BC⋅AD,∴AD=AB⋅ACBC =6×810=4.8(cm),即AD的长为4.8cm.(2)∵△ABC是直角三角形,∠BAC=90∘,AB=6cm,AC=8cm,∴S△ABC=12AB⋅AC=12×6×8=24(cm2),又∵AE是△ABC的中线,∴BE=EC,∴12BE⋅AD=12EC⋅AD,即S△ABE=S△AEC,∴S△ABE=12S△ABC=12(cm2),∴△ABE的面积是12cm2.(3)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长−△ABE的周长=AC+AE+CE−(AB+BE+AE)=AC−AB=8−6=2(cm),即△ACE与△ABE的周长的差是2cm.20. (1)略.∠A.(2)∠BDC=90∘−12∠A(3)∠BDC=1221. 因为CD是△ABC的中线,所以AD=BD.因为C△ACD=AC+AD+CD,C△BCD=BC+BD+CD,所以(BC+BD+CD)−(AC+AD+CD)=3.所以BC−AC=4.因为AC=3cm,所以BC=7cm.22. ∠AOB=112.5∘.23. ∵AD是∠BAC的角平分线(已知),∠BAC(角平分线的意义),∴∠BAD=∠CAD=12∵BE是边AC上的高(己知),∴∠BEA=90∘(垂直的意义),∵∠AOE+∠CAD+∠BEA=180∘(三角形的内角和180∘),且∠AOE=67.5∘(已知),∴∠CAD=22.5∘(等式性质),∴∠BAD=22.5∘(等量代换),∵∠AOE=∠ABE+∠BAD(三角形的一个外角等于与它不相邻的两个内角之和),∴∠ABE=45∘(等式性质).24. 因为∠BAC=86∘,∠ACB=34∘,所以∠ABC=180∘−86∘−34∘=60∘,因为BD平分∠ABC,∠ABC=30∘,所以∠ABD=12因为CD∥AB,所以∠D=∠ABD=30∘.。
八年级数学上册第十一章《三角形》测试题-人教版(含答案)一、选择题(30分)1.下列说法错误的是()A.三角形的角平分线把三角形分成面积相等的两部分B.三角形的三条中线相交于一点C.直角三角形的三条高交于三角形的直角顶点处D.钝角三角形的三条高所在直线的交点在三角形的外部2.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④3.如果线段AB=3cm,BC=1cm,那么A,C两点的距离d的长度为()A.4cm B.2cm C.4cm或2cm D.小于或等于4cm,且大于或等于2cm4.如图,三角形ABC中,AB=AC,D,E分别为边AB,AC上的点,DM平分∠BDE,EN平分∠DEC,若∠DMN=110°,则∠DEA=()A.40°B.50°C.60°D.70°5.如图,△ABC中,BD,BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE,∠F, ②2∠BEF,∠BAF,∠C,③∠F,∠BAC,∠C,④∠BGH,∠ABE,∠C,其中正确个数是()A.4个B.3个C.2个D.1个6.小明同学在用计算器计算某n边形的内角和时,不小心多输入一个内角,得到和为2016°,则n等于()A.11B.12C.13D.147.如图,直线AB,CD被BC所截,若AB,CD,,1,45°,,2,35°,则∠3,( )A.80°B.70°C.60°D.90°8.如图,△ABC中,角平分线AD、BE、CF相交于点H,过H点作HG⊥AC,垂足为G,那么∠AHE和∠CHG的大小关系为()A.∠AHE>∠CHG B.∠AHE<∠CHG C.∠AHE=∠CHG D.不一定9.若a,b,c是△ABC的三边的长,则化简|a,b,c|,|b,c,a|,|a,b,c|的结果是()A.a,b,c B.,a,3b,c C.a,b,c D.2b,2c10.已知正多边形的一个外角等于40,那么这个正多边形的边数为()A.6B.7C.8D.9二、填空题(15分)11.如图,已知EF∥GH,A、D为GH上的两点,M、B为EF上的两点,延长AM于点C,AB平分∠DAC,直线DB平分∠FBC,若∠ACB=100°,则∠DBA的度数为________.12.设三角形三个内角的度数分别为x,y,z,如果其中一个角的度数是另一个角的度数的2倍,那么我们称数对(y,z)(y≤z)是x的和谐数对.例:当x,150°时,对应的和谐数对有一个,它为(10,20);当x,66时,对应的和谐数对有二个,它们为(33,81),(38,76).当对应的和谐数对(y,z)有三个时,此时x的取值范围是____________,13.根据如图所示的已知角的度数,求出其中∠α的度数为______.14.在图中过点P任意画一条直线,最多可以得到____________个三角形.15.如图,点O是△ABC的两条角平分线的交点,若△BOC=118°,则△A的大小是。
