微积分基本定理 教案
- 格式:docx
- 大小:83.08 KB
- 文档页数:4
1.4.2 微积分基本定理【学习要求】会应用定积分求两条或多条曲线围成的图形的面积.【学法指导】本小节主要解决一些在几何中用初等数学方法难以解决的平面图形面积问题.在这部分的学习中,应特别注意利用定积分的几何意义,借助图形直观,把平面图形进行适当的分割,从而把求平面图形面积的问题转化为求曲边梯形面积的问题.1.当x ∈[a ,b]时,若f(x)>0,由直线x =a ,x =b(a≠b),y =0和曲线y =f(x)所围成的曲边梯形的面积S =__ ʃb a f(x)dx______.2.当x ∈[a ,b]时,若f(x)<0,由直线x =a ,x =b(a≠b),y =0和曲线y =f(x)所围成的曲边梯形的面积S =___-ʃb a f(x)dx______.3.当x ∈[a ,b]时,若f(x)>g(x)>0时,由直线x =a ,x =b(a≠b)和曲线y =f(x),y =g(x)围成的平面图形的面积S =__ ʃb a [f(x)-g(x)]dx____________.(如图)探究点一 求不分割型图形的面积问题 怎样利用定积分求不分割型图形的面积?答 求由曲线围成的面积,要根据图形,确定积分上下限,用定积分来表示面积,然后计算定积分即可. 例1 计算由曲线y 2=x ,y =x 2所围图形的面积S.解 由⎩⎪⎨⎪⎧y 2=x ,y =x 2得交点的横坐标为x =0及x =1. 因此,所求图形的面积为S =S 曲边梯形OABC -S 曲边梯形OABD=ʃ10xdx -ʃ10x 2dx =23 |10-13x 3|10=23-13=13. 小结 求由曲线围成图形面积的一般步骤:(1)根据题意画出图形;(2)找出范围,确定积分上、下限;(3)确定被积函数;(4)将面积用定积分表示;(5)用微积分基本定理计算定积分,求出结果.跟踪训练1 求由抛物线y =x 2-4与直线y =-x +2所围成图形的面积.解 由⎩⎪⎨⎪⎧y =x 2-4y =-x +2 得⎩⎪⎨⎪⎧ x =-3y =5或⎩⎪⎨⎪⎧x =2y =0,所以直线y =-x +2与抛物线y =x 2-4的交点为(-3,5)和(2,0),设所求图形面积为S ,根据图形可得S =ʃ2-3(-x +2)dx -ʃ2-3(x 2-4)dx=(2x -12x 2)|2-3-(13x 3-4x)|2-3 =252-(-253)=1256. 32x探究点二 分割型图形面积的求解问题 由两条或两条以上的曲线围成的较为复杂的图形,在不同的区间位于上方和下方的曲线不同时,这种图形的面积如何求呢?答 求出曲线的不同的交点横坐标,将积分区间细化,分别求出相应区间曲边梯形的面积再求和,注意在每个区间上被积函数均是由上减下.例2 计算由直线y =x -4,曲线y =2x 以及x 轴所围图形的面积S.解 方法一 作出直线y =x -4,曲线y =2x 的草图.解方程组⎩⎪⎨⎪⎧ y =2x ,y =x -4 得直线y =x -4与曲线y =2x 交点的坐标为(8,4).直线y =x -4与x 轴的交点为(4,0).因此,所求图形的面积为S =S 1+S 2=ʃ402xdx +⎰⎰--8484]d )4(d 2[x x x x=403. 方法二 把y 看成积分变量,则S =ʃ40(y +4-12y 2)dy =(12y 2+4y -16y 3)|40=403. 小结 两条或两条以上的曲线围成的图形,一定要确定图形范围,通过解方程组求出交点的坐标,定出积分上、下限,若积分变量选x 运算较繁锁,则积分变量可选y ,同时要更换积分上、下限.跟踪训练2 求由曲线y =x ,y =2-x ,y =-13x 所围成图形的面积.解 画出图形,如图所示.解方程组⎩⎪⎨⎪⎧ y =x ,x +y =2,⎩⎪⎨⎪⎧ y =x ,y =-13x , 及⎩⎪⎨⎪⎧x +y =2,y =-13x ,得交点分别为(1,1),(0,0),(3,-1),所以S =ʃ10[x -(-13x)]dx +ʃ31[(2-x)-(-13x)]dx =ʃ10(x +13x)dx +ʃ31(2-x +13x)dx=223 |40+223 |84-12(x -4)2|8432x 32x =(23 +16x 2)|10+(2x -12x 2+16x 2)|3132x=23+16+(2x -13x 2)|31 =56+6-13×9-2+13=136. 探究点三 定积分的综合应用例3 在曲线y =x 2(x≥0)上某一点A 处作一切线使之与曲线以及x 轴所围成的面积为112,试求: 切点A 的坐标以及在切点A 的切线方程.解 如图,设切点A(x 0,y 0),由y′=2x ,过点A 的切线方程为y -y 0=2x 0(x -x 0),即y =2x 0x -x 20,令y =0,得x =x 02,即C(x 02,0), 设由曲线和过点A 的切线与x 轴围成图形的面积为S ,则S =S 曲边△AOB -S △ABC ,S △ABC =12|BC|·|AB|=12(x 0-x 02)·x 20=14x 30. ∴S =13x 30-14x 30=112x 30=112.所以x 0=1, 从而切点为A(1,1),切线方程为2x -y -1=0.小结 本题综合考查了导数的意义以及定积分等知识,运用待定系数法,先设出切点的坐标,利用导数的几何意义,建立了切线方程,然后利用定积分以及平面几何的性质求出所围成的平面图形的面积,根据条件建立方程求解,从而使问题得以解决.跟踪训练3 如图所示,直线y =kx 分抛物线y =x -x 2与x 轴所围图形为面积相等的两部分,求k 的值. 解 抛物线y =x -x 2与x 轴两交点的横坐标为x 1=0,x 2=1,所以,抛物线与x 轴所围图形的面积S =ʃ10(x -x 2)dx =⎝⎛⎭⎫x 22-13x 3|10=16. 又⎩⎪⎨⎪⎧y =x -x 2,y =kx , 由此可得,抛物线y =x -x 2与y =kx 两交点的横坐标为x 3=0,x 4=1-k ,所以,S 2=ʃ1-k 0(x -x 2-kx)dx =⎝⎛⎭⎫1-k 2x 2-13x 3|1-k 0=16(1-k)3. 又知S =16,所以(1-k)3=12, 于是k =1- 312=1-342. 4.由曲线y =x 2+4与直线y =5x ,x =0,x =4所围成平面图形的面积是___193___. 解析 由图形可得S =ʃ10(x 2+4-5x)dx +ʃ41(5x -x 2-4)dx =(13x 3+4x -52x 2)|10+(52x 2-13x 3-4x)|41 ∵S 曲边△AOB =ʃ x 2d x =13x 3| =13x 30,00x00x=13+4-52+52×42-13×43-4×4-52+13+4=193. 对于简单图形的面积求解,我们可直接运用定积分的几何意义,此时(1)确定积分上、下限,一般为两交点的横坐标.(2)确定被积函数,一般是上曲线与下曲线对应函数的差.这样所求的面积问题就转化为运用微积分基本定理计算定积分了.注意区别定积分与利用定积分计算曲线所围图形的面积:定积分可正、可负或为零;而平面图形的面积总是非负的.。
微积分基本定理一、教学目标:知识与技能:1.通过实例,直观了解微积分基本定理的内容,会用牛顿-莱布尼兹公式求简单的定积分2.通过实例探求微分与定积分间的关系,体会微积分基本定理的重要意义过程与方法:通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。
