数字PID控制器的MATLAB仿真
- 格式:doc
- 大小:120.00 KB
- 文档页数:15
基于MATLAB 的数字PID 仿真一、实验目的1、 了解MATLAB 集成开发环境2、 了解MATLAB 编程基本方法3、 了解MATLAB 中数字控制器设计的基本方法4、 加深对数字PID 的理解二、实验内容1、位置PID 的MA TLAB 仿真。
2、增量PID 的MA TLAB 仿真三、实验程序框图四、实验步骤1、 熟悉MATLAB 开发环境2、 输入参考程序3、 设置断点,运行程序,观察运行结果4、 参考程序(1) 位置PID被控对象21()0.00670.1G s s s =+,控制参数20,0.50p d k k ==clear allts=0.001;xk=zeros(2,1);e_1=0;u_1=0;PID 控制程序流程图for k=1:1:2000time(k)=k*ts;rin(k)=0.50*sin(1*2*pi*k*ts);para=u_1;tspan=[0 ts];[tt,xx]=ode45('chap1_6f',tspan,xk,[],para);xk=xx(length(xx),:);yout(k)=xk(1);e(k)=rin(k)-yout(k);de(k)=(e(k)-e_1)/ts;u(k)=20.0*e(k)+0.50*de(k);if u(k)>10.0u(k)=10.0;endif u(k)<-10.0u(k)=-10.0endu_1=u(k);e_1=e(k);endfigure(1);num=[0,0,1];den=[0.0067,0.1,0];sys=tf(num,den);[yy,time]=lsim(sys,rin,time);plot(time,rin,'r',time,yout,'b',time,yy,'g');(2)增量PID 被控对象2400()50G s s s =+,控制参数8,0.10,10p i d k k k ===clear all ;ts=0.001;sys=tf(400,[1,50,0]);dsys=c2d(sys,ts,'z');[num,den]=tfdata(dsys,'V');u_1=0.0;u_2=0.0;u_3=0.0;y_1=0;y_2=0;y_3=0;x=[0,0,0]';error_1=0;error_2=0;for k=1:1:1000time(k)=k*ts;rin(k)=1.0;kp=8;ki=0.10;kd=10;du(k)=kp*x(1)+kd*x(2)+ki*x(3); 控制器输出u(k)=u_1+du(k);if u(k)>=10u(k)=10;endif u(k)<=-10u(k)=-10;endyout(k)=-den(2)*y_1-den(3)*y_2+num(2)*u_1+num(3)*u_2; 系统输出error=rin(k)-yout(k);u_3=u_2;u_2=u_1;u_1=u(k);y_3=y_2;y_2=y_1;y_1=yout(k);x(1)=error-error_1;x(2)=error-2*error_1+error_2;x(3)=error;error_2=error_1;error_1=error;end[yy,time]=lsim(sys,rin,time);plot(time,rin,'b',time,yout,'r',time,yy,’g’);xlabel('time(s)');ylabel('rin,yout');五、思考题1、把增量PID参考程序中阶跃输入改成正弦输入,求出PID控制器输出。
这篇文章是关于基于Matlab的PID控制仿真课程设计的,主要内容包括PID控制的基本原理、Matlab的应用、课程设计的目的和意义、课程设计的具体步骤和具体操作步骤。
文章采用客观正式的语气,结构合理,旨在解释基于Matlab的PID控制仿真课程设计的重要性和实施方法。
1. 简介PID控制是一种常见的控制算法,由比例项(P)、积分项(I)和微分项(D)组成,可以根据被控对象的实际输出与期望输出的偏差来调整控制器的输出,从而实现对被控对象的精确控制。
Matlab是一种强大的数学建模与仿真软件,广泛应用于工程领域,尤其在控制系统设计和仿真方面具有独特优势。
2. PID控制的基本原理PID控制算法根据被控对象的实际输出与期望输出的偏差来调整控制器的输出。
具体来说,比例项根据偏差的大小直接调整输出,积分项根据偏差的积累情况调整输出,微分项根据偏差的变化速度调整输出。
三者综合起来,可以实现对被控对象的精确控制。
3. Matlab在PID控制中的应用Matlab提供了丰富的工具箱,其中包括控制系统工具箱,可以方便地进行PID控制算法的设计、仿真和调试。
利用Matlab,可以快速建立被控对象的数学模型,设计PID控制器,并进行系统的仿真和性能分析,为工程实践提供重要支持。
4. 课程设计的目的和意义基于Matlab的PID控制仿真课程设计,旨在帮助学生深入理解PID控制算法的原理和实现方法,掌握Matlab在控制系统设计中的应用技能,提高学生的工程实践能力和创新思维。
5. 课程设计的具体步骤(1)理论学习:学生首先需要学习PID控制算法的基本原理和Matlab在控制系统设计中的应用知识,包括控制系统的建模、PID控制器的设计原理、Matlab的控制系统工具箱的基本使用方法等。
(2)案例分析:学生根据教师提供的PID控制实例,在Matlab环境下进行仿真分析,了解PID控制算法的具体应用场景和性能指标。
(3)课程设计任务:学生根据所学知识,选择一个具体的控制对象,如温度控制系统、水位控制系统等,利用Matlab建立其数学模型,设计PID控制器,并进行系统的仿真和性能分析。
控制系统PID参数整定方法的MATLAB仿真1. 引言PID控制器是一种常见的控制算法,广泛应用于自动控制系统中。
其通过调节三个参数:比例增益(Proportional gain)、积分时间常数(Integral time constant)和微分时间常数(Derivative time constant),实现对被控对象的稳态误差、响应速度和稳定性等性能指标的调节。
PID参数的合理选择对控制系统的性能至关重要。
本文将介绍PID控制器的经典整定方法,并通过MATLAB软件进行仿真,验证整定方法的有效性。
2. PID控制器的整定方法2.1 手动整定法手动整定法是根据经验和试错法来选择PID参数的方法。
具体步骤如下:1.将积分时间常数和微分时间常数设为零,仅保留比例增益,将比例增益逐渐增大直至系统产生较大的超调现象。
2.根据超调响应的情况,调整比例增益,以使系统的超调量接近所需的范围。
3.逐步增加微分时间常数,观察系统的响应速度和稳定性。
4.增加积分时间常数,以减小系统的稳态误差。
手动整定法的优点是简单易行,但需要经验和反复试验,对控制系统要求较高。
