数学分析试卷及答案6套(新)
- 格式:doc
- 大小:871.50 KB
- 文档页数:5
一. (8分)用数列极限的N ε-定义证明1n =.二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x ag x b →=;(2) 0()x U a ∀∈,有0()()g x U b ∈ (3) lim ()u bf u A →=用εδ-定义证明, lim [()]x af g x A →=.三. (10分)证明数列{}n x :cos1cos 2cos 1223(1)n nx n n =+++⋅⋅⋅+收敛.四. (12分)证明函数1()f x x=在[,1]a (01)a <<一致连续,在(0,1]不一致连续. 五. (12分)叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10分)证明任一齐次多项式至少存在一个实数零点.七. (12分)确定,a b 使lim )0x ax b →+∞-=.八. (14分)求函数32()2912f x x x x =-+在15[,]42-的最大值与最小值.九. (14分)设函数()f x 在[,]a b 二阶可导, ()()0f a f b ''==.证明存在(,)a b ξ∈,使24()()()()f f b f a b a ζ''≥--.一. (10分)设数列{}n a 满足: 1a =, 1()n a n N +=∈, 其中a 是一给定的正常数, 证明{}n a 收敛,并求其极限.二. (10分)设0lim ()0x x f x b →=≠, 用εδ-定义证明011lim()x x f x b→=. 三. (10分)设0n a >,且1lim1nn n a l a →∞+=>, 证明lim 0n n a →∞=.四. (10分)证明函数()f x 在开区间(,)a b 一致连续⇔()f x 在(,)a b 连续,且lim ()x a f x +→,lim ()x bf x -→存在有限. 五. (12分)叙述确界定理并以此证明闭区间连续函数的零点定理.六. (12分)证明:若函数在连续,且()0f a ≠,而函数2[()]f x 在a 可导,则函数()f x 在a 可导.七. (12分)求函数()1f x x x ααα=-+-在的最大值,其中01α<<.八. (12分)设f 在上是凸函数,且在(,)a b 可微,则对任意1x ,2x (,)a b ∈, 12x x <,都有12()()f x f x ''≤.九. (12分)设(),0()0,0g x x f x x x ⎧ ≠⎪=⎨⎪ =⎩ 且(0)(0)0g g '==, (0)3g ''=, 求(0)f '.一.(各5分,共20分)求下列不定积分与定积分: 1. arctan x x dx ⎰2. x e dx -⎰3.ln 0⎰4.20sin 1cos x xdx xπ+⎰二.(10分)设()f x 是上的非负连续函数, ()0baf x dx =⎰.证明()0f x = ([,])x a b ∈.三. (10分)证明20sin 0xdx xπ>⎰. 四. (15分)证明函数级数0(1)n n x x ∞=-∑在不一致收敛, 在[0,]δ(其中)一致收敛.五. (10分)将函数,0(),0x x f x x x ππππ+ ≤≤⎧=⎨- <≤⎩展成傅立叶级数.六. (10分)设22220(,)0,0xy x y f x y x y ⎧ +≠⎪=⎨⎪ +=⎩证明: (1) (0,0)x f ', (0,0)y f '存在; (2) (,)x f x y ',(,)y f x y '在(0,0)不连续;(3) (,)f x y 在(0,0)可微.七. (10分)用钢板制造容积为V 的无盖长方形水箱,怎样选择水箱的长、宽、高才最省钢板?八. (15分)设01σ<<, 证明111(1)n n n σσ∞=<+∑.一. (各5分,共20分)求下列不定积分与定积分:1.(0)a >2.1172815714x x dx x x++⎰3.1arcsin x dx ⎰4. 1000π⎰二. (各5分,共10分)求下列数列与函数极限:1. 221lim nn k nn k →∞=+∑2. 20lim1xt xx xe dt e →-⎰三.(10分)设函数在[,]a b 连续,对任意[,]a b 上的连续函数()g x , ()()0g a g b ==,有()()0baf xg x dx =⎰.证明()0f x = ([,])x a b ∈.四. (15分)定义[0,1]上的函数列2212,211()22211n n x x n f x n n x x n n x n ⎧ , 0≤≤⎪⎪⎪=- , <≤⎨⎪⎪0 , <≤⎪⎩证明{()}n f x 在[0,1]不一致收敛.五. (10分)求幂级数0(1)n n n x ∞=+∑的和函数.六. (10分)用εδ-定义证明2(,)(2,1)lim (43)19x y x y →+=.七. (12分)求函数22(2)(2)(0)u ax x by y ab =-- ≠的极值.八. (13分)设正项级数1n n a ∞=∑收敛,且1()n n a a n N ++≥ ∈.证明lim 0n n na →∞=.一 (10分) 证明方程11(, )0F x zy y zx --++=所确定的隐函数(, )z z x y =满足方程.z z xy z xy x y∂∂+=-∂∂ 二 (10分) 设n 个正数12, , , n x x x 之和是a ,求函数 n u x =的最大值.三 (14分) 设无穷积分() af x dx +∞⎰收敛,函数()f x 在[, )a +∞单调,证明1()() ().f x o x x=→+∞四 (10分) 求函数1220() ln() F y x y dx =+⎰的导数(0).y >五 (14分) 计算0sin sin (0, ).pxbx axI e dx p b a x+∞--=>>⎰六 (10分) 求半径为a 的球面的面积S . 七 (10分) 求六个平面111111122222223333333 ,, = 0 , , a x b y c z h a b c a x b y c z h a b c a x b y c z h a b c ++=±⎧⎪++=±∆≠⎨⎪++=±⎩ 所围的平行六面体V 的体积I ,其中, , , i i i i a b c h 都是常数,且0 (1, 2, 3).i h i >= 八 (12分) 求22Cxdy ydxx y-+⎰,其中C 是光滑的不通过原点的正向闭曲线. 