八年级数学上册《第十一章三角形》单元测试卷-附答案(人教版)一、单选题(本大题共12小题,每小题3分,共36分)1.下列说法中正确的是( ) A .直角三角形的高只有一条B .锐角三角形的三条高交于三角形内部C .直角三角形的高没有交点D .钝角三角形的三条高所在的直线没有交点 2.如图,在ABC 中,延长BC 至点D ,使CD BC =,记ABC 的面积为1S ,ACD 的面积为2S ,则1S 与2S 的大小关系是( )A .12S S >B .12S S <C .12S SD .不能确定3.现有长度分别为2cm 、4cm 、5cm 、7cm 的木棒,从中任取三根,能组成三角形的个数为( ) A .1 B .2 C .3 D .44.如图,在△ABC 中,∠ABC 与∠ACB 的平分线相交于点O,若∠A=70°,则∠BOC 的度数为( )A .100°B .120°C .125°D .130°5.如图,在ABC 中9065C B ∠=︒∠=︒,,点D 、E 分别在AB AC 、上,将ADE 沿DE 折叠,使点A 落在点F 处.则BDF CEF ∠-∠=( )∠∠A=∠B=2∠C;∠∠A=2∠B=3∠C,能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个7.下列说法中错误的是().A.三角形的中线、角平分线、高线都是线段B.任意三角形的内角和都是180°C.三角形的一个外角大于任何一个内角D.三角形的三条高至少有一条高在三角形的内部8.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.8B.7或8C.7或8或9D.8或9或10A.1B.2C.3D.4分别平分ABC的外角2A.∠∠∠B.∠∠∠C.∠∠∠D.∠∠∠∠11.如图,在直角三角形ABC中90∠=︒,AB=3,AC=4,BC=5,DE//BC,若点A到DE的距离是1,则DEA与BC之间的距离是()A.2B.1.4C.3D.2.412.从正多边形一个顶点出发共有7条对角线,则这个正多边形每个外角的度数为()A.36°B.40°C.45°D.60°二、填空题(本大题共8小题,每小题3分,共24分)13.已知三点M 、N 、P 不在同一条直线上,且MN=4厘米,NP=3厘米,M 、P 两点间的距离为x 厘米,那么x 的取值范围是 .14.如图1,为响应国家新能源建设,某市公交站亭装上了太阳能电池板.当地某一季节的太阳光(平行光线)与水平线最大夹角为62︒,如图2,电池板AB 与最大夹角时刻的太阳光线相垂直,此时电池板CD 与水平线夹角为48︒,要使//AB CD ,而将电池板CD 逆时针旋转α度,则α为 .()090α<<15.如图,ABC 中55A ∠=︒,90ACB ∠=︒将ABC 沿过C 点的直线折叠,使A 点落在边BC 上的E 点处,折痕交边AB 于点D ,则BDE ∠= .16.如图,图中x 的值为 .17.三角形的三边长分别为2,5,32x -则x 的取值范围是 .18.如图,在∠ABC 中,AB >AC ,AE∠BC 于E ,AD 为∠BAC 的平分线,则∠DAE 与∠C -∠B 的数量关系 .19.如图中36B ∠=︒,76C ∠=︒且AD 、AF 分别是ABC 的角平分线和高,DAF ∠= .20.在△ABC 中,若A B C ∠=∠-∠,则B ∠的度数为 度.三、解答题(本大题共5小题,每小题8分,共40分)21.如图,△ABC 的面积为21平方厘米,DC =3DB ,AE =ED ,求阴影部分面积.22.如图:已知在ABC 中,AD 平分BAC ∠,AE BC ⊥垂足为E ,38B ∠︒=和70C ∠︒=求DAE ∠的度数.23.如图,在ABC 中,AD 是BAC ∠的平分线,DE AC ∥交AB 于点E 且55B ∠=︒,95ADC ∠=︒求AED ∠的度数.24.如图,AB△CD,AC△BE,△MAC=40,△D=50°,CH平分△ACD,BH平分△ABD(1)求△EBH的角度(2)求△BHC的角度25.如图,在△ABC中,点D是∠ACB与∠ABC的角平分线的交点,BD的延长线交AC于点E.(1)若∠A=80°,求∠BDC的度数;(2)若∠EDC=40°,求∠A的度数;(3)请直接写出∠A与∠BDC之间的数量关系(不必说明理由).参考答案:1.B2.C3.B。
