初中数学教师解题比赛训练讲义
- 格式:doc
- 大小:1.61 MB
- 文档页数:21
第十七讲 解直角三角形利用直角三角形中的已知元素 (起码有一条是边 )求得其他元素的过程叫做解直角三角形,解直角三角形有以下双方面的应用:1.为线段、角的计算供给新的门路.解直角三角形的基础是三角函数的观点,三角函数使直角三角形的边与角得以转变,打破纯粹几何关系的限制.2.解实质问题.丈量、航行、工程技术等生活生产的实质问题,很多问题可转变为解直角三角形获解,解决问题的重点是在理解相关名词的意义的基础上,正确把实质问题抽象为几何图形,从而转变为解直角三角形.【例题求解】【例 1】 如图,已知电线杆AB直立于地面上,它的影子恰巧照在土坡的坡面CD和地面BC上,假如CD与地面成45°,∠A = 60°, CD = 4m , BC = ( 4 62 2 )m ,则电线杆AB的长为.思路点拨延伸AD交 BC 于 E ,作 DF ⊥BC于 F ,为解直角三角形创建条件.【例 2】 如图,在四边形 ABCD 中, AB= 4 2 ,BC-1 ,CD= 3 ,∠ B=135 °,∠ C =90°,则∠ D 等于 ()A . 60°B . 67.5°C . 75°D .没法确立思路点拨 经过对内切割或向外补形,结构直角三角形.注:因直角三角形元素之间有好多关系,故用已知元素与未知元素的门路常不唯一,选择如何的门路最有效、最合理呢?请记着:有斜用弦,无斜用切,宁乘勿除.在没有直角的条件下,常经过作垂线结构直角三角形;在解由多个直角三角形组合而成的问题时,常常先解已具备条件的直角三角形,使得求解的直角三角形最后可解.【例 3】 如图,在△ ABC 中,∠ =90°,∠ BAC=30 °, BC=l ,D 为 BC 边上一点, tan ∠ ADC 是方程 3(x 21) 5(x 1 ) 2 的一个较大的根 ?求 CD 的长. x 2 x思路点拨 解方程求出 tan ∠ ADC 的值,解 Rt △ABC 求出 AC 值,为解 Rt △ ADC 创建条件.【例 4】 如图,自卸车车厢的一个侧面是矩形 ABCD ,AB=3 米,BC=0 .5 米 ,车厢底部距离地面 1.2米,卸货时,车厢倾斜的角度 θ =60°.问此时车厢的最高点 A 距离地面多少米 ?(精准到 1 米 ) 思路点拨 作协助线将问题转变为解直角三角形,如何作协助线结构基本图形,睁开空间想象,就能获得不一样的解题寻路【例 5】 如图,甲楼楼高 16 米,乙楼坐落在甲楼的正北面,已知当地冬至正午12 时太阳光芒与水平面的夹角为 30°,此时,求:(1) 假如两楼相距 20 米,那么甲楼的影子落在乙楼上有多高?(2) 假如甲楼的影子恰巧不落在乙楼上,那么两楼的距离应该是多少米?思路点拨 (1) 设甲楼最高处 A 点的影子落在乙楼的 C 处,则图中 CD 的长度就是甲楼的影子在乙楼上的高; (2)设点 A 的影子落在地面上某一点 C ,求 BC 即可.注:在解决一个数学识题后, 不可以只知足求出问题的答案, 同时还应付解题过程进行多方面剖析和观察,思虑一下有没有多种解题门路,每种门路各有什么长处与缺点,哪一条门路更合理、更简捷,从中又能给我们带来如何的启示等. 若能养成这类优秀的思虑问题的习惯,则可逐渐培育和提升我们剖析探究能力.学历训练1.如图,在△ ABC 中,∠ A=30 °, tanB= 1, BC= 10 ,则 AB 的长为.32.如图,在矩形 ABCD 中. E 、 F 、 G 、 H 分别为 AB 、BC 、 CD 、 DA 的中点,若 tan ∠AEH= 4,四边形 EFGH 的周长为 40cm ,则矩形 ABCD 的面积为 .33.如图,旗杆 AB ,在 C 处测得旗杆顶 A 的仰角为 30°,向旗杆前北进 10m ,达到 D ,在 D 处测得 A的仰角为 45°,则旗杆的高为 .4.上午 9 时,一条船从 A 处出发,以每小时 40 海里的速度向正东方向航行, 9时30分抵达 B 处,从A 、B 两处罚别测得小岛 M 在北偏东 45°和北偏东 15°方向,那么 B 处船与小岛 M 的距离为 ( )A .20 海里B . 20 海里C . 15 3 海里D .20 35.已知 a 、 b 、 c 分别为△ ABC 中∠ A 、∠ B 、∠ C 的对边,若对于 x 的方程 (b c)x 2 2ax c b 0有两个相等的实根,且sinB ·cosA —cosB · sinA = 0,则△ ABC 的形状为 ()A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形6.如图,在四边形 ABCD 中,∠ A = 135°,∠ B= ∠ D=90 °, BC= 2 3 ,AD=2 ,则四边形 ABCD 的面积是()A .4 2B .4 3C . 4D .67.如图,在△ ABC 中,∠ ACB=90 °, CD ⊥ AB 于 D , CD=1 ,已知 AD 、 BD 的长是对于 x 的方程x 2 px q 0 的两根,且 tanA — tanB=2,求 p 、 q 的值.8.如图,某电信部门计划修筑一条连接 B 、 C 两地的电缆,丈量人员在山脚角分别为 30°、 45°,在 B 地测得 C 地的仰角为60°.已知 C 地比 A 地高 多少米 ?(精准到 0.1 米 )A 点测得B 、C 两地的仰200 米,则电缆 BC 起码长9.如图,在等腰Rt △ ABC中,∠C=90 °,∠CBD = 30,则AD=.DC10.如图,正方形ABCD中, N是DC的中点.M 是AD上异于D 的点,且∠NMB=∠ MBC ,则tan∠ABM =.11.在△ ABC 中,AB= 6 2 ,BC=2 ,△ ABC 的面积为 l ,若∠ B 是锐角,则∠ C 的度数是.12 .已知等腰三角形的三边长为 a 、 b 、c ,且 a c ,若对于 x 的一元二次方程 x 2 2bx c0 的两根之差为 2 ,则等腰三角形的一个底角是()A . 15°B . 30°C .45°D . 60°13 .如图,△ ABC 为等腰直角三角形,若AD= 1 AC ,CE= 1BC ,则∠ 1 和∠ 2 的大小关系是 ()33A .∠ 1>∠2B .∠ 1<∠2C .∠ 1=∠ 2D .没法确立14 .如图,在正方形 ABCD 中,F 是 CD 上一点, AE ⊥ AF ,点 E 在 CB 的延伸线上, EF 交 AB 于点 G . (1)求证: DF ×FC =BG × EC ;(2)当 tan ∠ DAF=1时,△ AEF 的面积为 10,问当 tan ∠DAF= 2时,△ AEF 的面积是多少 ?3315.在一个三角形中,有一边边长为 16,这条边上的中线和高线长度分别为10 和 9,求三角形中此边所对的角的正切值.16.台风是一种自然灾祸,它以台风中心为圆心在四周数十千米范围内形成气旋风暴,有极强的损坏力.据气象观察,距沿海某城市A 的正南方向 220 千米B 处有一台风中心,此中心最狂风力为12 级, 每远离台风中心 20 千米,风力就会减弱一级,该台风中心现正在以 15 千米/时的速度沿北偏东30°方神往 C 处挪动,且台风中心风力不变,若城市所受风力达到或超出四级,则称为受台风影响.(1) 该城市能否会遇到此次台风的影响 ?请说明原因.(2) 若会遇到台风影响,那么台风影响该城市的连续时间有多长?(3) 该城市遇到台风影响的最狂风力为几级?17.如图,山上有一座铁塔,山脚下有一矩形建筑物 ABCD ,且建筑物四周没有宽阔平坦地带.该建筑物顶端宽度 AD 和高度 DC 都可直接测得,从 A 、 D 、 C 三点可看到塔顶端 H .可供使用的丈量工拥有皮尺、测角器.(1) 请你依据现有条件,充分利用矩形建筑物,设计一个丈量塔顶端到地面高度HG 的方案.详细要求如下:①丈量数据尽可能少;m ②在所给图形上,画出你设计的丈量平面图,并将应测数据标志在图形上(假如测 A 、 D 间距离,用表示;假如测 D 、 C 间距离,用n 表示;假如测角,用α、β 、γ等表示.测角器高度不计).(2)依据你丈量的数据,计算塔顶端到地面的高度HG( 用字母表示 ).参照答案。
第十七讲解直角三角形利用直角三角形中的已知元素(至少有一条是边)求得其余元素的过程叫做解直角三角形,解直角三角形有以下两方面的应用:1.为线段、角的计算提供新的途径.解直角三角形的基础是三角函数的概念,三角函数使直角三角形的边与角得以转化,突破纯粹几何关系的局限.2.解实际问题.测量、航行、工程技术等生活生产的实际问题,许多问题可转化为解直角三角形获解,解决问题的关键是在理解有关名词的意义的基础上,准确把实际问题抽象为几何图形,进而转化为解直角三角形.【例题求解】【例1】如图,已知电线杆AB直立于地面上,它的影子恰好照在土坡的坡面CD和地面BC上,如果CD与地面成45°,∠A=60°,CD=4m,BC=(24-)m,则电线杆AB62的长为.思路点拨延长AD交BC于E,作DF⊥BC于F,为解直角三角形创造条件.【例2】如图,在四边形ABCD中,AB=24-,BC-1,CD=3,∠B=135°,∠C=90°,则∠D等于( )A.60°B.67.5°C.75°D.无法确定思路点拨通过对内分割或向外补形,构造直角三角形.注:因直角三角形元素之间有很多关系,故用已知元素与未知元素的途径常不惟一,选择怎样的途径最有效、最合理呢?请记住:有斜用弦,无斜用切,宁乘勿除.在没有直角的条件下,常通过作垂线构造直角三角形;在解由多个直角三角形组合而成的问题时,往往先解已具备条件的直角三角形,使得求解的直角三角形最终可解.【例3】如图,在△ABC中,∠=90°,∠BAC=30°,BC=l,D为BC边上一点,tan∠ADC 是方程2)1(5)1(322=+-+x x x x 的一个较大的根?求CD 的长. 思路点拨 解方程求出 tan ∠ADC 的值,解Rt △ABC 求出AC 值,为解Rt △ADC 创造条件.【例4】 如图,自卸车车厢的一个侧面是矩形ABCD ,AB=3米,BC=0.5米 ,车厢底部距离地面1.2米,卸货时,车厢倾斜的角度θ=60°.问此时车厢的最高点A 距离地面多少米?(精确到1米)思路点拨 作辅助线将问题转化为解直角三角形,怎样作辅助线构造基本图形,展开空间想象,就能得到不同的解题寻路【例5】 如图,甲楼楼高16米,乙楼坐落在甲楼的正北面,已知当地冬至中午12时太阳光线与水平面的夹角为30°,此时,求:(1)如果两楼相距20米,那么甲楼的影子落在乙楼上有多高?(2)如果甲楼的影子刚好不落在乙楼上,那么两楼的距离应当是多少米?思路点拨 (1)设甲楼最高处A 点的影子落在乙楼的C 处,则图中CD 的长度就是甲楼的影子在乙楼上的高;(2)设点A 的影子落在地面上某一点C ,求BC 即可.注:在解决一个数学问题后,不能只满足求出问题的答案,同时还应对解题过程进行多方面分析和考察,思考一下有没有多种解题途径,每种途径各有什么优点与缺陷,哪一条途径更合理、更简捷,从中又能给我们带来怎样的启迪等. 若能养成这种良好的思考问题的习惯,则可逐步培养和提高我们分析探索能力.学历训练1.如图,在△ABC 中,∠A=30°,tanB=31,BC=10,则AB 的长为 .2.如图,在矩形ABCD 中.E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,若tan ∠AEH =34,四边形EFGH 的周长为40cm ,则矩形ABCD 的面积为 .3.