九 (10分) 求dS z∑⎰⎰,其中∑是球面2222x y z a ++=被平面 (0)z h h a =<<所截的顶部.数学分析-3样题(二)一 (10分) 求曲面2233, , x u v y u v z u v =+=+=+在点(0, 2)对应曲面上的点的切平面与法线方程.二 (10分) 求在两个曲面2221x xy y z -+-=与221x y +=交线上到原点最近的点. 三 (14分) 设函数()f x 在[1, )+∞单调减少,且lim ()0x f x →+∞=,证明无穷积分1() f x dx +∞⎰与级数1001()n f n =∑同时收敛或同时发散.四 (12分) 证明ln (0).ax bx e e bdx a b x a--+∞-=<<⎰五 (12分) 设函数()f x 在[, ]a A 连续,证明 [, ]x a A ∀∈,有01lim [()()] ()().xa h f t h f t dt f x f a h→+-=-⎰六 (10分) 求椭圆区域221112221221: ()() 1 (0)R a x b y c a x b y c a b a b +++++≤-≠的面积A .七 (10分) 设222()() VF t f x y z dx dy dz =++⎰⎰⎰,其中2222: (0)V x y z t t ++≤≥,f 是连续函数,求'()F t .八 (10分) 应用曲线积分求(2sin )(cos )x y dx x y dy ++的原函数.九 (12分) 计算 Sxyz dx dy ⎰⎰,其中S 是球面2221x y z ++=在0, 0x y ≥≥部分并取球面外侧.。
数学分析下册期末模拟试卷及参考答案一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分)1、已知u =则u x∂=∂ ,u y ∂=∂ ,du = 。
2、设22L y a +=2:x ,则Lxdy ydx -=⎰ 。
3、设L ⎧⎨⎩x=3cost ,:y=3sint.(02t π≤≤),则曲线积分ds ⎰22L(x +y )= 。
4、改变累次积分32dy f dx ⎰⎰3y (x ,y )的次序为 。
5、设1D x y +≤:,则1)Ddxdy ⎰⎰= 。
二、判断题(正确的打“O ”;错误的打“×”;每题3分,共15分) 1、若函数f (x ,y )在点p 00(x ,y )连续,则函数f (x ,y )点p 00(x ,y )必存在一阶偏导数。
( )2、若函数f (x ,y )在点p 00(x ,y ) 可微,则函数f (x ,y )在点p 00(x ,y )连续。
( )3、若函数f (x ,y )在点p 00(x ,y )存在二阶偏导数00(,)xy f x y 和00(,)yx f x y ,则必有 0000(,)(,)xy yx f x y f x y =。
( ) 4、(,)(,)(,)(,)L A B L B A f x y dx f x y dx =⎰⎰。
( ) 5、若函数f (x ,y )在有界闭区域D 上连续,则函数f (x ,y )在D 上可积。
( ) 三、计算题 ( 每小题9分,共45分)1、用格林公式计算曲线积分 (sin 3)(cos 3)x x AOI e y y dx e y dy =-+-⎰ ,其中AO 为由(,0)A a 到(0,0)O 经过圆22x y ax +=上半部分的路线。
、计算三重积分22()Vx y dxdydz +⎰⎰⎰,是由抛物面22z x y =+与平面4z =围成的立体。
、计算第一型曲面积分 SI dS =⎰⎰ ,其中S 是球面2222x y z R ++=上被平面(0)z a a R =<<所截下的顶部(z a ≥)。
《数学分析下册》期末考试卷及参考答案一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分)1、已知uln某2y2,则uu,,y某du2、设L:某2y2a2,则某dyyd某L某=3cot,L:3、设(0t2),则曲线积分(某2+y2)d=y=3int.L4、改变累次积分dy(f某,y)d某的次序为2y33某y1,则(51)d某dy=5、设D:D得分阅卷人二、判断题(正确的打“O”;错误的打“某”;每题3分,共15分)p某0,y0)p某0,y0)1、若函数(在点(连续,则函数(点(必存在一f某,y)f某,y)阶偏导数。
()p某0,y0)p某0,y0)2、若函数(在点(可微,则函数(在点(连续。
f某,y)f某,y)()p某0,y0)3、若函数(在点(存在二阶偏导数f某y(某0,y0)和fy某(某0,y0),则f某,y)必有f某y(某0,y0)fy某(0某,0y) L(B,A)()()4、L(A,B)f(某,y)d某f(某,y)d某。
5、若函数(在有界闭区域D上连续,则函数(在D上可积。
()f某,y)f某,y)第1页共5页得分阅卷人三、计算题(每小题9分,共45分)1、用格林公式计算曲线积分I(e某iny3y)d某(e某coy3)dy,AOAO为由A(a,0)到O(0,0)经过圆某2y2a某上半部分的路线。
其中2、计算三重积分------线--------------------------------------(某V2y2)d某dydz,其中是由抛物面z某2y2与平面z4围成的立体。
第2页共5页3、计算第一型曲面积分IdS,S其中S是球面某2y2z2R2上被平面za(0aR)所截下的顶部(za)。
4、计算第二型曲面积分22Iy(某z)dydz某dzd某(y某z)d某dy,S其中S是立方体V0,b0,b0,b的外表面。
第3页共5页5、设D(某,y)某2y2R曲顶柱体的体积。
得分阅卷人四、证明题(每小题7分,共14分)1、验证曲线积分第4页共5页2.求以圆域D为底,以曲面ze(某2y2)为顶的(某22yz)d某(2y2某)zdy2(z2,某)ydzL与路线无关,并求被积表达式的一个原函数u(某,y,z)。