第十一章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.三角形的内角和是( B)A.90° B.180° C.300° D.360°2.下列长度的三条线段能组成三角形的是( D)A.1,2,3 B.1,2,3 C.3,4,8 D.4,5,63.如图,图中∠1的大小等于( D)A.40° B.50° C.60° D.70°(第5题图) (第6题图) 4.已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于( A)A.40° B.60° C.80° D.90°5.如图,某同学在课桌上无意中将一块三角板叠放在直尺上,则∠1+∠2等于( C) A.60° B.75° C.90° D.105°6.如图,△ABC的角平分线BE,CF相交于点O,且∠FOE=121°,则∠A的度数是( B) A.52° B.62° C.64° D.72°7.如图,在△ABC中,∠A=80°,高BE与CH的交点为O,则∠BOC等于( C)A.80° B.120° C.100° D.150°(第7题图)(第8题图)(第9题图) 8.如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是( C)A.BE是△ABD的中线 B.BD是△BCE的角平分线C.∠1=∠2=∠3 D.BC是△ABE的高9.如图,把纸片△ABC沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请你试着找一找这个规律,你发现的规律是( B) A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=∠1+∠2 D.3∠A=2(∠1+∠2)10.如图,已知长方形ABCD,一条直线将该长方形ABCD分割成两个多边形,则所得任一多边形内角和度数不可能是( A)A.720° B.540° C.360° D.180°(第10题图)(第13题图)(第14题图)二、填空题(每小题3分,共18分)11.(2016·镇江)正五边形每个外角的度数是__72°__.12.人站在晃动的公共汽车上,若你分开两腿站立,还需伸出一只手抓住栏杆才能站稳,这是利用了__三角形的稳定性__.13.如图,在△ABC 中,AD 是BC 边上的中线,BE 是△ABD 中AD 边上的中线,若△ABC 的面积是24,则△ABE 的面积是__6__.14.如图,∠1+∠2+∠3+∠4+∠5+∠6=__360°__.15.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为__120°__.16.已知AD 是△ABC 的高,∠BAD =72°,∠CAD =21°,则∠BAC 的度数是__51°或93°__.三、解答题(共72分)17.(8分)如图:(1)在△ABC 中,BC 边上的高是__AB __;(2)在△AEC 中,AE 边上的高是__CD __;(3)若AB =CD =2 cm,AE =3 cm,求△AEC 的面积及CE 的长.解:S △AEC =12AE·CD =12CE·AB =3 cm 2,CE =3 cm18.(8分)等腰△ABC 的两边长x,y 满足|x -4|+(y -8)2=0,求这个等腰三角形的周长. 解:∵x ,y 满足|x -4|+(y -8)2=0,∴x =4,y =8,当4为腰时,4+4=8不成立,当4为底时,8为腰,4+8>8,满足三边关系,∴△ABC 的周长为8+8+4=2019.(8分)如图,AD 平分∠CAE ,∠B =35°,∠DAE =60°,试求∠D 与∠ACD 的度数.解:∠D =25°,∠ACD =95°20.(7分)若一个多边形的各边长均相等,周长为70 cm ,且内角和为900°,求它的边长. 解:边长是10 cm21.(7分)某工程队准备开挖一条隧道,为了缩短工期,必须在山的两侧同时开挖,为了确保两侧开挖的隧道在同一条直线上,测量人员在如图的同一高度定出了两个开挖点P 和Q,然后在左边定出开挖的方向线AP,为了准确定出右边开挖的方向线BQ,测量人员取一个可以同时看到点A,P,Q 的点O,测得∠A =28°,∠AOC =100°,那么∠QBO 应等于多少度才能确保BQ 与AP 在同一条直线上?解:在△AOB 中,∠QBO =180°-∠A -∠O =180°-28°-100°=52°.即∠QBO 应等于52°才能确保BQ 与AP 在同一条直线上22.(8分)如图,AB ∥CD,直线EF 与AB,CD 分别相交于点E,F,EP 平分∠AEF ,FP 平分∠EFC.(1)求证:△EPF 是直角三角形;(2)若∠PEF=30°,求∠PFC 的度数.