如图,旗杆AB ,在C 处测得旗杆顶A 的仰角为30°,向旗杆前北进10m ,达到D ,在D 处测得A 的仰角为45°,则旗杆的高为 .4.上午9时,一条船从A 处出发,以每小时40海里的速度向正东方向航行,9时30分到达B 处,从A 、B 两处分别测得小岛M 在北偏东45°和北偏东15°方向,那么B 处船与小岛M 的距离为( )A .20海里B .20海里C .315海里D .3205.已知a 、b 、c 分别为△ABC 中∠A 、∠B 、∠C 的对边,若关于x 的方程02)(2=-+-+b c ax x c b 有两个相等的实根,且sinB ·cosA —cosB ·sinA =0,则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形6.如图,在四边形ABCD 中,∠A =135°,∠B=∠D=90°,BC=32,AD=2,则四边形ABCD 的面积是( )A .24B .34C . 4D .67.如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,CD=1,已知AD 、BD 的长是关于x 的方程02=++q px x 的两根,且tanA —tanB=2,求p 、q 的值.8.如图,某电信部门计划修建一条连结B 、C 两地的电缆,测量人员在山脚A 点测得B 、C 两地的仰角分别为30°、45°,在B 地测得C 地的仰角为60°.已知C 地比A 地高200米,则电缆BC 至少长多少米?(精确到0.1米)9.如图,在等腰Rt △ABC 中,∠C=90°,∠CBD =30,则DCAD = .10.如图,正方形ABCD 中,N 是DC 的中点.M 是AD 上异于D 的点,且∠NMB=∠MBC ,则tan ∠ABM = .11.在△ABC 中,AB=26-,BC=2,△ABC 的面积为l ,若∠B 是锐角,则∠C 的度数是 .12.已知等腰三角形的三边长为 a 、b 、c ,且c a =,若关于x 的一元二次方程022=+-c bx x 的两根之差为2,则等腰三角形的一个底角是( )A . 15°B .30°C .45°D .60°13.如图,△ABC 为等腰直角三角形,若AD=31AC ,CE=31BC ,则∠1和∠2的大小关系是( )A .∠1>∠2B .∠1<∠2C .∠1=∠2D .无法确定14.如图,在正方形ABCD 中,F 是CD 上一点,AE ⊥AF ,点E 在CB 的延长线上,EF 交AB 于点G .(1)求证:DF ×FC =BG ×EC ;(2)当tan ∠DAF=31时,△AEF 的面积为10,问当tan ∠DAF=32时,△AEF 的面积是多少?15.在一个三角形中,有一边边长为16,这条边上的中线和高线长度分别为10和9,求三角形中此边所对的角的正切值.16.台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220千米B 处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正在以15千米/时的速度沿北偏东30°方向往C 处移动,且台风中心风力不变,若城市所受风力达到或超过四级,则称为受台风影响.(1)该城市是否会受到这次台风的影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?17.如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带.该建筑物顶端宽度AD和高度DC都可直接测得,从A、D、C三点可看到塔顶端H.可供使用的测量工具有皮尺、测角器.(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG的方案.具体要求如下:①测量数据尽可能少;②在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D间距离,用m表示;如果测D、C间距离,用n表示;如果测角,用α、β、γ等表示.测角器高度不计).(2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示).参考答案。
第二十三讲圆与圆圆与圆的位置关系有外离、外切、相交、内切、内含五种情形,判定两圆的位置关系有文档设计者:设计时间:文档类型:文库精品文档,欢迎下载使用。
Word精品文档,可以编辑修改,放心下载如下三种方法:1.通过两圆交点的个数确定;2.通过两圆的半径与圆心距的大小量化确定;3.通过两圆的公切线的条数确定.为了沟通两圆,常常添加与两圆都有联系的一些线段,如公共弦、共切线、连心线,以及两圆公共部分相关的角和线段,这是解圆与圆位置关系问题的常用辅助线.熟悉以下基本图形、基本结论:【例题求解】【例1】如图,⊙O l与半径为4的⊙O2内切于点A,⊙O l经过圆心O2,作⊙O2的直径BC 交⊙O l于点D,EF为过点A的公切线,若O2D=22,那么∠BAF= 度.思路点拨直径、公切线、O2的特殊位置等,隐含丰富的信息,而连O2O l必过A点,先求出∠D O2A的度数.注:(1)两圆相切或相交时,公切线或公共弦是重要的类似于“桥梁”的辅助线,它可以使弦切角与圆周角、圆内接四边形的内角与外角得以沟通.同时,又是生成圆幂定理的重要因素.(2)涉及两圆位置关系的计算题,常作半径、连心线,结合切线性质等构造直角三角形,将分散的条件集中,通过解直角三角形求解.【例2】如图,⊙O l与⊙O2外切于点A,两圆的一条外公切线与⊙O1相切于点B,若AB 与两圆的另一条外公切线平行,则⊙O l 与⊙O2的半径之比为( )A.2:5 B.1:2 C.1:3 D.2:3思路点拨添加辅助线,要探求两半径之间的关系,必须求出∠CO l O2 (或∠DO2O l)的度数,为此需寻求∠CO1B、∠CO1A、∠BO1A的关系.【例3】如图,已知⊙O l与⊙O2相交于A、B两点,P是⊙O l上一点,PB的延长线交⊙O2于点C,PA交⊙O2于点D,CD的延长线交⊙O l于点N.(1)过点A作AE∥CN交⊙O l l于点E,求证:PA=PE;(2)连结PN,若PB=4,BC=2,求PN的长.思路点拨(1)连AB,充分运用与圆相关的角,证明∠PAE=∠PEA;(2)PB·PC=PD·PA,探寻PN、PD、PA对应三角形的联系.【例4】如图,两个同心圆的圆心是O,AB是大圆的直径,大圆的弦与小圆相切于点D,连结OD并延长交大圆于点E,连结BE交AC于点F,已知AC=24,大、小两圆半径差为2.(1)求大圆半径长;(2)求线段BF的长;(3)求证:EC与过B、F、C三点的圆相切.思路点拨(1)设大圆半径为R,则小圆半径为R-2,建立R的方程;(2)证明△EBC∽△ECF;(3)过B、F、C三点的圆的圆心O′,必在BF上,连OˊC,证明∠O′CE=90°.注:本例以同心圆为背景,综合了垂径定理、直径所对的圆周角为直角、切线的判定、勾股定理、相似三角形等丰富的知识.作出圆中基本辅助线、运用与圆相关的角是解本例的关键.【例5】 如图,AOB 是半径为1的单位圆的四分之一,半圆O 1的圆心O 1在OA 上,并与弧AB 内切于点A ,半圆O 2的圆心O 2在OB 上,并与弧AB 内切于点B ,半圆O 1与半圆O 2相切,设两半圆的半径之和为x ,面积之和为y . (1)试建立以x 为自变量的函数y 的解析式; (2)求函数y 的最小值.思路点拨 设两圆半径分别为R 、r ,对于(1),)(2122r R y +=π,通过变形把R 2+r 2用“x =R+r ”的代数式表示,作出基本辅助线;对于(2),因x =R+r ,故是在约束条件下求y 的最小值,解题的关键是求出R+r 的取值范围.注:如图,半径分别为r 、R 的⊙O l 、⊙O 2外切于C ,AB ,CM 分别为两圆的公切线,O l O 2与AB 交于P 点,则: (1)AB=2r R ;(2) ∠ACB=∠O l M O 2=90°; (3)PC 2=PA ·PB ; (4)sinP=rR rR +-; (5)设C 到AB 的距离为d ,则dR r 211=+.学力训练1.已知:⊙O l 和⊙O 2交于A 、B 两点,且⊙O l 经过点O 2,若∠AO l B=90°,则∠A O 2B 的度数是 .2.矩形ABCD 中,AB=5,BC=12,如果分别以A 、C 为圆心的两圆相切,点D 在圆C 内,点B 在圆C 外,那么圆A 的半径r 的取值范围 . (2003年上海市中考题)3.如图;⊙O l 、⊙O 2相交于点A 、B ,现给出4个命题:(1)若AC 是⊙O 2的切线且交⊙O l 于点C ,AD 是⊙O l 的切线且交⊙O 2于点D ,则AB 2=BC ·BD ;(2)连结AB 、O l O 2,若O l A=15cm ,O 2A=20cm ,AB=24cm ,则O l O 2=25cm ;(3)若CA 是⊙O l 的直径,DA 是⊙O 2 的一条非直径的弦,且点D 、B 不重合,则C 、B 、D 三点不在同一条直线上,(4)若过点A 作⊙O l 的切线交⊙O 2于点D ,直线DB 交⊙O l 于点C ,直线CA 交⊙O 2于点E ,连结DE ,则DE 2=DB ·DC ,则正确命题的序号是 (写出所有正确命题的序号) .4.如图,半圆O 的直径AB=4,与半圆O 内切的动圆O l 与AB 切于点M ,设⊙O l 的半径为y ,AM 的长为x ,则y 与x 的函数关系是 ,自变量x 的取值范围是 .5.如图,施工工地的水平地面上,有三根外径都是1米的水泥管两两相切摞在一起,则其最高点到地面的距离是( )A .2B .221+C .231+D .231+ 6.如图,已知⊙O l 、⊙O 2相交于A 、B 两点,且点O l 在⊙O 2上,过A 作⊙O l l 的切线AC交B O l 的延长线于点P ,交⊙O 2于点C ,BP 交⊙O l 于点D ,若PD=1,PA=5,则AC 的长为( )A .5B .52C .52+D .537.如图,⊙O l 和⊙O 2外切于A ,PA 是内公切线,BC 是外公切线,B 、C 是切点①PB=AB ;②∠PBA=∠PAB ;③△PAB ∽△O l AB ;④PB ·PC=O l A ·O 2A . 上述结论,正确结论的个数是( )A .1B .2C .3D .48.两圆的半径分别是和r (R>r),圆心距为d ,若关于x 的方程0)(222=-+-d R rx x 有两个相等的实数根,则两圆的位置关系是( )A.一定内切B.一定外切C.相交D.内切或外切9.如图,⊙O l和⊙O2内切于点P,过点P的直线交⊙O l于点D,交⊙O2于点E,DA与⊙O2相切,切点为C.(1)求证:PC平分∠APD;(2)求证:PD·PA=PC2+AC·DC;(3)若PE=3,PA=6,求PC的长.10.如图,已知⊙O l和⊙O2外切于A,BC是⊙O l和⊙O2的公切线,切点为B、C,连结BA并延长交⊙O l于D,过D点作CB的平行线交⊙O2于E、F,求证:(1)CD是⊙O l的直径;(2)试判断线段BC、BE、BF的大小关系,并证明你的结论.11.如图,已知A是⊙O l、⊙O2的一个交点,点M是O l O2的中点,过点A的直线BC垂直于MA,分别交⊙O l、⊙O2于B、C.