数学分析课后习题答案【篇一:数学分析试卷及答案6套】>一. (8分)用数列极限的??n定义证明?1.n二. (8分)设有复合函数f[g(x)], 满足: (1) limg(x)?b;x?a(2) ?x?u(a),有g(x)?u(b) (3) limf(u)?au?b00用???定义证明, limf[g(x)]?a.x?a三. (10分)证明数列{xn}:xn?cos1cos2cosn????收敛. 1?22?3n?(n?1)1在[a,1](0?a?1)一致连续,在(0,1]不一致连续. x四. (12分)证明函数f(x)?五. (12分)叙述闭区间套定理并以此证明闭区间上连续函数必有界.六. (10分)证明任一齐次多项式至少存在一个实数零点. 七. (12分)确定a,b使limax?b)?0.x???32八. (14分)求函数f(x)?2x?9x?12x在[?15,]的最大值与最小值. 42九. (14分)设函数f(x)在[a,b]二阶可导, f?(a)?f?(b)?0.证明存在??(a,b),使f??(?)?4f(b)?f(a). 2(b?a)数学分析-1样题(二)一. (10分)设数列{an}满足: a1?, an?1?(n?n), 其中a是一给定的正常数, 证明{an}收敛,并求其极限.二. (10分)设limf(x)?b?0, 用???定义证明limx?x0x?x011?. f(x)b三. (10分)设an?0,且liman?l?1, 证明liman?0.n??n??an?1四. (10分)证明函数f(x)在开区间(a,b)一致连续?f(x)在(a,b)连续,且 x?a?limf(x),limf(x)存在有限. ?x?b五. (12分)叙述确界定理并以此证明闭区间连续函数的零点定理.六. (12分)证明:若函数在连续,且f(a)?0,而函数[f(x)]2在a可导,则函数f(x)在a可导. 七. (12分)求函数f(x)?x???x???1在的最大值,其中0???1.八. (12分)设f在上是凸函数,且在(a,b)可微,则对任意x1,x2?(a,b), x1?x2,都有f?(x1)?f?(x2).?g(x),??????x?0?九. (12分)设f(x)??x 且g(0)?g?(0)?0, g??(0)?3, 求f?(0).??0???????,??????x?0数学分析-2样题(一)一.(各5分,共20分)求下列不定积分与定积分: 1. 3.?xarctanx?dx2.?edx4.?x?ln0??xsinx1?cosx二.(10分)设f(x)是上的非负连续函数, 三. (10分)证明?baf(x)dx?0.证明f(x)?0 (x?[a,b]).?2?sinx?0. x四. (15分)证明函数级数?(1?x)xn?0?n在不一致收敛, 在[0,?](其中)一致收敛.五. (10分)将函数f(x)?????x,????????x?0展成傅立叶级数.???x,??????0?x???22xy??????x?y?0?六. (10分)设f(x,y)???22???????????0,???????????????????x?y?0证明: (1) fx?(0,0), fy?(0,0)存在;(2) fx?(x,y),fy?(x,y)在(0,0)不连续; (3) f(x,y)在(0,0)可微.七. (10分)用钢板制造容积为v的无盖长方形水箱,怎样选择水箱的长、宽、高才最省钢板? 八. (15分)设0???1, 证明11. ????n?1n(n?1)数学分析-2样题(二)?一. (各5分,共20分)求下列不定积分与定积分:1.???(a?0)2.?x?xx?x100?8717121514dx3.?arcsinx??dx4.?二. (各5分,共10分)求下列数列与函数极限: 1. limn?22n??k?1n?kn2. limxx?01?ex?xetdt2三.(10分)设函数在[a,b]连续,对任意[a,b]上的连续函数g(x), g(a)?g(b)?0,有?baf(x)g(x)dx?0.证明f(x)?0 (x?[a,b]).四. (15分)定义[0,1]上的函数列1?22nx,?????????????????????x??2n?11?fn(x)??2n??2n2x?????????????x?2nn?1? ????????????????????????????x?1?n?证明{fn(x)}在[0,1]不一致收敛. 五. (10分)求幂级数?(n?1)xn?0?n的和函数.六. (10分)用???定义证明(x,y)?(2,1)lim(4x2?3y)?19.七. (12分)求函数u?(2ax?x2)(2by?y2)??(ab?0)的极值. 八. (13分)设正项级数数学分析-3样题(一)一 (10分) 证明方程f(x?zy?1, y?zx?1)?0所确定的隐函数z?z(x, y)满足方程?an?1?n收敛,且an?an?1???(n?n?).证明limnan?0.n??x?z?z?y?z?xy. ?x?y二 (10分) 设n个正数x1, x2, ?, xn之和是a,求函数u?三 (14分) 设无穷积分.???af(x) dx收敛,函数f(x)在[a, ??)单调,证明1x四 (10分) 求函数f(y)?五 (14分) 计算?1ln(x2?y2) dx的导数(y?0).sinbx?sinaxdx (p?0, b?a).0x六 (10分) 求半径为a的球面的面积s.i????e?px七 (10分) 求六个平面a1b1c1 ?a1x?b1y?c1z??h1 ,??a2x?b2y?c2z??h2 , ?=a2b2c2?0 , ?ax?by?cz??h ,a3b3c3333?3所围的平行六面体v的体积i,其中ai, bi, ci, hi都是常数,且hi?0 (i?1, 2, 3). 八 (12分) 求xdy?ydx??cx2?y2,其中c是光滑的不通过原点的正向闭曲线.九 (10分) 求ds2222?,其中是球面被平面z?h (0?h?a)所截的顶部. x?y?z?a??z?数学分析-3样题(二)一 (10分) 求曲面x?u?v, y?u2?v2, z?u3?v3在点(0, 2)对应曲面上的点的切平面与法线方程.二 (10分) 求在两个曲面x2?xy?y2?z2?1与x2?y2?1交线上到原点最近的点. 三(14分) 设函数f(x)在[1, ??)单调减少,且limf(x)?0,证明无穷积分x??????1f(x) dx与级数?f(n)同时收敛或同时发散.n?1??100四 (12分) 证明?e?ax?e?bxbdx?ln(0?a?b). xa五 (12分) 设函数f(x)在[a, a]连续,证明? x?[a, a],有1xlim ?[f(t?h)?f(t)] dt?f(x)?f(a).ah?0h六 (10分) 求椭圆区域r: (a1x?b1y?c1)2?(a2x?b2y?c2)2?1(a1b2?a2b1?0)的面积a.七 (10分) 设f(t)????vf(x2?y2?z2) dx dy dz,其中v: x2?y2?z2? t2 (t?0),f是连续函数,求f(t).八 (10分) 应用曲线积分求(2x?siny)dx?(xcosy)dy的原函数. 九(12分) 计算外侧.??xyz dx dy,其中s是球面xs2?y2?z2?1在x?0, y?0部分并取球面【篇二:数学分析三试卷及答案】lass=txt>一. 计算题(共8题,每题9分,共72分)。