解:(1)∵AB∥CD ,∴∠AEF +∠CFE =180°,∵EP 平分∠AEF ,FP 平分∠EFC ,∴∠AEP =∠FEP ,∠CFP =∠EFP ,∴∠PEF +∠PFE =12×180°=90°.∴∠EPF =180°-90°=90°,即△EPF 是直角三角形 (2)60°23.(8分)如图,在△ABC 中,∠B =26°,∠C =70°,AD 平分∠BAC ,AE ⊥BC 于点E,EF ⊥AD 于点F.(1)求∠DAC 的度数;(2)求∠DEF 的度数.解:(1)∵在△ABC 中,∠B =26°,∠C =70°,∴∠BAC =180°-∠B -∠C =180°-26°-70°=84°.∵AD 平分∠BAC ,∴∠DAC =12∠BAC =12×84°=42° (2)在△ACE 中,∠CAE =90°-∠C =90°-70°=20°,∴∠DAE =∠DAC -∠CAE =42°-20°=22°.∵∠DEF +∠AEF =∠AEF +∠DAE =90°,∴∠DEF =∠DAE =22°24.(8分)如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D.(1)求证:∠ACD=∠B;(2)若AF 平分∠CAB 且分别交CD,BC 于点E,F,求证:∠CEF=∠CFE.解:(1)∵∠ACB =90°,∴∠ACD +∠DCB =90°,又∵CD⊥AB 于点D ,∴∠DCB +∠B =90°,∴∠ACD =∠B (2)在△ACE 中,∠CEF =∠CAF +∠ACD ,在△AFB 中,∠CFE =∠B +∠FAB ,∵AF 平分∠CAB ,∴∠CAE =∠FAB ,∴∠CEF =∠CFE25.(10分)取一副三角板按图①拼接,固定三角板ADC,将三角板ABC 绕点A 按顺时针方向旋转得到△ABC′,如图②所示.设∠CAC′=α(0°<α≤45°).(1)当α=15°时,求证:AB∥CD;(2)连接BD,当0°<α≤45°时,∠DBC ′+∠CAC′+∠BDC 的度数是否变化,若变化 ,求出变化范围;若不变,求出其度数.解:(1)证明:∵∠CAC′=15°,∴∠BAC=∠BAC′-∠CAC′=45°-15°=30°,又∴∠C =30°,∴∠BAC=∠C,∴AB∥CD(2)∠DBC′+∠CAC′+∠BDC的度数不变.如图,连接CC′,∵∠DBC′+∠BDC=∠DCC′+∠BC′C,又∠CAC′+∠ACC′+∠AC′C=180°,∴∠CAC′+∠AC′B+∠BC′C+∠ACD+∠DCC′=180°,∵∠AC′B=45°,∠ACD=30°,∴∠DBC′+∠CAC′+∠BDC=180°-45°-30°=105°。
人教版八年级上册数学第十一章三角形含答案一、单选题(共15题,共计45分)1、一个三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是()A.2B.3C.4D.82、若一个多边形的内角和为720°,则这个多边形是()A.三角形B.四边形C.五边形D.六边形3、如图,在□ABCD中,CE⊥AB,E为垂足.如果∠A=125°,则∠BCE的度数为()A.55°B.35°C.25°D.30°4、已知一个多边形的对角线条数正好等于它的边数的2倍,则这个多边形的边数是()A.6B.7C.8D.105、如果三角形有一边上的中线长恰好等于这条边长,那么称这个三角形是“有趣三角形”,这条中线为“有趣中线”.如图,在△ABC中,∠C=90°,较短的直角边BC=,且△ABC是“有趣三角形”,则△ABC的“有趣中线”的长为( )A.1B.C.2D.6、等腰三角形的周长是40cm,腰长y (cm)是底边长x (cm)的函数解析式正确的是()A.y=-0.5x+20 ( 0<x<20)B.y=-0.5x+20 (10<x<20)C.y=-2x+40 (10<x<20)D.y=-2x+40 (0<x<20)7、一个多边形裁去一个角后,形成另一个多边形的内角和为2 520°,则原多边形的边数是( )A.17B.16C.15D.17或16或158、如果一个三角形两边的长分别等于一元二次方程x2-13x+36 =0的两个实数根,那么这个三角形的周长可能是( )A.13B.18C.22D.269、如图,在五边形中,,,分别平分,,则的度数()A.70°B.65°C.60°D.55°10、如图是以KL所在的直线为对称轴的轴对称图形,六边形EFGHLK的各个内角相等,记四边形HCH'L、四边形EKE'A、△BGF的周长分别为C1、C2、C3,且G1=2G2=4G3,已知FG=LK,EF=6,则AB的长是()A.9.5B.10C.10.5D.1111、一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是()A.12B.13C.14D.1512、如图,已知直线AB∥CD,∠C=125°,∠E=80°,则∠A的度数为()A.45°B.50°C.60°D.70°13、如果一个三角形有两个外角的和等于270o,则此三角形一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形14、若下列各组值代表线段的长度,则以它们为边能构成三角形的是()A.6、7、13B.6、6、12C.6、9、14D.10、5、315、若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形"有()对。