2.2 Ziegler-Nichols整定法Ziegler-Nichols整定法是一种基于试探和试错法的自整定方法,该方法通过调整系统的输入信号,观察系统的输出响应,从而确定PID参数。
具体步骤如下:1.将I和D参数设为零,仅保留P参数。
2.逐步增大P参数,直到系统的输出出现大幅度的振荡。
3.记录下此时的P参数值,记为Ku。
4.根据振荡的周期Tp,计算出系统的临界增益Kc = 0.6 * Ku。
5.根据系统的类型选择相应的整定法则:–P型系统:Kp = 0.5 * Kc,Ti = ∞,Td = 0–PI型系统:Kp = 0.45 * Kc,Ti = Tp / 1.2,Td = 0–PID型系统:Kp = 0.6 * Kc,Ti = Tp / 2,Td = Tp / 82.3 Cohen-Coon整定法Cohen-Coon整定法是基于频域曲线拟合的方法,主要应用于一阶和二阶系统的整定。
1 数字PID控制在MATLAB仿真实验下图为数字PID控制算法仿真实验的示意图:
在模拟的过程中,我们分别改变其中的一个参数,而其他的两个参数不变的情况下,观测他的图像变化。
1、当改变比例时:
分析结果:当只改变比例,积分和微分都不变的情况下,比例系数越大,调节作用越强,但是存在调节误差。
2、当只改变积分时
分析结果:当系统中只改变积分,而比例和微风都不变时,可以减少或消除误差,但响应慢。
3、当只改变微分时
分析结果:当系统中加入了微分环节时,改善了系统的稳定性能和动态性能,但是,它的响应比较慢。
PID控制算法的MATLAB仿真应用首先,我们需要了解PID控制算法的原理。
PID控制算法由比例控制、积分控制和微分控制三部分组成。
比例控制是根据误差信号的大小与输出信号的差异来调节控制器输出信号的增益。
积分控制是根据误差信号的累积值来调节控制器输出信号的增益。
微分控制是根据误差信号的变化率来调节控制器输出信号的增益。
PID控制算法的输出信号可以表示为:u(t) = Kp * e(t) + Ki * ∫e(t) dt + Kd * de(t)/dt其中,e(t)是系统输入与目标值之间的误差信号,u(t)是控制器的输出信号,Kp、Ki和Kd分别是比例增益、积分增益和微分增益。
在MATLAB中使用PID控制算法进行仿真应用,可以按照以下步骤进行:1. 创建一个Simulink模型,可以通过在命令窗口中输入simulink打开Simulink库,然后从库中选择合适的模块进行建模。
在模型中,需要包括被控对象、PID控制器和反馈信号。
2. 配置PID控制器的参数。
在Simulink模型中,可以使用PID Controller模块配置PID控制器的参数,包括比例增益、积分增益和微分增益。
3. 配置被控对象的模型。
在Simulink模型中,可以使用Transfer Fcn模块来建立被控对象的传递函数模型,包括系统的输入和输出端口,以及系统的传递函数。
4. 配置反馈信号。
在Simulink模型中,可以使用Sum模块将被控对象的输出信号和控制器的输出信号相加,作为反馈信号传递给PID控制器。
5. 运行Simulink模型进行仿真。
在Simulink中,可以选择仿真的时间范围和时间步长,然后点击运行按钮开始仿真。
仿真结果可以在模型中的Scope或To Workspace模块中查看和分析。
6.通过调整PID控制器的参数来优化系统的稳定性和响应速度。
根据仿真结果,可以逐步调整PID控制器的比例增益、积分增益和微分增益,以达到期望的控制效果。
《MATLAB控制系统仿真》PID控制系统校正设计引言1.PID校正装置PID校正装置也称为PID控制器或PID调节器。
这里P,I,D分别表示比例、积分、微分,它是最早发展起来的控制方式之一。
2.PID校正装置的主要优点原理简单,应用方便,参数整定灵活。
适用性强,在不同生产行业或领域都有广泛应用。
鲁棒性强,控制品质对受控对象的变化不太敏感,如受控对象受外界扰动时,无需经常改变控制器的参数或结构。
在科学技术迅速发展的今天,出现了许多新的控制方法,但PID由于其自身的的优点仍然在工业过程控制中得到最广泛的应用。
PID控制系统校正设计1.设计目的1.1 熟悉常规PID控制器的设计方法1.2掌握PID参数的调节规律1.3学习编写程序求系统的动态性能指标2.实验内容2.1在SIMULINK窗口建立方框图结构模型。
2.2设计PID控制器,传递函数模型如下。
()⎪⎭⎫⎝⎛++=s T s T k s G d i p c 112.3修改PID 参数p K 、i T 和d T ,讨论参数对系统的影响。
3.4利用稳定边界法对PID 参数p K 、i T 和d T 校正设计。
2.5根据PID 参数p K 、i T 和d T 对系统的影响,调节PID 参数实现系统的超调量小于10%。
3. 实验操作过程3.1在SIMULINK 窗口建立模型图1 设计模型方框图3.2设计PID 控制器图2 PID控制器模型3.3利用稳定边界法对PID参数p K、i T和d T校正设计: 表1 PID稳定边界参数值校正后的响应曲线图3(a)校正后的响应曲线图3(b)校正后的响应曲线3.4调节PID参数实现系统的超调量小于10%:表2 PID 参数图4 响应曲线图4.规律总结1.P控制规律控制及时但不能消除余差,I控制规律能消除余差但控制不及时且一般不单独使用,D控制规律控制很及时但存在余差且不能单独使用。
2.比例系数越小,过渡过程越平缓,稳态误差越大;反之,过渡过程振荡越激烈,稳态误差越小;若p K过大,则可能导致发散振荡。
基于MATLAB的数字PID控制器设计及仿真分析摘要PID控制作为历史最为悠久,生命力最强的控制方式一直在生产过程自动化控制中发挥着巨大的作用。
PID控制是最早发展起来的控制策略之一,由于其算法简单、鲁棒性好和可靠性高,被广泛用于过程控制和运动控制中。
数字PID控制算法是将模拟PID离散化而得到的,各参数有着明显的物理意义,而且调整方便,所以PID控制器很受工程技术人员的喜爱。
本论文主要实现基于MATLAB的数字PID控制器设计及仿真。
首先介绍了传统的模拟PID控制方法,包括比例控制方法、比例积分控制方法、比例积分微分控制方法等。
接下来,介绍了数字PID控制。
随着时代的发展,科技的进步,传统的模拟PID控制方法不能满足人们的需求,数字PID控制的改进算法也便随之而来。
本文最后,应用MATLAB软件,在实验的环境下实现了其设计及仿真。
本次毕业设计用来完成数字PID控制器的设计,并通过MATLAB实现其仿真同时加以分析。
通过查阅文献得知,与传统模拟PID控制器相比较,该控制器具有良好的灵活性,而且可得到精确的数学模型。
另外,基于MATLAB的数字PID 控制器设计及仿真,充分的利用了MATLAB的实验环境,整个设计验证了数字PID的广泛可实现性及准确性。