(二十一)数学分析期终考试题一 叙述题:(每小题5分,共15分)1 开集和闭集2 函数项级数的逐项求导定理3 Riemann 可积的充分必要条件 二 计算题:(每小题7分,共35分)1、⎰-9131dx x x2、求)0()(222b a b b y x ≤<=-+绕x 轴旋转而成的几何体的体积3、求幂级数n n n x n ∑∞=+12)11(的收敛半径和收敛域 4、11lim222200-+++→→y x y x y x5、22),,(yz xy x z y x f ++=,l 为从点P 0(2,-1,2)到点(-1,1,2)的方向, 求f l (P 0) 三 讨论与验证题:(每小题10分,共30分)1、已知⎪⎩⎪⎨⎧==≠+++=0,0001sin )(),(222222y x y x y x y x y x f ,验证函数的偏导数在原点不连续,但它在该点可微2、讨论级数∑∞=-+12211ln n n n 的敛散性。
3、讨论函数项级数]1,1[)1(11-∈+-∑∞=+x n x n x n n n 的一致收敛性。
四 证明题:(每小题10分,共20分)1 若⎰+∞adx x f )(收敛,且f (x )在[a ,+∞)上一致连续函数,则有0)(lim =+∞→x f x2 设二元函数),(y x f 在开集2R D ⊂内对于变量x 是连续的,对于变量y 满足Lipschitz 条件:''''''),(),(y y L y x f y x f -≤-其中L D y x y x ,),(),,('''∈为常数证明),(y x f 在D 内连续。
参考答案一、1、若集合S 中的每个点都是它的内点,则称集合S 为开集;若集合S 中包含了它的所有的聚点,则称集合S 为闭集。
2 设函数项级数∑∞=1)(n nx u满足(1)),2,1)(( =n x u n 在[a ,b]连续可导a)∑∞=1)(n nx u在[a ,b]点态收敛于)(x Sb)∑∞=1')(n x un在[a ,b]一致收敛于)(x σ则)(x S =∑∞=1)(n n x u 在[a ,b] 可导,且∑∑∞=∞==11)()(n n n nx u dx dx u dx d 3、有界函数)(x f 在[a ,b]上可积的充分必要条件是,对于任意分法,当0)(max 1→∆=≤≤i ni x λ时Darboux 大和与Darboux 小和的极限相等二、1、令31x t -=(2分)7468)1(31233913-=--=-⎰⎰-dt t t dx x x (5分) 2、222221,x a b y x a b y --=-+=,(2分)所求的体积为:b a dx y y aa2222212)(ππ=-⎰-(5分) 3、解:由于e n n n n n n nn 1])111(1))111()11(lim[(11=++⨯+++++∞→收敛半径为e 1(4分),当e x 1=时,)(01)1()1()11(2∞→≠→±+n e n n n n ,所以收敛域为)1,1(ee - (3分) 4、2)11(lim )11)(11()11)((lim11lim220022*******222200=+++=+++-++++++=-+++→→→→→→y x y x y x y x y x y x y x y x y x y x (7分)5、解: 设极坐标方程为4)2,1,2(.0)2,1,2(,2)2,1,2(-=-=-=-z y x f f f (4分)136)2,1,2(=-l f (3分)三、1、解、⎪⎩⎪⎨⎧=+≠+++-+=000)1cos 11(sin 22222222222y x y x yx y x y x x f x (4分)由于22221cos 1y x y x ++当趋于(0,0)无极限。
数学分析下册期末模拟试卷及参考答案一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分)1、已知u =则u x∂=∂ ,u y ∂=∂ ,du = 。
2、设22L y a +=2:x ,则Lxdy ydx -=⎰ 。
3、设L ⎧⎨⎩x=3cost ,:y=3sint.(02t π≤≤),则曲线积分ds ⎰22L(x +y )= 。
4、改变累次积分32dy f dx ⎰⎰3y (x ,y )的次序为 。
5、设1D x y +≤:,则1)Ddxdy ⎰⎰= 。
二、判断题(正确的打“O ”;错误的打“×”;每题3分,共15分)1、若函数f (x ,y )在点p 00(x ,y )连续,则函数f (x ,y )点p 00(x ,y )必存在一阶偏导数。
( )2、若函数f (x ,y )在点p 00(x ,y ) 可微,则函数f (x ,y )在点p 00(x ,y )连续。
( )3、若函数f (x ,y )在点p 00(x ,y )存在二阶偏导数00(,)xy f x y 和00(,)yx f x y ,则必有 0000(,)(,)x y y x f x y f x y =。
( ) 4、(,)(,)(,)(,)L A B L B A f x y dx f x y dx =⎰⎰。
( ) 5、若函数f (x ,y )在有界闭区域D 上连续,则函数f (x ,y )在D 上可积。
( )三、计算题 ( 每小题9分,共45分)1、 用格林公式计算曲线积分(sin 3)(cos 3)x x AO I e y y dx e y dy =-+-⎰ ,其中AO 为由(,0)A a 到(0,0)O 经过圆22x y ax +=上半部分的路线。
、计算三重积分22()V xy dxdydz +⎰⎰⎰,是由抛物面22z x y =+与平面4z =围成的立体。
、计算第一型曲面积分SI d S =⎰⎰ ,其中S 是球面2222x y z R ++=上被平面(0)z a a R =<<所截下的顶部(z a ≥)。
数学分析试卷及答案6套第一套试卷一、选择题(共20题,每题4分,共80分)1. 若函数f(x) = 3x^2 + 2x - 1,求f(-1)的值是多少?A. -4B. 4C. 0D. 12. 函数f(x) = ln(x^2 + 1)在区间(-∞, 0)上的最小值是多少?A. ln(1)B. ln(0)C. ln(-1)D. 不存在最小值3. 已知函数f(x)在区间[0, 5]上连续,且f(0) = 2, f(5) = 1,证明在该区间上存在一个点c,使得f(c) = 3.(请写出证明过程)4. 求不等式2x - 5 < 3x + 2的解集。