人教版八年级上册数学第十一章三角形含答案一、单选题(共15题,共计45分)1、如图,△ABC中,∠A=36°,∠B=60°,EF∥BC,FG平分∠AFE,则∠AFG 的度数为()A.36°B.37°C.42°D.47°2、如图,矩形中,,,将此矩形折叠,使点B与点D 重合,折痕为,则的面积为()A.12B.10C.8D.63、在△ABC中,AB=AC,AB的垂直平分线交AB于点D,交直线AC于点E,∠AEB=70°,那么∠BAC等于()A.65°B.55°C.55°或125°D.65°或115°4、已知△ABC的有两个角都是50°,则它的第三个角是()A.50°B.65°C.80°D.130°5、下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.7 cm、5 cm、11 cmB.4 cm、3 cm、7 cmC.5 cm、10 cm、4 cmD.2 cm、3 cm、1 cm6、等腰三角形两边长分别为5 cm和11 cm则该等腰三角形的周长为( )A.21 cmB.21 cm 或27 cmC.25 cmD.27 cm7、如图,△ABC≌△A′B′C,∠ACB=90°,∠B=50°,点B′在线段AB 上,AC,A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°8、如图,BC∥DE,∠1=110°,∠AED=80°,则∠A的大小为()A.20B.25°C.30°D.40°9、已知,,判断之间的关系满足()A. B. C.D.10、如图钢架中,∠A= º,焊上等长的钢条P1P2, P2P3, P3P4, P4P5…来加固钢架.若P1A=P1P2,且恰好用了4根钢条,则下列各数中哪个可能是的值?()A.25ºB.20ºC.30ºD.15º11、如图,在已知的∆ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为()A.90°B.95°C.100°D.105°12、下列长度的三条线段能组成三角形的是()A.1,2,3B.1,7,6C.2,3,6D.6,8,1013、如图,AB∥CD,∠P=40°,∠D=100°,则∠ABP的度数是()A.140°B.40°C.100°D.60°14、一个正多边形的每个内角都为135°,则这个多边形是几边形()A.正七边形B.正八边形C.正九边形D.正十边形15、分别以2cm、3cm、4cm、5cm的线段为边可构成()三角形.A.2个B.3个C.4个D.5个二、填空题(共10题,共计30分)16、如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=________.17、如图,PA,PB分别切⊙O于点A,B.若∠P=100°,则∠ACB的大小为________(度).18、如图,五边形ABCDE是关于直线FC的轴对称图形,若∠A=130°,∠B=110°,则∠BCD= ________度.19、如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=25°,则∠EAC的度数为________.20、我们知道三角形的内角和是180°,四边形的内角和可以转化成两个三角形的内角和来得到是360°,那十二边形的内角和是________°.21、三角形的三边长为3、7、x,则x的取值范围是________22、如图,△ABC中,∠ABC=90°,AB=12,BC=5,AC=13,BD⊥AC于D,则BD=________.23、如果n边形的每一个内角都等于与它相邻外角的2倍,则n的值是________.24、如图,已知△ABC中,AD是BC边上的高,点E在线段BD上,且AE平分∠BAC,若∠B=40°,∠C=78°,则∠EAD=________°.25、如图,BO、CO分别平分∠ABC、∠ACB,∠A=100°,则∠BOC的度数为________.三、解答题(共5题,共计25分)26、求出下列图中x的值。