(1)求证:AB=AC;(2)若O l A切⊙O2于点A,弦AB、AC的弦心距分别为d l、d2,求证:d l+d2=O1O2;(3)在(2)的条件下,若d l d2=1,设⊙O l、⊙O2的半径分别为R、r,求证:R2+r2= R2r2.12.已知半径分别为1和2的两个圆外切于点P,则点P到两圆外公切线的距离为.13.如图,7根圆形筷子的横截面圆半径为r,则捆扎这7根筷子一周的绳子的长度为.14.如图,⊙O l和⊙O2内切于点P,⊙O2的弦AB经过⊙O l的圆心O l,交⊙O l于C、D,若AC:CD:DB=3:4:2,则⊙O l与⊙O2的直径之比为( )A.2:7 B.2:5 C.2:3 D.1:315.如图,⊙O l与⊙O2相交,P是⊙O l上的一点,过P点作两圆的切线,则切线的条数可能是( )A.1,2 B.1,3 C.1,2,3 D.1,2,3,416.如图,相等两圆交于A、B两点,过B任作一直线交两圆于M、N,过M、N各引所在圆的切线相交于C,则四边形AMCN有下面关系成立( )A.有内切圆无外接圆B有外接圆无内切圆C.既有内切圆,也有外接圆D.以上情况都不对17.已知:如图,⊙O与相交于A,B两点,点P在⊙O上,⊙O的弦AC切⊙P于点A,CP及其延长线交⊙P P于点D,E,过点E作EF⊥CE交CB的延长线于F.(1)求证:BC是⊙P的切线;(2)若CD=2,CB=22,求EF的长;(3)若k=PE:CE,是否存在实数k,使△PBD恰好是等边三角形?若存在,求出是的值;若不存在,请说明理由.18.如图,⊙A和⊙B是外离两圆,⊙A的半径长为2,⊙B的半径长为1,AB=4,P为连接两圆圆心的线段AB上的一点,PC切⊙A于点C,PD切⊙B于点D.(1)若PC=PD,求PB的长;(2)试问线段AB上是否存在一点P,使PC2+PD2=4?,如果存在,问这样的P点有几个?并求出PB的值;如果不存在,说明理由;(3)当点F在线段AB上运动到某处,使PC⊥PD时,就有△APC∽△PBD.请问:除上述情况外,当点P在线段AB上运动到何处(说明PB的长为多少,或PC、PD 具有何种关系)时,这两个三角形仍相似;并判断此时直线CP与OB的位置关系,证明你的结论.19.如图,D、E是△ABC边BC上的两点,F是BA延长线上一点,∠DAE=∠CAF.(1)判断△ABD的外接圆与△AEC的外接圆的位置关系,并证明你的结论;(2)若△ABD的外接圆半径是△AEC的外接圆半径的2倍,BC=6,AB=4,求BE的长.20.问题:要将一块直径为2cm的半圆形铁皮加工成一个圆柱的两个底面和一个圆锥的底面.操作:方案一:在图甲中,设计一个使圆锥底面最大,半圆形铁皮得以最充分利用的方案(要求,画示意图) .方案二;在图乙中,设计一个使圆柱两个底面最大,半圆形铁皮得以最充分利用的方案(要求:画示意图);,探究:(1)求方案一中圆锥底面的半径;(2)求方案二中圆锥底面及圆柱底面的半径;(3)设方案二中半圆圆心为O,圆柱两个底面的圆心为O1、O2,圆锥底面的圆心为O3,试判断以O1、O2、O3、O为顶点的四边形是什么样的特殊四边形,并加以证明.参考答案温馨提示After writing the test paper, you must remember to check Oh, I wish you all can achieve good results!可以编辑的试卷(可以删除)。
全国初中数学竟赛辅导讲义修订(2)二元一次方程组解的讨论甲内容提要1. 二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解的情况有以下三种: ① 当212121c c b b a a ==时,方程组有无数多解。
(∵两个方程等效) ② 当212121c c b b a a ≠=时,方程组无解。
(∵两个方程是矛盾的) ③ 当2121b b a a ≠(即a 1b 2-a 2b 1≠0)时,方程组有唯一的解: ⎪⎪⎩⎪⎪⎨⎧--=--=1221211212211221b a b a a c a c y b a b a b c b c x (这个解可用加减消元法求得) 2. 方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按二元一次方程整数解的求法进行。
3. 求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解含待定系数的不等式或加以讨论。
(见例2、3)乙例题例1. 选择一组a,c 值使方程组⎩⎨⎧=+=+c y ax y x 275 ① 有无数多解, ②无解, ③有唯一的解解: ①当 5∶a=1∶2=7∶c 时,方程组有无数多解解比例得a=10, c=14。
② 当 5∶a =1∶2≠7∶c 时,方程组无解。
解得a=10, c ≠14。
③当 5∶a ≠1∶2时,方程组有唯一的解,即当a ≠10时,c 不论取什么值,原方程组都有唯一的解。
例2. a 取什么值时,方程组⎩⎨⎧=+=+3135y x a y x 的解是正数? 解:把a 作为已知数,解这个方程组 得⎪⎪⎩⎪⎪⎨⎧-=-=23152331a y a x ∵⎩⎨⎧>>00y x ∴⎪⎪⎩⎪⎪⎨⎧>->-0231502331a a解不等式组得⎪⎪⎩⎪⎪⎨⎧><531331a a 解集是6311051<<a 答:当a 的取值为6311051<<a 时,原方程组的解是正数。
ODCBA21FEDCBAFEDCBA初中数学竞赛培训讲义第四讲 三角形及全等三角形二 赛题精讲 1 三角形中的边角关系例1 周长为30,各边长互不相等且都是整数的三角形有几个?练习 在ABC D 中,5AC =,4AD =中线,求边AB 的取值范围.2 全等三角形的性质例 2 在ABC D 中和ABD D 中,,AC BD 交于点O ,90ACBADB ?? ,请再添加一个条件使ABC D ≌ABD D ,并证明你所提出的命题.练习 如图, 90,,,EF B C AE AF ?靶=?给出下列结论:①12? ,②BE CF =,③ACN D ≌ABM D ,④CD DN =,其中正确的结论是 (把你认为所有正确的结论的序号填上)3 构造全等证明几何问题 (1)直接连线添加辅助线例3 如图,点C 在线段AB 上,,,,DA AB EB AB FC AB ^^^且DA BC =,EB AC =,FC AB =,51AFB? ,求DFE Ð的度数.321EDC B A GNM EDC B AQPF EDCBA练习 1、如图,A 在DE 上,F 在AB 上,且AC CE =,123??,求DE 的长等于( ).....A D C B B C C A B D A E A C+2、如图,点C 在线段AB 上,分别以AC 和BC 为边向线段AB 同侧作等边三角形ACD D 和BCE D ,,,M N G 分别是,;,;,AE BD BD CE AE CD 的交点.(1) 找出图中的所有全等三角形,并予以证明. (2) 求AMB Ð的度数. (3) 判断CNG D 的形状.3、如图,,BD CE 分别是ABC D 的边,AC AB 上的高,点P 在BD 的延长线上,BP AC =,点Q 在CE 上,CQ AB =.求证:(1)AP AQ =,(2)AP AQ ^.(2)与中点有关的辅助线构造例 4 如图,在ABC D 和A B C ⅱD 中,,AB A B AC A C ⅱⅱ==,AM 和A M ⅱ分别是ABC D 和DCBAM /C /B /A /MCBAFEDCBABA B C ⅱ D 的中线,且AM =A M ⅱ,求证: ABC D ≌A B C ⅱD .练习 ABC D 中,D 是BC 的中点,DE DF ^,判断BE CF +与EF 的大小关系,并证明你的结论.(2)与角平分线有关的辅助线构造例5 如图,在四边形ABCD 中,BC BA >,AD CD =,BD 平分ABC Ð, 求证 180A C ??例6 ABC D 中,60ABC ? ,,AD CE 分别平分,BAC ACB 行,求证:AC AE CD =+.DCB AE DCBADCBAFDA练习 1、如图,在ABC D 中,AD 平分BAC Ð,BD CD =,求证:AB AC =2、 如图,在ABC D 中,90BAC ? ,AB AC =,BE 平分ABC Ð,CE BE ^,求证:12CE BD =.3、 如图,在ABC D 中,,100AB AC A =? ,ABC Ð的平分线交AC 于D .求证:AD BD BC +=(3)截长不短法+旋转式全等的构造例7 如图,正方形ABCD 中,,E F 分别是边,BC CD 上的点,若BE DF EF +=, 求EAF Ð的度数.QPDC BAEDCBA MDCBADCBA练习 1、 在正方形ABCD 中,P 是上一点,AQ 平分PAD Ð交DC 于Q . 求证:PA PB QD =+2、如图,90,,C AC BC AD ?是BAC Ð的角平分线,求证:AC CD AB +=.3、如图,已知2,90AB CD AE BC DE ABCAED===+=?? ,求五边形ABCDE 的面积.练习题 (每道20分)1、如图,90BC ? ,M 是BC 的中点,DM 平分ADC Ð,求证:AM 平分DAB Ð.NMCBAD CBAFECBAD FEADCB2 如图,ABC D 中,过点A 分别作,ABC ACB 行 外角的平分线的垂线,垂足分别为,M N 设ABC D 的三边长,,BC CA AB 分别为,,a b c ,求线段MN 的长.3 如图,四边形ABCD 中,,60,120AB AD BAD BCD =?靶= ,求证:BC CD AC +=4 在ABC D 中,45ABC? ,AD 是BAC Ð的平分线,EF 的垂直平分线AD 交BC 的延长线于F ,试求CAF Ð的大小.5 如图,D 是ABC D 的BC 边的中点,分别以,AB AC 为斜边向ABC D 外作直角三角形ABE D 和ACF D ,若ABEACF ? ,求证:DE DF =1. 上帝对人说道:“我医治你,所以要伤害你;我爱你,所以要惩罚你。