A. x < -7B. x > -7C. x > -3D. x < -35. 设函数f(x)在区间[a, b]上连续,且f(a) = f(b),证明在该区间上至少存在两个不同的点c和d,使得f(c) = f(d).(请写出证明过程)..................第一套答案一、选择题1. B2. A3. (证明过程略)4. A5. (证明过程略)二、填空题(共5题,每题4分,共20分)1. 若e^x = 2,则x = ln(2);2. 设a, b为实数,若a^2 + 2ab + b^2 = 0,则a = -b;3. lim(x→∞) (x^2 - 2x - 3)/(3x + 1) = 1;4. 若函数f(x) = x^2 + 3x - 2,则f(-1) = -6;5. 若f(x) = √(2x + 1),则f'(x) = 1/√(2x + 1)。
三、解答题(共3题,每题20分,共60分)1. 设函数f(x) = x^3 - 2x + 1在区间[-2, 2]上的一个驻点为c,请求该驻点c的值以及f(c)的极值。
(请写出解题过程)2. 求函数f(x) = x^3 - 3x + 1的所有零点。
(请写出解题过程)3. 若函数f(x) = 3x^4 + 4x^3 - 12x^2 + 4在区间[0, 3]上的导函数f'(x)恰有一个零点c,并且f(c) = 2,求函数f(x)在该区间上的最大值。
数学分析上学期期末考试试题(及答案)一、选择题(每小题2分,共20分)1. 下列哪个不是测度论中的重要定理?A. 开集的性质B. 测度的可贸易性C. 有限可加性定理D. 外测度的定义2. 设函数f(x)在[a, b]上可导,下列关于f(x)的结论中正确的是:A. f(x)在[a, b]上一定为增函数B. f(x)在[a, b]上一定为减函数C. f(x)在[a, b]上既可以是增函数也可以是减函数D. f(x)在[a, b]上一定为周期函数3. 以下哪个不是级数收敛的充要条件?A. 极限一致有界B. 积分收敛C. 极限值为零D. 部分和有界4. 若函数序列fn(x)在[a, b]上一致收敛于f(x),则f(x)在[a, b]上一定是A. 递增的B. 递减的C. 周期函数D. 连续函数5. 下列哪个不是积分的线性性质?A. ∫[a, b](f+g)(x)dx = ∫[a, b]f(x)dx + ∫[a, b]g(x)dxB. ∫[a, b]cf(x)dx = c∫[a, b]f(x)dx (c为常数)C. ∫[a, b]f(x)g(x)dx = ∫[a, b]f(x)dx * ∫[a, b]g(x)dxD. ∫[a, b]f(x)dx = -∫[b, a]f(x)dx6. 函数f(x)=|x|/(x^2+9)的不可导点是A. x=-3B. x=3C. x=-3和x=-sqrt(3)D. x=-3和x=sqrt(3)7. 设函数u(x, y)具有二阶连续偏导数,下列哪个条件可以确保u(x, y)为调和函数?A. u_xx + u_yy = 0B. u_xx + u_yy = 1C. u_xx - u_yy = 0D. u_xx - u_yy = 18. 设实数α为2π的有理数倍数,函数f(x)的周期为2π,下列哪个函数一定是f(x)的周期函数?A. f(x + α)B. f(x - α)C. f(-x)D. f(x/2)9. 设f(x)在区间[a, b]上一阶可导,且f(a)=f(b)=0,若存在c∈(a,b)使得f(c)=0,则函数f(x)在[a, b]上的其中一个极值点为A. aB. bC. cD. 以上都可能是10. 函数f(x)对任意的x∈(-∞, +∞)满足f'(x) = f(x),若f(x)在x=0处的值为2,则f(1)的值为A. -1B. 0C. 1D. 2二、填空题(每小题5分,共20分)1. 若函数f(x)可导,则f(x)________是可测的,且__________是可测的。
考研数学分析试题及答案一、选择题(每题3分,共30分)1. 设函数f(x)在区间[a, b]上连续,且f(a) = f(b) = 0,若f(x)在区间(a, b)内至少有一个最大值点,则下列说法正确的是()。
A. f(x)在[a, b]上必有最大值B. f(x)在[a, b]上必有最小值C. 函数f(x)在[a, b]上单调递增D. 函数f(x)在[a, b]上单调递减2. 下列级数中,发散的是()。
A. ∑(-1)^n / nB. ∑1/n^2C. ∑(1/n - 1/(n+1))D. ∑sin(n)3. 已知函数F(x)在点x=c处可导,且F'(c)≠0,那么下列说法中正确的是()。
A. F(x)在x=c处连续B. 函数F(x)在x=c处一定取得最大值或最小值C. 可导性不能保证函数的连续性D. F(x)在x=c处取得极值4. 对于函数f(x) = x^3 - 6x^2 + 9x + 5,其在区间[1, 5]上的最大值是()。
A. 5B. 10C. 15D. 205. 设f(x)在[a, b]上可积,若∫[a, b] f(x) dx = 10,则下列说法中错误的是()。
A. f(x)在[a, b]上非负B. 存在x₀∈[a, b],使得f(x₀) > 0C. 存在x₀∈[a, b],使得f(x₀) = 10/b - aD. f(x)可以是负函数6. 函数f(x) = e^x / (1 + e^x)的值域是()。
A. (-∞, 0)B. (0, 1/2)C. (0, 1)D. (1/2, +∞)7. 下列选项中,不是有界函数的是()。
A. y = sin xB. y = e^xC. y = x^2D. y = 1/x8. 设函数f(x)在点x=1处可导,且f'(1) = 2,那么f(1 + h) - f(1)在h趋近于0时的表达式是()。
A. 2hB. 2h + o(h)C. h^2D. o(h)9. 对于函数f(x) = x^2,其在区间[-1, 1]上满足拉格朗日中值定理的条件,且存在ξ∈(-1, 1),使得()。