情感、态度与价值:让学生探索、发现数学知识和掌握数学知识的内在规律的过程中不,不断获得成功积累愉快的体验,不断增进学习数学的兴趣,同时还通过探索这一活动培养学生善于和他人合作的精神.二、教学重点、难点重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分。
难点:了解微积分基本定理的含义。
三、教学模式与教法、学法教学模式:本课采用“探究——发现”教学模式.教师的教法:利用多媒体辅助教学,突出活动的组织设计与方法的引导.“抓三线”,即(一)知识技能线(二)过程与方法线(三)能力线.“抓两点”,即一抓学生情感和思维的兴奋点,二抓知识的切入点.学法:突出探究、发现与交流.四、教学过程n有没有计算定积分的更直接方法,也是比较一般的方法呢?(1)下面以变速直线运动中位置函数与速度函数之间的联系为例:设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥),则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为21()T T v t dt ⎰。
另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即21()T T v t dt ⎰=12()()S T S T - ()()S t v t '=。
3.微积分基本定理对于一般函数()f x ,设()()F x f x '=,是否也有()()()baf x dx F b F a =-⎰?若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算()f x 在[,]a b 上的定积分的方法。
微积分基本定理【学习目标】1.理解微积分基本定理的含义。
2.能够利用微积分基本定理求解定积分相关问题。
【要点梳理】要点一、微积分基本定理的引入我们已学过过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。
我们必须寻求计算定积分的新方法,也是比较一般的方法。
(1)导数和定积分的直观关系:如下图:一个做变速直线运动的物体的运动规律是s=s (t ),由导数的概念可知,它在任意时刻t 的速度v (t )=s '(t )。
设这个物体在时间段[a ,b]内的位移为s ,你能分别用 s (t )、v (t )表示s 吗?一方面,这段路程可以通过位置函数S (t )在[a ,b]上的增量s (b )-s (a )来表达, 即 s=s (b )-s (a )。
另一方面,这段路程还可以通过速度函数v (t )表示为 ()d bav t t ⎰,即 s =()d bav t t ⎰。
所以有: ()d bav t t =⎰s (b )-s (a )(2)导数和定积分的直观关系的推证:上述结论可以利用定积分的方法来推证,过程如下:如右图:用分点a=t 0<t 1<…<t i -1<t i <…<t n =b , 将区间[a ,b]等分成n 个小区间:[t 0,t 1],[t 1,t 2],…,[t i ―1,t i ],…,[t n ―1,t n ], 每个小区间的长度均为1i i b at t t n--∆=-=。
当Δt 很小时,在[t i ―1,t i ]上,v (t )的变化很小,可以认为物体近似地以速度v (t i ―1)做匀速运动,物体所做的位移111()'()'()i i i i i b as h v t t s t t s t n----∆≈=∆=∆=。
② 从几何意义上看,设曲线s=s (t )上与t i ―1对应的点为P ,PD 是P 点处的切线,由导数的几何意义知,切线PD 的斜率等于s '(t i ―1),于是1tan '()i i i s h DPC t s t t -∆≈=∠⋅∆=⋅∆。
1. 教学目标1、能说出微积分基本定理。
2、能运用微积分基本定理计算简单的定积分。
3、能掌握微积分基本定理的应用。
4、会用牛顿-莱布尼兹公式求简单的定积分。
2. 教学重点/难点教学重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分。
教学难点:微积分基本定理以及利用定理求复合函数定积分的计算。
3. 教学用具多媒体、板书4. 标签一、复习引入【师】同学们,我们来复习一下上节课的内容,请同学们回答以下几个问题:1.我们如何确定曲线上一点处切线的斜率呢?2.如何求曲线下方的面积?3.用“以直代曲”解决问题的思想和具体操作过程是什么呢?求由连续曲线y=f(x)对应的曲边梯形面积的方法【板书】用“以直代曲”解决问题的思想和具体操作过程:分割I以百代曲]—►,作和匚事I逼近二、新知介绍【1】微积分基本定理【师】同学们刚刚接触到积分,那么大家通过阅读课本来找出什么是微积分基本定理呢?【生】讨论回答【师】如果£(媒)是在区间回句上的壁画数,并且F1■⑶=的,则J:fG)dx=F(b)-F(江记!F(b)-F(^)=F㈤|>贝山『欧)收=Fg|:=F(b)—F⑷/值)是F㈤的导函数,F(>茂处)的原函数.【板书】1.f(x)dx=F(b3-7(a)记:F(b)-F(a)=F(x)|^【板演/PPT】例1:计算下列定积分?(1)J::dx(2)/;2xdx【师】同学们在练习本上先试着算一下,看看能不能计算出这两个定积分的值?【生】思考讨论【师】请大家注意,一定要按照定积分基本定理来做呢?(然后,演板)2、知识探究(1)微积分基本定理求定积分的一种基本方法,其关键是求出被积函数的原函数,特别注意:y=抑原函数是y=In(x)(2)求定积分时要注意积分变量,有时在被积函数中含有参数,但它不一定是积分变量。
(3)定积分的值可以是任意实数。
例2:计算定积分【师】同学们根据向量基本定理然后仔细的想一下,计算出结果【生】思考讨论【师】请大家注意,一定要按照向量的定义来做哦。
《微积分基本定理》微课教学设计《微积分基本定理》微课教学设计1. 教学目标1)知识层面:理解并掌握重要极限公式的初始型1lim1nnen→∞+=、标准型1 lim1xxex→∞+=以及推广型()()1lim1()xxex→∞+=的结果及形式,并利用重要极限解决连续复利等实际问题。
2)能力层面:理解重要极限的条件并能够利用重要的极限公式求解一类函数的极限问题。
通过解决连续复利问题,培养学生将实际问题加以抽象,建立一般模型的能力。
学习利用数学知识,分析和解决模型,并最终回到实际问题。
3)认知层面:体会重要极限三种形式(初始型、标准型和推广型)实际是解决未定式1∞型的极限,认识到从这种分析角度打开了求一类幂指函数的极限一个新的视野。
2.教学内容1)重要极限公式的初始型、标准型及推广型。
2)重要极限公式初始型和标准型的证明。
3)未定式1∞型的极限问题的解法。
4)重要极限公式在经济学连续复利数学模型中的应用。
3.教学重点与难点1)教学重点:重要极限公式的形式及其内涵;连续复利模型。
处理方法:重点讲解;启发主动思考;提供学生参与机会。
2)教学难点:重要极限公式初始型及标准型的证明;重要极限公式的推广型的内涵;利用重要极限推广型求极限。
处理方法:根据学生反映,把握讲解速度;结合多媒体课件;利用提问方式,随堂检验学生掌握程度。
4.教学方法1)动态多媒体课件和板书相结合,采用启发式教学。
2)通过师生互动激发学生的学习兴趣。
5.教材分析微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。
它是数学的一个基础学科。
其主要内容是微分学和积分学。
微分学包括求导数的运算,是一套关于变化率的理论,它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。
积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