第二十四讲 几何的定值与最值几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明. 几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有: 1.特殊位置与极端位置法; 2.几何定理(公理)法;3.数形结合法等.注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、 逻辑推理与合情想象相结合等思想方法. 【例题就解】【例1】 如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分别以AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 .思路点拨 如图,作CC ′⊥AB 于C ,DD ′⊥AB 于D ′,DQ ⊥CC ′,CD 2=DQ 2+CQ 2,DQ=21AB 一常数,当CQ 越小,CD 越小,本例也可设AP=x ,则PB=x 10,从代数角度探求CD 的最小值.注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特殊位置与极端位置是指:(1)中点处、垂直位置关系等; (2)端点处、临界位置等.【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言, MTN 为的度数( ) A .从30°到60°变动 B .从60°到90°变动C .保持30°不变D .保持60°不变思路点拨 先考虑当圆心在正三角形的顶点C 时,其弧的度数,再证明一般情形,从而作出判断.注:几何定值与最值问题,一般都是置于动态背景下,动与静是相对的,我们可以研究问题⌒中的变量,考虑当变化的元素运动到特定的位置,使图形变化为特殊图形时,研究的量取得定值与最值.【例3】 如图,已知平行四边形ABCD ,AB=a ,BC=b (a >b ),P 为AB 边上的一动点, 直线DP 交CB 的延长线于Q ,求AP+BQ 的最小值.思路点拨 设AP=x ,把AP 、BQ 分别用x 的代数式表示,运用不等式ab b a 222≥+ (当且仅当b a =时取等号)来求最小值.【例4】 如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A 、B 的点M ,设直线AC与BM 相交于K ,直线CB 与AM 相交于点N ,证明:线段AK 和BN 的乘积与M 点的选择无关.思路点拨 即要证AK ·BN 是一个定值,在图形中△ABC 的边长是一个定值,说明AK ·BN 与AB 有关,从图知AB 为△ABM 与△ANB 的公共边,作一个大胆的猜想,AK ·BN=AB 2,从而我们的证明目标更加明确.注:只要探求出定值,那么解题目标明确,定值问题就转化为一般的几何证明问题.【例5】 已知△XYZ 是直角边长为1的等腰直角三角形(∠Z=90°),它的三个顶点分别在等腰Rt △ABC(∠C=90°)的三边上,求△ABC 直角边长的最大可能值.思路点拨 顶点Z 在斜边上或直角边CA(或CB)上,当顶点Z 在斜边AB 上时,取xy 的中点,通过几何不等关系求出直角边的最大值,当顶点Z 在(AC 或CB)上时,设CX=x ,CZ=y ,建立x ,y 的关系式,运用代数的方法求直角边的最大值.注:数形结合法解几何最值问题,即适当地选取变量,建立几何元素间的函数、方程、不等式等关系,再运用相应的代数知识方法求解.常见的解题途径是:(1)利用一元二次方程必定有解的代数模型,运用判别式求几何最值; (2)构造二次函数求几何最值.⌒学力训练1.如图,正方形ABCD 的边长为1,点P 为边BC 上任意一点(可与B 点或C 点重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别是B ′、C ′、D ′,则BB ′+CC ′+DD ′的最大值为 ,最小值为 .2.如图,∠AOB=45°,角内有一点P ,PO=10,在角的两边上有两点Q ,R(均不同于点O),则△PQR 的周长的最小值为 .3.如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC=8,B 到MN 的距离BD=5,CD=4,P 在直线MN 上运动,则PB PA -的最大值等于 .4.如图,A 点是半圆上一个三等分点,B 点是弧AN 的中点,P 点是直径MN 上一动点,⊙O 的半径为1,则AP+BP 的最小值为( )A .1B .22C .2D .13-5.如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P 从A 点出发,沿看圆柱的侧面移动到BC 的中点S 的最短距离是( )A .212π+B .2412π+C .214π+D .242π+6.如图、已知矩形ABCD ,R ,P 户分别是DC 、BC 上的点,E ,F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是( ) A .线段EF 的长逐渐增大 B .线段EF 的长逐渐减小C .线段EF 的长不改变D .线段EF 的长不能确定7.如图,点C 是线段AB 上的任意一点(C 点不与A 、B 点重合),分别以AC 、BC 为边在直线AB 的同侧作等边三角形ACD 和等边三角形BCE ,AE 与CD 相交于点M ,BD 与CE 相交于点N .(1)求证:MN ∥AB ;(2)若AB 的长为l0cm ,当点C 在线段AB 上移动时,是否存在这样的一点C ,使线段MN 的长度最长?若存在,请确定C 点的位置并求出MN 的长;若不存在,请说明理由. (2002年云南省中考题)8.如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂线的垂足,求证:不管ST 滑到什么位置,∠SPM 是一定角.9.已知△ABC 是⊙O 的内接三角形,BT 为⊙O 的切线,B 为切点,P 为直线AB 上一点,过点P 作BC 的平行线交直线BT 于点E ,交直线AC 于点F . (1)当点P 在线段AB 上时(如图),求证:PA ·PB=PE ·PF ;(2)当点P 为线段BA 延长线上一点时,第(1)题的结论还成立吗?如果成立,请证明,如果不成立,请说明理由.10.如图,已知;边长为4的正方形截去一角成为五边形ABCDE ,其中AF=2,BF=l ,在AB 上的一点P ,使矩形PNDM 有最大面积,则矩形PNDM 的面积最大值是( )A .8B .12C .225D .1411.如图,AB 是半圆的直径,线段CA 上AB 于点A ,线段DB 上AB 于点B ,AB=2;AC=1,BD=3,P 是半圆上的一个动点,则封闭图形ACPDB 的最大面积是( ) A .22+ B .21+ C .23+ D .23+12.如图,在△ABC 中,BC=5,AC=12,AB=13,在边AB 、AC 上分别取点D 、E ,使线段DE 将△ABC 分成面积相等的两部分,试求这样线段的最小长度.13.如图,ABCD是一个边长为1的正方形,U、V分别是AB、CD上的点,AV与DU相交于点P,BV与CU相交于点Q.求四边形PUQV面积的最大值.14.利用两个相同的喷水器,修建一个矩形花坛,使花坛全部都能喷到水.已知每个喷水器的喷水区域是半径为l0米的圆,问如何设计(求出两喷水器之间的距离和矩形的长、宽),才能使矩形花坛的面积最大?15.某住宅小区,为美化环境,提高居民生活质量,要建一个八边形居民广场(平面图如图所示).其中,正方形MNPQ与四个相同矩形(图中阴影部分)的面积的和为800平方米.(1)设矩形的边AB=x(米),AM=y(米),用含x的代数式表示y为.(2)现计划在正方形区域上建雕塑和花坛,平均每平方米造价为2100元;在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为105元;在四个三角形区域上铺设草坪,平均每平方米造价为40元.①设该工程的总造价为S(元),求S关于工的函数关系式.②若该工程的银行贷款为235000元,仅靠银行贷款能否完成该工程的建设任务?若能,请列出设计方案;若不能,请说明理由.③若该工程在银行贷款的基础上,又增加资金73000元,问能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能,请说明理由.16.某房地产公司拥有一块“缺角矩形”荒地ABCDE,边长和方向如图,欲在这块地上建一座地基为长方形东西走向的公寓,请划出这块地基,并求地基的最大面积(精确到1m2).参考答案。
中学数学竞赛讲义——数列一、基础知识定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。
其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。
定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1.定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。
若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d.定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式:S n =d n n na a a n n 2)1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn .定义3 等比数列,若对任意的正整数n ,都有q a ann =+1,则{a n }称为等比数列,q 叫做公比。
定理3 等比数列的性质:1)a n =a 1q n -1;2)前n 项和S n ,当q ≠1时,S n =qq a n--1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。
初一数学竞赛讲义重难点有效突破知识点梳理及重点题型举一反三练习专题01 质数那些事阅读与思考一个大于1的自然数如果只能被1和本身整除,就叫作质数(也叫素数);如果能被1和本身以外的自然数整除,就叫作合数;自然数1既不是质数,也不是合数,叫作单位数.这样,我们可以按约数个数将正整数分为三类:关于质数、合数有下列重要性质:1.质数有无穷多个,最小的质数是2,但不存在最大的质数,最小的合数是4.2.1既不是质数,也不是合数;2是唯一的偶质数.3.若质数|,则必有|或|.4.算术基本定理:任意一个大于1的整数N能唯一地分解成个质因数的乘积(不考虑质因数之间的顺序关系):N=,其中,为质数,为非负数(=1,2,3,…,).正整数N的正约数的个数为(1+)(1+)…(1+),所有正约数的和为(1++…+)(1++…+)…(1++…+).例题与求解【例1】已知三个质数,,满足+++=99,那么的值等于_________________.(江苏省竞赛试题) 解题思想:运用质数性质,结合奇偶性分析,推出,,的值.【例2】若为质数,+5仍为质数,则+7为( )A.质数B.可为质数,也可为合数C.合数D.既不是质数,也不是合数(湖北省黄冈市竞赛试题) 解题思想:从简单情形入手,实验、归纳与猜想.【例3】求这样的质数,当它加上10和14时,仍为质数.(上海市竞赛试题) 解题思想:由于质数的分布不规则,不妨从最小的质数开始进行实验,另外,需考虑这样的质数是否唯一,按剩余类加以深入讨论.【例4】⑴将1,2,…,2 004这2 004个数随意排成一行,得到一个数,求证:一定是合数.⑵若是大于2的正整数,求证:-1与+1中至多有一个质数.⑶求360的所有正约数的倒数和.(江苏省竞赛试题) 解题思想:⑴将1到2 004随意排成一行,由于中间的数很多,不可能一一排出,不妨找出无论怎样排,所得数都有非1和本身的约数;⑵只需说明-1与+1中必有一个是合数,不能同为质数即可;⑶逐个求解正约数太麻烦,考虑整体求解.【例5】设和是正整数,≠,是奇质数,并且,求+的值.解题思想:由题意变形得出整除或,不妨设.由质数的定义得到2-1=1或2-1=.由≠及2-1为质数即可得出结论.【例6】若一个质数的各位数码经任意排列后仍然是质数,则称它是一个“绝对质数”[如2,3,5,7,11,13(31),17(71),37(73),79(97),113(131,311),199(919,991),337(373,733),…都是质数].求证:绝对质数的各位数码不能同时出现数码1,3,7,9.