数学分析3考试题及答案一、选择题(每题3分,共30分)1. 函数f(x)=x^2在区间[0,1]上是:A. 增函数B. 减函数C. 常数函数D. 非单调函数2. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. -1D. ∞3. 以下哪个级数是收敛的:A. 1 + 1/2 + 1/4 + 1/8 + ...B. 1 - 1/2 + 1/3 - 1/4 + ...C. 1 + 2 + 3 + 4 + ...D. 1/2 + 1/4 + 1/8 + 1/16 + ...4. 函数f(x)=x^3-3x在区间(-∞,+∞)上:A. 有唯一极值点B. 有两个极值点C. 有三个极值点D. 没有极值点5. 函数f(x)=x^2在x=0处的导数是:A. 0B. 1C. -1D. 26. 函数f(x)=|x|在x=0处:A. 连续B. 可导C. 不连续D. 不可导7. 函数f(x)=x^2+2x+1的不定积分是:A. (x^3+x^2)/3 + CB. (x^3+x^2+2x)/3 + CC. (x^3+x^2+2x+1)/3 + CD. (x^3+x^2+x)/3 + C8. 以下哪个函数是周期函数:A. f(x)=x^2B. f(x)=sin(x)C. f(x)=e^xD. f(x)=ln(x)9. 函数f(x)=x^3在x=1处的泰勒展开式是:A. 1 + 3(x-1) + 3(x-1)^2 + (x-1)^3B. 1 + 3(x-1) + 3(x-1)^2C. 1 + 3(x-1) + (x-1)^3D. 1 + 3(x-1) + 3(x-1)^2 + 6(x-1)^310. 函数f(x)=x^2在区间[0,1]上的定积分是:A. 1/3B. 1/2C. 2/3D. 1二、填空题(每题4分,共20分)1. 函数f(x)=x^3在x=1处的导数值为______。
2. 函数f(x)=sin(x)在x=π/2处的二阶导数值为______。
数学分析下考试题及答案一、选择题(每题4分,共20分)1. 若函数f(x)在区间[a,b]上连续,则下列说法正确的是:A. f(x)在[a,b]上单调递增B. f(x)在[a,b]上存在极大值和极小值C. f(x)在[a,b]上可导D. f(x)在[a,b]上可积答案:D2. 极限lim(x→0) (sin x)/x的值为:A. 0B. 1C. -1D. 不存在答案:B3. 函数f(x)=x^2在x=0处的导数为:A. 0B. 1C. 2D. 不存在答案:A4. 函数f(x)=x^3-3x+1的拐点为:A. x=1B. x=-1C. x=0D. 不存在答案:A5. 若函数f(x)在x=a处可导,则下列说法正确的是:A. f(x)在x=a处连续B. f(x)在x=a处可积C. f(x)在x=a处有界D. f(x)在x=a处有极值答案:A二、填空题(每题4分,共20分)1. 函数f(x)=x^2+3x+2的导数为______。
答案:2x+32. 极限lim(x→∞) (x^2-3x+2)/(x^3+1)的值为______。
答案:03. 函数f(x)=sin x在x=π/2处的二阶导数为______。
答案:-14. 函数f(x)=e^x的不定积分为______。
答案:e^x+C5. 函数f(x)=ln x的原函数为______。
答案:xln x-x+C三、解答题(每题15分,共40分)1. 求函数f(x)=x^3-6x^2+11x-6在区间[1,3]上的极值。
答案:首先求导数f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1或x=3。
检查二阶导数f''(x)=6x-12,f''(1)=-6<0,f''(3)=6>0,因此x=1为极大值点,x=3为极小值点。
计算f(1)=0,f(3)=0,所以极大值为0,极小值也为0。
综合测试试卷一一、 计算题(本大题共15小题,每小题2分,共30分)1、xx x tan 01lim ⎪⎭⎫⎝⎛+→; 2、()x x x 2cot lim 0→ ;3、设a 为非零常数,则xx a x a x ⎪⎭⎫ ⎝⎛-+∞→lim ;4、⎪⎭⎫ ⎝⎛--+∞→n n n n n 3lim ; 5、xx x ex e111lim +-+→;6、⎪⎪⎭⎫⎝⎛++∞→x x x x 2sin 3553lim 2; 7、⎪⎭⎫ ⎝⎛+++++++++∞→n n n n n n n n n 2222211lim ;8、()x x x sin 2031lim +→;9、⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+∞→x x x x 11ln sin 31ln sin lim ; 10、()()x x x x x x +++→1ln cos 11cossin 3lim20 ; 11、20211limx x x x --++→; 12、⎪⎭⎫ ⎝⎛-→x x x x tan 11lim 20; 13、()3021ln arctan limx xx x +-→ ;14、若0>a ,0>b 为常数,则xxx x ba 302lim ⎪⎪⎭⎫⎝⎛+→;15、⎪⎪⎭⎫⎝⎛++++++∞→n n n n n n πππcos 12cos 1cos 11lim。
. 二、单项选择题(本大题共5小题,每小题2分,共10分)16、xx x x sin sinlim10→的值为( ) A. 1; B. ∞; C.不存在; D. 0.17、=+--+→232231x x x x x lim ( )A. 3;B. 4-;C. 1;D. 1-.18、 =⎪⎭⎫ ⎝⎛-∞→xx x 211lim ( )A.e 2;B. 2-e; C. 2e ; D.e2. 19、若22222=--++→x x bax x x lim ,则必有( ) A. 82==b a ,; B. 52==b a ,;C. 80-==b a ,; D. 82-==b a ,. 20、当+→0x 时,以下四式中为无穷小量的是( )A. x x 1sin ;B. x e 1; C. x ln ; D. x xsin 1.21、当+→0x 时,以下四式中为无穷大量的是( ) A. 12--x; B.xx sec sin +1; C. xe -; D. x e 1. 22、=→xx x x cos sinlim10( ) A.不存在; B. 0; C. 1; D. ∞.23、()=-→xx x cos tan lim 02π( )A.0;B. 1;C. ∞;D. 不存在. 24、=⎪⎭⎫⎝⎛--→1110x x e x lim ( )A.0;B. 21;C. ∞;D.21-. 25、()=+→xx x ex 10lim ( )A.e ;B. 1;C. 2e ; D. 2.三、计算题(本大题共3小题,每小题17分,共51分)26、623lim 2232--++-→x x xx x x ; 27、()11lim 22--+∞→x x x . 28、38231lim x x x +---→. 29、⎪⎪⎭⎫ ⎝⎛+--∞→1212lim 223x x x x x . 