第十一章《三角形》单元测试题(时间:120分钟 满分:150分)一、选择题(每小题4分,共40分)1.下列图形中具有稳定性的是( )A .正三角形B .正方形C .正五边形D .正六边形2.如图,能说明∠1>∠2的是( )3.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A B C D4.一个多边形的一个内角和是900°,则这个正多边形的边数为( )A .5B .6C .7D .85.下列条件中,能判定△ABC 为直角三角形的是( )A .∠A =2∠B =3∠C B .∠A +∠B =2∠CC .∠A =∠B =30°D .∠A =12∠B =13∠C6.如图,在△ABC 中,∠ACB =90°,CD 是AB 边上的高.如果∠A =50°,那么∠DCB =( )A .50°B .45°C .40°D .25°7.从长为10 cm ,7 cm ,5 cm ,3 cm 的四条线段中任选三条,能构成三角形的选法有( )A .1种B .2种C .3种D .4种8.如图,在△ABC 中,∠C =90°,D ,E 为AC 边上的两点,且AE =DE ,BD 平分∠EBC ,则下列说法不正确的是() A .BC 是△ABE 的高 B .BE 是△ABD 的中线C .BD 是△EBC 的角平分线 D .∠ABE =∠EBD =∠DBC第8题图第9题图第10题图9.小鹏用家中多余的硬纸板做了一个如图所示的多边形飞镖游戏盘,则该游戏盘的内角和比外角和多( ) A.1 080° B.720° C.540° D.360°10.如图,在5×4的方格纸中,每个小正方形边长为1个单位长度,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使△ABC的面积为3,则这样的点C共有( )A.2个 B.3个 C.4个 D.5个二、填空题(每小题3分,共30分)11.如图,在△ABC中,∠A=80°,点D是BC延长线上一点,∠ACD=150°,则∠B=____________.第11题图第15题图第16题图第17题图12.已知△ABC的两条边长分别为2和5,且第三边长为整数,则第三边的长可能为____________.(填一个符合题意的答案)13.已知在△ABC中,∠A∶∠B∶∠C=1∶3∶5,则△ABC是____________三角形.14.一个正八边形每个内角的度数为____________.15.如图所示,直线a∥b,直线c与直线a,b分别相交于点A,B,AM⊥b,垂足为点M.若∠1=58°,则∠2=____________.16.如果将一副三角板按如图方式叠放,那么∠1=____________.17.如图,已知BD是△ABC的中线,AB=5,BC=3,则△ABD与△BCD的周长的差是____________.18.如图,在△ABC中,AE是∠BAC的角平分线,AD是BC边上的高线,且∠B=50°,∠C=60°,则∠EAD的度数是____________.第18题图第19题图第20题图19.如图,△ABC中,D,E,F分别是BC,CA,AB的中点,作△DEF.若△ABC的面积是12,则△DEF的面积是____________.20.如图,已知在△OAB中,∠AOB=70°,∠OAB的平分线与△OBA的外角∠ABN的平分线所在的直线交于点D,则∠ADB的大小为____________.三、(本大题12分)21.如图,在△ABC中,AD,AE分别是边BC上的中线和高,AE=3 cm,S△ABC=12 cm2.求BC和DC的长.四、(本大题12分)22.某工程队准备开挖一条隧道,为了缩短工期,必须在山的两侧同时开挖,为了确保两侧开挖的隧道在同一条直线上,测量人员在如图所示的同一高度定出了两个开挖点P和Q,然后在左边定出开挖的方向线AP,为了准确定出右边开挖的方向线BQ,测量人员取一个可以同时看到点A,P,Q的点O,测得∠A=28°,∠AOC=100°,那么∠QBO应等于多少度才能确保BQ与AP在同一条直线上?五、(本大题14分)23.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.六、(本大题14分)24.将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.七、(本大题12分)25.如图,在△ABC中,∠B=30°,∠ACB=110°,AD是BC边上高线,AE平分∠BAC,求∠DAE的度数.八、(本大题16分)26.已知:如图1,线段AB,CD相交于点O,连接AD,CB,我们把形如图1的图形称之为“8字形”.