(青少年国际城市邀请赛试题) 解题思想:一个绝对质数如果同时含有数字1,3,7,9,则在这个质数的十进制表示中,不可能含有数字0,2,4,5,6,8,否则,进行适当排列后,这个数能被2或5整除.能力训练A级1.若,,,为整数,=1997,则=________.2.在1,2,3,…,这个自然数中,已知共有个质数,个合数,个奇数,个偶数,则(-)+(-)=__________.3.设,为自然数,满足1176=,则的最小值为__________.(“希望杯”邀请赛试题) 4.已知是质数,并且+3也是质数,则-48的值为____________.(北京市竞赛试题) 5.任意调换12345各数位上数字的位置,所得的五位数中质数的个数是( )A.4B.8C.12D.06.在2 005,2 007,2 009这三个数中,质数有( )A.0个B.1个C.2个D.3个(“希望杯”邀请赛试题) 7.一个两位数的个位数字和十位数字变换位置后,所得的数比原来的数大9,这样的两位中,质数有()A.1个B.3 个C.5个D.6 个(“希望杯”邀请赛试题) 8.设,,都是质数,并且+=,<.求.9.写出十个连续的自然数,使得个个都是合数.(上海市竞赛试题)10.在黑板上写出下面的数2,3,4,…,1 994,甲先擦去其中的一个数,然后乙再擦去一个数,如此轮流下去,若最后剩下的两个数互质,则甲胜;若最后剩下的两个数不互质,则乙胜,你如果想胜,应当选甲还是选乙?说明理由.(五城市联赛试题)11.用正方形的地砖不重叠、无缝隙地铺满一块地,选用边长为cm规格的地砖,恰用块,若选用边长为cm规格的地砖,则要比前一种刚好多用124块,已知,,都是正整数,且(,)=1,试问这块地有多少平方米?(湖北省荆州市竞赛试题)B级1.若质数,满足5+7=129,则+的值为__________.2.已知,均为质数,并且存在两个正整数,,使得=+,=×,则的值为__________.3.自然数,,,,都大于1,其乘积=2 000,则其和++++的最大值为__________,最小值为____________.(“五羊杯”竞赛试题) 4.机器人对自然数从1开始由小到大按如下的规则染色:凡能表示为两个合数之和的自然数都染成红色,不合上述要求的自然数都染成黄色,若被染成红色的数由小到大数下去,则第1 992个数是_______________.(北京市“迎春杯”竞赛试题) 5.若,均为质数,且满足+=2 089,则49-=_________.A.0B.2 007C.2 008D.2 010(“五羊杯”竞赛试题) 6.设为质数,并且7+8和8+7也都为质数,记=77+8,=88+7,则在以下情形中,必定成立的是()A.,都是质数B.,都是合数C.,一个是质数,一个是合数 D.对不同的,以上皆可能出现(江西省竞赛试题) 7.设,,,是自然数,并且,求证:+++一定是合数.(北京市竞赛试题)8.请同时取六个互异的自然数,使它们同时满足:⑴6个数中任意两个都互质;⑵6个数任取2个,3个,4个,5个,6个数之和都是合数,并简述选择的数符合条件的理由.9.已知正整数,都是质数,并且7+与+11也都是质数,试求的值.(湖北省荆州市竞赛试题)10. 41名运动员所穿运动衣号码是1,2,…,40,41这41个自然数,问:(l) 能否使这41名运动员站成一排,使得任意两个相邻运动员的号码之和是质数?(2) 能否让这41名运动员站成一圈,使得任意两个相邻运动员的号码之和都是质数?若能办到,请举出一例;若不能办到,请说明理由.专题01 质数那些事例1 34例2 C例3 3符合要求提示:当p=3k+1时,p+10=3k+11,p+14=3(k+5),显然p+14是合数,当p=3k+2时,p+10=3(k+4)是合数,当p=3k时,只有k=1才符合题意.例4 (1)因1+2+…+2004=×2004×(1+2004)=1002×2005为3的倍数,故无论怎样交换这2004个数的顺序,所得数都有3这个约数.(2)因n是大于2的正整数,则-1≥7,-1、、+1是不小于7的三个连续的正整数,其中必有一个被3整除,但3不整除,故-1与+1中至多有一个数是质数.(3)设正整数a的所有正约数之和为b,,,,…,为a的正约数从小到大的排列,于是=1,=a.由于中各分数分母的最小公倍数=a,故S===,而a=360=,故b=(1+2++)×(1+3+)×(1+5)=1170.==.例5 由=,得x+y==k.(k为正整数),可得2xy=kp,所以p整除2xy且p为奇质数,故p整除x或y,不放设x=tp,则tp+y=2ty,得y=为整数.又t与2t-1互质,故2t-1整除p,p为质数,所以2t-1=1或2t-1=p.若2t-1=,得t=1,x=y=p,与x≠y矛盾;若2t-1=p,则=,2xy=p(x+y).∵p是奇质数,则x +y为偶数,x、y同奇偶性,只能同为xy=必有某数含因数p.令x=ap,ay=,2ay=ap+y.∴y=,故a,2a-1互质,2a-1整除p,又p是质数,则2a-1=p,a=,故x==,∴x+y=+=。
初中数学竞赛辅导资料-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一篇 一元一次方程的讨论第一部分 基本方法1. 方程的解的定义:能使方程左右两边的值相等的未知数的值叫做方程的解。
一元方程的解也叫做根。
例如:方程 2x +6=0, x (x -1)=0, |x |=6, 0x =0, 0x =2的解 分别是: x =-3, x =0或x =1, x =±6, 所有的数,无解。
2. 关于x 的一元一次方程的解(根)的情况:化为最简方程ax =b 后, 讨论它的解:当a ≠0时,有唯一的解 x =ab ; 当a =0且b ≠0时,无解;当a =0且b =0时,有无数多解。
(∵不论x 取什么值,0x =0都成立)3. 求方程ax =b (a ≠0)的整数解、正整数解、正数解当a |b 时,方程有整数解;当a |b ,且a 、b 同号时,方程有正整数解;当a 、b 同号时,方程的解是正数。
综上所述,讨论一元一次方程的解,一般应先化为最简方程ax =b第二部分 典例精析例1 a 取什么值时,方程a (a -2)x =4(a -2) ①有唯一的解②无解③有无数多解④是正数解例2 k取什么整数值时,方程①k(x+1)=k-2(x-2)的解是整数?②(1-x)k=6的解是负整数?例3己知方程a(x-2)=b(x+1)-2a无解。
问a和b应满足什么关系?例4a、b取什么值时,方程(3x-2)a+(2x-3)b=8x-7有无数多解?第三部分 典题精练1. 根据方程的解的定义,写出下列方程的解:① (x +1)=0, ②x 2=9, ③|x |=9, ④|x |=-3,⑤3x +1=3x -1, ⑥x +2=2+x2. 关于x 的方程ax =x +2无解,那么a __________3. 在方程a (a -3)x =a 中,当a 取值为____时,有唯一的解; 当a ___时无解;当a _____时,有无数多解; 当a ____时,解是负数。
第19讲转化灵活的圆中角角是几何图形中最重要的圆素,证明两直线位置关系.运用全等3角形法.相似3角形法都要涉及角,而圆的特征,赋予角极强的活性,使得角能灵活地互相转化.依据圆心角与圆周角的倍半关系,可实现圆心角与圆周角的转化。
由同弧或等弧所对的圆周角相等,可将圆周角在大小不变的情况下,改变顶点在圆上的位置进行探索。
由圆内接4边形的对角互补和外角等于内对角,可将与圆相关的角互相联系起来.熟悉以下基本图形.基本结论.注:依据顶点.角的两边与圆的位置关系,我们定义了圆心角与圆周角,类似地,当角的顶点在圆外或圆内,我们可以定义圆外角与圆内角,这两类角分别与它们的所夹弧度数有怎样的关系?读者可自行作1番探讨.【例题求解】【例1】如图,直线AB与⊙O相交于A,B再点,点O在AB上,点C在⊙O上,且∠AOC=40°,点E是直线AB上1个动点(与点O不重合),直线EC交⊙O于另1点D,则使DE=DO 的点正共有个.思路点拨在直线AB上使DE=DO的动点E与⊙O有怎样的位置关系?分点E在AB上(E在⊙O内).在BA或AB的延长线上(E点在⊙O外)3种情况考虑,通过角度的计算,确定E点位置.存在的个数.注:弧是联系与圆相关的角的中介,“由弧到角,由角看弧”是促使与圆相关的角相互转化的基本方法.【例2】如图,已知△ABC为等腰直角3形,D为斜边BC的中点,经过点A.D的⊙O与边AB.AC.BC分别相交于点E.F.M,对于如下5个结论:①∠FMC=45°。
②AE+AF=AB。
③。
④2BM2=BF×BA。
⑤4边形AEMF为矩形.其中正确结论的个数是( )A.2个B.3个C.4个D.5个思路点拨充分运用与圆相关的角,寻找特殊3角形.特殊4边形.相似3角形,逐1验证.注:多重选择单选化是近年出现的1种新题型,解这类问题,需把款件重组与整合,挖掘隐合款件,作深入的探究,方能作出小正确的选择.【例3】如图,已知4边形ABCD外接⊙O的半径为5,对角线AC与BD的交点为E,且AB2=AE×AC,BD=8,求△ABD的面积.思路点拨由款件出发,利用相似3角形.圆中角可推得A为弧BD中点,这是解本例的关键.【例4】如图,已知AB是⊙O的直径,C是⊙O上的1点,连结AC,过点C作直线CD⊥AB 于D(AD<DB),点E是AB上任意1点(点D.B除外),直线CE交⊙O于点F,连结AF与直线CD交于点G.(1)求证:AC2=AG×AF。
初中数学竞赛辅导讲义(初三)第一讲 分式的运算[知识点击]1、 分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。
2、 综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。
3、 分式运算:实质就是分式的通分与约分。
[例题选讲]例1.化简2312++x x + 6512++x x + 12712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + )4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 41+x =)4)(1(3++x x 例2. 已知 z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。
解:易知:z y x + = y z x + = x z y + =k 则⎪⎩⎪⎨⎧=+=+=+)3()2()1(kx z y ky z x kz y x (1)+(2)+(3)得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 若k=2则原式= k 3 = 8 若 x+y+z=0,则原式= k 3 =-1例3.设 12+-mx x x =1,求 12242+-x m x x 的值。
解:显然X 0≠,由已知x mx x 12+- =1 ,则 x +x 1 = m + 1 ∴ 22241x x m x +- = x2 + 21x - m2= (x +x1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=121-m 例4.已知多项式3x 3 +ax 2 +3x +1 能被x 2+1整除,求a的值。