关键词:PID控制;模拟PID控制器;数字PID控制器;MATLAB仿真;Design and simulation analysis of Digital PID ControllerMATLAB-basedAbstractAs the most age-old and powerful control mode, PID control always has had a great effect on the automatic control of the production process. PID control is one of the first developed control strategy, because of thesimple algorithm,great robust and high reliability, it is widely used in process control and motor control. Digital PID control algorithm is gotten by discreting the analog PID control, and the parameters have obvious physical meaning and facility adjustment, so PID controller is popular with engineering and technical personnel.In the paper, the main idea is to accomplish MATLAB-based digital PID controller design and simulation analysis. In the first place, the traditional analog PID control methods is introduced, including proportional control methods, proportional integral control and proportional integral differential control. In the second place, the digital PID control methods are offered. With the development of the times, the advancement of technology, traditional analog PID control method cannot make a satisfaction, then digital PID control is followed. At last,the application of MATLAB software to achieve their design and simulation is easy to accomplish.The graduation project is to complete the digital PID controller design and simulation through MATLAB simulation and analysis. It is known that through the literature, compare with traditional PID controller, the controller has good flexibility and precision of the mathematical models available. In addition, in the number of MATLAB-based PID controller design and simulation, the MATLAB experiment environment is used comprehensively. The entire design is confirmed the wide range and accuracy of digital PID controller.Key words:PID control;analog PID controller;digital PID controller;MATLAB simulatio目录摘要 (I)ABSTRACT (I)第1章绪论 (1)1.1课题目的及意义 (1)1.2数字PID控制器的研究现状 (2)第2章 PID控制器 (3)2.1传统PID控制器概述 (3)2.2PID控制器的基本原理 (4)2.2.1 比例(P)调节 (5)2.2.2 比例积分(PI)调节 (7)2.2.3 比例积分微分(PID)调节 (8)第3章数字PID控制器 (11)3.1数字PID控制系统 (11)3.2数字PID控制的基本算法 (11)3.2.1 位置式PID控制算法 (11)3.2.2 增量式PID控制算法 (13)3.2.3 位置算式与增量算式的比较 (14)第4章数字PID的改进算法 (15)4.1积分算法的改进 (16)4.1.1 积分分离法 (18)4.1.2 变速积分法 (20)4.1.3 遇限消弱积分法 (21)4.1.4 梯形积分法 (22)4.2微分算法的改进 (22)4.2.1 不完全微分PID控制算法 (23)4.2.2 微分先行PID控制算法 (25)4.3带死区的PID控制算法 (27)第5章基于MATLAB的数字PID控制器设计及仿真 (28)5.1位置式PID控制算法仿真实例 (29)5.2增量式PID控制算法仿真实例 (30)参考文献 (31)谢辞 (32)第1章绪论1.1 课题目的及意义PID控制器又称为PID调节器,是按偏差的比例P、积分I、微分进行控制的调节器的简称,它主要针对控制对象来进行参数调节。
pid控制器matlab仿真PID控制是最早发展的自动控制策略之一,PID控制系统由比例单元(P)、积分单元(I)和微分单元(D)组成。
具有简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。
PID控制的参数自动调整是通过智能化调整或自校正、自适应算法来实现。
当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。
即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。
PID控制,实际中也有PI和PD控制。
PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。
本文首先从PID理论出发,建立模型,讨论系统的稳定性,快速性,准确性。
利用MATLAB对PID控制的参数进行仿真,设计不同的参数,以使系统满足所要求的性能指标。
2、控制领域有一个很重要的概念是反馈,它通过各种输出值和它们各自所需值的实时比较的度量―各种误差,再以这些误差进行反馈控制来减少误差。
这样形成的因果链是输入、动态系统、输出、测量、比较、误差、输入构成的一个环路,因而也构成了包含原动态系统在内的一个新的动态闭环系统。