微积分基本定理教学设计专题第一篇:微积分基本定理教学设计专题《微积分基本定理》教学设计一、教材分析本节课是学生学习了导数和定积分这两个概念后的学习,它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。
因此它在教材中处于极其重要的地位。
它曾被恩格斯誉为“人类精神的最高胜利”的微积分学。
二、教学目标分析(1)知识与技能:了解微积分基本定理的含义,并会利用定理计算简单的定积分。
(2)过程与方法:以变速直线运动物体在某个时间段上的位移为背景,使学生直观了解微积分基本定理的形成过程。
(3)情感、态度和价值观:揭示寻求计算定积分新方法的必要性, 激发学生的求知欲;逐步渗透“以直代曲”、“无限逼近”的数学思想。
三、教学重点、难点分析重点:以变速直线运动物体在某个时间段上的位移为背景,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分。
难点:微积分基本定理的形成过程四、学情分析首先本节课的授课班级是理科的普通班,大部分学生学习基础薄弱,学习能力还有待提高。
其次本节课是高等数学的内容,理论性较强,抽象不易理解。
针对以上情况,本节课在整体设计紧扣课标要求,充分做到“了解和简单应用”。
五、教法、学法分析(1)教法:通过导学案设置的问题和课堂上讨论、展示、点评、质疑等环节以及多媒体课件动画演示启发、引导学生积极思考本节课所遇到的问题,引导学生联想旧知识来解决和探索新知识,从而使学生产生浓厚的学习兴趣和求知欲,体现了学生的主体地位。
(2)学法:突出自主学习,研讨发现,主动探索。
学生在教师设置的环节的引导下,通过观察、讨论、交流、合作学习等活动来对知识、方法和规律进行总结。
六、教学过程环节一:自主课学生通过完成导学案的形式进行自主学习,教师课下批阅导学案,找到自主课上学生没有学懂的共性问题,准备在展示课上解决。
环节二:展示课通过恩格斯对微积分的高度评价“人类精神的卓越胜利”引入课题,突出学习本节课的重要性。
《定积分与微积分基本定理》教案章节一:定积分的概念1.1 引入定积分的概念1.2 定积分的几何意义1.3 定积分的性质1.4 定积分的计算方法章节二:定积分的计算2.1 定积分的换元法2.2 定积分的分部积分法2.3 定积分的三角函数法2.4 定积分的特殊函数法章节三:定积分的应用3.1 定积分在几何中的应用3.2 定积分在物理中的应用3.3 定积分在经济学中的应用3.4 定积分在其他领域的应用章节四:微积分基本定理4.1 微积分基本定理的引入4.2 微积分基本定理的证明4.3 微积分基本定理的应用4.4 微积分基本定理的拓展章节五:定积分的进一步应用5.1 定积分的双重积分5.2 定积分的三重积分5.3 定积分的线积分5.4 定积分的面积分《定积分与微积分基本定理》教案(续)章节六:定积分的数值计算6.1 梯形法则6.2 辛普森法则6.3 柯特斯法则6.4 蒙特卡洛方法章节七:定积分的误差分析7.1 梯形法则的误差分析7.2 辛普森法则的误差分析7.3 柯特斯法则的误差分析7.4 蒙特卡洛方法的误差分析章节八:微积分基本定理的应用8.1 微积分基本定理在求解不定积分中的应用8.2 微积分基本定理在求解定积分中的应用8.3 微积分基本定理在求解极限中的应用8.4 微积分基本定理在求解导数中的应用章节九:定积分的优化问题9.1 利用定积分求解最大值和最小值9.2 利用定积分求解极值问题9.3 利用定积分求解最值问题的应用实例9.4 利用定积分求解实际问题中的优化问题章节十:定积分与微积分基本定理的综合应用10.1 利用定积分和微积分基本定理解决实际问题10.2 定积分和微积分基本定理在工程中的应用10.3 定积分和微积分基本定理在科学研究中的应用10.4 定积分和微积分基本定理在其他领域的应用《定积分与微积分基本定理》教案(续)章节十一:定积分的物理意义11.1 定积分在物理学中的作用11.2 定积分与力学中的功11.3 定积分与电磁学中的电场强度11.4 定积分在热力学中的应用章节十二:定积分在工程中的应用12.1 定积分在土木工程中的应用12.2 定积分在机械工程中的应用12.3 定积分在电子工程中的应用12.4 定积分在生物医学工程中的应用章节十三:定积分在经济与管理中的应用13.1 定积分在经济学中的优化问题13.2 定积分在金融学中的应用13.3 定积分在运筹学中的应用13.4 定积分在管理科学中的应用章节十四:定积分在现代科技中的应用14.1 定积分在计算机科学中的应用14.2 定积分在数据科学中的应用14.3 定积分在中的应用14.4 定积分在其他现代科技领域的应用章节十五:定积分与微积分基本定理的复习与提高15.1 定积分的基本概念与性质的复习15.2 微积分基本定理的复习与应用15.3 定积分的计算方法的巩固与提高15.4 定积分在实际问题中的应用案例分析重点和难点解析重点:1. 定积分的概念和几何意义2. 定积分的计算方法:梯形法则、辛普森法则、柯特斯法则和蒙特卡洛方法3. 定积分的应用领域:几何、物理、经济学等4. 微积分基本定理的引入、证明和应用5. 定积分的数值计算和误差分析6. 定积分在不同学科中的应用:物理学、工程学、经济与管理、现代科技等难点:1. 定积分的换元法和分部积分的具体操作2. 定积分的三角函数法和特殊函数法的应用3. 微积分基本定理的证明过程中的理解和应用4. 定积分的数值计算方法的误差分析5. 定积分在实际问题中的优化问题和应用实例6. 定积分在不同学科中的应用:物理学、工程学、经济与管理、现代科技等,这些应用领域的理解和实际问题解决能力的培养。
1.6微积分基本定理一:教学目标知识与技能目标通过实例,直观了解微积分基本定理的内容,会用牛顿-莱布尼兹公式求简单的定积分 过程与方法通过实例探求微分与定积分间的关系,体会微积分基本定理的重要意义情感态度与价值观通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。
二:教学重难点重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分。
难点:了解微积分基本定理的含义三:教学过程:1、知识链接:定积分的概念:用定义计算的步骤:2、合作探究:⑴导数与积分的关系;我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。
有没有计算定积分的更直接方法,也是比较一般的方法呢?下面以变速直线运动中位置函数与速度函数之间的联系为例:设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为21()T T v t dt ⎰。
另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即21()T T v t dt ⎰=12()()S T S T -而()()S t v t '=。
说出你的发现 ⑵ 微积分基本定理对于一般函数()f x ,设()()F x f x '=,是否也有()()()ba f x dx Fb F a =-⎰?若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算()f x 在[,]a b 上的定积分的方法。