解:13313232+++++x ax x X ax1- a=0 ∴ a=1例5:设n为正整数,求证311⨯ + 511⨯ + …… +)12)(12(1+-n n < 21 证:左边=21(1 - 31 + 31 - 51 + …… + 121-n - 121+n ) aaax ax xO x -++++1133223=21(1- 121+n ) ∵n 为正整数,∴121+n < 1 ∴1- 121+n < 1 故左边< 21[小结归纳]1、部分分式的通用公式:)(1k x x + = k 1 (x 1 - kx +1) 2、参数法是解决比例问题特别是连比问题时非常有效的方法,其优点在于设连比值为K ,将连等式化为若干个等式,把各字母用同一字母的解析式表示,从而给解题带来方便。
专题07 一元二次方程的应用阅读与思考一元二次方程是解数学问题的有力工具,许多数学问题都可转化为解一元二次方程、研究一元二次方程根的性质等而获解. 现阶段,一元二次方程的应用主要有以下两方面: 1. 求代数式的值;2. 列二次方程解应用题.从本质上讲,列二次方程解应用题与前面我们已经学过的列一元二次方程解应用题没有区别,通常都要经过设、列、解、答等四个步骤,解题的关键是寻找实际问题中的等量关系. 特别需要注意的是,列出的一元二次方程一般会有两个不同的实数根,所以在检验时应特别注意,很可能其中有不符合实际问题的根,必须舍去.例题与求解【例1】 甲、乙两地分别在河的上、下游,每天各有一班船准点以匀速从两地对开,通常它们总在11时于途中相遇,一天乙地的船因故晚发了40分钟,结果两船在上午11时15分在途中相遇,已知甲地开出的船在静水中的速度数值为44千米/时,而乙地开出的船在静水中的速度为水流速度ν千米/时数值的平方,则ν的值为___________.(安徽省竞赛试题)解题思路:利用甲船15分钟所行路程是乙船(40-15)分钟所行路程建立方程.【例2】 自然数n 满足()()1616247222222-+--=--n n n n n n ,这样的n 的个数是( )A .1个B .2个C .3个D .4个 (江苏省竞赛试题) 解题思路:运用幂的性质,将问题转化为解方程.【例3】 如图,在平面直角坐标系中,直线1+=x y 与343+-=x y 交于点A ,分别交x 轴于点B 和点C ,点D 是直线AC 上的一个动点. (1) 求点A ,B ,C 的坐标;(2) 当△CBD 为等腰三角形时,求点D 的坐标.(太原市中考试题) 解题思路:对于(2),利用“腰相等”建立方程,解题的关键是分类讨论.yx BCAO【例4】如图,已知在Rt△ABC中,∠C=90°,AC=3,BC=4,点E在直角边AC上(点E与A,C两点均不重合).;(1)若点F在斜边AB上,且EF平分Rt△ABC的周长,设AE=x,试用x的代数式表示SAEF(2)若点F在折线ABC上移动,试问:是否存在直线EF将Rt△ABC的周长和面积同时平分?若存在直线EF,则求出AE的长;若不存在直线EF,请说明理由. (常州市中考试题)解题思路:几何计算问题代数化,通过定量分析回答是否存在这样的直线EF,将线段的计算转化为解方程.【例5】某公司投资新建了一商场,共有商铺30间,据预测,当每间的年租金定为10万元时,可全部租出. 每间的年租金每增加5000元,少租出商铺1间,该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元?(绍兴市中考试题)解题思路:解题的关键是把复杂的数量关系分解成若干个小问题,再寻找各个小问题间量与量的关系.【例6】 已知:如图1,在Rt △ACB 中,∠C =90°,AC =4cm ,BC =3cm ,点P 由点B 出发沿BA 方向向点A 匀速运动,速度为1cm /s ;点Q 由点A 出发沿AC 方向向点C 匀速运动,速度为2 cm /s .连结PQ .若设运动的时间为t (s )(0<t <2),解答下列问题: (1)当t 为何值时,PQ ∥BC ?(2)设△AQP 的面积为y (2cm ),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使线段PQ 恰好把Rt △ACB 的周长和面积同时平分?若存在,求出此时t 的值;若不存在,说明理由;(4)如图2,连结PC ,并把△PQC 沿QC 翻折,得到四边形PQP ´C ,那么是否存在某一时刻t ,使四边形PQP ´C 为菱形?若存在,求出此时菱形的边长;若不存在,说明理由. (青岛市中考试题) 解题思路:对于(3),先求出PQ 平分Rt △ACB 周长时t 的值,再看求出t 的值是否满足由面积关系建立的方程.图2图1P'ACB B CAQ PQ P能力训练A 级1. 某工厂把500万元资金投入新产品生产,第一年获得了一定的利润,在不抽调资金和利润(即将第一年获得的利润也作为生产资金)的前提下,继续生产,第二年的利润率(即所获利润与投入生产资金的比)比第一年的利润率增加了8%.如果第二年的利润为112万元,为求第一年的利润率,可设它为x ,那么所列方程为_______________. (济南市中考试题)2. 如图,在长为10cm 、宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下阴影部分面积是原矩形面积的80%,则所截去的小正方形的边长是_________. (广东省中考试题)3. 有一旅客携带了30千克行李从南京禄口国际机场乘飞机去天津. 按民航规定,旅客最多可免费携带20千克行李,超重部分每千克按飞机票价的1.5%购买行李票,现该旅客买了120元的行李票,则他的4. 已知实数x 、y 满足3,3243424=+=+y y xx ,则444y x +的值为( ) A.7 B.2131+ C.2137+ D. 5 5. 一个跳水运动员从10米高台上跳水,他每一时刻所在的高度(单位:米)与所用时间(单位:秒)的关系式是()()125+--=t t h ,则运动员起跳到入水所用的时间是( )A. -5秒B. 1秒 C . -1秒 D. 2秒6. 某种出租车的收费标准时:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计),某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x 千米,那么x 的最大值是( ) A. 11 B. 8 C . 7 D.57. 如图,菱形ABCD 的边长为a ,O 是对角线AC 上的一点,且OA =a ,OB =OC =OD =1,则a =( ) A .215+ B . 215- C . 1 D .2DCABO第2题图 第7题图8. 我市向民族地区的某县赠送一批计算机,首批270台将于近期起运. 经与某物流公司联系,得知用A 型汽车若干辆刚好装完;用B 型汽车不仅可少用1辆,而且有一辆车差30台计算机才装满.(1)已知B 型汽车比A 型汽车每辆车可多装15台,则A ,B 两种型号的汽车各能装计算机多少台? (2)已知A 型汽车的运费是每辆350元,B 型汽车的运费是每辆400元。
第一篇一元一次方程的讨论第一部分基本方法1. 方程的解的定义:能使方程左右两边的值相等的未知数的值叫做方程的解。
一元方程的解也叫做根。
例如:方程 2*+6=0, *(*-1)=0, |*|=6, 0*=0, 0*=2的解分别是: *=-3, *=0或*=1, *=±6, 所有的数,无解。
2. 关于*的一元一次方程的解(根)的情况:化为最简方程a*=b 后,讨论它的解:当a ≠0时,有唯一的解 *=ab ; 当a =0且b ≠0时,无解;当a =0且b =0时,有无数多解。
(∵不论*取什么值,0*=0都成立)3. 求方程a*=b (a ≠0)的整数解、正整数解、正数解当a |b 时,方程有整数解;当a |b ,且a 、b 同号时,方程有正整数解;当a 、b 同号时,方程的解是正数。
综上所述,讨论一元一次方程的解,一般应先化为最简方程a*=b第二部分典例精析例1 a 取什么值时,方程a (a -2)*=4(a -2)①有唯一的解?②无解?③有无数多解?④是正数解?例2 k 取什么整数值时,方程①k (*+1)=k -2(*-2)的解是整数?②(1-*)k =6的解是负整数?例3 己知方程a (*-2)=b (*+1)-2a 无解。
问a 和b 应满足什么关系?例4a 、b 取什么值时,方程(3*-2)a +(2*-3)b =8*-7有无数多解?第三部分典题精练1. 根据方程的解的定义,写出下列方程的解:① (*+1)=0, ②*2=9,③|*|=9, ④|*|=-3, ⑤3*+1=3*-1,⑥*+2=2+*2. 关于*的方程a*=*+2无解,则a __________3. 在方程a (a -3)*=a 中,当a 取值为____时,有唯一的解; 当a ___时无解;当a _____时,有无数多解; 当a ____时,解是负数。
4. k 取什么整数值时,下列等式中的*是整数?① *=k4②*=16-k ③*=k k 32+④*=123+-k k 5. k 取什么值时,方程*-k =6*的解是①正数?②是非负数?6. m 取什么值时,方程3(m +*)=2m -1的解①是零?②是正数?7. 己知方程221463+=+-a x 的根是正数,则a 、b 应满足什么关系? 8. m 取什么整数值时,方程m m x 321)13(-=-的解是整数" 9. 己知方程ax x b 231)1(2=++有无数多解,求a 、b 的值。
(共30套)初中数学竞赛辅导讲义及习题解答大全适合中学教师作为辅导教材使用第一讲 走进追问求根公式形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。
而公式法是解一元二次方程的最普遍、最具有一般性的方法。
求根公式aacb b x 2422,1-±-=内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。
降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。
解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。
【例题求解】【例1】满足1)1(22=--+n n n 的整数n 有 个。
思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。
【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( )A 、一4B 、8C 、6D 、0思路点拨:求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=。
【例3】 解关于x 的方程02)1(2=+--a ax x a 。
思路点拨:因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论。
【例4】设方程04122=---x x ,求满足该方程的所有根之和。
思路点拨:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解。
【例5】 已知实数a 、b 、c 、d 互不相等,且x ad d c c b b a =+=+=+=+1111, 试求x 的值。