采用反馈的基本原因是要在不确定性存在的条件下达到性能目标。
许多情况下,对于系统的了解是不全面的,或者可用的模型是基于许多简化的假设而使它们变得不透彻。
系统也可能承受外界干扰,输出的观测常受噪声干扰。
有效的反馈能减少这些不确定性的影响,因为它们可以补偿任何原因引起的误差。
反馈概括了很广泛的概念,包括当前系统中的许多回路、非线性和自适应反馈,以及将来的智能反馈。
广义的讲,反馈可以作为描述和理解许多复杂物理系统中发生的循环交互作用的方式。
在实际的过程控制和运动控制系统中,PID占有相当的地位,据统计,工业控制中PID 类控制器占有90%以上。
基于MATLAB的智能PID控制器设计与仿真摘要在工业生产中应用非常广泛的是PID控制器,是最早在经典控制理论基础上发展起来的控制方法,应用也十分广泛。
传统的PID控制器原理十分简单,即按比例、积分、微分分别控制的控制器,但是他的核心也是他的难点就是三个参数(比例系数Kp、积分系数Ki、微分系数Kd)的整定。
参数整定的合适,那么该控制器将凭借结构简单、鲁棒性好的优点出色的完成控制任务,反之则达不到人们所期望的控制效果。
人工神经网络模拟人脑的结构和功能而形成的信息处理系统,是一门十分前沿高度综合的交叉学科,并广泛应用于工程领域。
神经网络控制是把自动控制理论同他模仿人脑工作机制的数学模型结合起来,并拥有自学习能力,能够从输入—输出数据中总结规律,智能的处理数据。
该技术目前被广泛应用于处理时变、非线性复杂的系统,并卓有成效。
关键词自适应PID控制算法,PID控制器,神经网络Design and simulation of Intelligent PID Controllerbased on MATLABAbstractPID controller ,the control method which is developed on the basis of classical control theory, is widely used in industrial production.The Principle of traditional PID controller is very simple, which contains of the proportion, integral, differential three component, but its core task and difficulties is three parameter tuning(proportional coefficient Kp, integral coefficient Ki and differential coefficient KD).If the parameter setting is suitable, the controller can accomplish the control task with the advantages of simple structure and good robustness;but on the contrary, it can not reach the desired control effect which we what.Artificial neural network , the formation of the information processing system which simulate the structure and function of the human brain , is a very high degree of integration of the intersection of disciplines, and widely used in the field of engineering. Neural network control ,combining automatic control theory and the imitate mathematical model of the working mechanism of human brain , has self-learning ability, and can summarize the law of the input-output data , dealing with data intelligently .This technique has been widely used in the process of time-varying, nonlinear and complex system, and it is very effective.Key W ord:Adaptive PID control algorithm,PID controller,Neural network目录摘要 (I)Abstract (II)第一章绪论 (1)1.1 课题研究背景及意义 (1)第二章 PID控制器 (2)2.1 PID控制原理 (2)2.2常规PID控制器的算法理论 (3)2.2.1 模拟PI D控制器 (3)2.2.2 数字P I D控制算法 (3)2.2.3常规PID控制的局限 (5)2.2.4 改进型PID控制器 (5)第三章人工神经网络 (8)3.1 人工神经网络的原理 (8)3.2神经网络PID控制器 (8)3.2.1神经元PID控制器 (8)3.2.2 单神经元自适PID应控制器 (9)3.3 BP神经网络参数自学习的PID控制器 (12)第四章MATAB仿真 (16)4.1 仿真过程 (16)第五章结论与展望 (24)致谢 (25)参考文献 (25)华东交通大学毕业设计(论文)第一章绪论1.1 课题研究背景及意义在工业生产中应用非常广泛的是PID控制器,是最早在经典控制理论基础上发展起来的控制方法,应用也十分广泛。
基于MATLAB的PID控制器参数整定及仿真PID控制器是一种经典的控制器,在工业自动化控制系统中广泛应用。
其主要功能是根据系统的误差信号,通过调整输出信号的比例、积分和微分部分来减小误差,并达到系统的稳定控制。
PID控制器参数整定是指确定合适的比例常数Kp、积分常数Ki和微分常数Kd的过程。
本文将介绍基于MATLAB的PID控制器参数整定及仿真的方法。
首先,在MATLAB中建立一个包含PID控制器的模型。
可以通过使用MATLAB的控制系统工具箱来实现这一过程。
在工具箱中,可以选择合适的建模方法,如直接设计模型、积分节点模型或传输函数模型。
通过这些工具,可以方便地建立控制系统的数学模型。
其次,进行PID控制器参数整定。
PID控制器参数整定的目标是通过调整比例常数Kp、积分常数Ki和微分常数Kd,使系统的响应特性达到最佳状态。
常用的PID参数整定方法有经验法、试误法、Ziegler-Nichols方法等。
1.经验法:根据系统的特性和经验,选择合适的PID参数。
这种方法常用于初步整定,但可能需要根据实际情况调整参数。