设()()F x f x '=则在[,]a b 上,⊿y=()()F b F a -将[,]a b 分成n 等份,在第i 个区间[x i-1,x i ]上,记⊿yi=F(x i )-F(x i-1),则⊿y =∑⊿y i 如下图,因为⊿h i =f(x i-1) ⊿x 而⊿y i ≈⊿h i 所以⊿y ≈∑⊿h i =∑f(x i-1) ⊿x 故⊿y =lim ∑⊿h i =∑f(x i-1) ⊿x=⎰b a dx x f )( 即⎰b a dx x f )(=()()F b F a - 所以有微积分基本定理: 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则 (此处并不要求学生理解证明的过程) 为了方便起见,还常用()|b a F x 表示()()F b F a -,即该式称之为微积分基本公式或牛顿—莱布尼兹公式。
《定积分与微积分基本定理》教案一、教学目标1. 理解定积分的概念,掌握定积分的计算方法。
2. 掌握微积分基本定理,了解其应用。
3. 能够运用微积分基本定理解决实际问题。
二、教学内容1. 定积分的概念:定积分是函数在区间上的积累量,用符号∫表示。
2. 定积分的计算方法:牛顿-莱布尼茨公式、换元法、分部积分法等。
3. 微积分基本定理:微积分基本定理是定积分与导数之间的关系,表述为∫(f'(x)dx) = F(b) F(a),其中F(x) 是f(x) 的一个原函数。
4. 微积分基本定理的应用:求解曲线下的面积、弧长、质心等问题的计算。
三、教学重点与难点1. 教学重点:定积分的概念、计算方法,微积分基本定理的理解与应用。
2. 教学难点:微积分基本定理的证明,定积分的计算方法的综合运用。
四、教学方法1. 讲授法:讲解定积分的概念、计算方法,微积分基本定理的证明。
2. 案例分析法:分析实际问题,引导学生运用微积分基本定理解决。
3. 练习法:课堂练习与课后作业,巩固所学知识。
五、教学安排1. 第一课时:定积分的概念与计算方法。
2. 第二课时:微积分基本定理的证明。
3. 第三课时:微积分基本定理的应用。
4. 第四课时:定积分的综合练习。
六、教学策略1. 互动讨论:鼓励学生提问,师生共同探讨定积分与微积分基本定理的相关问题。
2. 小组合作:同学之间分工合作,共同完成定积分的计算和应用问题。
3. 利用多媒体:通过动画、图像等直观展示定积分的几何意义和应用。
七、教学评价1. 课堂问答:检查学生对定积分概念、计算方法和微积分基本定理的理解。
2. 课后作业:布置有关定积分的计算和应用问题,检验学生掌握程度。
3. 课程报告:要求学生选择一个实际问题,运用微积分基本定理进行解决,以此评估学生的实际应用能力。
八、教学资源1. 教材:选用权威、实用的教材,如《微积分学导论》等。
2. 辅导资料:提供定积分与微积分基本定理的相关习题及解答。
微积分基本定理教案教案标题:微积分基本定理教案教学目标:1. 理解微积分基本定理的概念和意义;2. 掌握微积分基本定理的两个部分:第一部分——积分与原函数的关系,第二部分——定积分的计算;3. 能够运用微积分基本定理解决与函数积分和定积分相关的问题。
教学准备:1. 教材:微积分教材;2. 教具:黑板、粉笔、投影仪;3. 学生辅助教学资料:练习题、习题答案。
教学过程:一、导入(5分钟)1. 利用导数的概念引出积分的概念,复习导数的定义和求导法则。
2. 提问学生:如果已知一个函数的导数,能否还原出原函数?为什么?二、讲解微积分基本定理的第一部分(10分钟)1. 定义积分和原函数的关系:如果函数F(x)在[a, b]上连续,且F'(x) = f(x),则∫[a, b] f(x) dx = F(b) - F(a)。
2. 通过例题演示如何利用微积分基本定理第一部分求函数的不定积分。
三、练习与讨论(15分钟)1. 分发练习题,让学生独立完成。
2. 学生互相交流,讨论解题思路和答案。
3. 对部分练习题进行讲解和解答,引导学生理解微积分基本定理的应用。
四、讲解微积分基本定理的第二部分(10分钟)1. 定义定积分的概念:如果函数f(x)在[a, b]上连续,则∫[a, b] f(x) dx表示函数f(x)在[a, b]上的面积或曲线长度。
2. 引出微积分基本定理的第二部分:如果函数f(x)在[a, b]上连续,且F(x)是f(x)的一个原函数,则∫[a, b] f(x) dx = F(b) - F(a)。
3. 通过例题演示如何利用微积分基本定理第二部分计算定积分。
五、练习与讨论(15分钟)1. 分发练习题,让学生独立完成。
2. 学生互相交流,讨论解题思路和答案。
3. 对部分练习题进行讲解和解答,巩固学生对微积分基本定理的掌握。
六、拓展应用(10分钟)1. 提供一些实际问题,引导学生运用微积分基本定理解决与函数积分和定积分相关的问题。
微积分基本定理教学设计教学目标:1.理解微积分基本定理的概念和意义;2.掌握微积分基本定理的基本公式和推导方法;3.能够应用微积分基本定理求解相关问题。
教学内容:1.微积分基本定理的概念和意义-解释微积分基本定理的两个部分:第一部分是对函数的原函数求导,第二部分是对函数的不定积分;-引导学生思考为什么微积分基本定理成立。
2.微积分基本定理的基本公式和推导方法- 给出微积分基本定理的基本公式:若函数F(x)是区间[a, b]上的连续函数,且f(x)是F(x)的导数,则∫[a, b] f(x) dx = F(b) - F(a);-通过几个简单函数的实例,对基本公式进行演示和讲解;-推导微积分基本定理的基本公式:从定义出发,通过逐步推导,让学生了解为什么基本公式成立。
3.应用微积分基本定理求解相关问题-通过实例引导学生应用微积分基本定理求解相关问题:如计算定积分,求解函数定积分的上限和下限变化等;-引导学生将实际问题转化为数学问题,使用微积分基本定理进行求解;-提供一些实际问题的习题,让学生进行练习和巩固。
教学方法与活动安排:1.讲授与讨论-通过讲解和讨论,向学生介绍微积分基本定理的概念、意义和基本公式;-引导学生思考微积分基本定理的背后原理和推导方法。
2.练习与演示-给学生一些简单的函数,让他们尝试求导和积分,从而巩固基本定理的概念和用法;-进行一些演示,详细讲解和证明微积分基本定理的基本公式。
3.课堂互动-设计一些小组或个人活动,让学生在小组内讨论、解决问题,加强合作与交流;-鼓励学生提问和回答问题,促进课堂互动。
评价与反馈:1.小测验-每个课堂结束前,进行一个小测验,检测学生对微积分基本定理的理解和应用;-将小测验的结果作为学生学习情况的参考。
2.课后作业-布置一些练习题和思考题,让学生进行课后巩固和深化;-对学生的作业进行评改和评价。
3.学生反馈-向学生征求对本节课的反馈和建议,了解学生对教学设计的理解和认可程度,从而对今后的教学进行改进。
微积分基本定理时教案学习目标:1.了解微积分基本定理的概念和含义。
2.掌握计算不定积分的方法和技巧。
3.理解积分和导数之间的关系。
教学重难点:1.理解微积分基本定理的思想和原理。
2.掌握使用微积分基本定理计算不定积分的方法。
3.理解积分和导数之间的关系。
教学准备:1.教师准备:黑板、彩色粉笔、教学课件。
2.学生准备:课本、笔记本。
教学过程:Step 1:导入新知教师用简单的例子引入微积分基本定理的概念和背后的思想,例如:求其中一点速度为v(t)的运动物体在其中一时间段内的位移。
Step 2:引入微积分基本定理教师介绍微积分基本定理的两个部分:第一部分是在一定条件下,求定积分可以通过求原函数来实现;第二部分是定积分可以看作是函数在区间上面积的累加。
Step 3:推导微积分基本定理教师通过具体的例子和图示,让学生感受到定积分和原函数之间的关系。
然后推导出微积分基本定理的两个部分,并用数学符号进行表达。
Step 4:示例演练教师给出一些简单的函数,引导学生根据微积分基本定理计算它们的不定积分。
同时,教师强调几个常用的积分公式和技巧,如换元法、分部积分等。
Step 5:拓展应用教师给出一些与实际问题相关的函数表达式,并引导学生根据微积分基本定理计算相关的不定积分,用数学语言解释问题的本质。