思路点拨:运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值。
第一讲 有 理 数一、有理数的概念及分类。
二、有理数的计算:1、善于观察数字特征;2、灵活运用运算法则;3、掌握常用运算技巧(凑整法、分拆法等)。
三、例题示范例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3,那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少个?例2、 将9998,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。
提示1:四个数都加上1不改变大小顺序;提示2:先考虑其相反数的大小顺序;提示3:考虑其倒数的大小顺序。
例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。
试确定三个数ca b ab 1,1,1-的大小关系。
分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较ca b ab 1,1,1-的大小关系,只要比较分母的大小关系。
例4、 在有理数a 与b(b >a)之间找出无数个有理数。
提示:P=na b a -+(n 为大于是 的自然数) 注:P 的表示方法不是唯一的。
2、符号和括号在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。
例5、 在数1、2、3、…、1990前添上“+”和“ —”并依次运算,所得可能的最小非负数是多少?提示:造零:n-(n+1)-(n+2)+(n+3)=0注:造零的基本技巧:两个相反数的代数和为零。
3、算对与算巧例6、 计算 -1-2-3-…-2000-2001-2002提示:1、逆序相加法。
2、求和公式:S=(首项+末项)⨯项数÷2。
例7、 计算 1+2-3-4+5+6-7-8+9+…-2000+2001+2002例8、 计算9999991999999个个个n n n +⨯ 提示1:凑整法,并运用技巧:199…9=10n +99…9,99…9=10n -1。
第十七讲解直角三角形利用直角三角形中的已知元素(至少有一条是边)求得其余元素的过程叫做解直角三角形,解直角三角形有以下两方面的应用:1.为线段、角的计算提供新的途径.解直角三角形的基础是三角函数的概念,三角函数使直角三角形的边与角得以转化,突破纯粹几何关系的局限.2.解实际问题.测量、航行、工程技术等生活生产的实际问题,许多问题可转化为解直角三角形获解,解决问题的关键是在理解有关名词的意义的基础上,准确把实际问题抽象为几何图形,进而转化为解直角三角形.【例题求解】【例1】如图,已知电线杆AB直立于地面上,它的影子恰好照在土坡的坡面CD和地面BC上,如果CD与地面成45°,∠A=60°,CD=4m,BC=(24-)m,则电线杆AB62的长为.思路点拨延长AD交BC于E,作DF⊥BC于F,为解直角三角形创造条件.【例2】如图,在四边形ABCD中,AB=24-,BC-1,CD=3,∠B=135°,∠C=90°,则∠D等于( )A.60°B.67.5°C.75°D.无法确定思路点拨通过对内分割或向外补形,构造直角三角形.注:因直角三角形元素之间有很多关系,故用已知元素与未知元素的途径常不惟一,选择怎样的途径最有效、最合理呢?请记住:有斜用弦,无斜用切,宁乘勿除.在没有直角的条件下,常通过作垂线构造直角三角形;在解由多个直角三角形组合而成的问题时,往往先解已具备条件的直角三角形,使得求解的直角三角形最终可解.【例3】如图,在△ABC中,∠=90°,∠BAC=30°,BC=l,D为BC边上一点,tan∠ADC 是方程2)1(5)1(322=+-+x x x x 的一个较大的根?求CD 的长. 思路点拨 解方程求出 tan ∠ADC 的值,解Rt △ABC 求出AC 值,为解Rt △ADC 创造条件.【例4】 如图,自卸车车厢的一个侧面是矩形ABCD ,AB=3米,BC=0.5米 ,车厢底部距离地面1.2米,卸货时,车厢倾斜的角度θ=60°.问此时车厢的最高点A 距离地面多少米?(精确到1米)思路点拨 作辅助线将问题转化为解直角三角形,怎样作辅助线构造基本图形,展开空间想象,就能得到不同的解题寻路【例5】 如图,甲楼楼高16米,乙楼坐落在甲楼的正北面,已知当地冬至中午12时太阳光线与水平面的夹角为30°,此时,求:(1)如果两楼相距20米,那么甲楼的影子落在乙楼上有多高?(2)如果甲楼的影子刚好不落在乙楼上,那么两楼的距离应当是多少米?思路点拨 (1)设甲楼最高处A 点的影子落在乙楼的C 处,则图中CD 的长度就是甲楼的影子在乙楼上的高;(2)设点A 的影子落在地面上某一点C ,求BC 即可.注:在解决一个数学问题后,不能只满足求出问题的答案,同时还应对解题过程进行多方面分析和考察,思考一下有没有多种解题途径,每种途径各有什么优点与缺陷,哪一条途径更合理、更简捷,从中又能给我们带来怎样的启迪等. 若能养成这种良好的思考问题的习惯,则可逐步培养和提高我们分析探索能力.学历训练1.如图,在△ABC 中,∠A=30°,tanB=31,BC=10,则AB 的长为 .2.如图,在矩形ABCD 中.E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,若tan ∠AEH =34,四边形EFGH 的周长为40cm ,则矩形ABCD 的面积为 .3.如图,旗杆AB ,在C 处测得旗杆顶A 的仰角为30°,向旗杆前北进10m ,达到D ,在D 处测得A 的仰角为45°,则旗杆的高为 .4.上午9时,一条船从A 处出发,以每小时40海里的速度向正东方向航行,9时30分到达B 处,从A 、B 两处分别测得小岛M 在北偏东45°和北偏东15°方向,那么B 处船与小岛M 的距离为( )A .20海里B .20海里C .315海里D .3205.已知a 、b 、c 分别为△ABC 中∠A 、∠B 、∠C 的对边,若关于x 的方程02)(2=-+-+b c ax x c b 有两个相等的实根,且sinB ·cosA —cosB ·sinA =0,则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形6.如图,在四边形ABCD 中,∠A =135°,∠B=∠D=90°,BC=32,AD=2,则四边形ABCD 的面积是( )A .24B .34C . 4D .67.如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,CD=1,已知AD 、BD 的长是关于x 的方程02=++q px x 的两根,且tanA —tanB=2,求p 、q 的值.8.如图,某电信部门计划修建一条连结B 、C 两地的电缆,测量人员在山脚A 点测得B 、C 两地的仰角分别为30°、45°,在B 地测得C 地的仰角为60°.已知C 地比A 地高200米,则电缆BC 至少长多少米?(精确到0.1米)9.如图,在等腰Rt △ABC 中,∠C=90°,∠CBD =30,则DCAD = .10.如图,正方形ABCD 中,N 是DC 的中点.M 是AD 上异于D 的点,且∠NMB=∠MBC ,则tan ∠ABM = .11.在△ABC 中,AB=26-,BC=2,△ABC 的面积为l ,若∠B 是锐角,则∠C 的度数是 .12.已知等腰三角形的三边长为 a 、b 、c ,且c a =,若关于x 的一元二次方程022=+-c bx x 的两根之差为2,则等腰三角形的一个底角是( )A . 15°B .30°C .45°D .60°13.如图,△ABC 为等腰直角三角形,若AD=31AC ,CE=31BC ,则∠1和∠2的大小关系是( )A .∠1>∠2B .∠1<∠2C .∠1=∠2D .无法确定14.如图,在正方形ABCD 中,F 是CD 上一点,AE ⊥AF ,点E 在CB 的延长线上,EF 交AB 于点G .(1)求证:DF ×FC =BG ×EC ;(2)当tan ∠DAF=31时,△AEF 的面积为10,问当tan ∠DAF=32时,△AEF 的面积是多少?15.在一个三角形中,有一边边长为16,这条边上的中线和高线长度分别为10和9,求三角形中此边所对的角的正切值.16.台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220千米B 处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正在以15千米/时的速度沿北偏东30°方向往C 处移动,且台风中心风力不变,若城市所受风力达到或超过四级,则称为受台风影响.(1)该城市是否会受到这次台风的影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?17.如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带.该建筑物顶端宽度AD和高度DC都可直接测得,从A、D、C三点可看到塔顶端H.可供使用的测量工具有皮尺、测角器.(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG的方案.具体要求如下:①测量数据尽可能少;②在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D间距离,用m表示;如果测D、C间距离,用n表示;如果测角,用α、β、γ等表示.测角器高度不计).(2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示).参考答案。
第2题从正面看 第7题CB A第6题初中数学综合讲义(1)姓名___一、选择题1.如图,反比例函数y =kx 的图象经过点A (-1,-2).则当x >1时,函数值y 的取值范围是( )A .y >1B .0<y <1C .y >2D .0<y <22.如图,是由8个相同的小立方块搭成的几何体的左视图,它的三个视图是2×2的正方形.若拿掉若干个小立方块后(几何体不倒掉...),其三个视图仍都为2×2的正方形,则最多能拿掉小立方块的个数为( ) A .1 B .2 C .3 D .43.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的距离为20千米.他们前进的路程为s (单位:千米),甲出发后的时间为 t (单位:小时),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( ) A .甲的速度是4千米/小时 B .乙的速度是10千米/小时 C .乙比甲晚出发1小时 D .甲比乙晚到B 地3小时4.如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数y =x 的图象被⊙P 的弦AB的长为a 的值是( ) A.B.2+C.D.2二、填空题5.在四边形ABCD 中,AB =DC ,AD =BC ,请再添加一个条件,使四边形ABCD 是矩形,你添加的条件是 .(写出一种即可) 6.如图,在Rt △ABC 中,∠ABC =90°,∠ACB =30°,将△ABC 绕A按逆时针方向旋转15°后得到△A 1B 1C 1,B 1C 1交AC 于点D ,如果AD =22,则△ABC 的周长等于 .DE (第13题图) 7.△ABC 的顶点都在方格纸的格点上,则sin A =_ .8.一等腰梯形两组对边中点连线段的平方和为8,则这个等腰梯形的对角长为_ . 9.如图,海边有两座灯塔A 、B ,暗礁分布在经过A 、B 两点的弓形(弓形的弧是⊙O 的一部分)区域内,∠AOB =80°,为了避免触礁,轮船P 与A 、B 的张角∠APB 的最大值为______°.10.如图,E 、F 分别是正方形ABCD 的边BC 、CD 上的点,BE =CF ,连接AE 、BF ,将△ABE 绕正方形的中心按逆时针方向转到△BCF ,旋转角为a (0°<a <180°),则∠a =______.11.甲、乙、丙、丁四位同学围成一圈依序循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5、乙报6……按此规律,后一位同学报出的数比前一位同学报出的数大1,当报到的数是50时,报数结束; ②若报出的数为3的倍数,则报该数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为____________. 12.已知:如图,三个半圆依次相外切,它们的圆心都在x 轴的正半轴上,并与直线 y =33x 相切。