30、n n n n n !2lim ∞→. 31、()()()503020152332lim++-∞→x x x x . 32、设)(a f '存在,且0>)(a f ,求xx a f x a f ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+∞→)(lim 1.33、xx x x ⎪⎭⎫ ⎝⎛+∞→1lim . 34、11lim 31--→x x x . 35、xx x cos lim 00+→. 36、xx x x 10arcsin lim ⎪⎭⎫⎝⎛→. 37、()x x x x cos 1sin 1ln lim 0-+→. 38、201sin lim x x →. 39、21cos lim x x x ⎪⎭⎫ ⎝⎛∞→. 40、121lim +∞→+++p p p p n n n ,0>p .41、()1ln lim0-+→xx e x.42、dx xx an nn ⎰+∞→1sin lim.(提示:先用积分中值定理:()()a b f dx x f ba-=⎰ξ)(,[]b a ,∈ξ)综合测试试卷一参考答案一、计算题(本大题共15小题,每小题2分,共30分) 1、1; 2、21; 3、a e 2;4、2;5、1-;6、56;7、21;8、6e ;9、2;10、23;11、41-;12、31; 13、61-; 14、()23ab ; 15、22π。
∑⎰ ⎰ ⎰ 2014 ---2015 学年度第二学期《数学分析 2》A 试卷一. 判断题(每小题 3 分,共 21 分)(正确者后面括号内打对勾,否则打叉)1.若 f (x )在[a ,b ]连续,则 f (x )在[a ,b ]上的不定积分⎰ f (x )dx 可表为x f(t )dt + C ( ).a2.若 f (x ), g (x )为连续函数,则⎰ f (x )g (x )dx = [⎰f (x )dx ]⋅ [⎰g (x )dx ().+∞+∞3.若 f (x )dx 绝对收敛, ⎰ g (x )dx 条件收敛,则aa+∞[ f(x )- g (x )]dx 必然条件收敛().a+∞ 4. 若f (x )dx 收敛,则必有级数∑ f (n )收敛( )1n =15. 若{f n }与{g n }均在区间 I 上内闭一致收敛,则{f n + g n }也在区间 I上内闭一致收敛( ).∞6. 若数项级数 a n 条件收敛,则一定可以经过适当的重排使其发散n =1于正无穷大( ).7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题 3 分,共 15 分)1. 若 f(x )在[a ,b ]上可积,则下限函数af (x )dx 在[a ,b ]上()xA. 不连续B. 连续C.可微D.不能确定⎰ ⎰∞⎰ ⎰ ⎰ ⎰ ∑ 2. 若 g (x )在[a ,b ]上可积,而 f (x )在[a ,b ]上仅有有限个点处与 g (x )不相等,则( )A. f (x )在[a ,b ]上一定不可积;B. f (x )在[a , b ]上一定可积,但是bf (x )dx ≠ bg (x )dx ;aaC. f (x )在[a , b ]上一定可积,并且 b f (x )dx = bg (x )dx ;aaD. f (x )在[a ,b ]上的可积性不能确定.∞3. 级数 n =11 + (- 1)n -1 n n2 A. 发散 B.绝对收敛 C.条件收敛 D. 不确定4. 设∑u n 为任一项级数,则下列说法正确的是( )A. 若lim u n →∞= 0 ,则级数∑u n一定收敛;B. 若lim un +1 = < 1,则级数∑u 一定收敛;n →∞ u nC. 若∃ N ,千D. 若∃ N ,千 n > N 千千n > N 千千千u n +1 n< 1,则级数∑u n 一定收敛; u n> 1,则级数∑u n 一定发散;5. 关于幂级数∑ a n x n 的说法正确的是()A. ∑ a n x n 在收敛区间上各点是绝对收敛的;B. ∑ a n x n 在收敛域上各点是绝对收敛的;C. ∑ a n x n 的和函数在收敛域上各点存在各阶导数;千 u n +1u n nx ⎰⎰ D. ∑ a n x n 在收敛域上是绝对并且一致收敛的;三.计算与求值(每小题 5 分,共 10 分) 1. lim 1n (n + 1)(n + 2) (n + n ) n →∞ n2. ln (sin x )dx cos 2 x四. 判断敛散性(每小题 5 分,共 15 分)1. dx 01 + + x 2∞∑2. ∑ n ! n =1 n n∞ 3. n =1(- 1)nn 2n1 + 2n五. 判别在数集 D 上的一致收敛性(每小题 5 分,共 10 分)1. f n(x )= sin nx n, n =1,2 , D = (- ∞,+∞)∑2. n D xn= (- ∞, - 2]⋃[2, + ∞)六.已知一圆柱体的的半径为 R ,经过圆柱下底圆直径线并保持与底圆面300 角向斜上方切割,求从圆柱体上切下的这块立体的体积。
高等数学上册试卷A 卷一 填空题(每题2分,共10分) 1. 2()d f x dx ⎰= ;2. 设f (x )=e -x ,则(ln )f x dx x'⎰= ; 3.比较积分的大小:11_________(1)x e dx x dx +⎰⎰;4.函数1()2(0)x F x dtx ⎛=> ⎝⎰的单调减少区间为 ;5. 级数()(0)nn n a x b b ∞=->∑,当x =0时收敛,当x =2b 时发散,则该级数的收敛半径是 ;二、求不定积分(每小题4分,共16分)1.; 2.sin x xdx ⎰;3.;4. 已知sin xx是f (x )的一个原函数,求()xf x dx '⎰. 三、求定积分(每小题4分,共12分)1.520cos sin 2x xdx π⎰; 2.121(x dx -⎰;3.设1,当0时1()1,当0时1xx xf x x e ⎧≥⎪⎪+=⎨⎪<⎪+⎩求20(1)f x dx -⎰四、应用题(每小题5分,共15分)1.计算由曲线y =x 2,x =y 2所围图形的面积;2.由y =x 3、x =2、y =0所围成的图形绕x 轴旋转,计算所得旋转体的体积.3. 有一矩形截面面积为20米2,深为5米的水池,盛满了水,若用抽水泵把这水池中的水全部抽到10米高的水塔上去,则要作多少功?(水的比重1000g 牛顿/米3 )五、求下列极限(每题5分,共10分)1.222222lim 12n n n n n n n n →∞⎛⎫+++ ⎪+++⎝⎭;2. 设函数f (x )在(0,+∞)内可微,且f (x )满足方程11()1()xf x f t dt x=+⎰,求f (x )。