Step 6:总结归纳教师总结微积分基本定理的概念、原理和计算方法,并强调积分和导数的互为逆运算的重要性。
Step 7:练习巩固教师布置一些练习题,让学生独立完成并批改。
同时,教师监督并答疑。
Step 8:课堂小结教师对本节课所学内容进行总结,并与学生一起回顾重点、难点。
Step 9:课后拓展教师布置一些拓展作业,让学生自行查找相关资料,进一步了解微积分基本定理的应用和推广。
Step 10:课堂检测教师布置一些题目,让学生在课后进行自主学习和思考,以检验对微积分基本定理的理解和掌握程度。
教学反思:本节课通过引入实际问题和具体的例子,让学生从直观的角度理解微积分基本定理的概念和原理。
微积分基本定理(2)一、【教学目标】重 点:使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分. 难 点:利用微积分基本定理求积分;找到被积函数的原函数. 能力点:正确运用基本定理计算简单的定积分.教育点:通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力.自主探究点:通过实例探求微分与定积分间的关系,体会微积分基本定理的重要意义. 易错点:准确找到被积函数的原函数,积分上限与下限代人求差注意步骤,以免符号出错. 考试点:高考多以填空题出现,以考查定积分的求法和面积的计算为主.二、【知识梳理】1. 定积分定义:如果函数()f x 在区间[,]a b 上连续,用分点0121-=<<<<<<<=i i n a x x x x x x b ,将区间[,]a b 等分成n 个小区间,在每一个小区间1[,]i i x x -上任取一点(1,2,,)ξ=i i n ,作和1()()ξξ=-∆=∑ni i ii b af x f n,当n →∞时,上述和式无限接近某个常数,这个常数叫做函数()f x 在区间[,]a b 上的定积分,记作()b af x dx ⎰,即1()lim ()nb ai n i b af x dx f nξ→∞=-=∑⎰,这里a 、b 分别叫做积分的下限与上限,区间[,]a b 叫做积分区间,函数()f x 叫做被积函数,x 叫做积分变量,()f x dx 叫做被积式.2.定积分的几何意义如果在区间[,]a b 上函数连续且恒有()0f x ≥,那么定积分()baf x dx ⎰表示由直线,x a x b==(a b ≠),0y =和曲线()y f x =所围成的曲边梯形的面积.()baA f x dx =⎰ =-⎰()baA f x dx 21[()()]b aA f x f x dx =-⎰2121=-=-⎰⎰⎰()()[()()]bbaabaA f x dx f x dx f x f x dx如果在区间[,]a b 上函数连续且恒有()0f x ≤,那么定积分()baf x dx -⎰表示由直线,x a x b==(a b ≠),0y =和曲线()y f x =所围成的曲边梯形的面积.说明:一般情况下,定积分()baf x dx ⎰的几何意义是介于x 轴、函数()f x 的图形以及直线,x a x b==之间各部分面积的代数和,在x 轴上方的面积取正号,在x 轴下方的面积取负号. 3.定积分性质 (1)()()bbaakf x dx k f x dx =⎰⎰;(2)1212[()()]()()b b ba a a f x f x dx f x dx f x dx ±=±⎰⎰⎰ (3)()()()()c b b ac a f x dx f x dx f x dx a c b +=<<⎰⎰⎰4.微积分基本定理;一般地,如果()f x 是区间[,]a b 上的连续函数,并且'()()F x f x =,那么()()()baf x dx F b F a =-⎰.把()()F b F a -记成()ba F x ,即()()()()bba af x dx F x F b F a ==-⎰.微积分基本定理表明,计算定积分()baf x dx ⎰的关键是找到满足'()()F x f x =的函数()F x .通常,我们可以运用基本初等函数的求导公式和导数四则运算法则从反方向上求出()F x .特别强调:①原函数F (x )不唯一,它们差一个常数.②微积分基本定理的作用是:建立了积分与导数间的密切联系,并提供了计算定积分的有效方法.5.常见基本函数的定积分:①b ba a(cx)c cdx cx |'=→=⎰ ②bn n 1n n 1ba a1(x )nx x dx x |n 1-+'=→=+⎰ ③bb a a(sin x)cos x cos xdx sin x |'=→=⎰ ④bba a(cos x)sin x sin xdx cos x |'=-→=-⎰⑤b b a a 11(ln x)dx ln x |(x 0)x x '=→=>⎰ ⑥a 1(log x)x ln a'=⑦x (e )'=xe →bxx baae dx e |=⎰⑧x bx xxba aa (a )a ln a a dx |ln a'=→=⎰【设计意图】核心知识网络化,题目千变万化,都围绕这些知识点,知识点为习题作理论指导.三、【范例导航】题型一 直接应用微积分基本定理求定积分值 例1. 计算下列定积分(1)32(sin cos )π⎰x x dx (2)ln 2(1)+⎰x xe e dx (3)12121xlgdx 1x-+-⎰【分析】(1)(2)是复合函数的积分,先化简,再求积分,准确找到原函数.(3)利用函数性质及定积分的几何意义求积分.【解答】(1)∵431(sin x)sin x cos x 4'=,∴320(sin cos )π⎰x x dx =44421111(sin x)|sin cos x sin 044244ππ=-=. (2)x x x 2x x 2x x 2x 1e (1e )e e ,(e e )e e 2'+=++=+,∴ln 2(1)+⎰x x e e dx =ln 220()+⎰x x e e dx=x2x ln 2ln 22ln 2000111(e e )|e e e e 222+=+--=115241222+⨯--= (3)记1xf (x)lg1x +=-,定义域为(-1,1), 因为11x 1x f (x)lg lg()f (x)1x 1x--+-===-+-所以f (x)为奇函数,故12121xlgdx 1x-+-⎰=0. 【点评】求定积分应该注意的几点:(1) 对被积函数不易求出F(x)时,要先化简,再求积分.(2) 要注意复合函数求导法则的逆应用,要“见影想形”,由f (x)推测F(x),再加以验证. (3) 利用函数的奇偶性,奇函数的积分为零,偶函数的定积分是半个区间上的二倍. 变式训练: 计算下列定积分(1)20cos 2cos sin xdx x xπ+⎰. (2)333x )dx -⎰答案:(1)2 (2)92π【设计意图】(1)是让学生学会先化简再积分;(2)是利用定积分的几何意义求积分.题型二 借助函数图象求分段函数的定积分值例2.已知函数()sin ,02()1,221,24x x f x x x x ππ⎧⎛⎫≤≤ ⎪⎪⎝⎭⎪⎪⎛⎫=≤≤⎨ ⎪⎝⎭⎪⎪-≤≤⎪⎩,,,先画出函数图象,再求这个函数在[]0,4上的定积分.【分析】被积函数是分段函数,依据定积分“对区间的可加性”,分段积分再求和. 【解答】42420222242022()sin 1(1)1(cos )||()|21(2)(40)7.22f x dx xdx dx x dxx x x x ππππππ=++-=-++-=+-+-=-⎰⎰⎰⎰【点评】(1)分段函数在区间[],a b 的定积分可分成n 段定积分和的形式,分段的标准可按照函数的分 段标准进行.