2.试误法:通过逐步试验和调整PID参数,使系统的输出响应逐渐接近期望值,从而达到最佳控制效果。
3. Ziegler-Nichols方法:该方法是一种经典的系统辨识方法,通过测试系统的临界稳定性,得到系统的传递函数参数,并据此计算出合适的PID参数。
最后,进行PID控制器参数整定的仿真。
在MATLAB中,可以通过使用PID模块进行仿真。
可以输入相应的输入信号和初始参数,观察系统的输出响应,并通过调整参数,得到最佳的控制效果。
总结起来,基于MATLAB的PID控制器参数整定及仿真的过程包括:建立控制系统模型、选择PID参数整定方法、进行PID参数整定、进行仿真实验。
PID控制器参数整定的好坏直接影响控制系统的工作性能。
通过基于MATLAB的仿真实验,可以方便地调整和优化控制系统的PID参数,提高系统的响应速度、稳定性和抗干扰性能。
PID的MATLAB仿真程序:%PID Controler 不完全微分clear all;close all;ts=20;sys=tf([1],[60,1],'inputdelay',80);dsys=c2d(sys,ts,'zoh');[num,den]=tfdata(dsys,'v');u_1=0;u_2=0;u_3=0;u_4=0;u_5=0;ud_1=0;y_1=0;y_2=0;y_3=0;error_1=0;ei=0;for k=1:1:100time(k)=k*ts;rin(k)=1.0;%Linear modelyout(k)=-den(2)*y_1+num(2)*u_5;D(k)=0.01*rands(1);yout(k)=yout(k)+D(k);error(k)=rin(k)-yout(k);%PID Controller with partly differential ei=ei+error(k)*ts;kc=0.30;ki=0.0055;TD=140;kd=kc*TD/ts; Tf=180;Q=tf([1],[Tf,1]); %Low Freq Signal FilterM=2; %M=1不完全微分,%M=2普通Pid控制!!if M==1%Using PID with Partial differentialalfa=Tf/(ts+Tf);ud(k)=kd*(1-alfa)*(error(k)-error_1)+alf a*ud_1;u(k)=kc*error(k)+ud(k)+ki*ei;ud_1=ud(k);elseif M==2 %Using Simple PIDu(k)=kc*error(k)+kd*(error(k)-error_1)+ ki*ei;end%Restricting the output of controllerif u(k)>=10u(k)=10;endif u(k)<=-10u(k)=-10;endu_5=u_4;u_4=u_3;u_3=u_2;u_2=u_1;u_1=u(k);y_3=y_2;y_2=y_1;y_1=yout(k);error_1=error(k);endfigure(1);plot(time,rin,'b',time,yout,'r');xlabel('time(s)');ylabel('rin,yout');由仿真结果可以看出,采用不完全微分型PID算法,引入不完全微分后能有效克服普通PID的不足,尽管不完全微分算法比普通PID控制算法要复杂的多,但由于其良好的控制特性,近年来越来越广泛的应用。
数字PID控制器的MATLAB仿真江苏科技大学电子信息学院实验报告评定成绩指导教师实验课程:计算机控制技术宋英磊实验名称:数字PID控制器的MATLAB仿真学号: 1345733203 姓名: 胡文千班级: 13457332 完成日期: 2015年 11 月16日一、实验目的(1)掌握用SIMULINK对系统进行仿真的基本方法。
(2)对PID数字控制器进行仿真。
二、实验内容1、基本的PID控制在模拟控制系统中,控制器最常用的控制规律是PID控制。
模拟PID控制系统原理框图如图1-1所示。
比例y(t)r(t)+e(t)u(t)微分被控对象+-积分图1-1 模拟PID控制系统原理框图PID控制规律为:t,,1de(t),,u(t),ke(t),e(t)dt,T pD,,,0TdtI,,,,()1Us,,()1Gs,,k,,Ts或写成传递函数的形式 pD,,E(s)TsI,,133仿真1 以二阶线性传递函数为被控对象,进行模拟PID控制。
输入信号2s,25sk,60,k,1,k,3,仿真时取,采用ODE45迭代方法,仿真时间r(t),sin(2,*0.2t)pid10s。
仿真方法:在Simulink下进行仿真,PID控制由Simulink Extras节点中的PID Controller提供。
仿真程序:ex1_1.mdl,如图1-2所示。
图1-2 连续系统PID的Simulink仿真程序将该连续系统的模拟PID控制正弦响应结果截图后至于下面的空白处: 连续系统的模拟PID控制正弦响应如图1-3所示。
图1-3 连续系统的模拟PID控制正弦响应2、连续系统的数字PID控制仿真计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量。
因此连续PID控制算法不能直接使用,需要采用离散化方法。
在计算机PID控制中,使用的是数字PID控制器。
按模拟PID控制算法,以一系列的采样时刻点kT代表连续时间t,以矩形法数值积分近似代替积分,以一阶后向差分近似代替微分,可得离散PID位置式表达式: k,,TTD,,ukkekejekek(),(),(),((),(,1)),p,,TT,0jI,,kekek(),(,1)kekkejTk,(),(),,pidT,0jkpk,,k,kT式中,,e为误差信号(即PID控制器的输入),u为控制信号(即控制idpDTI器的输出)。
基于matlab的pid控制仿真课程设计PID(比例-积分-微分)控制器是一种常见的控制算法,被广泛应用于工业控制系统中。
在本文中,我们将介绍基于MATLAB的PID控制仿真课程设计。
首先,我们将简要介绍PID控制器的原理和特点,然后介绍如何使用MATLAB进行PID控制的仿真。
PID控制器是一种反馈控制器,可以通过比例、积分和微分三部分来调节控制系统的输出。
比例部分根据误差的大小进行调节,积分部分用于消除稳态误差,微分部分用于抑制系统振荡。
通过调节PID控制器的参数,可以使系统的稳定性、响应速度和稳态误差达到预期的要求。
在MATLAB中,可以使用控制系统工具箱来进行PID控制的仿真。
首先,我们需要定义一个系统模型,可以是连续时间系统或离散时间系统。
然后,我们可以使用PID控制器对象来创建一个PID控制器。
PID控制器的参数可以通过试错法、模型辨识等方法进行调节。
一旦系统模型和PID控制器被定义,我们可以使用MATLAB中的仿真工具来进行PID控制器的仿真。
通常,我们将输入信号作为控制器的参考信号,将输出信号作为系统的输出,并将控制器的输出作为系统的输入。
