中考数学反比例函数综合题
- 格式:doc
- 大小:2.32 MB
- 文档页数:20
中考数学反比例函数综合题
一、反比例函数
1.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数
(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于
D.
(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;
(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.【答案】(1)解:当﹣4<x<﹣1时,一次函数大于反比例函数的值;
(2)把A(﹣4,),B(﹣1,2)代入y=kx+b得,解得,
所以一次函数解析式为y= x+ ,
把B(﹣1,2)代入y= 得m=﹣1×2=﹣2;
(3)解:如下图所示:
设P点坐标为(t,t+ ),
∵△PCA和△PDB面积相等,
∴• •(t+4)= •1•(2﹣t﹣),即得t=﹣,
∴P点坐标为(﹣,).
【解析】【分析】(1)观察函数图象得到当﹣4<x<﹣1时,一次函数图象都在反比例函数图象上方;(2)先利用待定系数法求一次函数解析式,然后把B点坐标代入y= 可计算出m的值;(3)设P点坐标为(t, t+ ),利用三角形面积公式可得到• •(t+4)= •1•(2﹣ t﹣),解方程得到t=﹣,从而可确定P点坐标.
2.如图,一次函数y1=k1x+b与反比例函数y2= 的图象交于点A(4,m)和B(﹣8,﹣
2),与y轴交于点C.
(1)m=________,k1=________;
(2)当x的取值是________时,k1x+b>;
(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP 与线段AD交于点E,当S四边形ODAC:S△ODE=3:1时,求点P的坐标.
【答案】(1)4;
(2)﹣8<x<0或x>4
(3)解:由(1)知,y1= x+2与反比例函数y2= ,∴点C的坐标是(0,2),点A 的坐标是(4,4).
∴CO=2,AD=OD=4.
∴S梯形ODAC= •OD= ×4=12,
∵S四边形ODAC:S△ODE=3:1,
∴S△ODE= S梯形ODAC= ×12=4,
即OD•DE=4,
∴DE=2.
∴点E的坐标为(4,2).
又点E在直线OP上,
∴直线OP的解析式是y= x,
∴直线OP与y2= 的图象在第一象限内的交点P的坐标为(4 ,2 ).
【解析】【解答】解:(1)∵反比例函数y2= 的图象过点B(﹣8,﹣2),∴k2=(﹣8)×(﹣2)=16,
即反比例函数解析式为y2= ,
将点A(4,m)代入y2= ,得:m=4,即点A(4,4),
将点A(4,4)、B(﹣8,﹣2)代入y1=k1x+b,
得:,
解得:,
∴一次函数解析式为y1= x+2,
故答案为:4,;(2)∵一次函数y1=k1x+2与反比例函数y2= 的图象交于点A(4,4)和B(﹣8,﹣2),
∴当y1>y2时,x的取值范围是﹣8<x<0或x>4,
故答案为:﹣8<x<0或x>4;
【分析】(1)由A与B为一次函数与反比例函数的交点,将B坐标代入反比例函数解析式中,求出k2的值,确定出反比例解析式,再将A的坐标代入反比例解析式中求出m的值,确定出A的坐标,将B坐标代入一次函数解析式中即可求出k1的值;(2)由A与B 横坐标分别为4、﹣8,加上0,将x轴分为四个范围,由图象找出一次函数图象在反比例函数图象上方时x的范围即可;(3)先求出四边形ODAC的面积,由S四边形ODAC:S△ODE=3:1得到△ODE的面积,继而求得点E的坐标,从而得出直线OP的解析式,结合反比例函数解析式即可得.
3.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴
上,点A在反比例函数y= (k>0,x>0)的图象上,点D的坐标为(,2).
(1)求k的值;
(2)若将菱形ABCD沿x轴正方向平移,当菱形的一个顶点恰好落在函数y= (k>0,x >0)的图象上时,求菱形ABCD平移的距离.
【答案】(1)解:作DE⊥BO,DF⊥x轴于点F,
∵点D的坐标为(,2),
∴DO=AD=3,
∴A点坐标为:(,5),
∴k=5 ;
(2)解:∵将菱形ABCD向右平移,使点D落在反比例函数y= (x>0)的图象上D′,∴DF=D′F′=2,
∴D′点的纵坐标为2,设点D′(x,2)
∴2= ,解得x= ,
∴FF′=OF′﹣OF= ﹣ = ,
∴菱形ABCD平移的距离为,
同理,将菱形ABCD向右平移,使点B落在反比例函数y= (x>0)的图象上,
菱形ABCD平移的距离为,
综上,当菱形ABCD平移的距离为或时,菱形的一个顶点恰好落在函数图象上.【解析】【分析】(1)根据菱形的性质和D的坐标即可求出A的坐标,代入求出即可;(2)B和D可能落在反比例函数的图象上,根据平移求出即可.
4.已知:O是坐标原点,P(m,n)(m>0)是函数y= (k>0)上的点,过点P作直线PA⊥OP于P,直线PA与x轴的正半轴交于点A(a,0)(a>m).设△OPA的面积为
s,且s=1+ .
(1)当n=1时,求点A的坐标;
(2)若OP=AP,求k的值;
(3)设n是小于20的整数,且k≠ ,求OP2的最小值.
【答案】(1)解:过点P作PQ⊥x轴于Q,则PQ=n,OQ=m,
当n=1时,s= ,
∴a= = .
(2)解:解法一:∵OP=AP,PA⊥OP,
∴△OPA是等腰直角三角形.
∴m=n= .