(2)带绝对值号的解析式,可先化为分段函数,然后求解. 变式训练:1.设(),xf x e =求42()f x dx -⎰. 答案:422e e +-.2. 34|2|x dx -+⎰答案:2923.(4|1||3|)-+-⎰x x dx 答案:10【设计意图】求分段函数的定积分时,可利用积分性质将其表示为几段定积分和的形式,若函数解析 式中含有绝对值,应根据绝对值的意义找到分界点,去掉绝对值符号,化为分段函数后再求积分.题型三 综合应用——利用定积分求参数 已知[](]22x 1,x 2,2,f (x)1x ,x 2,4,⎧+∈-⎪=⎨+∈⎪⎩,求使3k 40f (x)dx 3=⎰恒成立的k 值. 【分析】注意隐含条件积分下限小于积分上限,k<3,分类讨论k (2,3)∈时,或k [2,2)∈-问题. 例3.【解答】(1)当k (2,3)∈时,33233k k k1f (x)dx (1x )dx (x x )|3=+=+⎰⎰ =331140(33)(k k )333+⨯-+=∴3k 3k 40++=,解得k=-1,但k (2,3)∈,∴k=-1(舍去).(2) k [2,2)∈-时,3232kk2f (x)dx (2x 1)dx (1x )dx =+++⎰⎰⎰=2233k 21(x x)|(x x )|3+++=223311(22)(k k)(33)(22)33+-+++⨯-+⨯=24040(k k)33-+=∴2k k 0+=,解得k 0,k 1==-或, 综上所述,k 0,k 1==-或.【点评】利用定积分求参数时,注意方程思想的应用.一般地,首先要弄清楚积分变量和被积函数.当被积函数中含有参数时,必须分清常数和变量,再进行计算;其次要注意积分下限不大于积分上限. 【变式训练】已知f (x)是二次函数,其图象过点(1,0),且1f (0)2,f (x)dx 0,f (x)'==⎰求的解析式.【答案】231f (x)x 2x 22=-+- 四、【解法小结】1.求定积分的一些常用技巧:(1)对被积函数,要先化简,再求积分.(2)若被积函数是分段函数,依据定积分“对区间的可加性”,分段积分再求和. (3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分. (4)利用函数的奇偶性求定积分2. 利用定积分求参数时,注意方程思想的应用. 五、【布置作业】必做题:1.计算下列定积分 (1)22xe dx ⎰(2)2sin 2xdx π⎰(3)2212x x 1dx x ++⎰ (4)41(2⎰x dx . 2.计算定积分 (1)20sin x dx π⎰(2)221--⎰x x dx .3.求函数1220()(2)=-⎰f a axa x dx ,求f (a)的最大值.必做题答案:1.(1)22e -(2)24π- (3)4+ln2 (4)142ln 2-2.(1)4 (2)1163.29【设计意图】培养学生自觉学习的习惯,检查学习效果,及时反馈,查漏补缺. 选做题:1.求定积分(1)(2)x(sin t cos t sin t)dt,y .+⎰求的最大值2.已知函数()(124)-=+⎰xaf x t a dt ,120()[()3]=+⎰F a f x a dx ,求函数F(a)的最小值.选做题答案:1.(1)2(2)2 2. 1【设计意图】对学有余力的学生留出自我发展的空间,尝试能力,拓展创新.课外探究:计算由曲线22y x,y x ==所围图形的面积;总结解题步骤.【设计意图】让学生养成预习的好习惯.六、【教后反思】1.本教案的亮点是:一是对所学知识的宏观把握;二是例题选择有代表性,分别为分段函数、复合函数求定积分及定积分的综合应用;关注定积分的基础知识和利用定积分求封闭图形面积的一般思路与方法,三是讲解透彻,讲练结合,学生落实较好.最后,在作业的布置上,安排了必做题、选做题充分体现了分层作业,必做题对学生理解、巩固知识能够起到良好的作用.2.本教案的弱项是:对一些具体问题处理的不够细致,例题的选择不够全面.。
微积分基本定理教案教学反思教案标题:微积分基本定理教案教学反思教案目标:1. 理解微积分基本定理的概念和应用。
2. 掌握微积分基本定理的证明方法。
3. 能够运用微积分基本定理解决实际问题。
教学内容:1. 微积分基本定理的概念介绍。
2. 微积分基本定理的证明方法。
3. 微积分基本定理的应用。
教学步骤:1. 导入(5分钟):- 引入微积分基本定理的概念,与学生一起回顾积分的定义和求导的概念。
- 通过一个简单的例子,引发学生对微积分基本定理的兴趣和思考。
2. 理论讲解(15分钟):- 讲解微积分基本定理的表述和意义。
- 介绍微积分基本定理的证明方法,包括牛顿-莱布尼茨公式的推导和反函数的求导法则。
3. 实例演练(20分钟):- 给学生提供一些具体的函数和曲线,引导他们运用微积分基本定理求解相关问题。
- 鼓励学生在解题过程中思考和讨论,促进他们对微积分基本定理的理解和应用。
4. 拓展应用(15分钟):- 给学生提供一些实际问题,引导他们将微积分基本定理应用到实际场景中。
- 鼓励学生在解决实际问题时运用创造性思维和批判性思维,培养他们的问题解决能力。
5. 总结与反思(5分钟):- 总结微积分基本定理的重要性和应用价值。
- 鼓励学生分享他们对本节课学习的收获和困惑,引导他们思考如何进一步提高自己的微积分能力。
教学反思:本节课的教学目标是让学生理解微积分基本定理的概念和应用,并能够熟练运用基本定理解决实际问题。
通过导入部分的引发兴趣和思考,可以激发学生的学习兴趣和主动性。
在理论讲解环节,采用清晰简明的语言和示意图,帮助学生理解微积分基本定理的含义和证明方法。
实例演练环节的设计旨在让学生通过具体的例子来运用基本定理,巩固理论知识。
拓展应用环节的实际问题可以培养学生的应用能力和创造性思维。
在总结与反思环节,鼓励学生分享自己的收获和困惑,帮助他们更好地理解和巩固所学知识。
为了提高教学效果,建议教师在教学过程中注重以下几点:- 使用多媒体工具或教具辅助讲解,使抽象的概念更加形象和易于理解。
《定积分与微积分基本定理》教案第一章:定积分的概念1.1 引入定积分的概念解释定积分的定义强调定积分的重要性1.2 定积分的性质演示定积分的几何意义证明定积分的可加性1.3 定积分的计算方法介绍牛顿-莱布尼茨公式演示定积分的计算步骤第二章:定积分的应用2.1 定积分在几何中的应用求解平面区域的面积求解曲线的弧长2.2 定积分在物理中的应用解释定积分在物理学中的意义求解物体的体积2.3 定积分在概率中的应用引入概率密度函数的概念求解概率问题第三章:微积分基本定理3.1 微积分基本定理的定义解释微积分基本定理的含义强调微积分基本定理的重要性3.2 微积分基本定理的证明介绍牛顿-莱布尼茨公式的证明过程解释微积分基本定理的证明方法3.3 微积分基本定理的应用演示微积分基本定理在实际问题中的应用求解实际问题中的定积分第四章:定积分的近似计算4.1 定积分的数值计算方法引入数值计算方法的概念介绍数值计算方法的原理4.2 定积分的数值计算实例演示定积分的数值计算过程分析数值计算的精度4.3 定积分的蒙特卡洛方法介绍蒙特卡洛方法的概念演示蒙特卡洛方法在定积分计算中的应用第五章:定积分的优化问题5.1 定积分的最值问题引入定积分最值问题的概念解释定积分最值问题的意义5.2 定积分的极值点问题介绍极值点的概念求解定积分的极值点5.3 定积分的优化应用演示定积分在实际问题中的应用求解实际问题中的定积分优化问题第六章:定积分的变限函数6.1 变限函数的概念解释变限函数的定义强调变限函数在定积分中的作用6.2 变限函数的极限介绍变限函数极限的概念证明变限函数极限的性质6.3 