设半圆C 1、半圆C 2、半圆C 3的半径分别是r 1、r 2、r 3,则当r 1=1时,r 3= . 三、解答题 13.一枚棋子放在边长为1个单位长度的正六边形ABCDEF 的顶点A 处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度.棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)(第9题)(第10题)ABCDF(第12题)14.如图,有牌面数学都是2,3,4的两组牌.从每组牌中各随机摸出一张,请用画树状图或列表的方法,求摸出的两张牌的牌面数字之和为6的概率.(1)从口袋内任取一张卡片,卡片上数字是偶数的概率是 ;(2)从口袋内任取一张卡片记下数字后放回.搅匀后再从中任取一张,求两张卡片上数字和为5的概率.15.光明中学十分重视中学生的用眼卫生,并定期进行视力检测.某次检测设A 、B 两处检测点,甲、乙、丙三名学生各自随机选择其中的一处检测视力. (1)求甲、乙、丙三名学生在同一处检测视力的概率;(2)求甲、乙、丙三名学生中至少有两人在B 处检测视力的概率.16.如图,自来水厂A 和村庄B 在小河l 的两侧,现要在A ,B 间铺设一知输水管道.为了搞好工程预算,需测算出A ,B 间的距离.一小船在点P 处测得A 在正北方向,B 位于南偏东24.5°方向,前行1200m ,到达点Q 处,测得A 位于北偏东49°方向,B 位于南偏西41°方向.(1)线段BQ 与PQ 是否相等?请说明理由; (2)求A ,B 间的距离.(参考数据cos41°=0.75)17.如图,AM为⊙O的切线,A为切点,BD⊥AM于点D,BD交⊙O于点C,OC平分∠AOB,求∠B的度数.18.已知:如图1,O为正方形ABCD的中心,分别延长OA到点F,OD到点E,使OF=2OA,OE=2OD,连接EF.将△FOE绕点O逆时针旋转α角得到△F ′O E ′(如图2).(1)探究AE ′与BF ′的数量关系,并给予证明;(2)当α=30°时,求证:△AO E ′为直角三角形.19.(7分)已知函数y=mx2-6x+1(m是常数).⑴求证:不论m为何值,该函数的图象都经过y轴上的一个定点;⑵若该函数的图象与x轴只有一个交点,求m的值.第22题20.如图,已知二次函数y =-x 2+bx +3的图象与x 轴的一个交点为A (4,0),与y 轴交于点B .(1)求此二次函数关系式和点B 的坐标;(2)在x 轴的正半轴上是否存在点P ,使得△P AB 是以AB 为底边的等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.21.如图,抛物线y =12x 2-x +a 与x 轴交于点A ,B ,与y 轴交于点C 其顶点在直线y =-2x 上. (1)求a 的值; (2)求A ,B 的坐标;(3)以AC ,CB 为一组邻边作□ACBD ,则点D 关于x 轴的对称点D ′ 否在该抛物线上?请说明理由.22.已知∠AOB =60°,半径为3cm 的⊙P 沿边OA 从右向左平行移动,与边OA 相切的切点记为点C .(1)⊙P 移动到与边OB 相切时(如图),切点为D ,求劣弧的长; (2)⊙P 移动到与边OB 相交于点E ,F ,若EF =42cm ,求OC 的长;23.如图,在Rt △ABC 中,∠ACB =90°,AC =6㎝,BC =8㎝,P 为BC 的中点.动点Q 从点P 出发,沿射线PC 方向以2㎝/s 的速度运动,以P 为圆心,PQ 长为半径作圆.设点Q 运动的时间为t s .⑴当t =1.2时,判断直线AB 与⊙P 的位置关系,并说明理由; ⑵已知⊙O 为△ABC 的外接圆,若⊙P 与⊙O 相切,求t 的值.24.如图①,P 为△ABC 内一点,连接P A 、PB 、PC ,在△P AB 、△PBC 和△P AC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点.⑴如图②,已知Rt △ABC 中,∠ACB =90°,∠ACB >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为E ,试说明E 是△ABC 的自相似点.⑵在△ABC 中,∠A <∠B <∠C .①如图③,利用尺规作出△ABC 的自相似点P (写出作法并保留作图痕迹); ②若△ABC 的内心P 是该三角形的自相似点,求该三角形三个内角的度数.BBB CC C①②③(第24题)(第23题)25.小华观察钟面(题27-1图),了解到钟面上的分针每小时旋转360度,时针每小时旋转30度.他为了进一步探究钟面上分针与时针的旋转规律,从下午2:00开始对钟面进行了一个小时的观察.为了探究方便,他将分针与分针起始位置OP (题27-2图)的夹角记为y 1度,时针与OP 的夹角记为y 2度(夹角是指不大于平角的角),旋转时间记为t 分钟.观察结束后,他利用获得的数据绘制成图象(题27-3图),并求出了y 1与t 的函数关系:y 1=⎩⎨⎧6t (0≤t ≤30)-6t +360(30≤t ≤60).请你完成:(1)求出题27-3图中y 2与t 的函数关系式;(2)直接写出A 、B 两点的坐标,并解释这两点的实际意义; (3)若小华继续观察一个小时,请你在题27-3图中补全图象.26.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P在AB上,AP=2.当E、F 同时从点P出发,分别沿P A、PB以每秒1个单位长度的速度向点A、B匀速运动,当点E 到达点A后立刻以原速度沿AB向点B运动,点F运动到点B时停止,点E也随之停止.在点E、F运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧.设E、F运动的时间为t秒(t>0),正方形EFGH与△ABC的重叠部分面积为S(1)当t=1时,正方形EFGH的边长是▲;当t=3时,正方形EFGH的边长是▲;(2)当0<t≤2时,求S与t的函数关系;(3)直接答出:在整个运动过程中.......,当t为何值时,S最大?最大面积是多少?ABC图1P 1 P 2R 2R 1ABC图2P 1 P 2 R 2R 1D12ADCBP 1 P 2 P 3 P 4Q 1 234图3ADP 1 P 2 P 3BQ 12 3C图4S 1 S 2 S 3S 4 27.某课题研究小组就图形面积问题进行专题研究,他们发现如下结论: (1)有一条边对应相等的两个三角形面积之比等于这条边上的对应高之比; (2)有一个角对应相等的两个三角形面积之比等于夹这个角的两边乘积之比;…现请你继续对下面问题进行探究,探究过程可直接应用上述结论.(S 表示面积) 问题1:如图1,现有一块三角形纸板ABC ,P 1,P 2三等分边AB ,R 1,R 2三等分边AC .经探究知2121R R P P S 四边形=13S △ABC ,请证明.问题2:若有另一块三角形纸板,可将其与问题1中的拼合成四边形ABCD ,如图2,Q 1,Q 2三等分边DC .请探究2211P Q Q P S 四边形与S 四边形ABCD 之间的数量关系.问题3:如图3,P 1,P 2,P 3,P 4五等分边AB ,Q 1,Q 2,Q 3,Q 4五等分边DC .若S 四边形ABCD=1,求3322P Q Q P S 四边形.问题4:如图4,P 1,P 2,P 3四等分边AB ,Q 1,Q 2,Q 3四等分边DC ,P 1Q 1,P 2Q 2,P 3Q 3将四边形ABCD 分成四个部分,面积分别为S 1,S 2,S 3,S 4.请直接写出含有S 1,S 2,S 3,S 4的一个等式.28.问题情境已知矩形的面积为a (a 为常数,a >0),当该矩形的长为多少时,它的周长最小?最小值是多少?数学模型设该矩形的长为x ,周长为y ,则y 与x 的函数关系式为2()(0)a y x x x=+>.探索研究⑴我们可以借鉴以前研究函数的经验,先探索函数1(0)y x x x=+>的图象性质. ① 填写下表,画出函数的图象: ②②观察图象,写出该函数两条不同类型的性质;③在求二次函数y =ax 2+bx +c (a ≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数1y x x=+(x >0)的最小值. 解决问题⑵用上述方法解决“问题情境”中的问题,直接写出答案.29.已知A (1,0)、B (0,-1)、C (-1,2)、D (2,-1)、E (4,2)五个点,抛物线y=a(x-1)2+k (a >0)经过其中三个点.(1)求证:C、E两点不可能同时在抛物线y=a(x-1)2+k (a>0)上;(2)点A在抛物线y=a(x-1)2+k ( a>0)上吗?为什么?(3)求a与k的值.30.如图,直线l 经过点A (1,0),且与曲线y =mx (x >0)交于点B (2,1).过点P (p ,p -1) (p >1)作x 轴的平行线分别交曲线y =m x (x >0)和y =- mx (x <0)于M 、N 两点.(1)求m 的值及直线l 的解析式;(2)若点P 在直线y =2上,求证:△PMB ∽△PNA ;(3)是否存在实数p ,使得S △AMN =4S △APM ?若存在,请求出所有满足条件的p 的值;若不存在,请说明理由.1.D.2.B3. A4.B5.对角线相等.6.3+.7.558. 2 2 9. 40 10. 90°.11. 4 12. 913和为2的有1次,和为3的有2次,和为4的有3次,和为5的有2次,和为6的有1次,所以走到E点的可能性最大?P(走到E点)=1/314.画树状图:∴共有9种等可能的结果,其中两张牌的牌面数字之和为6的占三种,∴摸出的两张牌的牌面数字之和为6的概率==.15:(1)列出甲、乙、丙三名学生各自随机选择其中的一处检测视力的所有情况:三人都不选A处,则三人都选B处,计1种情况。