试解答下列问题:(1)在图1中,请直接写出∠A,∠B,∠C,∠D之间的数量关系:________________;(2)仔细观察,在图2中“8字形”的个数有____________个;(3)在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD,AB分别相交于点M,N.利用(1)的结论,试求∠P的度数;(4)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D,∠B之间存在着怎样的数量关系.(直接写出结论即可)参考答案:第十一章《三角形》单元测试题1.A2.C3.A4.C5.D6.A7.B8.D9.B10.B11.70°12.答案不唯一,如:4或5或613.钝角14.13515.32°16.105°17.218.5°19.320.35°21.∵S∵ABC=2BC·AE=12cm2,AE=3cm,∵BC=8cm.∵AD是BC边上的中线,∵DC=BC=4cm22.在∵AOB中,∵QBO=180°∵A-∵O=180°-28°-100°=52°即∵QBO应等于52才能确保BQ与AP在同一条直线上23.设∵1=∵2=x,则∵3=∵4=2x.∵∵BAC=63°,∵∵2+∵4=117°, 即x+2x=117°∵x=39°∵∵3=∵4=78°∵∵DAC=180°-∵3∵4=24°24.(1)证明:由三角板的性质,可知∵D=30°,∵3=45°,∵DCE=90°∵CF平分∵DCE,∵∵1=∵2=∵DCE=45°∵∵1=∵3.∵CF∵AB.(2)由三角形内角和,可得∵DFC=180°-∵1-∵D=180°-45°-30°=105°.25.∵∵B=30°,∵ACB=110°,∵∵BAC=1830°—110°=40°∵AE平分∵BAC,∵∵BAE=∵BAC=×40°=20°∵∵B=30°,AD是BC边上高线,∵∵BAD=90°30°=60°∵∵DAE=∵BAD∵BAE=60°-20°=40°26.(1)∵A+∵D=∵B+∵C.(2)6.(3)∵∵D=40°,∵B=36°,∵∵OAD+40°=∵OCB+36°∵∵OCB-∵OAD=4°∵AP、CP分别是∵DAB和∵BCD的平分线,∵∵DAM=∵OAD,∵PCM=2∵OCB.∵∵DAM+∵D=∵PCM+∵P,∵∵P=∵DAM+∵D-∵PCM=2(∵OAD-∵OCB)+∵D=2X(-4)+40=38°.(4)根据“8字形”数量关系,得∵OAD+∵D=∵OCB+∵B ∵DAM+∵D=∵PCM+∵P,所以∵OCB=∵OAD=∵D=∵B, ∵PCM-∵DAM=∵D-∵PAP、CP分别是∵DAB和∵BCD的平分线,∵∵DAM=∵OAD,∵PCM=∵OCB∵2(∵D∵B)=∵D-∵P.整理,得2∵P=∵B+∵D。
八年级数学上册《第十一章三角形》单元测试卷-带答案(人教版)一、选择题(共9题)1.下列图形中具有稳定性的是( )A.B.C.D.2.判断下列说法,正确的是( )A.三角形的外角大于任意一个内角B.三角形的三条高相交于一点C.各条边都相等的多边形叫做正多边形D.四边形的一组对角互补,则另一组对角也互补3.等腰三角形的两边长分别是5cm和11cm,则它的周长是( )A.27cm B.21cmC.27cm或21cm D.无法确定4.两根木棒分别为5cm和6cm,要选择第三根,将它们钉成一个三角形,如果第三根木棒长为偶数,则方法有( )A.3种B.4种C.5种D.6种5.如图所示,直线m∥n,∠1=63∘,∠2=34∘则∠BAC的大小是( )A.73∘B.83∘C.77∘D.87∘6.如图l1∥l2,∠1=120∘,∠2=100∘,则∠3=( )A.20∘B.40∘C.50∘D.60∘7.将一副直角三角板按如图所示的位置放置,使含30∘角的三角板的一条直角边和含45∘角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A.35∘B.45∘C.60∘D.75∘8.如图,在△ABC中,E,F分别是AD,CE边的中点,且S△ABC=8cm2,则S△BEF为( )A.4cm2B.3cm2C.2cm2D.1cm29.如图,△ABC中,∠ABC=50∘,∠ACB=70∘,AD平分线∠BAC,过点D作DE⊥AB于点E,则∠ADE的度数是( )A.45∘B.50∘C.60∘D.70∘二、填空题(共5题)10.一个正多边形的每个内角都是150∘,则它是正边形.11.如图,△ABC中,∠BAC=70∘,∠ABC的平分线与∠ACB的外角平分线交于点O,则∠BOC=度.12.如图,直线a∥b,∠1=60∘,∠2=40∘则∠3=∘.13.如图,△ABC的∠A为40∘,剪去∠A后得到一个四边形,则∠1+∠2=度.14.