然后,我们可以观察系统的响应,并根据需要调整控制器的参数。
在进行PID控制仿真实验时,我们可以通过选择不同的控制器参数、改变控制器的结构、调整参考信号等方式来研究控制系统的性能。
例如,我们可以改变比例增益来改变系统的稳定性和响应速度,增加积分时间常数来减小稳态误差,增加微分时间常数来抑制系统振荡等。
在课程设计中,我们可以设计不同的控制实验,并分析不同参数对系统性能的影响。
例如,可以研究比例增益对系统稳定性和响应速度的影响,或者研究积分时间常数对稳态误差的影响等。
同时,我们还可以通过比较PID控制和其他控制算法(如PI控制、PD控制等)来评估PID控制的优势和局限性。
在进行PID控制仿真实验时,我们应该注意以下几点。
首先,选择合适的系统模型,确保模型能够准确地描述实际系统的行为。
控制系统pid参数整定方法的matlab仿真
控制系统PID参数整定方法的MATLAB仿真,可以分为以下几个步骤:
1. 建立模型。
在MATLAB中建立你要进行PID参数整定的模型,比如电机速度控制系统或温度控制系统。
2. 设计控制器。
根据建立的模型,设计出对应的PID控制器,并将其加入到系统中。
3. 确定初始参数。
在进行PID参数整定前,需要确定PID控制器的初始参数。
通常可以选择Ziegler-Nichols方法、Chien-Hrones-Reswick方法等经典的PID参数整定法则来确定初始参数。
4. 仿真模拟。
使用MATLAB中的仿真工具,对整定后的PID控制器进行仿真模拟,并记录下系统的响应曲线和各项性能指标。
5. 调整参数。
根据仿真结果,对PID控制器的参数进行适当的调整,以达到更理想的控制效果。
6. 再次仿真模拟。
调整完参数后,再次使用MATLAB中的仿真工具,对整定后的PID控制器进行仿真模拟,并比较其与上一次仿真的差异,以确认调整是否合理。
7. 实现控制。
最后,将优化后的PID控制器应用到实际控制系统中,进行控制。
总的来说,PID参数整定是一个相对复杂的过程,需要根据具体情况选择合适的方法和工具。
MATLAB作为一种强大的数学计算软件,可以提供丰富的工具和函数,方便进行控制系统的建模和仿
真,也可以帮助我们更好地进行PID参数整定。
PID控制算法的MATLAB仿真假设我们现在要设计一个PID控制器来控制一个被控对象,该对象的传递函数为G(s)。
首先,我们需要确定PID控制器的参数。
这些参数包括比例增益Kp、积分时间Ti和微分时间Td。
在Simulink中,我们可以使用以下步骤来进行PID控制的仿真:1. 打开MATLAB,并在工具栏上选择Simulink模块。
2. 在Simulink模块中,选择一个PID控制器模块,并将其拖放到工作区域中。
4.将被控对象的传递函数G(s)添加到工作区域中,并将其与PID控制器模块连接起来。
5.添加一个把期望值作为输入的信号源,并将其连接到PID控制器模块的输入端口上。
6.添加一个作为输出的信号源,并将其与被控对象的输出端口连接起来。
7. 在Simulink模块中运行仿真。
下面以一个简单的例子来说明PID控制的仿真过程。
假设我们要控制一个小车的速度,将其速度控制在一个期望值上。
小车的动力学方程可以表示为:m * V_dot = F - B * V其中,m为小车的质量,V为小车的速度,F为施加在小车上的力,B 为摩擦系数。
首先,我们需要将动力学方程转化为传递函数的形式。
假设小车的传递函数为:G(s)=1/(m*s+B)在Simulink中,可以通过使用Transfer Fcn模块来表示传递函数。
在工作区域中添加该模块,并设置其参数为1 / (m * s + B)。
接下来,我们需要添加PID控制器模块,并设置其参数。
假设我们选择Kp=1,Ti=0.5,Td=0.1作为PID控制器的参数。
将信号源(期望值)和输出信号(小车速度)连接到PID控制器模块。
然后,将PID控制器的输出连接到小车动力学方程的输入端口。
最后,点击Simulink模块中的“运行”按钮,即可开始仿真。
在进行仿真时,可以观察小车速度是否能够达到期望值,并调整PID控制器的参数以获得更好的控制效果。
通过以上步骤,在MATLAB中可以很方便地进行PID控制的仿真。
实验名称:基于MATLAB/Simulink的PID控制器参数优化仿真实验日期:2023年11月10日实验人员:[姓名]实验指导教师:[指导教师姓名]一、实验目的1. 理解PID控制器的原理及其在控制系统中的应用。
2. 学习如何使用MATLAB/Simulink进行控制系统仿真。
3. 掌握PID控制器参数优化方法,提高控制系统的性能。
4. 分析不同参数设置对系统性能的影响。
二、实验原理PID控制器是一种广泛应用于控制领域的线性控制器,它通过将比例(P)、积分(I)和微分(D)三种控制作用相结合,实现对系统输出的调节。
PID控制器参数优化是提高控制系统性能的关键。
三、实验内容1. 建立控制系统模型。
2. 设置PID控制器参数。
3. 进行仿真实验,分析系统性能。
4. 优化PID控制器参数,提高系统性能。
四、实验步骤1. 建立控制系统模型使用MATLAB/Simulink建立被控对象的传递函数模型,例如:```G(s) = 1 / (s^2 + 2s + 5)```2. 设置PID控制器参数在Simulink中添加PID控制器模块,并设置初始参数,例如:```Kp = 1Ki = 0Kd = 0```3. 进行仿真实验设置仿真时间、初始条件等参数,运行仿真实验,观察系统输出曲线。
4. 分析系统性能分析系统在给定参数下的响应性能,包括超调量、调节时间、稳态误差等指标。
5. 优化PID控制器参数根据分析结果,调整PID控制器参数,优化系统性能。
可以使用以下方法:- 试凑法:根据经验调整参数,观察系统性能变化。
- Ziegler-Nichols方法:根据系统阶跃响应,确定参数初始值。
- 遗传算法:使用遗传算法优化PID控制器参数。
6. 重复步骤3-5,直至系统性能满足要求五、实验结果与分析1. 初始参数设置初始参数设置如下:```Kp = 1Ki = 0Kd = 0```仿真结果如图1所示:![图1 初始参数设置下的系统输出曲线](https:///5Q8w6zQ.png)从图1可以看出,系统存在较大的超调量和较长的调节时间,稳态误差较大。
PID 控制算法的matlab 仿真PID 控制算法是实际工业控制中应用最为广泛的控制算法,它具有控制器设计简单,控制效果好等优点。
PID 控制器参数的设置是否合适对其控制效果具有很大的影响,在本课程设计中一具有较大惯性时间常数和纯滞后的一阶惯性环节作为被控对象的模型对PID 控制算法进行研究。
被控对象的传递函数如下:()1d sf Ke G s T sτ-=+ 其中各参数分别为30,630,60f d K T τ===。
MATLAB 仿真框图如图1所示。
图12 具体内容及实现功能2.1 PID 参数整定PID 控制器的控制参数对其控制效果起着决定性的作用,合理设置控制参数是取得较好的控制效果的先决条件。
