关于用等式性质解方程的几个问题
- 格式:doc
- 大小:24.00 KB
- 文档页数:5
曹培英
数学课程改革推进到小学高年级之后,部分教师对教材,依据等式性质解方程的意义不很理解,对由此生成的一些问题感到困惑,总觉得还是原来依据四则运算关系解方程,便于教、便于学。本文仅就与此相关的一些问题,谈谈个人的有关认识与体会,供大家参考。
一、为什么要用等式基本性质解方程
在我国,九年制义务教育已经基本普及,小学由原先具有相对独立性降低为九年义务教育的一个学段。顺应着基础教育的这一发展,新一轮课程改革中推出的各学科课程标准,都将小学、初中视为一个整体,予以通盘考虑,这是一大进步。数学学科当然也不例外。可以说,义务教育数学课程标准的研制、颁布为我们研究和践行中小学数学教学的衔接,提供了教学内容、教学要求等多方面的支撑和保障。我们应该基于这样的背景,展开有关的讨论。
其实.解方程的依据,严格说来,应该是方程的同解定理。但由于中小学数学的理论要求不高,再说在陈述等式的第一条性质时,只要指出等式两边都乘或除以同一个不等于零的数,这两条等式的基本性质就可以作为同解定理来使用。所以,多年以来,即使是中学数学教材,也大多采用等式的基本性质作为解方程的依据。这样处理可以避开“同解方程”等概念,减少教学的麻烦。
过去,在小学教学解方程,依据的是四则运算之间的关系,如“加数=和-另一个加数”,“因数=积÷另一个因数”.等等。由于这些关系小学生在学习加减法、乘除法时.早就不断有所感知,积累了比较丰富的感性经验,所以到小学中高年级再加以概括就显得水到渠成,运用这些关系解未知数只出现在等式一边的简易方程也比较自然。
但是,这种“算术”的解方程思路毕竟走不了多远,一到中学就被彻底抛弃,取而代之的是等式的基本性质。而且小学依据四则运算关系解方程教得越多,练得越巩同,初中方程教学的负迁移就越明显,入门障碍就越大。当然,负迁移的程度也取决于初中数学教师的教学策略与教学艺术,但在整体上存在负迁移是一个不争的事实。
实际上.除了小学数学教师,成年人有几个还记得小学依据四则运算关系解方程的那些套路呢?
既然一到中学就被取代,并将彻底遗忘.为什么就不能改变,寻找一条新的可持续发展的出路呢?
现在,为了减少过渡性的、很快被淘汰的知识,为了避免中小学数学教学各自教一套,避免中学“另起炉灶”,为了促进学习的正迁移,将等式基本性质作为小学解方程的依据,使中小学解方程的思路得到基本统一,解释趋于一致。这是一项很有意义的改革,值得我们为之尝试、探索,积累经验。
上海市的小学数学教材,从上世纪90年代起就引进了等式基本性质。起初也有一些教师感觉不适应,特别是部分有经验的老教师曾有抱怨。几年以后,熟
悉了、习惯了,也就接受了这一改革。更为重要的原因是,小学生没有先人为主的成见,他们对以天平为直观形象载体的等式性质,感到新奇、有趣,乐意接受,也容易理解。这是改革能够成功的必要条件。当然,课程改革应当是一种自上而下与自下而上相结合的互动过程,因此,教师对改革的认同情况和承受能力,也是必须考虑的。
通过实践还进一步发现,以等式基本性质为依据,有利于凸显等量关系,有助于渗透初步的方程思想和初步的数学建模思想。这些则是改革初衷之外的收获了。
无须讳言,上海市前十年的小学数学课程教材与本文讨论主题相关的改革,也有值得反思之处。如为了彻底排除依据等式基本性质解方程的障碍,提前教学正负数四则运算,安排成三个“循环圈”;为了解决应用题难教、难学问题,强调列方程解决问题,期望在小学阶段就用方程解法取代算术解法。实践表明,操之过急,利弊参半。仅就算术解法而言,它是列方程的基础,也是现实生活中应用最广泛的数学方法之一。如果认为有中学以上学历的成年人,解应用题时首选方程解法,算术解法早忘了,那是一种误解。事实上,成年人只在面对教科书、习题集中的“实际问题”时,才会出现列方程的条件反射。而在日常生活中,人人几乎天天都在本能地使用算术方法解决那些只需简单四则运算的现实问题。正因为如此,尽管小学生用算术方法解决实际问题的反复练习会给初中学习列方程解决问题带来一定的负迁移,我们却不能“因噎废食”,过早抛弃算术解法。这与解方程用等式基本性质取代四则运算关系具有质的差异,不宜相提并论。
二、不出形如a-x=b与a÷x=b的方程,可行吗