变限函数的定积分演示变限函数定积分的计算方法分析变限函数定积分的结果第七章:定积分的换元法7.1 换元法的概念解释换元法的定义强调换元法在定积分计算中的重要性7.2 换元法的步骤介绍换元法的计算步骤演示换元法在定积分计算中的应用7.3 换元法的注意事项分析换元法的适用条件讨论换元法可能遇到的问题第八章:定积分的分部积分法8.1 分部积分的概念解释分部积分法的定义强调分部积分法在定积分计算中的作用8.2 分部积分的步骤介绍分部积分的计算步骤演示分部积分法在定积分计算中的应用8.3 分部积分的推广介绍分部积分的推广形式讨论分部积分的扩展应用第九章:定积分的瑕点处理9.1 瑕点的概念解释瑕点的定义强调瑕点在定积分计算中的重要性9.2 瑕点的处理方法介绍瑕点的处理方法演示瑕点处理在定积分计算中的应用9.3 瑕点问题的进一步讨论分析瑕点问题的复杂性讨论瑕点问题的解决策略第十章:定积分的实际应用案例分析10.1 定积分在经济学中的应用引入经济学中的优化问题演示定积分在经济学中的应用10.2 定积分在生物学中的应用介绍生物学中的种群动力学问题求解生物学中的定积分问题10.3 定积分在工程学中的应用解释工程学中的质心问题应用定积分求解工程学问题第十一章:定积分的进一步拓展11.1 多元函数的定积分引入多元函数定积分概念解释多元函数定积分的计算方法11.2 定积分在多变量函数中的应用演示多元函数定积分在几何和物理问题中的应用求解多变量函数的定积分问题11.3 定积分的向量分析介绍向量分析与定积分的关系应用向量分析解决定积分问题第十二章:定积分的数值方法12.1 数值方法概述解释数值方法的定义和作用强调数值方法在定积分计算中的应用12.2 数值方法的原理与步骤介绍数值方法的原理和计算步骤演示数值方法在定积分计算中的应用12.3 常用数值方法分析讨论龙格-库塔和其他数值方法的优缺点分析不同数值方法在定积分计算中的应用场景第十三章:定积分的优化问题13.1 优化问题的定义与分类引入优化问题的概念解释优化问题的分类和特点13.2 定积分与优化问题的关系强调定积分在优化问题中的作用演示定积分在优化问题中的应用13.3 定积分优化问题的求解方法介绍常见的优化方法应用定积分求解优化问题第十四章:定积分在概率论中的应用14.1 概率论与定积分的关系解释概率论中定积分的作用强调定积分在概率论中的重要性14.2 定积分在概率密度函数中的应用引入概率密度函数的概念演示定积分在概率密度函数计算中的应用14.3 定积分在概率问题求解中的应用讨论定积分在概率问题求解中的方法求解概率问题中的定积分第十五章:定积分在现代科学技术中的应用15.1 定积分在物理学中的应用介绍定积分在物理学中的作用演示定积分在物理学问题中的应用15.2 定积分在化学中的应用解释定积分在化学问题中的重要性求解化学问题中的定积分15.3 定积分在其他学科中的应用分析定积分在其他学科领域的作用探讨定积分在不同学科中的应用前景重点和难点解析重点:1. 定积分的概念与性质:理解定积分的定义、几何意义以及其可加性等基本性质。
《定积分与微积分基本定理》教案第一章:定积分的概念1.1 引入定积分的概念解释定积分的定义强调定积分表示的是平面区域内曲线与x轴之间区域的面积1.2 定积分的性质介绍定积分的性质,如可加性、保号性等通过图形演示定积分的性质1.3 定积分的计算介绍定积分的计算方法,如牛顿-莱布尼茨公式演示如何计算常见函数的定积分第二章:微积分基本定理2.1 微积分基本定理的引入解释微积分基本定理的概念强调微积分基本定理是定积分与原函数的关系2.2 微积分基本定理的证明讲解微积分基本定理的证明过程强调证明中重要的极限概念2.3 微积分基本定理的应用介绍如何利用微积分基本定理求解定积分演示如何应用微积分基本定理解决实际问题第三章:定积分的换元法3.1 换元法的引入解释换元法的概念和作用强调换元法可以简化定积分的计算3.2 换元法的步骤介绍换元法的具体步骤通过例子演示换元法的应用3.3 换元法的常见类型介绍常见的换元法类型,如代数换元、三角换元等强调不同类型换元法的适用场景第四章:定积分的分部积分法4.1 分部积分的引入解释分部积分法的概念和作用强调分部积分法可以简化定积分的计算4.2 分部积分的步骤介绍分部积分的具体步骤通过例子演示分部积分的应用4.3 分部积分的常见类型介绍常见的分部积分类型,如基本分部积分、进位分部积分等强调不同类型分部积分的适用场景第五章:定积分的应用5.1 定积分在几何中的应用介绍定积分在几何中的应用,如计算曲线围成的面积强调定积分在几何中的重要性5.2 定积分在物理中的应用介绍定积分在物理中的应用,如计算物体的体积强调定积分在物理中的实际意义5.3 定积分在其他领域的应用介绍定积分在其他领域的应用,如经济学、生物学等强调定积分在不同领域中的广泛应用第六章:定积分的极限条件6.1 引入定积分的极限条件解释定积分的极限条件概念强调定积分的极限条件对于定积分计算的重要性6.2 定积分的收敛性讲解定积分的收敛性及其判断方法强调定积分的收敛性与发散性的区别6.3 定积分的绝对收敛与条件收敛介绍定积分的绝对收敛与条件收敛的概念强调判断定积分的绝对收敛与条件收敛的方法第七章:定积分的数值计算7.1 引入定积分的数值计算解释定积分的数值计算概念及意义强调定积分的数值计算在实际应用中的重要性7.2 梯形公式与辛普森公式介绍梯形公式与辛普森公式的概念及应用强调两种公式的优缺点及其适用场景7.3 数值计算方法的改进讲解数值计算方法的改进途径,如自适应细分法强调改进方法在提高计算精度方面的作用第八章:定积分在实际问题中的应用8.1 定积分在物理学中的应用介绍定积分在物理学中的应用,如求解物体的速度、位移等问题强调定积分在物理学中的实际意义8.2 定积分在经济学中的应用介绍定积分在经济学中的应用,如计算最大收益、最优化问题等强调定积分在经济学中的重要作用8.3 定积分在其他领域中的应用介绍定积分在生物学、环境科学等领域的应用强调定积分在不同领域中的广泛应用价值第九章:定积分的进一步拓展9.1 双重定积分引入双重定积分概念强调双重定积分表示的是空间区域内曲面与坐标平面之间区域的体积9.2 双重定积分的计算介绍双重定积分的计算方法,如双重牛顿-莱布尼茨公式演示如何计算常见函数的双重定积分9.3 三重定积分与多重定积分介绍三重定积分与多重定积分的概念及计算方法强调多重定积分在更高维度问题中的应用回顾本章所学内容,强调定积分与微积分基本定理的关键点提醒学生注意定积分在实际问题中的应用10.2 定积分的拓展学习推荐学生进一步学习的内容,如数值计算方法、多重积分等强调定积分在数学及其它领域中的广泛应用,激发学生的学习兴趣重点和难点解析重点环节1:定积分的性质解析:定积分的性质是理解定积分概念的基础,包括定积分的可加性、保号性等。
微积分基本定理
一:教学目标
知识与技能目标
通过实例,直观了解微积分基本定理的内容,会用牛顿-莱布尼兹公式求简单的定积分
过程与方法
通过实例探求微分与定积分间的关系,体会微积分基本定理的重要意义 情感态度与价值观
通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。
二:教学重难点
重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基
本定理的含义,并能正确运用基本定理计算简单的定积分。
难点:了解微积分基本定理的含义
三:教学过程:
1、知识链接:
定积分的概念:
用定义计算的步骤:
2、合作探究:
⑴导数与积分的关系;
我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。
有没有计算定积分的更直接方法,也是比较一般的方法呢?