常用的PID 参数整定方法有理论整定法和实验整定法两类,其中常用的实验整定法由扩充临界比例度法、试凑法等。
在此处选用扩充临界比例度法对PID 进行整定,其过程如下:1) 选择采样周期 由于被控对象中含有纯滞后,且其滞后时间常数为60d τ=,故可选择采样周期1s T =。
2) 令积分时间常数i T =∞,微分时间常数0d T =,从小到大调节比例系数K ,使得系统发生等幅震荡,记下此时的比例系数k K 和振荡周期k T 。
3) 选择控制度为 1.05Q =,按下面公式计算各参数:0.630.490.140.014p k i k d k s kK K T T T T T T ====通过仿真可得在1s T =时,0.567,233k k K T ==,故可得:0.357,114.17,32.62, 3.262p i d s K T T T ====0.0053.57p s i i p d d sK T K T K T K T ====按此组控制参数得到的系统阶跃响应曲线如图2所示。
010020030040050060070080090010000.20.40.60.811.21.41.61.8图2由响应曲线可知,此时系统虽然稳定,但是暂态性能较差,超调量过大,且响应曲线不平滑。
数字PID控制器的MATLAB仿真江苏科技大学电子信息学院实验报告评定成绩指导教师实验课程:计算机控制技术宋英磊实验名称:数字PID控制器的MATLAB仿真学号: 1345733203 姓名: 胡文千班级: 13457332 完成日期: 2015年 11 月16日一、实验目的(1)掌握用SIMULINK对系统进行仿真的基本方法。
(2)对PID数字控制器进行仿真。
二、实验内容1、基本的PID控制在模拟控制系统中,控制器最常用的控制规律是PID控制。
模拟PID控制系统原理框图如图1-1所示。
比例y(t)r(t)+e(t)u(t)微分被控对象+-积分图1-1 模拟PID控制系统原理框图PID控制规律为:t,,1de(t),,u(t),ke(t),e(t)dt,T pD,,,0TdtI,,,,()1Us,,()1Gs,,k,,Ts或写成传递函数的形式 pD,,E(s)TsI,,133仿真1 以二阶线性传递函数为被控对象,进行模拟PID控制。
输入信号2s,25sk,60,k,1,k,3,仿真时取,采用ODE45迭代方法,仿真时间r(t),sin(2,*0.2t)pid10s。
仿真方法:在Simulink下进行仿真,PID控制由Simulink Extras节点中的PID Controller提供。
仿真程序:ex1_1.mdl,如图1-2所示。
图1-2 连续系统PID的Simulink仿真程序将该连续系统的模拟PID控制正弦响应结果截图后至于下面的空白处: 连续系统的模拟PID控制正弦响应如图1-3所示。
图1-3 连续系统的模拟PID控制正弦响应2、连续系统的数字PID控制仿真计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量。
因此连续PID控制算法不能直接使用,需要采用离散化方法。
在计算机PID控制中,使用的是数字PID控制器。
按模拟PID控制算法,以一系列的采样时刻点kT代表连续时间t,以矩形法数值积分近似代替积分,以一阶后向差分近似代替微分,可得离散PID位置式表达式: k,,TTD,,ukkekejekek(),(),(),((),(,1)),p,,TT,0jI,,kekek(),(,1)kekkejTk,(),(),,pidT,0jkpk,,k,kT式中,,e为误差信号(即PID控制器的输入),u为控制信号(即控制idpDTI器的输出)。
在仿真过程中,可根据实际情况,对控制器的输出进行限幅。
连续系统的数字PID控制可实现D/A及A/D的功能,符合数字实时控制的真实情况,计算机及DSP的实时PID控制都属于这种情况。
1Gs, 仿真2 设被控对象为一个电机模型传递函数,式中J=0.0067,B=0.1。
输()2Js,Bs入信号为,采用PID控制,其中。
采用ODE45方法求解连k,20,k,0.50.5sin(2,t)pd续被控对象方程。
2dydyYs()1仿真方法: 因为,所以J,B,u,另Gs,,()22dtdtUsJs,Bs(),y,y,,12,,则,因此连续对象微分方程函数ex3f.m如下 y1,y,y2,y,,y2,,(B/J)y,(1/J)*u,2,function dy = ex3f(t,y,flag,para)u=para;J=0.0067;B=0.1;dy=zeros(2,1);dy(1) = y(2);dy(2) = -(B/J)*y(2) + (1/J)*u;控制主程序ex3.mclear all;close all;ts=0.001; %采样周期xk=zeros(2,1);%被控对象经A/D转换器的输出信号y的初值 e_1=0;%误差e(k-1)初值u_1=0;%控制信号u(k-1)初值for k=1:1:2000 %k为采样步数time(k) = k*ts; %time中存放着各采样时刻rin(k)=0.50*sin(1*2*pi*k*ts); %计算输入信号的采样值para=u_1; % D/AtSpan=[0 ts];[tt,xx]=ode45('ex3f',tSpan,xk,[],para); %ode45解系统微分方程%xx有两列,第一列为tt时刻对应的y,第二列为tt时刻对应的y导数xk = xx(end,:); % A/D,提取xx中最后一行的值,即当前y和y导数yout(k)=xk(1); %xk(1)即为当前系统输出采样值y(k)e(k)=rin(k)-yout(k);%计算当前误差de(k)=(e(k)-e_1)/ts; %计算u(k)中微分项输出u(k)=20.0*e(k)+0.50*de(k);%计算当前u(k)的输出 %控制信号限幅if u(k)>10.0u(k)=10.0;endif u(k)<-10.0u(k)=-10.0;end%更新u(k-1)和e(k-1)u_1=u(k);e_1=e(k);endfigure(1);plot(time,rin,'r',time,yout,'b');%输入输出信号图xlabel('time(s)'),ylabel('rin,yout');figure(2);plot(time,rin-yout,'r');xlabel('time(s)'),ylabel('error');%误差图将仿真获得的结果截图后附于下面的空白处:连续被控对象模拟PID控制响应如图1-4所示。
图1-4 连续被控对象模拟PID控制响应523500G(s),仿真3 设被控对象为,采样时间为1ms,对其进行离散32s,87.35s,10470s化。
针对离散系统的阶跃信号、正弦信号和方波信号的位置响应,设计离散PID控制器。
其中S为信号选择变量,S=1时是阶跃跟踪,S=2时为方波跟踪,S=3时为正弦跟踪。