如图∠A=20∘,∠B=30∘,∠C=50∘则∠ADB的度数.三、解答题(共6题)15.已知:如图,△ABC中,AD是高,AE平分∠BAC,∠B=50∘,∠C=80∘求∠DAE的度数.16.如图,在△ABC中∠B=∠C=45∘点D在BC边上,点E在AC边上,且∠ADE=∠AED,连接DE.(1) 当∠BAD=60∘,则∠CDE的度数是:.(2) 当点D在BC(点B,C除外)边上运动时,设∠CDE=α,请用α表示∠BAD,并说明理由.17.在△ABC中∠B<∠C,AQ平分∠BAC,交BC于点Q,P是AQ上的一点(不与点Q重合)PH⊥BC于点H.(1) 若∠C=2∠B=60∘,如图1,当点P与点A重合时,求∠QPH的度数;(2) 当△ABC是锐角三角形时,如图2,试探索∠QPH,∠C,∠B之间的数量关系,并说明理由.18.如图,已知点E,F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.(1) 请说出AB∥CD的理由.(2) 若∠EHF=100∘,∠D=30∘,求∠AEM的度数.19.如图,在四边形ABCD中∠B=50∘,∠C=110∘,∠D=90∘,AE⊥BC,AF是∠BAD的平分线,与边BC交于点F.求∠EAF的度数.20.如图,已知点E,F为四边形ABDC的边CA的延长线上的两点,连接DE,BF,作∠BDH的平分线DP交AB的延长线于点P.若∠1=∠2,∠3=∠4,∠5=∠C.(1) 判断DE与BF是否平行?并说明理由;(2) 试说明:∠C=2∠P.参考答案1.【答案】A2.【答案】D3.【答案】A4.【答案】C5.【答案】B6.【答案】B7.【答案】D8.【答案】C9.【答案】C10.【答案】十二11.【答案】3512.【答案】8013.【答案】22014. 100°15. 【答案】∵△ABC中∠B=50∘,∠C=80∘∴∠BAC=180∘−∠B−∠C=180∘−50∘−80∘=50∘,∵AE是∠BAC的平分线∠BAC=25∘∴∠EAC=12∵AD是BC边上的高∴在直角△ADC中∠DAC=90∘−∠C=90∘−80∘=10∘∴∠DAE=∠EAC−∠DAC=25∘−10∘=15∘.16.【答案】(1) 30∘ (2) ∠BAD=2α.证明:设∠BAD=x∵∠ADC是△ABD的外角∴∠ADC=∠B+∠BAD=45∘+x∵∠AED是△CDE的外角∴∠AED=∠C+∠CDE∵∠B=∠C,∠ADE=∠AED∴∠ADC−α=∠45∘+x−α=45∘+α解得:∠BAD=2∠CDE=2α.17.【答案】(1) ∵∠C=2∠B=60∘∴∠B=30∘,∠BAC=180∘−60∘−30∘=90∘.∵AQ平分∠BAC∠BAC=45∘∴∠BAQ=∠QAC=12∴∠AQH=∠B+∠BAQ=30∘+45∘=75∘∵PH⊥BC∴∠PHQ=90∘∴∠QPH=∠QAH=90∘−75∘=15∘.(2) 如图,过点A作AG⊥BC于点G 则∠PHQ=∠AGQ=90∘∴PH∥AG∴∠QPH=∠QAG设∠QPH=∠QAG=x∵AQ平分∠BAC∴∠BAQ=∠QAC=x+∠GAC∵∠AQH=∠B+∠BAQ又∠AQH=90∘−x∴∠BAQ=90∘−x−∠B.∴x+∠GAC=90∘−x−∠B∵AG⊥BC∴∠GAC=90∘−∠C∴x+90∘−∠C=90∘−x−∠B∴x=12(∠C−∠B),即∠QPH=12(∠C−∠B).18. 【答案】 (1) ∵∠CED=∠GHD∴CE∥GF∵∠C=∠FGD又∵∠C=∠EFG∴∠FGD=∠EFG∴AB∥CD∴∠AED+∠D=180∘.(2) ∵∠DHG=∠EHF=100∘,∠D=30∘∴∠CGF=100∘+30∘=130∘∵CE∥GF∴∠C=180∘−130∘=50∘∵AB∥CD∴∠AEC=50∘∴∠AEM=180∘−50∘=130∘.19. 【答案】∵AE⊥BC∴∠AEC=∠AEB=90∘∵∠B=50∘∴∠BAE=180∘−90∘−50∘=40∘∵∠C=110∘,∠D=90∘∴∠DAE=360∘−∠D−∠C−∠AEC=70∘∴∠DAB=∠BAE+∠DAE=40∘+70∘=110∘∵AF平分∠DAB∴∠FAB=12∠DAB=12×110∘=55∘∴∠EAF=∠FAB−∠BAE=55∘−40∘=15∘.20. 【答案】 (1) DE∥BF理由是:因为∠3=∠4所以BD∥CE所以∠5=∠FAB因为∠5=∠C所以∠C=∠FAB所以AB∥CD所以∠2=∠BGD因为∠1=∠2所以∠1=∠BGD所以DE∥BF.(2) 因为AB∥CD所以∠P=∠PDH因为DP平分∠BDH所以∠BDP=∠PDH所以∠BDP=∠PDH=∠P 因为∠5=∠P+∠BDP所以∠5=2∠P所以∠C=∠5所以∠C=2∠P.。