下面以变速直线运动中位置函数与速度函数之间的联系为例:
设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥),
则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为2
1()T T v t dt ⎰。
另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即
2
1()T T v t dt ⎰=12()()S T S T - 而()()S t v t '=。
说出你的发现
⑵ 微积分基本定理
对于一般函数()f x ,设()()F x f x '=,是否也有
()()()b
a f x dx F
b F a =-⎰?
若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差
()()F b F a -来计算()f x 在[,]a b 上的定积分的方法。
设()()F x f x '=则在[,]a b 上,⊿y=()()F b F a -
将[,]a b 分成n 等份,在第i 个区间[x i-1,x i ]上,记⊿yi=F(x i )-F(x i-1),则
⊿y=∑⊿y i 如下图,因为⊿h i =f(x i-1) ⊿x 而⊿y i ≈⊿h i 所以
⊿y ≈∑⊿h i =∑f(x i-1) ⊿x 故
⊿y=lim ∑⊿h i =∑f(x i-1) ⊿x=
⎰b a dx x f )( 即⎰b a dx x f )(=()()F b F a -
所以有微积分基本定理: 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则
(此处并不要求学生理解证明的过程)
为了方便起见,还常用()|b
a F x 表示()()F
b F a -,即
该式称之为微积分基本公式或牛顿—莱布尼兹公式。
它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。
它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。
因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。
⑶应用举例
例1.计算下列定积分:
(1)2
11dx x ⎰; (2)3211(2)x dx x
-⎰。
解:(1)因为'1(ln )x x
=, 所以22111ln |ln 2ln1ln 2dx x x
==-=⎰。
(2))因为2''211()2,()x x x x
==-, 所以3332211111(2)2x dx xdx dx x
x -=-⎰⎰⎰ 233111122||(91)(1)33x x =+=-+-=。
练习:计算120x dx ⎰ 解:由于313x 是2x 的一个原函数,所以根据牛顿—莱布尼兹公式有
120x dx ⎰=3101|3x =33111033⋅-⋅=13
例2.计算下列定积分:
2200sin ,sin ,sin xdx xdx xdx π
ππ
π⎰⎰⎰。
由计算结果你能发现什么结论?试利用曲边梯形的面积表示所发现的结论。
解:因为'(cos )sin x x -=,
所以
00sin (cos )|(cos )(cos 0)2xdx x ππ
π=-=---=⎰,
22sin (cos )|(cos 2)(cos )2xdx x ππππ
ππ=-=---=-⎰, 2
200sin (cos )|(cos 2)(cos 0)0xdx x πππ=-=---=⎰. 可以发现,定积分的值可能取正值也可能取负值,还可能是0:
( l )当对应的曲边梯形位于 x 轴上方时(图一3 ) ,定积分的值取正值,且等于曲边梯形的面积;
图1 . 6 一 3 ( 2 )
(2)当对应的曲边梯形位于 x 轴下方时(图 1 . 6 一 4 ) ,定积分的值取负值,且等于曲边梯形的面积的相反数;
( 3)当位于 x 轴上方的曲边梯形面积等于位于 x 轴下方的曲边梯形面积时,定积分的值为0(图 1 . 6 一 5 ) ,且等于位于 x 轴上方的曲边梯形面积减去位于 x 轴下方的曲边梯形面积.
例3.汽车以每小时32公里速度行驶,到某处需要减速停车。
设汽车以等减速度a =米/秒2刹车,问从开始刹车到停车,汽车走了多少距离?
解:首先要求出从刹车开始到停车经过了多少时间。
当t=0时,汽车速度0v =32公里/小时=3210003600
⨯米/秒≈米/秒,刹车后汽车减速行驶,其速度为0(t)=t=8.88-1.8t v v a -当汽车停住时,速度(t)=0v ,故从(t)=8.88-1.8t=0v 解得
8.88t= 4.931.8
≈秒 于是在这段时间内,汽车所走过的距离是
4.93
4.9300(t)(8.88 1.8t)s v dt dt ==-⎰⎰= 4.93201(8.88 1.8t )21.902-⨯≈米,即在刹车后,汽车
需走过米才能停住.
微积分基本定理揭示了导数和定积分之间的内在联系,同时它也提供了计算定积分的一种有效方法.微积分基本定理是微积分学中最重要的定理,它使微积分学蓬勃发展起来,成为一门影响深远的学科,可以毫不夸张地说,微积分基本定理是微积分中最重要、最辉煌的成果.
⑷课堂练习
课本p55练习⑴----⑻
四:课堂小结:
本节课借助于变速运动物体的速度与路程的关系以及图形得出了特殊情况下的牛顿-莱布尼兹公式.成立,进而推广到了一般的函数,得出了微积分基本定理,得到了一种求定积分的简便方法,运用这种方法的关键是找到被积函数的原函数,这就要求大家前面的求导数的知识比较熟练,希望,不明白的同学,回头来多复习!
五:教学后记:
从教以来,一直困惑于一个问题:课堂上如何突出重点并突破难点。
当然,理
论方面自己早已烂熟于心,关键是缺乏实践方面的体验及感悟。
在今天的课堂上,本来一个相当简单的问题,可在课堂上却花费了大量时间,更严重的是学生却听得更为糊涂。
一个主要原因在于,对相关知识结构理解不到位,眉毛胡子一把抓,而难点又无法解决。