Y(z)G(z),仿真方法: 求出G(s)对应的离散形式,其中Y(z)和U(z)是关于z的多项U(z)式,则可以得到其对应的差分表达式yout(k),,den(2)y(k,1),den(3)y(k,2),den(4)y(k,3) ,num(2)u(k,1),num(3)u(k,2),num(4)u(k,3)仿真程序:ex5.m%PID Controllerclear all;close all;ts=0.001;%采样周期sys=tf(5.235e005,[1,87.35,1.047e004,0]);%被控对象连续传递函数dsys=c2d(sys,ts,'z');%转换成离散z传递函数的形式[num,den]=tfdata(dsys,'v');%提取z传递函数中的分子和分母多项式系数u_1=0.0;u_2=0.0;u_3=0.0;%u(k-1)、u(k-2)、u(k-3)的初值y_1=0.0;y_2=0.0;y_3=0.0; %y(k-1)、y(k-2)、y(k-3)的初值 x=[0,0,0]'; %比例、微分、积分项的初值error_1=0;%e(k-1)的初值disp('S=1--step,S=2--sin,S=3--square')% S=1阶跃,S=2方波,S=3正弦S=input('Number of input signal S:')%接收输入信号代号for k=1:1:1500time(k)=k*ts;%各采样时刻if S==1 %阶跃输入时kp=0.50;ki=0.001;kd=0.001; %各项PID系数rin(k)=1; %阶跃信号输入 elseif S==2kp=0.50;ki=0.001;kd=0.001; %各项PID系数rin(k)=sign(sin(2*2*pi*k*ts)); %方波信号输入 elseif S==3kp=1.5;ki=1.0;kd=0.01; %各项PID系数rin(k)=0.5*sin(2*2*pi*k*ts); %正弦信号输入 endu(k)=kp*x(1)+kd*x(2)+ki*x(3); %PID控制信号输出u(k)%控制信号输出限幅if u(k)>=10u(k)=10;endif u(k)<=-10u(k)=-10;end%根据差分方程计算系统当前输出y(k)yout(k)=-den(2)*y_1-den(3)*y_2-den(4)*y_3+num(2)*u_1+num(3)*u_2+num(4)*u_3;error(k)=rin(k)-yout(k);%当前误差%更新u(k-1)、u(k-2)、u(k-3)、y(k-1)、y(k-2)、y(k-3)u_3=u_2;u_2=u_1;u_1=u(k);y_3=y_2;y_2=y_1;y_1=yout(k);x(1)=error(k); %比例输出x(2)=(error(k)-error_1)/ts; %微分输出x(3)=x(3)+error(k)*ts; %积分输出error_1=error(k); %更新e(k-1) endfigure(1); %作图plot(time,rin,'r',time,yout,'b');xlabel('time(s)'),ylabel('rin,yout');将仿真获得的结果截图后附于下面的空白处:S=1时是阶跃跟踪,如图1-5所示;S=2时为方波跟踪,如图1-6所示;S=3时为正弦跟踪,-7所示。
如图1图1-5 S=1时阶跃跟踪图1-6 S=2时方波跟踪图1-7 S=3时正弦跟踪。
仿真4 针对于上一例子中被控对象所对应的离散系统,设计代码仿真系统针对三角波和锯齿波的位置式响应。
此处附上你的代码:%PID Controllerclear all;close all;ts=0.001;sys=tf(5.235e005,[1,87.35,1.047e004,0]); dsys=c2d(sys,ts,'z');[num,den]=tfdata(dsys,'v');u_1=0.0;u_2=0.0;u_3=0.0;r_1=rand;y_1=0;y_2=0;y_3=0;x=[0,0,0]';error_1=0;disp('S=1--Triangle,S=2--Sawtooth,S=3--Random')% S=1三角,S=2锯齿,S=3随机S=input('Number of input signal S:')%接收输入信号代号 disp('D=1--Dynamic display,D~=1--Direct display')%D=1动画显示,D~=1直接显示D=input('D=')for k=1:1:3000time(k)=k*ts;kp=1.0;ki=2.0;kd=0.01;if S==1 %Triangle Signalif mod(time(k),2)<1rin(k)=mod(time(k),1);elserin(k)=1-mod(time(k),1);endrin(k)=rin(k)-0.5; endif S==2 %Sawtooth Signalrin(k)=mod(time(k),1.0); endif S==3 %Random Signalrin(k)=rand;vr(k)=(rin(k)-r_1)/ts; %Max speed is 5.0while abs(vr(k))>=5.0rin(k)=rand;vr(k)=abs((rin(k)-r_1)/ts);endendu(k)=kp*x(1)+kd*x(2)+ki*x(3); %PID Controller%Restricting the output of controllerif u(k)>=10u(k)=10;endif u(k)<=-10u(k)=-10;end%Linear modelyout(k)=-den(2)*y_1-den(3)*y_2-den(4)*y_3+num(2)*u_1+num(3)*u_2+num(4)*u_3;error(k)=rin(k)-yout(k);r_1=rin(k);u_3=u_2;u_2=u_1;u_1=u(k);y_3=y_2;y_2=y_1;y_1=yout(k);x(1)=error(k); %Calculating P x(2)=(error(k)-error_1)/ts;%Calculating D x(3)=x(3)+error(k)*ts; %Calculating I xi(k)=x(3);error_1=error(k);if D==1 %Dynamic Simulation Displayplot(time,rin,'b',time,yout,'r');pause(0.000001);endendplot(time,rin,'r',time,yout,'b');xlabel('time(s)');ylabel('rin,yout'); 将仿真获得的结果截图后附于下面的空白处:根据上一例子中被控对象所对应的离散系统,S=1时是三角波的位置式响应,如图1-8所示;S=2时是锯齿波的位置式响应,如图1-9所示。