考虑到在小学阶段依据等式基本性质解形如如a-x=b与a÷x=b的方程不那么方便,因此目前多数教材采取了不出这两种类型方程的处理策略。这也是一些教师感到疑惑的问题。历史地看,在小学数学中引进方程由来已久。最初的目的:一是针对应用题教学的难点,旨在化难为易,提高学生分析问题、解决问题的能力;二是加强中小学数学教学的衔接,为中学较系统地学习方程的知识作铺垫。应该说,两方面的目的,至今仍未过时。然而,在以往的教学实践中,由于种种主客观的原因.常常异化为一招一式的解题教学。虽说教师也会对算术解法与方程解法的特点加以对比;引导学生根据应用题的特点选择适当的解题方法,但大家更多关注的还是方程的类型、列方程解的应用题的类型。换句话说,以往我们更为关注的是知识点。
如今,新一轮课程改革强调学习过程的经历与体验,这一与时俱进的过程观已被越来越多的教师所认同。既然如此,方程与实际问题就都只是“例子”,且都是让学生经历过程、获得体验的“载体”。也就是说,如今我们更为关注的是知识的“过程".并由此演绎、推论。既然是“例子”,就不必求全,少了a-x=b 与a÷x=b这两个例子,本应坦然,没什么好大惊小怪的。但是,长期工作在教学第一线的教师又深知‘‘例子"、“知识点”的重要性,不敢掉以轻心,这也是有道理的。本来嘛,“例子"承载“过程”,知识的“点"与知识的“过程”相
辅相成,很难说孰轻孰重。再者,舍弃了两个“例子”,总感觉不全面、有缺失,过去教得驾轻就熟,学生掌握也没有困难,为什么就不要了呢?
因此.有必要作进一步的分析。
在小学,形如a-x=b的方程与形如a+x=b的方程,不论是依据四则运算的关系解,还是依据等式基本性质解,都是有区别的。但是到了初中,学了有理数的四则运算之后,它们的区别几乎可以忽略不计,因为a-x=b可以看做a+(-x)=b。所以即使小学不出现形如a-x=b的方程,中学也不必补充例子作为新授内容来教。可见,我们大可不必因为少了这个例子而不放心、放不下。
再说,形如a÷x=b的方程,它本来就属于分式方程。我们知道。解分式方程需要去分母,去分母有可能带来“增根”。所以,解分式方程,哪怕你确信整个求解过程准确无误,也要“验根”.即判断你所得到的是原方程的解还是增根。这层意思超出了小学数学“验算”的内涵,在小学是不大可能渗透的。因此,把这个“例子"让给中学,以免生成误解,是合情合理的。
这样一来,剩下形如x+a=b,x-a=b,ax=b,x÷a=b的方程,求解思路就趋于统一:,
x+a=b,x-a=b,都是在方程两边加上或减去a;
ax=b,x÷a=b,都是在方程两边乘或除以a(a≠O)。’、
因此,过去四种情况,四条依据,需要安排四道例题;现归结为两条依据,只需两道例题,有利于学生举一反三。而且,回避上述两种形式的方程,并不影响学生列方程解决实际问题。因为当能列出形如a-x=b与a÷x=b的方程时,总能根据实际问题的数量关系,改写成形如x+b=a与bx=a的方程。这也体现了列方程解决问题,常常可以化逆向思维为顺向思维的优势。
看来,实施义务教育,贯彻九年制义务教育的数学课程标准,要求我们应当更多地考虑中小学数学教育的衔接,更加自觉地从中小学数学的全局、从学生数学学习的可持续发展着眼,分析教学内容的地位与作用。这在某种意义上,可以说是“科学发展观"、是“以学生发展为本”理念的实际体现。
三、相应的教学对策
以上多角度地阐述,意在讲清改革举措的原委、意图及相关的考虑。但对于教学实践工作者来说,理解、认同其所以然之后,还需面对并妥善解决一系列的教学实际问题。光知道要过河,如果没有可操作的过河方法,仍然无济于事。
从已有教学实践来看,不少教师常感为难的问题主要有以下几个。
1.教材不出“等式基本性质”的名称,怎么讲?
为了减少数学的名词术语,降低数学理论的学习要求,减轻学生的记忆负担,现行教材大多不出现“等式基本性质”之类的名词。这当然是对的,因为在小学确实需要控制出现数学名词术语的数量,况且不出名词,甚至不用文字概括等式基本性质,就让学生用自己的语言陈述所发现的规律,都是可行的。但这并不是说教材回避的语言教师就不能说。因为在实际教学过程中,不少教师常常感到每次提到等式基本性质时,都要把有关的内容说出来,如“等式两边都加上或