六、判断下列级数的敛散性(每题5分,共15分)1. 21sin32n n n n π∞=∑; 2. 2111n n n ∞=⎛⎫- ⎪⎝⎭∑; 3.()1ln 1nn nn∞=-∑; 七、求解下列各题(每题5分,共10分)1. 求幂级数111n n x n +∞=+∑的收敛域及和函数;2. 将函数21()32f x x x =++展开成(x +4)的幂级数。
数学分析考研真题答案一、选择题1. 极限的概念是数学分析中最基本的概念之一。
下列选项中,哪一个是极限的定义?A. 函数在某一点的值B. 函数在某一点的左极限与右极限相等时的值C. 函数在某一点的值趋于一个常数D. 函数在某一点附近的行为答案: C2. 以下哪个选项是连续函数的定义?A. 在某点可导B. 在某点的极限存在且等于函数值C. 在某区间内的所有点都有定义D. 在某区间内的所有点都有定义且可导答案: B二、填空题1. 若函数\( f(x) \)在点\( x_0 \)处可导,则\( f(x) \)在\( x_0 \)处的导数定义为\( \lim_{h \to 0} \frac{f(x_0 + h) -f(x_0)}{h} \)。
答案: \( \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \)2. 定积分\( \int_{a}^{b} f(x) \, dx \)的几何意义是函数\( f(x) \)在区间\( [a, b] \)上的曲线与x轴所围成的面积。
答案:曲线与x轴所围成的面积三、解答题1. 证明:若函数\( f(x) \)在区间\( [a, b] \)上连续,则定积分\( \int_{a}^{b} f(x) \, dx \)存在。
证明:由于\( f(x) \)在\( [a, b] \)上连续,根据连续函数的性质,\( f(x) \)在\( [a, b] \)上是一致连续的。
根据达布定理(Darboux's Theorem),对于任意的分割\( P \),上和\( U(f, P) \)与下和\( L(f, P) \)之差\( U(f, P) - L(f, P) \)可以任意小。
因此,存在一个共同的极限\( I \),即\( \lim_{||P|| \to 0} U(f, P) = \lim_{||P|| \to 0} L(f, P) = I \),这就证明了定积分\( \int_{a}^{b} f(x) \, dx \)的存在性。
数学分析-1样题(一)
一. (8分)用数列极限的N ε-
定义证明1n =.
二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x a
g x b →=;
(2) 0()x U a ∀∈,有0
()()g x U b ∈ (3) 用ε三
(n x n n
=
++
⋅+四()f x x
=
在五六七八九. )b ,使
(f ''数学分析-1样题(二)
一. (10分)设数列{}n a 满足: 1a =, 1()n a n N +=∈, 其中a 是一给定的正常
数, 证明{}n a 收敛,并求其极限.
二. (10分)设0
lim ()0x x f x b →=≠, 用εδ-定义证明0
11
lim
()x x f x b
→=.
三. (10分)设0n a >,且1
lim
1n
n n a l a →∞+=>, 证明lim 0n n a →∞
=.
四. (10分)证明函数()f x 在开区间(,)a b 一致连续⇔()f x 在(,)a b 连续,且
lim ()x a f x +
→,lim ()x b
f x -
→存在有限. 五. (12分)叙述确界定理并以此证明闭区间连续函数的零点定理.
六. (12分)证明:若函数在连续,且()0f a ≠,而函数2
[()]f x 在a 可导,则函数()f x 在a 可导. 七.
八. ,都有
f 九.
一.(各1. x ⎰3.
ln 0
⎰
二.(10三. (10四. (15分)证明函数级数
(1)n x x
=-在不一致收敛, 在[0,](其中)一致收敛.
五. (10分)将函数,0
(),0x x f x x x ππππ
+ ≤≤⎧=⎨
- <≤⎩展成傅立叶级数.
六. (10分)设22
22
0(,)0,0
xy x y f x y x y ⎧ +≠⎪=⎨⎪ +=⎩
证明: (1) (0,0)x f ', (0,0)y f '存在; (2) (,)x f x y ',(,)y f x y '在(0,0)不连续;
(3) (,)f x y 在(0,0)可微.
七. (10分)用钢板制造容积为V 的无盖长方形水箱,怎样选择水箱的长、宽、高才最省钢板? 八. (15分)设01σ<<, 证明
111
(1)
n n n σ
σ∞
=<+∑.
一1.
3.
二1. 三0,有
b
a
⎰
四11n f x n ⎪
⎪
0 , <≤⎪⎩
证明{()}n f x 在[0,1]不一致收敛. 五. (10分)求幂级数
0(1)n
n n x ∞
=+∑的和函数.
六. (10分)用εδ-定义证明
2(,)(2,1)lim (43)19x y x y →+=.
七. (12分)求函数2
2
(2)(2)(0)u ax x by y ab =-- ≠的极值.
八. (13分)设正项级数1
n
n a
∞
=∑收敛,且1()n n a a n N ++≥ ∈.证明lim 0n n na →∞
=.
数学分析-3样题(一)
一 二 (10 n x 的最大值三 (14()f x =四 (10五 (14六 (10七 (10八 (12分) 求
22
C
xdy ydx
x y -+⎰
,其中C 是光滑的不通过原点的正向闭曲线.
九 (10分) 求dS z ∑
⎰⎰,其中∑是球面2222
x y z a ++=被平面 (0)z h h a =<<所截的顶部.
数学分析-3样题(二)
一 (10分) 求曲面2
2
3
3
, , x u v y u v z u v =+=+=+在点(0, 2)对应曲面上的点的切平面
二 (10三 (141
(f +∞
⎰
四 (12五 (12六 (10A .
七 (10,
f 八 (10分) 应用曲线积分求(2sin )(cos )x y dx x y dy ++的原函数. 九 (12分) 计算 S
xyz dx dy ⎰⎰,其中S 是球面2
221x
y z ++=在0, 0x y ≥≥部分并取球面
外侧.。